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Abstract

The decay of the very neutron-rich nucleus 100Rb has been studied by γ-

spectroscopy of on-line mass-separated samples. Schemes for β-decay to 100Sr

and βn-decay to 99Sr are presented. New sets of transitions in 99Sr and 100Sr

with identical energies are observed. All identical bands so far observed in

neutron-rich Sr isotopes obey a simple energy rule valid for even-even, odd-

even and odd-odd bands.
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I. INTRODUCTION

Neutron-rich isotopes with N≥60 and A≃100 are characterized by strong axial defor-

mation. Strontium isotopes are the most deformed nuclei known so far in this region.

Quadrupole deformations of β≃0.4 have been deduced for 98Sr, 99Sr and 100Sr from the

lifetimes of the first excited states and from mean-square radii measured by collinear laser

spectroscopy [1–5]. According to these results, ground-state deformation remains constant

after its sudden onset at N = 60. This trend might even continue at larger neutron number

since neither the 101Sr level spacings [6] nor the 2+-state energy of 126 keV in the N = 64

isotone 102Sr [7] indicate any large change of deformation. This dramatic picture has, how-

ever, been very recently contested on the basis of high-spin data obtained in prompt fission

by the EUROGAM collaboration suggesting instead a more gradual increase of deforma-

tion with neutron number [8]. A peculiar feature of neutron-rich Sr nuclei is the occurence

of identical bands in isotopes with ∆A= 2. Transitions in the ground-state bands in the

even-even 98−100Sr and in the Kπ=3/2+ bands in the odd-neutron 99−101Sr have very close

energies. A local trend of strong dependence of moments of inertia on deformation and the

fact that all involved Sr isotopes have the same deformation seem to be the origin of these

identical bands [3,6]. However, the intricate mechanism is not yet understood.

Presently, the nucleus 100Sr62 is the most neutron-rich even-even Sr isotope for which

experiments can yield some structure information. The levels in 100Sr were first observed at

the CERN-ISOLDE facility in a β-decay study of 100Rb by Azuma et al. who identified the

4+ → 2+ → 0+ cascade and performed the first lifetime measurement of the 2+ state [9],

establishing large deformation. A more accurate lifetime measurement performed later by

our group, lead to the deformation of β=0.40 [3]. In the same experiment, a 85 ns lifetime

was observed for the 1619 keV level and attributed to K-hindrance of the decay to the 4+

state by the 1202 keV transition [10]. Recently, further members of the ground-state band

up to Iπ = 10+ were identified in prompt-fission studies [11]. The large moment of inertia

shows very little variation with angular momentum. Thus, 100Sr is a strongly deformed
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nucleus with properties close to the rotational limit.

Yet, data on non-yrast levels in 100Sr remained scarce. Here we present a more compre-

hensive decay scheme of 100Rb to 100Sr, including new non-yrast levels and band structure

built on the K-isomer. In addition, β-delayed neutron emission from 100Rb [12] provides a

new access to levels in 99Sr, complementing data from 99Rb β-decay [13].

II. EXPERIMENT AND ANALYSIS

A. Experiment

The 100Rb activity was produced by fission of natural uranium induced by 600 MeV

protons, followed by on-line mass separation at the ISOLDE facility. The main goal of the

experiment was to determine the deformation of the β-decay daughter nucleus 100Sr from

the lifetime of its 2+ state at 129 keV, as presented in Ref. [3]. We now report on the result

of a detailed analysis of γ−singles and γ − γ − t coincidence measurements recorded with

the planar Ge-detector used for the lifetime measurement (4.9 cm2 area by 1.3 cm depth)

and a coaxial Ge-detector of 27% relative efficiency. The highest energy to be recorded with

the planar detector was set to about 1250 keV, in order to allow gating of the 1202 keV line.

The coaxial detector covered energies up to 4.2 MeV, which still is lower than the neutron

separation energy Sn of 6.12 MeV for 100Sr [15]. The low efficiency for coincidences where

both transition energies are above say 1 MeV prevents the construction of a ’complete’ decay

scheme. Nevertheless, the setup allows detection of the γ-rays important for the discussion

of the low-lying levels of 99Sr and 100Sr.

B. Analysis

Since 100Rb is situated very far from β-stability, γ-spectra are very complex due to the

long chain of A = 100 isobaric activities produced by filiation and some other A = 99

activities following β-delayed neutron emission from 100Rb.
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In a first step, the identification of transitions to 100Rb decay was made by requiring

a coincidence with either the 129.2 keV (2+ → 0+) transition in 100Sr or with the 90.8

keV (5/2+ → 3/2+) transition in 99Sr, detected in the planar detector. These projections

are shown in fig. 1 and fig. 2. Gates were set on all the coincident transitions in the

coaxial Ge-detector, and the new projections on the planar detector were analysed. Prompt

coincidences with a window of about 60 ns and delayed coincidences were analysed to help

placing transitions with respect to the 85 ns isomer in 100Sr. Many ground-state transitions

have been placed on the sole basis of their good energy fit between levels established by

coincidence relationships. The weakest of them must be regarded as tentative since there is a

chance that such transitions also belong to other activities and could have been overlooked in

previous studies. Fortunately, decay schemes of 100Sr and of its descendants are well known

[15–19], and several decays in the A = 99 mass chain were also re-investigated recently

[20–22].

Owing to its superior energy resolution, the planar detector is very effective for the

identification of low-energy transitions depopulating the K-isomer in 100Sr and of the band

structures in 99Sr. However, its efficiency decreases rapidly with increasing energy. This

made the placement of the weakest high-energy transitions uncertain, since these may be

seen in coincidence with the 129 keV 2+ → 0+ transition in 100Sr or the 91 or 125 keV

transitions in 99Sr, but no longer with occasional intermediate higher-energy transitions.

Consequently, the high-energy part of the level schemes remains tentative. Thus, logft

values for low-lying levels might be strongly underestimated in these cases where feeding

high-energy γ-rays have been overlooked.

It has finally to be noted that the surface-ionisation ion-source used in our experiment

produced rubidium and strontium beams with high efficiency. As a matter of fact, the

presence of an intense 100Sr beam prevents the use of intensity balance considerations to

determine the ground-state β-branching from 100Rb to 100Sr. As a consequence of the un-

known amount of produced 100Rb, the β-delayed neutron emission probability Pn cannot be

deduced from γ-ray intensities.
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III. RESULTS

A. Decay of 100Rb to 100Sr

The levels known prior to this analysis were members of the ground-state band [3,11]

and the 85 ns isomer at 1619 keV [10]. Based on nuclear structure arguments, it was

assumed that both the 100Rb ground state and the isomer in 100Sr are Iπ=4− states. In

this particular case, the delayed γ-γ coincidences across the isomer allow a high sensitivity

for detecting feeding transitions. The strong β-decay branch to the isomer is accordingly

the most reliable one deduced in this work. A logft of 5.6 is obtained if intensity balances

are calculated including the tentatively placed transitions (it becomes somewhat lower by

removing them). This value is in agreement with the allowed character for this 4− to 4−

transition.

Transitions in the decay of 100Rb to 100Sr are listed in table I. The decay scheme is shown

in fig. 3. In the following, we present the arguments for placing the most important levels.

The 937.8 keV level is based on the coincidence of the 809 keV line with the 129 keV

2+ → 0+ transition. The intensity of this coincidence is high enough to ensure that further

coincidences with the 288 keV line and with the most intense lines in the 1 MeV region have

not been overlooked. No line of energy suitable as a ground-state transition is found in the

singles spectra.

The coincidence of a line in the 129 keV gate and a ground-state transition establish

the next levels at 1257.1 keV and 1315.4 keV with spin and parity of Iπ=2+. It must be

mentioned here that both logft values, 5.6 and 5.8 respectively, are clearly too low for the

assumed first-forbidden unique transitions. Alternatives to solve the discrepancies will be

discussed in a later section.

The levels at 1414.6, 1500.6 and 1560.6 keV are supported by low-energy feeding transi-
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tions from the 1619 keV (Iπ=4−) level and de-excitation to both the 129 (Iπ=2+) and 417

keV (Iπ=4+) levels. No transitions to the ground state are found. Transition rates for the

58.3, 118.0 and 204.4 keV transitions from the 85 ns isomer are consistent with strongly

retarded dipole transitions or moderately delayed E2 transitions. Thus, I=3 of either parity

or 4+ are possible for these levels.

The isomeric level at 1619 keV (t1/2=85 ns) has been proposed as Iπ=4− [10]. The

strongly hindered 1202 keV E1 transition to the 417 keV 4+ state has to compete with

transitions of very much lower energies to the levels at 1415, 1501 and 1561 keV. Delayed

coincidences indicate that the 161.8, 194.4 and 864.0 keV transitions are above the isomeric

level. The prompt 162-702 keV weak coincidence could indicate a 702.3 keV transition above

the 1781 keV level, but may also be due to the cross-talk of the strong 864 keV transition

belonging to the decay of 100Y [15]. A complex structure is associated with the prompt 162-

194 keV coincidence. A contribution is due to lines placed in 99Sr. Another one, so far not

reported, belongs to 99Zr. Due to these interferences a 161.8-194.4 keV coincidence in 100Sr

remains tentative. We nevertheless assume the 194 and 162 keV transitions to be coincident

and to form a band structure on top of the 1619 keV Iπ=4− isomer for two reasons. First, the

energies are in perfect agreement with the rotational formula for a 6→ 5→ 4 spin sequence.

Second, β-feedings to the 1781 and 1619 keV levels are in a ratio of 0.19(4) to 0.81(4). This

is calculated neglecting conversion of the weak lines from the 1619 keV level and the possible

feeding to the 1781 keV level by the 702 keV weak transition, but these corrections remain

within the quoted error. The β-feeding intensities are thus in excellent agreement with the

theoretical values of 0.20 (I=5) and 0.80 (I=4) according to the Alaga rule [23].

The deduced β-decay branchings are inconsistent with the 2+ spin and parity of the first

excited state (logft=5.8) and of the new levels at 1257 keV (5.6) and 1315 keV (5.8). These

inconsistencies could be removed by lowering the ground-state spin of 100Rb to I=3, but

contradicting the arguments for Iπ=4− in ref. [10] and the strong population of the 11/2+

state of the 99Sr ground-state band (see next section). As stated above, they could be a

consequence of the partial nature of the decay scheme. Alternatively, a yet not identified
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low-spin isomer in 100Rb could be invoked. This issue remains presently unsolved. Level

properties are listed in table II, where β-feedings have been calculated under the assumption

of a single β-decaying parent nucleus.

B. Decay of 100Rb to 99Sr

Transitions in the decay of 100Rb to 99Sr via β-delayed neutron emisssion are listed in

table III. The decay scheme is shown in fig. 4. There is only a partial overlap between the

levels observed in β-decay of 99Rb [13] and in this work. The highest members of the K =

3/2 ground-state band of 99Sr are more strongly populated in β-delayed neutron decay of

100Rb than in β-decay of 99Rb.

The new 570 keV level has transitions only to the 7/2+ and 9/2+ levels of the ground-

state band (g.s.b.) at 216 and 378 keV. The excellent energy fitting and the consistency of

the |(gK-gR)/Q0| parameter extracted from the branching ratios suggest the 570 keV level

to be the 11/2+ member of the g.s.b., (see table IV and table V).

The levels at 423, 535 and 684 keV have been assigned 5/2+, 7/2+ and 9/2+, respectively

in [15,24]. The energy of the 304.4 keV transition was unluckily stated as 307 keV. The

energy of the last level is thus 682.1 keV. The highest-spin level of this band is weakly

populated and there is no evidence for a 11/2 level. Odd parity logically accounts for the

non detection of a γ-branch from the 682 keV I=9/2 level to the 5/2+ state at 91 keV, in

spite of the high efficiency for the expected coincidence, since the missing transition had

to be a M2. The difference of populations of the g.s.b. and the excited band enable some

insight in the decay mechanism. For the levels in the g.s.b. the parity change requires

a p-wave neutron if β-decay has allowed character or a s-wave and first-forbidden decay.

There are several ways to reach the new 11/2+ level at 570 keV and this is consistent with

the experimental strong population. In contrast, the K=5/2 excited band could mainly be

reached via allowed β-decay with the emission of s-wave neutrons, leading to a smaller range
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of populated spins and fewer ways to reach the final levels.

Comparing the intensity of the 91-125 keV coincidences in 99Sr with those of various

coincidence pairs in the level schemes of 99Y and 99Zr, one obtains a branching of 0.13(3)

for the 125 keV line per β-delayed neutron decay of 100Rb. Consequently, about 50% of

the feeding bypasses the excited levels of 99Sr and directly feeds its 3/2+ ground state.

This looks to be a rather high value. It could be a consequence of β-decay of 99Rb due to

some, even modest, mass contamination or, alternatively, by additional population from an

hypothetical low-spin isomer in 100Rb.

IV. DISCUSSION

A. Levels in 100Sr

The systematics of deformed neutron-rich Sr isotopes is limited to 98Sr, 100Sr and 102Sr

(see fig. 5). This is due to the sudden onset of deformation resulting from the energy shifts

of coexisting shapes [25]. Thus, the deformed 1465 keV level in 96Sr58 corresponds to the

98Sr60 ground state while the 96Sr spherical ground state is associated with the excited 0+

state at 215 keV in 98Sr. We note that the lowest deformed state reported so far in the

odd-neutron nucleus 97Sr is a Kπ=3/2+ band head at 585 keV [11,26]. The rate of lowering

of the deformed minimum with N is almost constant. Extrapolating to 100Sr, a spherical 0+

state is expected near 1.7 MeV. Several levels above 0.9 MeV with only a decay to the 2+

state could be 0+ states. However, no spin and parity assignments are possible for them. In

contrast, the systematics of N = 62 isotones spans a larger number of nuclides and is much

smoother, (see fig. 6). Several low-spin collective levels can be followed from the spherical

plus γ-soft 108Pd [27] to the strongly deformed 102Zr [28,29], owing to the gradual evolution

of their energies and decay branchings. Extrapolation to 100Sr predicts a rather low-lying 0+

state for which the 938 keV level is a good candidate and, at somewhat higher energy, of two

2+ states which could be the 1257 and 1315 keV experimental 2+ levels. These levels could
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be regarded as non-yrast collective deformed levels, i.e. as the head of the β-band, its 2+

and the 2+ γ-band head, the order of the latter two being rather arbitrarily chosen in fig. 6.

However, another interpretation was put to our attention by K. Heyde [30]. Some of these

states (the 0+ and a 2+) could be spherical, corresponding to the complex structures in 96Sr

and other N=58 isotones associated with vibrational ’normal’ states or two-particle-two-hole

excitations across the Z = 40 spherical subshell [31]. In this interpretation, they would be

lying much lower than expected. This could happen if, as approaching neutron midshell,

the deformed states nearly reach their minimum energy relative to the spherical ones and

the change of relative energies becomes smaller. It might even be possible to consider a

minimum of deformation energy before N=66. An indication could be the lowest excitation

energies of intruder states in the Rh and Pd isotopes [32,33] which occur at N = 64. The

difficulties to establish the nature of low-lying 0+ states are made apparent by the numerous

studies devoted to 152Sm, a nucleus close to stability where detailed experiments are possible.

In that region, a rapid shape transition also occurs and while the 152Sm ground-state band

exhibits rotational structure, other interpretations have been proposed for the excited 0+

band, see e.g. ref. [34–36] and therein. In order to clarify the nature of the new 938, 1257

and 1315 keV levels in 100Sr, it would be of great importance to search for band structure

and to measure transition rates. According to systematics showing that the largest ρ2(E0)

values have been measured in this region [31], an especially large value for the decay of the

tentatively 0+ level at 938 keV would be a signature of shape coexistence.

The 1619 keV isomeric level has been interpreted as a Iπ=4− state, based on considera-

tions of hindrances of its decay to the 4+ level of the ground-state band [10]. The proposed

[411]3/2⊗[532]5/2 neutron configuration involves the lowest quasiparticles for N = 61 and

N = 63 in this region [6,37–39]. A band built on a similar level has been identified in 102Zr

by Durell et al. using prompt fission [29]. They observed the band up to the Iπ=9− level,

but did not report a lifetime for the band head at 1821 keV. The postulated 2-quasiparticle

configuration has been reproduced by Quantum Monte Carlo calculations for 100Sr and 102Zr

performed by Capote et al. [40]. The decrease of pairing confirms numerous calculations of
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decay properties by the QRPA model [41,42]. The Gallagher rule [43] favours coupling of

antiparallel intrinsic spins. Thus, a 1− spin-singlet level is expected below the 4− spin-triplet

state. Such a level has not been identified in this work nor in β-decay or prompt fission

studies of 102Zr [28,29]. It has to be mentioned that if the ground-state transition is the only

strong decay mode, such a low-spin level can easily have escaped observation in experiments

strongly relying on coincidence data.

B. Levels in 99Sr

The new level at 570 keV is the 11/2+ member of the previously established K = 3/2

ground-state band [13]. The band analysis shown in table V yields the absolute value of

the E2/M1 mixing ratio for the 5/2+ → 3/2+ transition, |δ(91 keV)|= 0.171(13). From the

lifetime of the 91 keV level, t1/2= 0.58(9) ns [2] we derive B(M1)= 0.040(6) W.u., B(E2)=

131(27) W.u. for the 91 keV transition. The quadrupole moment extracted from the B(E2)

value is |Q0| = 3.27(34) b. It corresponds to a deformation parameter (with second order

term included) β= 0.35(4), a value slightly lower than in ref. [2] where branching ratios from

decay of 99Rb were used. This result is in modest agreement with β= 0.44(4) extracted from

a <r2> measurement by collinear laser spectroscopy [5]. Part of the difference might be due

to the fact that the β-value from the B(E2) measurement and from the laser spectroscopy

are not exactly the same quantity. Anyway, the average value is close to β=0.40 which

is the deformation parameter for 98Sr and 100Sr [1,3,4]. From B(M1) one gets |gK-gR|=

0.70(6) and, with further assumptions of gs= 0.6·gs(free) = –2.3 and gR= Z/A, one obtains

the solutions <sz>= +0.22 and –0.71. The negative value is out of range while the positive

one is consistent with the assignment of the [411]3/2 orbital [13]. We note that <sz>=

0.29 has been calculated for this orbital at deformation of 0.4 in 99Y where it is part of a

three-quasiparticle isomer [14].

Such an analysis cannot be performed for the proposed Kπ=5/2− excited band due to the

weakness of the population and the non-observation of the crossover transitions. The inertial
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parameter is close to 16.0 keV, which corresponds to 96% of the rigid-rotor estimate. This

energy compression is systematically observed in this region for odd-parity bands, where

it has been attributed to Coriolis mixing [39]. The [532]5/2 orbital is clearly favoured as

being the only one of odd parity near the Fermi surface. The systematics of odd-neutron

quasiparticle levels for N = 61 has to be partly revised since the 5/2− energy in 99Sr turns

out to be higher than expected from a simple extrapolation versus deformation [37]. It would

have been in principle possible to determine the parity of the band from branching ratios. If

one assumes rather arbitrarily <sz>= +0.5 and -0.2 for the [532]5/2 and [413]5/2 orbitals,

respectively, the crossover transition from the 9/2 state is roughly ten times stronger for even

parity than for the odd one. However, even then, its intensity of 0.08 relative γ-intensity

units is far below the detection limit.

C. Identical transitions

Large moments of inertia and rigid rotations are exhibited by a number of odd or odd-odd

nuclei in the A≃100 region of neutron-rich nuclei but 98Sr and 100Sr are the only even-even

nuclei showing such pronounced features [11,14,44]. The 100Sr 2+ state (129 keV) is among

the lowest ones, being second only to the 2+ state (126 keV) of 102Sr [7]. The moment of

inertia extracted from the lowest members of the ground-state band represents 72% of the

rigid rotor value Jrigid and the E(4+)/E(2+) ratio is 3.23. With increasing spin, the g.s.b. still

shows little compression with E(10+)/E(2+) = 16.3. These very good rotational properties

are very comparable with those of the classical rotors in the rare earth and actinide regions.

The deformed isotopes 98Sr, 99Sr and 100Sr all have deformation close to β= 0.4. One

therefore expects transition energies to scale with the mass dependence of the moments

of inertia, i.e. ∆J/J= 5/3·∆A/A = 3.3% for transitions in 98Sr and 100Sr. However, the

deviation is much smaller. The identity of the 6+ → 4+ → 2+ transitions was discussed

in ref. [3]. It has to be noted that the different energies of the 2+ states, 144 and 129 keV

for 98Sr and 100Sr, respectively, are due to shape coexistence in 98Sr where the low-lying 0+
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state at 215 keV perturbs the ground-state band [45]. Identity of transition energies persists

at higher spins [11]. The relative deviation of the E(10+)–E(2+) difference of 0.23% still

remains much smaller than the mass scaling contribution. A comparable degree of identity

was also reported for the few levels observed in the Kπ=3/2+ bands in the odd-neutron

nuclei 99Sr and 101Sr [6].

In this work, two levels have been identified in the Kπ= 4− two-quasiparticle band in

100Sr and the 11/2+ level has been added to the g.s.b. of 99Sr. This leads to observation

of new identical transitions now in the immediate neighbours 99Sr and 100Sr (see fig. 7).

First, the 9/2+ to 5/2+ energy difference of 287.2 keV in the [411]3/2 g.s. band of 99Sr is

almost the same as the energies of the 4+ → 2+ transitions in 98Sr and 100Sr, 289.4 and 287.8

keV respectively. In this case, we note that jodd−A = jeven−A + 1/2 or, in other words, the

transition energy remains the same by increasing the number of unpaired particles and the

spin of the initial level. It is well known that for a K= 1/2 band with decoupling parameter

a = 1, there is a degenerate doublet structure with ∆I=2 energy spacings like in the even–

even core. However, this simple explanation faces the problem that no K= 1/2 bands have

been observed so far in the odd neighbours and there is no K= 1/2 orbital close to the Fermi

surface. The 11/2+ to 7/2+ energy difference of 353.9 keV in the g.s.b. of 99Sr is also fairly

close to the 6− to 4− energy difference of 356.2 keV in the Kπ= 4− band in 100Sr. This can

be written as jodd−A,odd−A = jodd−A + 1/2. In both cases, the increase in transition energy

due to the extra half-a-unit of spin (via the I(I+1) term) is counteracted by the increase

of the moment of inertia due to the additional unpaired neutron. These effects turn out to

compensate almost perfectly, thus keeping the transition energies equal. A priori, there is no

reason why this happens to be so. The increment of half-a-spin unit perhaps could indicate

a treatment in the pseudospin framework as appropriate [46]. We also note that this simple

rule includes the formerly reported identical bands with ∆A= 2, in which case there are no

unpaired particles or one in both partners and the spins of the levels are the same.

We note a further trend towards identical energies in Sr and Zr isotopes by breaking a

neutron pair. The deformation of 102Zr is large (β=0.38 [47]) but, its moment of inertia

12



still is significantly smaller than the one of 100Sr (E2+(102Zr)= 151.9 keV). Nevertheless, the

energies for the transitions in the two-quasineutron Kπ=4− bands, 161.8 and 194.4 keV for

100Sr and 159.3 and 194.4 keV for 102Zr [29] are also similar, see fig. 7. Breaking a neutron

pair to form the 4− isomer does not increase the already large moment of inertia of 100Sr as

much as the one of 102Zr. Finally, the Kπ=5/2− bands of odd-neutron nuclei tend to become

identical at the largest deformations, as a further increase is expected at larger N for Zr

isotopes. In particular, the 7/2− → 5/2− energies of Zr isotopes come closer to the energies

in Sr, see table VI.

D. Ground states of 99Rb and 100Rb

According to the table of isotopes [15], the ground state of 99Rb is 5/2+. This assignment

is requested to account for sizeable β-feeding to the 7/2+ state of the g.s.b. of 99Sr. However,

the β-decay branching to the 5/2+ state is non existent. This pattern in contradiction with

the Alaga rule (the 5/2 level is calculated to be 6 times more populated than the 7/2 state)

casts some doubts about the reliability of intensity balances. In fact, systematics suggests

3/2+. For 97Rb I= 3/2 was measured by laser spectroscopy [48] and the decay of 101Rb also

suggested I(101Rb)=3/2 [6]. The Nilsson scheme indeed predicts the [431]3/2 proton orbital

to be the last one occupied for Z = 37.

According to ref. [10] the 4− ground state of 100Rb originates from the coupling of this

[431]3/2 proton with the [532]5/2 neutron which is shown experimentally to be the ground

state of N= 63 isotones [6,38,39]. The Gallagher-Moszkowski rule [49] depresses the 4− level

with respect to its 1− partner to create the 4− ground state. From purely experimental

considerations it is not possible to determine the spin of 100Rb. Nevertheless, odd parity is

in agreement with the large β-feeding to the isomeric 4− level in 100Sr.

In addition, the existence of a low-spin isomer in 100Rb has been conjectured as a source

of feeding to low-spin levels in 100Sr in addition to consequences of the low efficiency for

detecting high-energy coincidence pairs. Another observation, less sensitive on the details
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of the level scheme, gives further support to this assumption. The Pn-value cannot be

calculated since the ground-state branch to 100Sr cannot be measured. Nevertheless, Iπ=

4− for 100Rb does not allow sizeable g.s. feeding. In this case, a Pn-value of 26(8)% is

calculated by comparing the intensities of γ-rays in 100Sr and in A = 99 activities. This is

a subtantially higher value than obtained from direct neutron measurement yielding only

about 6% [12]. Allowing non-zero ground-state feeding to 100Sr, the calculated Pn-value is

lowered. This way, these values could come in better agreement.

The 1− level from the π[431]3/2⊗ν[532]5/2 coupling mentioned above could indeed be

associated with this hypothetical isomer. First-forbidden decay could populate 2+ states

and also the tentative 0+ state at 938 keV. Then, logft-values to 2+ states would be only

slightly too low, which is acceptable considering the uncertainties in γ-ray feedings by high-

energy transitions. This is only one of the possible alternatives to generate low-spin and

low-lying levels since there are several experimentally known low-lying neutron levels at N

= 63. Ultimately, the existence of an isomer depends on the presence at low energy of I =

(2,3) levels. The lowest lying level after the 4− ground state is probably the 3+ state built

on π[431]3/2⊗ν[411]3/2 since the [411]3/2 level is only a few hundreds of keV above the

ground state, e.g. 271 keV in 101Sr [6] and 259 keV in 103Zr [38]. The existence of a low-spin

isomer thus critically depends on the amplitude of the Gallagher-Moszkowski splittings.

V. CONCLUSION

We have studied the decay of the very neutron-rich nucleus 100Rb to its β-daughter 100Sr

and β-n daughter 99Sr. The level scheme of 100Sr, a strongly deformed nucleus with very

good rotational properties, has been considerably extended. Among the lowest-lying levels

we have introduced two 2+ states at 1257 and 1315 keV and a tentative 0+ state at 938 keV,

all smoothly extending the energy systematics of N = 62 isotones. Yet their nature, members

of β and γ bands or spherical intruder states, is unknown and has to be investigated further.

The identification of the 5− and 6− levels of the band built on the 85 ns Kπ= 4− isomer is

14



suggested by transition energies and β-feeding intensities. It creates an appealing analogy

with 102Zr where a similar band is known from prompt fission. The large moment of inertia

of the g.s. band and the low energy (1619 keV) of the 4− isomer indicate a strong reduction

of pairing with respect to the standard estimate. These features are more pronounced for

100Sr than for its isotone 102Zr. However, the transition energies of the 4− two-quasineutron

bands are nearly identical.

Beta-delayed neutron decay has allowed an extension of the [411]3/2 ground-state band

in 99Sr by adding the 11/2+ level assigned from energy fitting and branching ratios. Based

on weaker arguments of β-n feedings and γ-ray branchings, the [532]5/2 orbital has been

assigned to the 423 keV level, head of a band whose 7/2 and 9/2 levels are also observed.

The new transitions in 99Sr and 100Sr define a new group of transitions with very similar

energies. All identical transitions in strontium isotopes appear to follow a simple rule given

as jn+1 = jn + 1/2 where n is the number of unpaired neutrons and j the spin of the initial

level. This extends the systematics of previously reported identical transitions in ∆A= 2

nuclei which are a particular case with the same number of unpaired neutrons. Moreover,

with increasing neutron number (i.e. presumably of deformation), energies of the 5/2− band

members in odd-Zr isotopes tend to become close to those in Sr isotopes. These peculiarities

are surely worth to be further investigated.
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Rev. C49, 1379 (1994).

[26] G. Lhersonneau, B. Pfeiffer, K.–L. Kratz, H. Ohm, K. Sistemich, S. Brant, and V. Paar,

Z. Phys. A337, 149 (1990).

[27] K.H. Kim, A. Gelberg, T. Mizusaki, T. Otsuka, and P. von Brentano, Nucl. Phys. A604,

163 (1996).

[28] J.C. Hill, D.D. Schwellenbach, F.K. Wohn, J.A. Winger, R.L. Gill, H. Ohm, and K. Sis-

temich, Phys. Rev. C43, 2591 (1991).

[29] J.L. Durell, W.R. Philips, C.J. Pearson, J.A. Shannon, W. Urban, B.J. Varley, N. Row-

ley, K. Jain, I. Ahmad, C.J. Lister, L.R. Morss, K.L. Nash, C.W. Williams, N. Schulz,

E. Lubkiewicz, and M. Bentaleb, Phys. Rev. C52, 2306 (1995).

[30] K. Heyde, Univ. Ghent, Belgium, private communication.

[31] J.L. Wood, E.F. Zganjar, C. De Coster and K. Heyde, Nucl. Phys. A651, 323 (1999).

[32] G. Lhersonneau, B. Pfeiffer, J. Alstad, P. Dendooven, K. Eberhardt, S. Hankonen,
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FIGURES

FIG. 1. Gamma spectra recorded with the coaxial Ge detector gated by the 129 keV (2+ → 0+)

and 288 keV (4+ → 2+) transitions in 100Sr. The counts near the 288 keV peak in the 129 keV

gate have been divided by 4. The scales are adjusted to yield about equal heights for the lines

placed on top of the 4+ level. Transitions included in the level scheme are marked by their energy

if placed directly above the gating transition or by a closed circle if placed elsewhere. In the 129

keV gate a minor amount of contamination is due to the 130 keV transition (99Zr, open squares).

Peaks marked with crosses are interferences from K X-rays of Pb due to fluorescence and lines in

various decays without clear statistical significance mostly due to random coincidences. The large

amount of annihilation radiation due to pair production reflects the large population of the 2+ level

by high-energy transitions. In the 288 keV gate, a strong cross-talk due to the 469 keV transition

in 99Nb is visible at 181 keV (diamond).

FIG. 2. Part of gamma spectra recorded with the coaxial detector gated by the 91 keV

(5/2+ → 3/2+) and 125 keV (7/2+ → 5/2+) transitions in 99Sr. The counts near the 125 keV

peak in the 91 keV gate have been divided by 2. Transitions are marked by their energy if placed

directly on the gating transition. Transitions belonging to the ground-state band are marked by

closed circles and those linking the K=5/2 excited band to the g.s. band are indicated by open

circles. A moderate contamination in the upper spectrum is due to a doublet near 90 keV in

99Zr, accounting among others for a peak at 122 keV visible on the left of the 125 keV peak. The

lower spectrum is dominated by the coincidences due to the 125 keV line in 99Y which is another

7/2+ → 5/2+ transitions. A new level in the ground-state band is indicated by the 192 and 354

keV lines.

FIG. 3. Partial decay scheme of 100Rb to 100Sr. Only the levels up to the K-isomer at 1619

keV and the proposed band members are shown since most of the high-energy transitions are

tentatively placed. The complete list of levels, including logft-values not shown here, is presented

in table II. The inconsistencies of the β-feedings and proposed spins are discussed in the text.
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FIG. 4. Partial decay scheme of 100Rb to 99Sr. As for fig. 3 only the levels discussed in the

text are shown. Level feedings have been calculated for 100 β-delayed neutron decays. Conversion

coefficients were calculated using δ(E2/M1) mixing ratios deduced from band properties, see table

V.

FIG. 5. Level systematics for neutron-rich Sr isotopes [1,3,7,11,15,25] suggests spherical states

could be expected below 2 MeV in 100Sr.

FIG. 6. Level systematics of N = 62 isotones. There is a gradual evolution of structure from

the vibrator limit in the Cd-Pd region via the γ-soft limit dominating the structure of Ru isotopes

to the axial symmetry limit in Zr-Sr isotopes. The nature of the 938, 1257 and 1315 keV levels in

100Sr yet remains unclear.

FIG. 7. Selected transitions with very similar energies in 99Sr, 100Sr and 102Zr. An offset

has been added in order to better show the identical transitions as a function of the number of

quasineutrons.
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TABLES

TABLE I. Gamma rays following the β-decay of 100Rb to 100Sr. Coincidences are listed

for gates on the coaxial detector and projections onto the X-ray detector. Coincidences without

brackets are significant at 3 standard deviations (σ) or better. The single occurence of a coincidence

less significant than 2 σ is not listed if not further supported by another coincidence or a g.s.

transition. Uncertain placements are indicated by brackets. The intensity of unplaced transitions

is calculated assuming they feed directly the 129 keV level.

Eγ Iγ Initial Final Coincidences

[keV] [%] level level

58.3 (2) 0.20 (5) 1619 1561

106.4 (6) 0.16 (9) 1522 1415 a

118.0 (2) 1.1 (2) 1619 1501

129.2 (1) 100 129 0 58, (118), 162b, (194)b, 204, 288, 435, (1186), (1197), 1202

161.8 (2) 4.9 (8) 1781 1619 b 129, 288, (1202)

194.4 (3) 0.6 (2) (1975 1781) b (162)

204.4 (3) 1.1 (2) 1619 1415 (288)

287.8 (2) 40.9 (38) 417 129 (118), 129, 162b, 435, 864b, 1202

434.8 (2) 3.3 (4) 852 417 c 129, 288

593.8 (4) 1.0 (4) d 129

614.8 (4) 1.2 (4) e 129

637.4 (3) 1.7 (3) (2056 1419) f 129

702.3 (4) 0.8 (3) (2483 1781) g 162

740.7 (5) 0.9 (3) (2056 1315) h (129)

808.6 (3) 3.6 (4) 938 129 i 129

864.0 (3) 2.8 (7) 2483 1619 b 129, 288, (1202)

871.1 (4) 0.5 (2) (162)

997.5 (4) 1.8 (4) 1415 417 (129), (204), (288)
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1083.7 (3) 2.9 (6) 1501 417 129, 288

1127.8 (3) 4.0 (5) 1257 129 j 129

1143.4 (3) 1.7 (3) 1561 417 58, 129, 288

1186.2 (3) 7.5 (8) 1315 129 j 129

1197.4 (4) 9.0 (15) 1327 129 i 129

1201.7 (2) 21.3 (26) 1619 417 129, 162b, (194)b, 288, 864b

1231.0 (4) 0.9 (5) (1648 417) (129), (288)

1257.1 (3) 9.7 (17) 1257 0 l

1285.5 (4) 5.4 (6) 1415 129 (106), 129, 204

1289.5 (3) 3.7 (5) (1419 129) m 129

1315.3 (4) 4.6 (8) 1315 0 k

1328.7 (4) 1.0 (3) (1746 417) 129, (288)

1371.3 (4) 8.7 (10) 1501 129 118, 129

1392.6 (3) 7.6 (9) 1522 129 129

1431.8 (5) 0.6 (4) 1561 129 a (129)

1504.0 (5) 1.0 (5) (129)

1539.4 (7) 1.0 (4) 1957 417 (129), (288)

1699.0 (5) 1.3 (4) 2116 417 (129), (288)

1807.8 (8) 0.9 (5) (129)

1827.8 (6) 1.0 (5) 1957 129 (129)

1883.0 (6) 0.8 (3) (129)

1926.8 (3) 8.4 (9) 2056 129 129

1945.9 (7) 0.8 (4) (129)

1986.7 (4) 1.9 (5) 2116 129 j 129

2055.9 (4) 3.3 (6) 2056 0 k

2082.2 (3) 3.6 (7) 2211 129 j 129

2115.6 (3) 3.7 (7) 2116 0 k
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2148.4 (3) 7.4 (9) 2278 129 j 129

2211.6 (3) 7.1 (12) 2211 0 k

2277.3 (3) 1.8 (4) 2278 0 k

2336.9 (9) 0.8 (5) (129)

2376.7 (4) 2.1 (5) (2506 129) n 129

2635.9 (8) 0.8 (5) (129)

2929.0 (9) 0.7 (4) (3346 417) o (129), (288)

2967.8 (7) 1.0 (6) 3097 129 j (129)

3035.9 (8) 1.8 (5) 3165 129 j 129

3097.3 (7) 1.4 (5) 3097 0 k

3164.9 (8) 0.2 (1) 3165 0 k

3187.1 (6) 1.6 (6) (3316 129) n 129

4306.4 (9) 0.9 (5) (129)

4483.3 (8) 1.2 (7) (129)

aPlacement supported by weak coincidence and energy fitting.

bTransition enhanced in the delayed coincidences, due to the isomeric level at 1619 keV [10].

cTransition also observed in prompt fission [11].

dMight be due to accidental coincidence, a strong transition of same energy is placed in the level

scheme of 99Nb.

eMight be due to accidental coincidence, transition of same energy is placed in the level schemes

of 99Zr and 100Zr.

fTentative placement, see remark for 1290 keV transition.

gOther possible placement from level 2116 keV to level 1415 keV.

hPlacement by energy fitting only.

iPlacement supported by a strong coincidence but no other relationship.

jPlacement supported by probable ground-state transition.

kSeen in singles only while fitting as a g.s. transition.
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lOnly in singles while about 25% of the intensity is due to a line in 100Mo.

mOther possible placement from level 3346 keV to 2056 keV.

nTentative due to the weak statistics and no other relationship.

oA doubly placed 1290 keV transition could further support this level.
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TABLE II. Levels in 100Sr populated in the decay of 100Rb. The transition intensities used

are experimental ones. The existence of an isomer could solve unconsistencies of logft values and

adopted spins, but it still remains speculative. It has therefore not been attempted to decompose

the β-feeding pattern into contributions of a low and medium spin level in 100Rb. Following this,

100 relative γ-intensity units correspond to 57% β-decays. The logft-values have been calculated

with T1/2=51 ms, Qβ=13.5 MeV and Pn=6% [15], under the assumption of no direct ground-state

feeding.

Energy [keV] β-feeding [%] logft Iπ

0.0 0+

129.2 (1) 11.5 (24) 5.7 2+ a

417.0 (2) 2.9 (26) 6.3 4+ a

851.8 (3) 1.9 (2) 6.4 6+ a

937.8 (3) 2.1 (3) 6.4 (0+) b

1257.1 (3) 9.7 (10) 5.6 (2+)

1315.4 (3) 6.4 (6) 5.8 (2+)

1326.6 (4) 5.1 (8) 5.9

1414.6 (3) 3.4 (4) 6.1 (3,4)

1418.7 (3) 1.1 (3) 6.5 c

1500.6 (3) 5.9 (6) 5.8 (3,4)

1521.7 (3) 4.5 (5) 5.9

1560.6 (3) 1.1 (2) 6.5 (2,3,4)

1618.8 (2) 9.2 (15) 5.6 (4−) d

1648.0 (5) 0.5 (3) 6.9 c

1745.7 (5) 0.6 (2) 6.8 c

1780.6 (3) 2.1 (5) 6.2 (5−)

1956.8 (5) 1.1 (2) 6.5 (2,3,4)

1975.0 (4) 0.4 (1) 6.9 (6−)
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2056.0 (2) 8.2 (7) 5.6 (1,2) e

2115.8 (2) 4.0 (4) 5.9 2+ e

2211.5 (2) 6.1 (7) 5.7 (1,2) e

2277.4 (2) 5.2 (5) 5.7 (1,2) e

2482.8 (3) 2.0 (4) 6.1 e

2505.8 (4) 1.2 (2) 6.3 e

3097.2 (5) 1.4 (4) 6.2 (1,2) e

3165.0 (6) 1.2 (2) 6.2 (1,2) e

3316.4 (7) 0.9 (2) 6.3 e

3346.0 (9) 0.4 (2) 6.7 e

aMember of the ground state band [11].

bSpin and parity based on systematics only.

cLevel based on weak evidence, not shown in Fig. 3.

disomeric level with 85 ns [10].

eLevel not shown in Fig. 3.
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TABLE III. Gamma-rays in 99Sr following β-delayed neutron decay of 100Rb. The same

conventions are used as in table I.

Eγ Iγ Initial Final Coincidences

[keV] [%] level level

90.8 (1) 100 91 0 125, 162, (319)

111.9 (5) 0.6 (3) 535 423 a (423)

125.1 (2) 40.3 (59) 216 91 b 91, (112), 162, (192), (319)

147.6 (5) 0.7 (4) (682 535) c (423)

161.9 (3) 11.1 (13) 378 216 91, (112)a, 125, 192, 216

192.0 (4) 2.8 (12) 570 378 d 91, 125, 162

215.9 (3) 10.8 (15) 216 0 162, 319

287.2 (3) 7.4 (13) 378 91 91, (192)

304.4 (4) 0.9 (4) 682 378 e 91, (125), (162), (287)

318.7 (3) 5.7 (6) 535 216 91, 125, 216

332.0 (2) 7.9 (9) 423 91 91

353.9 (3) 2.6 (5) 570 216 d 91, 125, (216)

422.8 (4) 14.0 (21) 423 0

443.8 (3) 6.7 (8) 535 91 91

466.4 (5) 0.3 (2) (682 216) d (125)

646.2 (4) 0.9 (4) (862 216) d 91, 125, (216)

683.7 (4) 3.9 (13) 1106 423 91, (125), (332), (422)

764.0 (3) 5.7 (8) 855 91 f 91

777.4 (3) 1.8 (4) 994 216 91, (125)

846.8 (3) 2.1 (5) 1063 216 d 91, 125, (216)

854.7 (4) 6.1 (8) 855 0 g

902.9 (3) 4.9 (6) 994 91 f 91

936.0 (3) 1.9 (4) 1152 216 91, 125, (216)
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965.1 (5) 1.8 (4) 1182 216 d (91), (125)

971.4 (9) 1.0 (5) (1063 91) d (91)

981.3 (4) 2.3 (5) 1072 91 f 91

993.7 (5) 2.0 (4) 994 0 g

1015.0 (4) 2.1 (5) 1106 91 91

1060.9 (7) 1.0 (5) 1152 91 h 91

1072.1 (4) 2.8 (7) 1072 0 g

1090.1 (5) 1.0 (5) 1182 91 d (91)

1104.9 (4) 3.1 (7) 1196 91 i 91

1112.0 (7) 0.8 (4) (1328 216) d (91), (125)

1149.8 (8) 1.0 (5) (1241 91) d (91)

1211.1 (9) 0.5 (3) (1427 216) d (91), (125)

1291.8 (9) 0.7 (4) (1383 91) d (91)

aThe transition can also be placed from the 682 keV to 570 keV levels.

bAbout half of the observed intensity comes from the decay of 99Sr which causes a large error on

the calculated value.

cTransition placed by energy fitting.

dTransition not reported in β-decay of 99Rb [24].

eTransition reported as 307.0 keV due to a misprint in ref. [24].

fPlacement supported by a probable g.s. transition.

gSeen in singles only while fitting as a g.s transition.

hTransition masked in singles by the 1059.5 keV line in 100Zr.

iThe existence of a g.s. transition is unclear due to the line at 1197.4 keV in 100Sr.
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TABLE IV. Level energies of the K = 3/2 ground-state band of 99Sr. The symbols refer to

fits with the leading term in I(I+1)-K2 only (a), with terms in first and second order in I(I+1)-K2

(b) and with leading term plus signature term (c).

Level energies [keV]

I Exp. a b c

5/2 90.8 89.4 90.8 90.3

7/2 215.9 214.5 216.8 214.9

9/2 377.9 375.5 377.0 378.1

11/2 569.8 572.1 570.1 570.5

TABLE V. Analysis of the K = 3/2 ground-state band of 99Sr according to the formalism

shown in ref. [14]. (a) the average value of |(gK -gR)/Q0| = 0.215(15) barn−1 is used to deduce

|δ(91)|= 0.171(13).

γ-ray Ii → If |δ(I → I-1)| |(gK -gR)/Q0| [b−1]

90.8 5/2+ → 3/2+ 0.171(13) (a)

125.1 7/2+ → 5/2+ 0.164(16) 0.212(21)

161.9 9/2+ → 7/2+ 0.160(18) 0.215(24)

192.0 11/2+ → 9/2+ 0.131(38) 0.254(74)

TABLE VI. Energies of transitions in the K = 5/2 bands in N = 61 and 63 Sr and Zr nuclei.

Nucleus E(7/2− → 5/2−) E(9/2− → 7/2−)

[keV] [keV]

99Sr 111.9 147.6 this work

101Sr (111.6) [6]

101Zr 104.4 146.6 [37,39]

103Zr 109.4 146.6 [39]
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