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1 Introduction

In measurements, and related theoretical analyses, of scaling violations of the F2 structure

function [1, 2], of forward-jet production in DIS [3–7], and of dijet production at large rapid-

ity intervals [8–14], several attempts have been made to detect a footprint of BFKL [15–17]

evolution in hadronic cross sections. Except for forward-jet production in DIS, where a full

next-to-leading-order (NLO) calculation [18] has proven itself insufficient to describe the data,

perhaps hinting toward corrections of BFKL type, none of the processes above shows any ap-

preciable difference from a standard perturbative-QCD behaviour, which allows us to describe

them in terms of a fixed-order expansion in αS of the kernel cross sections, complemented

with the Altarelli-Parisi evolution of the parton densities. However, in the processes above the

hadronic nature of one or both of the incoming particles renders it difficult to disentangle an

eventual BFKL signal from standard non-perturbative long-distance effects.

In order to overcome this problem, it was proposed in Refs. [19, 20] to consider the high-

energy scattering of two heavy quarkonia, since the transverse sizes of the quarkonia are small

enough to allow for the perturbative computation of their wave function. At present, scattering

of two heavy quarkonia is not feasible experimentally. An increasingly popular alternative is

the study of the process

γ∗ + γ∗ −→ hadrons, (1.1)

at fixed photon virtualities q2
i = −Q2

i < 0, and for large center-of-mass energies squared

W 2 = (q1 + q2)
2, with qi the momenta of the photons. The virtual photons play the same role

as the quarkonia; they are colourless, and their virtualities control their transverse sizes, which

are roughly proportional to 1/
√
Q2

i , thus allowing for a completely perturbative treatment.

The virtuality of the photon is therefore physically equivalent to the (squared) mass of the

quarkonium; however, while the mass of the quarkonium is fixed by nature, the virtuality of

the photon can be controlled by the experimental setup.

In order to elucidate how the process in Eq. (1.1) may be relevant to the BFKL dynamics,

we expand the production rate associated to Eq. (1.1) in αS and illustrate in Fig. 1 some of

the final-state configurations contributing to it. Diagrams d), e) and f), plus all the diagrams

obtained by emitting more and more gluons from the crossed-channel gluon, are included in the

BFKL dynamics: in fact, the BFKL theory assumes that any scattering process is dominated

by gluon exchange in the crossed channel, a result that holds exactly only asymptotically for

large energies. In the case at hand, if one considers the large-W limit, diagrams with a crossed-

channel quark exchange, such as a), b) and c), are expected to give a cross section behaving

as

σγ∗γ∗ ∼ 1/W 2, (1.2)

modulo logarithmic corrections, while diagrams relevant to BFKL physics, such as d), e) and

f), are expected to give

σBF KL

γ∗γ∗ ∼ a0 +
∞∑

j=1

aj(αSL)j +O(αS(αSL)j), (1.3)
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Figure 1: Sample of diagrams contributing to the production of hadrons in the collision
of two off-shell photons.

where L = log(W 2/µ2
W) is a “large” logarithm, and all subleading logarithmic terms are indi-

cated with O(αS(αSL)j); the quantity µ2
W

is a mass scale squared, typically of the order of the

crossed-channel momentum transfer and/or of the photon virtualities. By comparing Eqs. (1.2)

and (1.3), it is clear that the latter will dominate over the former in the asymptotic energy

region W →∞. Thus, testing the BFKL predictions in an ideal world would be quite straight-

forward: the data relevant to the process in Eq. (1.1) for large W values would be compared

to the theoretical predictions for σBF KL
γ∗γ∗ .

However, things are not so simple when comparing the theory to the data of a realistic

experimental set-up. Firstly, at current collider energies σγ∗γ∗ is not safely negligible, and must

be taken into proper account. For this reason, one usually subtracts the theoretical predictions

for σγ∗γ∗ from the data, and then compares the results obtained in this way to the predictions

for σBF KL
γ∗γ∗ , which have been obtained in the high-energy limit in Refs. [21,22,17]. Unfortunately,

at present only the leading order (LO) contribution to σγ∗γ∗ (diagram a) in Fig. 1) has been

considered [23, 24]. Diagrams such as b) and c) have been neglected so far; these diagrams

represent the first non-trivial QCD corrections to the process in Eq. (1.1): as we know from
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other processes in hadron physics, they might give rise to a sizable enhancement with respect

to the LO cross section. We shall denote these contributions as NLO corrections, although

effectively of leading order in αS. The aim of this work is to compute the NLO corrections, in

order to assess whether a full NLO calculation of the total cross section suffices to describe the

data. As a by-product, we shall also be able to give our predictions for one- and two-jet cross

sections, with the jets having a non-trivial internal structure. In the case of dijet observables,

we shall choose the two jets with the largest rapidity interval in the event, in accordance with

the Mueller-Navelet analysis [10]. The total and jet cross sections are computed by using a

general-purpose parton generator, developed specifically for this work.†

A second remark concerns the data relevant to the process in Eq. (1.1). The easiest way to

access this process is through the reaction,

e+ + e− −→ e+ + e− + γ∗ + γ∗︸ ︷︷ ︸
|−→ hadrons;

(1.4)

namely, one considers e+e− collisions, selecting those events in which the incoming leptons

produce two photons which eventually initiate the hard scattering that produces the hadrons.

However, it is clear that the process in Eq. (1.4) is non physical; rather, it has to be understood

as a shorthand notation for a subset of Feynman diagrams contributing to the process that is

actually observed,

e+ + e− −→ e+ + e− + hadrons. (1.5)

Other contributions to the process in Eq. (1.5) are, for example, those in which the incoming

e+e− pair annihilates into a photon or a Z boson, eventually producing the hadrons and a

lepton pair, or those in which one (or both) of the two photons in Eq. (1.4) is replaced by a

Z boson. However, it is not difficult to devise a set of cuts such that the process in Eq. (1.4)

gives the only non-negligible contribution to the process in Eq. (1.5). One can tag both of the

outgoing leptons, and retain only those events (thus termed double-tag events) in which the

scattering angles of the leptons are small: in such a way, the contamination due to annihilation

processes is safely negligible. Furthermore, small-angle tagging also guarantees that the photon

virtualities are never too large (at LEP2, one typically measures Q2
i = O(10 GeV2)); therefore,

the contributions from processes in which a photon is replaced by a Z boson are also negligible.

Thus, it is not difficult to extract the cross section of the process γ∗γ∗ → hadrons from the

data relevant to the process in Eq. (1.5). Double-tag events have in fact been studied by the

CERN L3 and OPAL Collaborations, at various e+e− center-of-mass energies (
√
S = 91 and

183 GeV [25], 189 GeV [26] and 189-202 GeV [27–29]).

With this in mind, we computed the cross section for the process in Eq. (1.4), rather than

that relevant to the process in Eq. (1.1); as it should be clear from the previous discussion,

the two are strictly equivalent from a physical point of view. However, the former can be more

easily related to the experimental analyses; in fact, our code outputs the momenta of both the

final-state partons and the leptons. The reader should keep in mind that the study of QED

†The code can be obtained upon request.
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radiative corrections shall not be considered in this paper; in particular, we shall not address

the problem of a proper treatment of the initial state radiation, which is rather important on

the experimental side, and is not fully understood yet for what concerns double-tag events.

The outline of the paper is the following: in Sect. 2 we explain how the LO and NLO

production rates are computed, giving some details on the simplifications possible in the present

case as compared to other NLO calculations. Then, in Sect. 3 we present phenomenologically

relevant results: LO and NLO rates are computed for total, inclusive jet and dijet cross sections

at LEP2 and at a possible configuration for a Next Linear Collider (NLC). In doing this, we

discuss the possible choices of mass scales entering the electromagnetic and strong running

couplings, and analyse how the NLO rates depend on variations of the strong scale. Finally,

we compare our results with the available data for the total cross section at LEP2. In Sect. 4

we draw our conclusions. A few useful formulae are reported in the appendices.

2 Production rates

The computation of the NLO corrections to a hard scattering process is by now a rather stan-

dard procedure, since algorithms exist that are universal (that is, process independent), and

applicable to any number of final state partons. The role of these algorithms is to combine in

a physically sensible way the virtual and the real contributions, that are unphysical and diver-

gent upon loop and phase-space integrations. The information on the hard process basically

enter only in the computation of the matrix elements. In our case, one needs to compute the

amplitude of the process e+e− → e+e−qq̄ at one loop, and of the process e+e− → e+e−qq̄g at

the tree level. Fortunately, these results are easily obtained from existing literature (notice that

we assume the quarks to be massless; in Sect. 3 we shall comment further on this choice). As a

preliminary step, we need also to consider the process e+e− → e+e−qq̄ at the tree level, which

gives the LO contribution, first computed in Ref. [23,24], and that we analyse in the following

subsection.

2.1 The LO matrix elements

In order to evaluate the matrix element relevant to the process

e+ + e− −→ e+ + e− + γ∗ + γ∗︸ ︷︷ ︸
|−→ q + q̄ ,

(2.1)

we use the helicity amplitudes for the q̄q → γ∗γ∗ → `¯̀ ¯̀′`′ process, with all the particles taken

as outgoing. The scattering amplitude is (see Fig. 2)

A6(1q, 2q̄; 3`, 4¯̀, 5¯̀′, 6`′) = 4e4Q2
fA6(1, 2; 3, 4, 5, 6) , (2.2)

with eQf the electromagnetic charge of the quark q of flavour f , and where labels {1, 2} refer to

the quark pair, while {3, 4} and {5, 6} denote the lepton pairs. The sub-amplitude A6 depends
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Figure 2: Sample of diagrams contributing to Eq. (1.4), obtained by dressing diagrams
a), b) and c) of Fig. 1 with external lepton legs. The particle labelling scheme, as used
in Sect. 2, is also shown.

only on the momenta and helicities of the external particles (we also point out that Eq. (2.2)

is valid to any order in αS). At tree level, the sub-amplitude A6 for any helicity configuration

is given in terms of a single function a6,

Atree
6 (1, 2; 3, 4, 5, 6) = a6(1, 2; 3, 4, 5, 6) + a6(1, 2; 6, 5, 4, 3) . (2.3)

In terms of spinor products, currents and kinematic invariants as defined in Appendix B, the

explicit form of the function a6 for the (1−, 2+; 3−, 4+, 5+, 6−) configuration is the following [30]:

a6(1
−, 2+; 3−, 4+, 5+, 6−) = i

〈1 3〉 [2 5] 〈6|(2 + 5)|4〉
s34 s56 t134

. (2.4)

The function a6 is odd under the flip symmetry

flip : 1 ↔ 2 , 3 ↔ 5 , 4 ↔ 6 , 〈a b〉 ↔ [a b] . (2.5)

In addition, there is a reflection symmetry on the quark line such that

a6(1
+, 2−; 3−, 4+, 5+, 6−) = a6(2

−, 1+; 6−, 5+, 4+, 3−) . (2.6)

Thus, the other quark-helicity configuration can be obtained by reflection, which amounts to

exchanging the labels 1 and 2 in Eq. (2.3). The other lepton-helicity configurations are obtained

by exchanging the labels 3 and 4 and/or 5 and 6 in Eq. (2.4).

In crossing to the physical region, we choose 4 as the incoming electron and 6 as the incoming

positron. For a fixed lepton-helicity configuration, e.g. (3−` , 4
+
¯̀ , 5

+
¯̀′ , 6

−
`′), the production rate is

obtained by summing over the quark-helicity configurations,‡

dσ(3−` , 4
+
¯̀ , 5

+
¯̀′ , 6

−
`′ ) =

1

2S
dP2+2(p1, p2, p3, p5; p4 + p6) (4παem)4

(∑
f

Q4
f

)
16Nc (2.7)

×
[
|Atree

6 (1−, 2+; 3−, 4+, 5+, 6−)|2 + |Atree
6 (2−, 1+; 3−, 4+, 5+, 6−)|2

]
,

‡In eqs. (2.7), (2.12), and (2.16) it is understood that the amplitudes are crossed into the physical channel.
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where S = (p4 + p6)
2, dP2+2 is the phase space for the final-state quark pair and lepton pair

(see Eq. (2.19)), and ∑
f

Q4
f = Q4

unu +Q4
dnd , (2.8)

with Qu = 2/3, Qd = −1/3 and nu(d) being the number of up(down)-type quarks.

2.2 The NLO matrix elements

At NLO, we must consider the real corrections due to the emission of a gluon off the quark

line, γ∗γ∗ → qq̄g, and the one-loop corrections to γ∗γ∗ → qq̄. For the gluon emission, we can

use the tree amplitude q̄qg → γ∗γ∗ → `¯̀ ¯̀′`′,

Atree
7 (1q, 2q̄; 3`, 4¯̀, 5¯̀′, 6`′; 7g) = 4e4Q2

fgSλ
ī2

i1 A
tree
7 (1, 2; 3, 4, 5, 6; 7) . (2.9)

The colour subamplitude Atree
7 can again be written in terms of a single function a7

Atree
7 (1, 2; 3, 4, 5, 6; 7) = a7(1, 2; 3, 4, 5, 6; 7) + a7(1, 2; 6, 5, 4, 3; 7) . (2.10)

For the configuration (1−, 2+; 3−, 4+, 5+, 6−; 7+) it reads [30]

a7(1, 2; 3, 4, 5, 6; 7) = (2.11)

i
〈1 3〉

〈1 7〉 s34 s56 t134

[〈1 3〉 [3 4] [2 5] 〈6|(2 + 5)|7〉
t256

+
〈6|(1 + 3)|4〉〈1|(2 + 7)|5〉

〈7 2〉
]
.

The same configuration with a negative-helicity gluon is obtained by applying the −flip oper-

ation of Eq. (2.5).

For the lepton-helicity configuration (3−` , 4
+
¯̀ , 5

+
¯̀′ , 6

−
`′), the production rate is obtained by

summing over the quark and gluon helicity configurations,

dσr(3
−
` , 4

+
¯̀ , 5

+
¯̀′ , 6

−
`′ ) =

1

2S
dP3+2(p1, p2, p7, p3, p5; p4 + p6) (4παem)4

(∑
f

Q4
f

)
16(N2

c − 1) (2.12)

×4παS

[(
|Atree

7 (1−, 2+; 3−, 4+, 5+, 6−; 7+)|2 + flip
)

+ (1 ↔ 2)
]
,

where dP3+2 is the phase space for the three QCD partons — the qq̄ pair and the gluon — and

the lepton pair.

In order to compute the one-loop corrections to γ∗γ∗ → qq̄, we can use the one-loop

amplitude for q̄q → γ∗γ∗ → `¯̀ ¯̀′`′, which we can extract from the one-loop amplitude for

e+e− → q1q̄1q2q̄2 [31] by replacing the quark-gluon vertex factor gSλ
a with the quark-photon

vertex factor
√

2 eQf
§. The unrenormalized one-loop amplitude is given by Eq. (2.2) with

A6 → A1-loop
6 substitution, where

A1-loop
6 =

N2
c − 1

Nc
g2

ScΓ
(
Atree

6 V + iF
)
. (2.13)

§The factor
√

2 is due to the tr(λaλb) = δab normalization, where λa are the generators of the SU(3) group
in the fundamental representation.
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Atree
6 is given in Eq. (2.3) and the prefactor cΓ is

cΓ =
1

(4π)2−ε

Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
. (2.14)

The universal divergent piece V , in the dimensional reduction [32,33] scheme or four-dimensional

helicity scheme [34] used to compute the one-loop amplitude, reads

V = − 1

ε2

(
µ2

−s12

)ε

− 3

2ε

(
µ2

−s12

)ε

− 4 . (2.15)

The one-loop charge renormalization UV counterterm to A1-loop
6 is zero, due to the electric-

charge conservation. The finite piece F is obtained from Eq. (12.11) of Ref. [31] by performing

on it the relabeling {1, 2, 3, 4, 5, 6} → {5, 6, 2, 1, 3, 4}. For the lepton-helicity configuration

(3−` , 4
+
¯̀ , 5

+
¯̀′ , 6

−
`′ ), the one-loop production rate is then,

dσv(3
−
` , 4

+
¯̀ , 5

+
¯̀′ , 6

−
`′) =

1

2S
dP2+2(p1, p2, p3, p5; p4 + p6) (4παem)4

(∑
f

Q4
f

)
16Nc (2.16)

×
{
2Re

[
Atree

6 (1−, 2+; 3−, 4+, 5+, 6−)∗A1-loop
6 (1−, 2+; 3−, 4+, 5+, 6−)

]
+ (1 ↔ 2)

}
.

In Eqs. (2.12) and (2.16), the other three lepton-helicity configurations are obtained by permut-

ing the lepton labels as described in Sect. 2.1. The unpolarised rate is given by averaging the

fixed-helicity rates over the four lepton-helicity configurations. In order to obtain the correct

cross section in conventional dimensional regularization, we have to add the term [35]

−αSCF

2π
dσ(3−` , 4

+
¯̀ , 5

+
¯̀′ , 6

−
`′) (2.17)

to the right hand side of Eq. (2.16), where dσ(3−` , 4
+
¯̀ , 5

+
¯̀′ , 6

−
`′ ) is given in Eq. (2.7).

2.3 From matrix elements to physical observables

Having the matrix elements at disposal, one can plug them into one’s preferred NLO algorithm,

and obtain physical results. Our case can however be greatly simplified in a preliminary stage;

in fact, the incoming and outgoing leptons do not participate in the hard scattering, that

is initiated by the two virtual photons. Formally, the simplification goes through a suitable

decomposition of the phase space. This is achieved by writing the phase space of two leptons

plus n partons (in our case, n = 2 or n = 3 for the one-loop or the tree-level amplitudes

respectively) as follows,

dPn+2(k1, . . . , kn, p`1, p`2; p
′
`1 + p′`2) = dΓ(p`1 , p`2) dPn(k1, . . . , kn; q1 + q2) , (2.18)

where p′`i
(p`i

) are the momenta of the incoming (outgoing) leptons, qi = p′`i
− p`i

, ki are the

momenta of the outgoing partons, and we used the standard definition of the phase space of m

particles,

dPm(r1, . . . , rm;R) = (2π)4 δ4

(
R−

m∑
i=1

ri

)
m∏

i=1

d3ri

(2π)32r0
i

. (2.19)
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The decomposition in Eq. (2.18) is represented pictorially in Fig. 3: the lepton sector commu-

nicates with the hadron sector only through the photon momenta qi. It has to be stressed that

we changed the labelling convention for the momenta with respect to the previous subsections;

while the former labelling rendered it easy to write the matrix elements in terms of helicity

amplitudes, the present one, which we shall adopt from now on, is more transparent from the

physical point of view. We can get back to the labelling of the previous subsections with the

following identifications,

p′`1 → p4, p′`2 → p6, p`1 → p3, p`2 → p5, k1 → p1, k2 → p2, k3 → p7. (2.20)

Eqs. (2.18) and (2.19) implicitly define dΓ, and we get

dΓ(p`1 , p`2) =
d3p`1

(2π)32p0
`1

d3p`2

(2π)32p0
`2

. (2.21)

From Eqs. (2.19) and (2.21), we see that both terms in the right-hand side of Eq. (2.18) have

Figure 3: Decomposition of the phase space for the process e+e− → e+e−+ hadrons.

a Lorentz-invariant expression. We exploit it to re-write Eq. (2.21) in the center-of-mass frame

of the incoming e+e− pair,

dΓ =
1

4(2π)6S
dQ2

1 dQ2
2 dE1 dE2 dϕ dϕ̄, (2.22)

where ϕ and ϕ̄ are two generic azimuthal angles, one of which, say ϕ to be definite, can be

interpreted as the angle between the two outgoing leptons; Ei are the energies of the outgoing

leptons in the center-of-mass frame of the incoming e+e− pair. The strategy of the computation

should now be clear: although we compute the cross section for the process in Eq. (1.4), the

hard process we deal with at NLO is effectively that of Eq. (1.1). Thanks to the decomposition

in Eq. (2.18), we have a 2 → n phase space which is formally identical to that one gets as

a starting point of any NLO algorithm. Thus, we can safely adopt one of the existing NLO

algorithms, and study the process of Eq. (1.1) in the γ∗γ∗ center-of-mass frame, without any

reference to the incoming or outgoing leptons. This amounts to a non-trivial simplification,

since the complexity of the numerical computations at NLO is known to grow rapidly with
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the number of particles involved in the hard scattering. Of course, the information on the

lepton momenta is entering somewhere, in particular in the matrix elements; to take this fact

into account, we proceed in two steps, still using Fig. 3 as a guide. We start by generating

the full kinematical configuration of the outgoing leptons, using Eq. (2.22). In doing this, we

also get the photon momenta, and therefore we know how to boost from the e+e− to the γ∗γ∗

center-of-mass frame. Then, we boost the lepton momenta to the γ∗γ∗ center-of-mass frame,

where we generate the remaining (parton) momenta, according to the phase space dPn; at this

stage, we can perform all the manipulations required by the NLO algorithm. More details

on the final-state kinematics, including bounds on the phase-space variables, can be found in

Appendix A.

Following the procedure outlined above, we constructed a code capable of predicting, to NLO

accuracy, any infrared-safe quantity constructed with up to three partons (plus two leptons)

in the final state. We stress that the code is not of a parton-shower type, and should actually

be regarded as a Monte Carlo integrator; however, exactly like in the case of parton-shower

Monte Carlo event generators, it allows us to easily implement realistic experimental cuts and

to obtain binned differential distributions for all sorts of variables and jet definitions. The code

is based upon the NLO algorithm of refs. [36,37], and it is a suitable modification of one of the

codes presented in Ref. [37]. A few technicalities concerning the code are given in Appendix A.

3 Results

In this section, we present results of phenomenological relevance obtained with the code men-

tioned above. Before assessing the effect of the NLO corrections and comparing our predictions

to data, we discuss the choice of the scales entering the electromagnetic and the strong run-

ning couplings which appear in the amplitudes. Although arguments exist on the choice of

an “optimal” scale, there is no rigorous theorem that prescribes such a choice. Thus, we shall

choose the reference scale on the ground of some physical motivations; we stress, however, that

alternative choices are possible, and we shall explore a few of them.

3.1 Scale choices

As far as αem is concerned, we have made the choice of evolving it on an event-by-event basis

to the scales set by the virtualities of the exchanged photons; hence, we replace the Thomson

value α0 ' 1/137 by αem(Q2
i ). This choice better describes the effective strength at which

the electromagnetic interaction takes place. Notice that we treat independently the two pho-

ton legs: thus, in the formulae relevant to the cross sections, α4
em has to be understood as

α2
em(Q2

1)α
2
em(Q2

2).

An analysis of the differential distributions reveals that, for a typical experimental set-

up used at LEP2, defined more precisely below, the mean Q2 values fall in the 14–17 GeV2

range. At this scale the strength of the electromagnetic interaction is increased by about 3%
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with respect to the Thomson value. Since αem enters at the fourth power in our squared

matrix elements, the 3% increase in αem translates into an increase of more than 10% in the

cross section. Some uncertainty is of course implicit in this number: both the scheme for αem

evolution (we used one-loop MS running) and the precise scale value will affect the final result

by a few per cent.

A similar problem is faced when considering the strong coupling αS, and it is solved in the

same way: we define a default scale µ0 so as to match the order of magnitude of the (inverse

of the) interaction range:

µ2
0 =

Q2
1 +Q2

2

2
+

(
k1T + k2T + k3T

2

)2

. (3.1)

The renormalization scale µ entering αS will eventually be set equal to µ0 as a default value,

and equal to µ0/2 or 2µ0 when studying the scale dependence of the cross section. In Eq. (3.1),

the kiT are the transverse energies of the outgoing quarks and, for three-particle events, the

emitted gluon. Since the hard process is initiated by the two virtual photons, the proper frame

to study its properties is the γ∗γ∗ center-of-mass one. Therefore, when talking about transverse

energies, whether in a total cross section or in a jet reconstruction algorithm, this frame will

be always understood. This is in fact quite similar to what happens in DIS, where the Breit

frame is used. Finally, we point out that the term in parentheses in Eq. (3.1) is, event-by-event,

half of the total transverse energy, which is a measurable quantity; at LO, it coincides with the

transverse energy of the jets, in the case in which a jet cross section is considered.

We evolve αS to next-to-leading log accuracy, with αS(MZ) = 0.1181 [38] (in MS at two

loops and with five flavours, this implies Λ
(5)

MS
= 0.2275 GeV).

We also considered a different choice with respect to that in Eq. (3.1); namely, we used√
Q2

1Q
2
2 instead of (Q2

1 + Q2
2)/2 in Eq. (3.1). Only very minor differences (much smaller than

1%, i.e., not noticeable on the scale of the plots shown in what follows) were found. This is

easily understood since the two scales coincide when Q2
1 = Q2

2, and, as we verified explicitly

both at the LO and at the NLO, the dominant contribution to the cross section is just due to

the region where the virtualities of the two photons are approximately equal.

A third possible choice for the default scale is

µ̄2
0 =

Q2
1 +Q2

2

2
. (3.2)

Strictly speaking, µ̄0 is arguably better than µ0 when studying fully inclusive quantities, while

µ0 is clearly recommended when, for examples, jets are reconstructed. Still, having a tool such

as an event generator, we stick to µ0 as our default choice also for fully inclusive observables.

However, we also studied the effect of setting µ = µ̄0, and found only minor differences (of

order of 1%) at the level of total cross sections. We shall comment further on the use of µ̄0 in

Sect. 3.3.
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3.2 Numerical results

We compared our LO result, obtained with fixed αem = α0, to the massless limit of the JAMVG

program of Ref. [23], and found perfect agreement.

To study the effect of the NLO corrections, we used the experimental cuts employed by the

L3 Collaboration; any other physically sensible sets of cuts would lead to the same qualitative

conclusions. The scattered electron and positron are required to have energy E1,2 larger than

30 GeV and scattering angle θ1,2 between 30 and 66 mrad. Furthermore, the variable Y , defined

by

Y = log
y1y2S√
Q2

1Q
2
2

≡ log
S

S0

, (3.3)

is required to lie between 2 and 7 (yi are defined in Appendix A, where a discussion on the

properties of Y can also be found). The cross sections have been evaluated at
√
S = 200 GeV,

including up to five massless flavours.

LO, fixed αem = α0 LO, running αem(Q2) NLO, running αem(Q2)

0.466 0.534 0.569+0.006
−0.004

Table 1: Total cross section (in picobarns) within the L3 experimental cuts at LEP2
energy. The errors in the NLO column refer to the variation of the renormalization
scale in the (µ0/2, 2µ0) range.

Within this set of cuts, the replacement of the Thomson electromagnetic coupling α0 with

the running one is found to increase our LO cross section by about 14% (see Table 1), in

agreement with the estimate given above. Such a non-negligible effect should of course be

included when comparing to experimental data. Unless stated otherwise, all cross sections

considered below will be calculated with the running αem.

Table 1 also shows the effect of including the NLO corrections calculated in this paper.

They increase the LO total cross section within the cuts applied by about 7 per cent. This

increase is of similar size as the αS/π NLO correction to the total hadronic cross section in

electron-positron annihilation. The numbers quoted as errors affecting the NLO result are the

differences between the cross sections obtained by choosing µ = µ0/2, 2µ0, and the cross section

obtained by using the default value, µ = µ0. Thus, they should not be interpreted as statistical

errors affecting our prediction, but rather as an indication of the theoretical uncertainties due

to the scale choice.

A better grasp on the effect of the radiative corrections can of course be obtained by studying

various differential distributions. Figure 4 shows such distributions for various observables of

experimental interest: the energy of the outgoing electron Ee−(≡ E1), the hadronic invariant

mass W , the photon virtuality Q2
1, and Y as defined in Eq. (3.3). In each plot the leading order

curve and the three next-to-leading order ones referring to the three choices (µ0/2, µ0, 2µ0) of

the renormalization scale µ are presented.
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The uncertainty related to µ can be seen to be always smaller than the net effect of including

the NLO corrections. It is actually quite difficult to distinguish between the three NLO results

(except in the large-W and Y regions), the relative difference between them being of about

1% or less for the total cross section. This also implies that the shape of the distribution is

basically independent of µ.

As for the effect of the NLO corrections themselves, we see that, apart from slightly increas-

ing the cross section, they induce visible shape modifications in at least two cases: both the W

and the Y distributions become harder after the inclusion of radiative corrections, their effect

changing from almost nil at the left edge of the plots to a more than 50% increase at the right

one.

Using similar experimental cuts we can also analyse the effect of radiative corrections on

jet distributions. We define the jets by means of a kT clustering algorithm [39], in the version

formulated in Ref. [40]. We set the jet-resolution parameter D = 1 (see Ref. [40]). Contrary

to the cuts previously used, here we do not impose an upper limit on Y , only requiring Y > 2.

We consider single-inclusive jet and dijet cross sections. In the latter case, we select the jets by

imposing a ET > 14 GeV cut on the transverse energy of the most energetic jet and requiring

ET > 10 GeV for at least another jet. We adopt different transverse energy cuts on the two

tagged jets in order to avoid the problems that arise in the case in which such cuts are chosen

to be equal, as discussed in some details in Ref. [41]. Furthermore, as already mentioned in the

Introduction, in the case in which three jets are present in the event, we take as tagged jets the

two separated by the largest rapidity interval. Finally, we shall only present results obtained

with µ = µ0.

In the left panel of Fig. 5 we show the transverse energy distribution of single-inclusive

jets, considering the cuts Y > 2 and Y > 6. The first striking feature of this observable is

that the curves relevant to Y > 2 and Y > 6 coincide for ET > 40 GeV. This is so for the

following reason: at the threshold (where the jets are produced at zero rapidity), W 2 = 4E2
T ;

thus using Eq. (A.11) with ET = 40 GeV and Q2
1 = Q2

2 = 16 GeV2 (which is approximately

the average virtuality within the current cuts), we get Y = 5.99 (here, we identify Y with

Y ; see Eq. (A.13)). Therefore, the region 2 < Y < 6 simply does not contribute to events

with ET > 40 GeV. On the other hand, at ET = 40 GeV, the two-photon system has just

enough energy, at Y = 6, to produce the jets. Larger values of Y do not contribute much,

since the Y spectrum is very rapidly falling at large Y ’s (see Fig. 4). When considering larger

transverse momenta, the situation is exactly the same. We are therefore led to the conclusion

that the tail of the ET spectrum is dominated by threshold production, and therefore cannot

be reliably predicted by a fixed-order computation, like ours; a resummation of large threshold

logarithms is necessary. A signal that this is indeed the case is reflected in the fact that the

radiative corrections are negative in the tail. At smaller transverse energies the behaviour of

the radiative corrections displays a pattern similar to that of total rates. For Y > 2, NLO and

LO results are very close to each other; the larger ET , the more important the contributions

from threshold production. For Y > 6, the radiative corrections increase sizably the LO result;

this is in agreement with the behaviour of the Y spectrum shown in Fig. 4. The increase is
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obviously related to the appearance of large logarithms in the cross section, as it is always the

case when two scales (here, the small ET and the large W ) are present. We shall soon see that

the large logarithms in the large-Y region are indeed of BFKL type.

We also considered the transverse energies of the most forward and most backward jet in

dijet events, and found a pattern identical to that relevant to single-inclusive jet ET . The

reason is clear: even at small transverse energies, three-jet production is clearly disfavoured

with respect to dijet production; in the vast majority of the events, there are just two hard jets

recoiling against each other.

If we want to study jet production in a sensible way at fixed order, we have therefore to

consider observables which are as insensitive as possible to threshold effects. From what we

said above, such observables are possibly those that get the dominant contribution from the

small-ET region. An example is given by rapidities. In the right panel of Fig. 5, we show the

distributions in the rapidity interval ∆η between the two tagged jets in dijet events, for various

cuts on Y . In this case, only the NLO results are shown. We have verified that the radiative

corrections give positive contributions for all the regions in Y considered, except for 2 < Y < 4;

in this case, in fact, the energy of the two-photon system is so small that there is no way to

get contributions away from the threshold. The most interesting feature of this plot is that it

shows that the large-Y and the large-∆η regions select the same events, as can be inferred from

the fact that the distributions relevant to Y > 2 (solid line) and to Y > 6 (dot-dashed line)

exactly coincide for ∆η > 3.5. This is actually the same behaviour we observe in the case of the

transverse energy distribution, but the underlying physics is rather different. In fact, in this case

we also get sizable contributions away from the threshold; thus, at fixed ET , part of the energy

of the two-photon system contributes to the longitudinal degrees of freedom, and jets can be

produced away from the central region. Since we are in any case dominated by two-jet events,

the rapidity difference between the two tagged jets can be easily estimated: ∆η ' log(W 2/E2
T ).

Therefore, by using Eqs. (A.11) and (A.13), we get Y ' ∆η + ln(E2
T/
√
Q2

1Q
2
2). We point

out that the pattern displayed in Fig. 5 for large ∆η does not depend upon the transverse

momentum cuts: we lowered these cuts down to 5 GeV, and found the same behaviour. The

large-Y region is thus naturally suitable to study BFKL physics. In addition, we note that the

dijet cross section at NLO is rather small; therefore, with the integrated luminosities at LEP2 a

sizeable number of dijet events would hint toward the importance of BFKL-type contributions.

Having clarified that the large Y region is basically populated by events characterised by two

hard jets well separated in rapidity, we can follow Ref. [22]: we invert Eq. (A.14) to get cQ,

substituting Y = 6 and identifying L with the average ∆η corresponding to the cut Y > 6 (in

this way, we just make a choice for the scale µW entering the BFKL logarithms; other choices

are of course possible, and all of them are equally good at the leading logarithm level). We

have

log cQ = Y − 〈∆η〉 ' 4.32. (3.4)

By inspection of Eq. (A.14), we see that, although Y and the BFKL logarithm L coincide

asymptotically, at LEP2 the difference between the two is of the same order of Y , and thus

cannot be neglected. It seems therefore that LEP2 is quite far from probing the asymptotic
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BFKL region; it must be stressed, however, that the value given in Eq. (3.4) depends crucially

on the assumptions made in Ref. [22].

It is presumed that a BFKL signature from double-tag hadronic events would be observed

at an hypothetical Next Linear Collider much more easily than at LEP2. For this to be true,

one actually needs fairly small tagging angles, that allow to get relatively small values for the

virtualities, with large W values obtainable thanks to the large e+e− center-of-mass energy;

in fact, it is argued [21] that it would be desirable to tag the electrons down to 20-40 mrad.

We therefore studied the effect of NLO radiative corrections at a NLC with
√
S = 500 GeV,

requiring E1,2 > 40 GeV, 20 < θ1,2 < 70 mrad and Y > 2; however, we point out that, at

present, it seems unlikely that experiments at the NLC will reach such small values for the

tagging angles.

The predicted total cross section within these cuts is found to be 0.425 pb at leading order

and 0.452 pb at next-to-leading order. The 6% increase is thus similar to the one found at

LEP2. The same is true for the Y distribution: for Y < 7, that is in the range accessible

both at LEP2 and at the NLC, the ratio of NLO over LO predictions is to a very good extent

the same in the two cases, getting as high as 1.6 at Y = 6. However, NLC within the cuts

given above reaches much larger value in Y (Y = 11), where the ratio of NLO over LO gets to

values of about 2.5. Finally, we verified that the pattern shown in the right panel of Fig. 5 is

reproduced also at the NLC: the large-Y and the large-∆η regions are populated by the same

events. Clearly, as in the case of the Y distribution, the values of ∆η accessible at the NLC are

larger than at LEP2 (at NLC, ∆η < 7.5, for transverse energy cuts on jets as given above).

The large NLO corrections that we find in the large-Y region at the NLC show that a

calculation of the higher order effects will be necessary in order to sensibly compare the theo-

retical predictions with the data, and eventually to extract evidence of BFKL dynamics from

the latter.

3.3 Comparisons with experimental data at LEP2

dσ/dY (pb)
√
S = 189− 202 GeV

∆Y L3 Data LO NLO

2.0 – 2.5 0.50 ± 0.07 ± 0.03 0.405 0.396+0.002
−0.002

2.5 – 3.5 0.29 ± 0.03 ± 0.02 0.213 0.225+0.001
−0.002

3.5 – 5.0 0.15 ± 0.02 ± 0.01 0.067 0.080+0.002
−0.002

5.0 – 7.0 0.08 ± 0.01 ± 0.01 0.0091 0.0131+0.0009
−0.0006

Total 0.93 ± 0.05 ± 0.07 0.534 0.569+0.006
−0.004

Table 2: The experimental cross section from L3 compared to leading and next-to-
leading order predictions. The uncertainties in the NLO column are related to varia-
tions of the renormalization scale.
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The L3 [25,27,28] and OPAL [26,29] Collaborations have recently analysed data for hadron

production in γ∗γ∗ collisions at an electron-positron center-of-mass energy around 200 GeV. In

this Section, we aim at comparing these data to our NLO results. We remind the reader that

our predictions are all given at the parton level, as compared to the data that are of course at

the hadron level.

L3 made use of the previously mentioned set of experimental cuts. The cross section they

find, as a function of Y , is reported in Table 2 and plotted in Fig. 6. Table 2 shows, in four

different Y bins, the experimental cross section compared to our leading and next-to-leading

order predictions, evaluated at
√
S = 200 GeV. The same comparison is made in Fig. 6: the

data lie above the theory in the low-Y region, and sizably overshoot the predictions in the

large-Y one. Thus we find a marked difference in shape between theory and data which,

if confirmed, could be interpreted as the onset of important higher order effects, perhaps of

BFKL type. As can be seen from Table 2, the scale uncertainties affecting our predictions are

much smaller than the experimental errors; in what follows, we shall therefore refrain from

varying the renormalization scale, setting it always equal to its default value µ0. Also, the total

cross section does tend to be higher than the predictions, as shown in Table 2. We remind

the reader (see Table 1) that the running of the electromagnetic coupling and the inclusion of

the NLO corrections have raised the theoretical result from the 0.466 pb given by the massless

leading order parton model with αem = α0.

We also compared L3 data of Table 2 to the predictions obtained by choosing µ̄0 as a

reference scale (see Eq. (3.2)). As remarked before, the effect on the total cross section is

rather small; however, our NLO predictions for the two largest-Y bins in Table 2 get increased

by about 6% and 15% respectively. We are thus getting closer to data, but still a very clear

disagreement is seen between theory and experiment.

We have also studied the effect of the finite mass of the outgoing heavy quarks in the charm

and bottom case, by comparing our results with the ones obtained with the JAMVG [23]

code. Within the L3 set of cuts, such mass effects can be seen to decrease the LO massless

cross section by an amount of the order of 10-15%. One could in principle rescale the NLO

result by this amount and get a phenomenologically sensible prediction but, due to the lack of

rigorousness of this procedure, we shall always present our plots and numerical results without

such a correction.

The OPAL Collaboration has also recently presented data [29] taken at
√
S = 189 - 202 GeV,

making use of a slightly different set of cuts: the tagged electron and positron were required to

have energies E1,2 > 0.4Ebeam and angles 34 < θ1,2 < 55 mrad. No cut on Y is applied, but the

hadronic invariant mass W is required to be larger than 5 GeV. Our simulation is run within

these cuts at an e+e− center-of-mass energy corresponding to the luminosity-weighted average

energy of the OPAL data, i.e.
√
S = 194 GeV.

Table 3 compares the experimental results obtained with these cuts with our LO and NLO

predictions. We can see the NLO corrections to be extremely small. The prediction for the

total cross section falls short of the central OPAL result, but is well within the experimental
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dσ/dY (pb)
√
S = 189 - 202 GeV

∆Y OPAL Data LO NLO

0 – 1 0.055 ± 0.016 +0.030
−0.020 0.068 0.062

1 – 2 0.118 ± 0.024 +0.009
−0.024 0.140 0.133

2 – 3 0.123 ± 0.028 +0.010
−0.011 0.090 0.093

3 – 4 0.070 ± 0.021 +0.006
−0.015 0.043 0.049

4 – 6 0.028 ± 0.013 +0.002
−0.012 0.011 0.014

Total 0.40 ± 0.05 ± 0.05 0.364 0.365

Table 3: The experimental cross section from OPAL, total and differential in Y , com-
pared to leading and next-to-leading order predictions.

error. Also shown in the same table is the differential distribution in the variable Y , defined in

Eq. (A.11), where a generally good agreement within errors can be observed. Given the large

discrepancy between theory and L3 data for this very same variable, it shall therefore be of

utmost importance to measure as accurately as possible the Y spectrum, in order to perform a

precise study of effects beyond NLO (such as BFKL dynamics).

In Fig. 7 we compare our predictions to several distributions related to OPAL data. A good

agreement can be observed in all the distributions, with the possible exception of the last two

points in the large-W region. Where the difference between the NLO and the LO result is

somewhat more sizeable, like in the x distribution and in the large-W and large-Y regions, the

corrections can be seen to change our predictions in such a way that they get closer to data.
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4 Conclusions

We have calculated the NLO corrections, of O(αS), to the process

e+ + e− −→ e+ + e− + γ∗ + γ∗︸ ︷︷ ︸
|−→ hadrons,

(4.1)

and implemented them into a Monte Carlo integrator which allows the calculation of both

total cross sections and differential distributions. We have found the uncertainty related to the

choice of renormalization scale to be always smaller than the net effect of including the NLO

corrections. This means that the difference between the data and the theoretical predictions of

non-BFKL origin, which is the relevant quantity in any attempt to pin down signals of BFKL

physics, can now be reliably computed at O(αS).

When typical experimental cuts used at LEP2 by the L3 and OPAL Collaborations are

applied, NLO corrections to the total cross section are found to be fairly small. Larger effects

can instead be observed in the differential distributions, especially in the regions of large Y or

large hadronic invariant mass W , where the NLO corrections are found to increase the cross

section by as much as 50%. No mass effects for final-state charm and bottom quarks have been

included. We recall that we have found them to decrease the LO cross section by 10-15% within

the set of cuts we have examined, thus worsening the agreement between theory and data.

When comparing to experimental results, we find good agreement with the data measured by

the OPAL Collaboration, both at the level of total cross section and differential distributions in a

number of different observables. In this case, the effect of NLO corrections is marginal, although

the full-NLO curves are seen to be closer to data with respect to the LO predictions: however,

this comparison will become more significant only if the errors on data will be substantially

reduced. Less good an agreement has instead been found when comparing to L3 data, the NLO

predictions tending to fall short of the experimental result. In particular, when comparing with

the Y distribution, we can see the data to be sensibly higher than the theoretical prediction in

the large-Y region.

The comparison between theory and data at large Y ’s is of course crucial, since a failure of

fixed-order perturbative computations in describing the data in such a region could of course

be related to the onset of BFKL-like effects. In this sense, no clear indication can be obtained

from our study. If we subtract from L3 and OPAL data at large Y ’s our O(αS) predictions,

we get large numbers in both cases (compared to, say, the O(αS) results). However, while in

the case of L3 these numbers are not statistically compatible with zero, in the case of OPAL

they are statistically compatible with zero. Thus, in order to reach a firm conclusion on this

matter, the collection of larger statistics is unavoidable. On the other hand, if we take the data

at their face value, there is probably an evidence of an effect beyond NLO. It is in our opinion

premature to interpret this fact in terms of BFKL physics. The computation of the complete

O(α2
S
) rates would be very useful in order to understand this issue.
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A Kinematics

In this Appendix, we collect few useful formulae relevant to the kinematics of the process we

study. We define

zi =
2Ei√
S
, ζi =

Q2
i

S
≡ −q2

i

S
, (A.1)

with
√
S/2 the energy of the incoming leptons in their center-of-mass frame. From Eq. (2.22)

we thus get

dΓ(p`1, p`2) =
S2

16(2π)6
dζ1 dζ2 dz1 dz2 dϕ dϕ̄ . (A.2)

The azimuthal angles ϕ and ϕ̄ have to be taken in the range (0, 2π), and it is easy to show that

0 ≤ ζi ≤ zi ≤ 1, i = 1, 2 . (A.3)

Using the variables defined in Eq. (A.1), we also get

w2(ζ1, ζ2, z1, z2, ϕ) = (1− z1)(1− z2) + 2ζ1ζ2 − z1ζ2 − z2ζ1

+ 2 cosϕ
√
ζ1ζ2(z1 − ζ1)(z2 − ζ2) , (A.4)

where w2 = W 2/S is the scaled squared energy of the γ∗γ∗ system. The requirement that

w2 > 0 further constrains ζi, zi, and ϕ.

In real experimental situations the leptonic phase space is severely restricted. The scattered

leptons are observed in the forward calorimeters, so the scattering angles θi off the beam

direction are confined to a small region,

θmin ≤ θi ≤ θmax , i = 1, 2 . (A.5)

We assumed implicitly both in Eq. (A.4) and (A.5) that the z axis is aligned with the incoming

electron and the scattering angle of the electron is θ1, while that of the positron is θ2 + π.

Typically θmin and θmax are of O(10mrad). Furthermore, the energies of the scattered leptons

are required to be larger than a certain Emin
` in the e+e− center-of-mass frame. In general,
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Emin
` = O(10GeV) at LEP2 energies. In terms of the integration variables, these phase space

cuts read as
2Emin

`√
S

1− cos θmin

2
≤ ζi ≤ 1− cos θmax

2
, (A.6)

and zmin ≤ zi ≤ zmax, where

zmin =
2ζi

1− cos θmax
, zmax = min

(
1,

2ζi
1− cos θmin

)
. (A.7)

In the e+e− center-of-mass frame, we can also use the lepton variables in order to express the

photon virtualities

−q2
i ≡ Q2

i =
√
SEi (1− cos θi) , (A.8)

and the variables yi, proportional to the light-cone momentum fraction of the virtual photon

yi =
q0
i + q3

i√
S

= 1− 2Ei√
S

cos2 θi

2
. (A.9)

We also define (see Eq.(3.3))

Y = log
y1y2S√
Q2

1Q
2
2

, (A.10)

and

Y = log
W 2√
Q2

1Q
2
2

. (A.11)

The variable Y can also be conveniently expressed in terms of the scaled variables defined in

Eq. (A.1):

Y = ln
1− z1 + ζ1√

ζ1
+ ln

1− z2 + ζ2√
ζ2

. (A.12)

Y and Y are directly related to the BFKL logarithm L entering Eq. (1.3). In fact, for large W ’s

the yi can be effectively interpreted as the longitudinal momentum fractions of the photons in

the incoming leptons (since the transverse components of the photon momenta are much smaller

than their larger light-cone component), and thus W 2 ' y1y2S, which implies

Y
W→∞−→ Y . (A.13)

Furthermore (see for example Ref. [22]), a sensible choice for the mass scale is µ2
W

= cQ

√
Q2

1Q
2
2,

with cQ a suitable constant. It then follows that

L = Y − log cQ. (A.14)

Finally, we come back to the issue of the construction of the computer code we used to

produce the phenomenological results shown in this paper. The general strategy has been

outlined in Sect. 2.3. As discussed there, the NLO algorithm effectively deals with the 2 → 2

process γ∗γ∗ → qq̄ (at the tree level and at one loop), and with the 2 → 3 process γ∗γ∗ → qq̄g

(at the tree level). We have to stress two important differences due to the off-shellness of the
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incoming particles (q2
i 6= 0) with respect to the case described in Refs. [36, 37]. Firstly, in all

the formulae given in the appendices of Ref. [37], S has to be substituted with W 2 (the reader

is urged to avoid any confusion between the S of Ref. [37], where S is the center-of-mass energy

squared of the partonic system, and the S used in the rest of the present paper). Secondly, the

initial-state collinear divergences are absent. Technically, we take this fact into account in the

following way: in Eq. (A.1) and (A.15) of Ref. [37], the terms dσ
(in,f)
a1a2,i and dσ(1,N−1r)

a1a2
are set to

zero. Accordingly, there is no need to introduce P(0)
i in the decomposition of the P functions

(see Eq. (3.10) of Ref. [37]), and only P(1)
ij is non vanishing. Notice that, since now the regions

of the phase space where one of the final-state partons is collinear to one of the initial-state

particles are not infrared singular, the functions P(1)
ij do not need to vanish in these regions.

In order to construct the code relevant to the present paper, we implemented what discussed

above in the hadronic code of Ref. [37]. On top of that, the generation of the momenta of the

leptons has been added, as discussed in Sect. 2.3. The matrix elements were coded as described

in Sect. 2.1 and 2.2.

B Notation for helicity amplitudes

In order to evaluate the production rates in Sect. 2.1, we use helicity amplitudes, defined in

terms of massless Dirac spinors ψ±(p) of fixed helicity,

ψ±(p) =
1± γ5

2
ψ(p) ≡ |p±〉 , ψ±(p) ≡ 〈p±| , (B.1)

spinor products,

〈pk〉 ≡ 〈p−|k+〉 , [pk] ≡ 〈p+|k−〉 , (B.2)

currents,

〈i|k|j〉 ≡ 〈i−|/k|j−〉 = 〈ik〉 [kj] ,
〈i|(k + l)|j〉 ≡ 〈i−|(/k + /l)|j−〉 (B.3)

and Mandelstam invariants

spk = 2p · k = 〈pk〉 [kp] , tpkq = (p+ k + q)2 . (B.4)
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Figure 4: Differential cross sections within the L3 experimental cuts at LEP2 energy.
Shown are the LO prediction (dashed line) and the NLO ones corresponding to three
different choices for the renormalization scale µ.
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Figure 5: Differential distributions in jet events: transverse energy in single-inclusive
jet production (left panel), and rapidity difference between the most forward/backward
jets (right panel) in dijet production.
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Figure 6: Differential cross section with respect to Y from the L3 Collaboration
compared to leading and next-to-leading order predictions. The data are taken at√

S = 189 − 202 GeV. The theoretical simulation is always run at
√

S = 200 GeV.
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