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The interaction between center monopoles in SU(2) Yang–Mills
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We study the potential between a static center monopole and antimonopole in 4d SU(2) Yang–Mills theory.
Using a new numerical method, we show that the ’t Hooft loop is a dual order parameter with respect to the
Wilson loop, for the deconfinement phase transition. We observe a 3d Ising–like critical behaviour for the dual
string tension related to the spatial ’t Hooft loop as a function of the temperature.

1. Introduction

In the 4d SU(2) Yang–Mills theory a second
order phase transition occurs. A critical temper-
ature Tc separates a cold confined phase and a
hot deconfined one. More than two decades ago,
’t Hooft proposed[1] that the center degrees of
freedom might play an important role in the con-
finement mechanism. Along with this approach,
he introduced an operator – named ’t Hooft loop
– with a non trivial structure with respect to the
center subgroup, and argued that it could be used
as a dual order parameter for the deconfinement
phase transition. The ’t Hooft loop, W̃ (C), is
associated with a given closed contour C, and is
defined in the continuum SU(N) theory by the
following equal–time commutation relations[1]

[W (C), W (C′)] =
[

W̃ (C), W̃ (C′)
]

= 0 (1)

W̃ †(C)W (C′)W̃ (C) = ei 2π

N
n

CC′ W (C′) (2)

where W (C′) is the Wilson loop associated with
the closed contour C′ and nCC′ is the linking
number of C and C′. Just like the Wilson loop
creates an elementary electric flux along C′, the
’t Hooft loop creates an elementary magnetic
flux along the path C affecting any Wilson loop
“pierced” by C. In that sense, the two types of
loop are dual to each other. At zero temperature,
it has been shown[1–3] that also the ’t Hooft loop
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behaviour is dual to that of the Wilson loop: in
the absence of massless excitations, an area law
for one implies a perimeter law for the other, and
vice versa. Hence, at T = 0 the ’t Hooft loop
obeys a perimeter law.

Several analytical[4,5] and numerical[6–9] stud-
ies have been carried out in order to investigate
this issue of duality at finite temperature. At
T > 0, the Lorentz symmetry is broken, so spatial
and temporal loops can have different behaviours.
Because the spatial string tension persists also
above Tc for the Wilson loop, temporal ’t Hooft
loops are expected to show a perimeter law in
both phases; spatial ’t Hooft loops, on the other
hand, are expected to obey a perimeter law in the
confined phase and an area law – defining a dual
string tension (strictly speaking it is an action
density) – in the deconfined phase.

Using a novel computational approach, we have
performed[9] a numerical study of the ’t Hooft
loop, showing that it has a dual behaviour with
respect to the Wilson loop both at T = 0 and
T > 0. Our main result is that the ’t Hooft loop
is indeed a dual order parameter for the decon-
finement phase transition.

2. The lattice formulation

The ’t Hooft loop characterizes the static po-
tential between a center monopole and anti-
monopole, just like the Wilson loop does for two
electric charges. Thus, to obtain a ’t Hooft loop,
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one creates a static monopole – antimonopole
pair, then the two charges propagate and, at
the end, annihilate. This is the standard defi-
nition[10,11] of the ’t Hooft loop on the lattice.
Specifically, consider the SU(2) lattice gauge the-
ory with the usual Wilson plaquette action,

S(β) = β
∑

P

(1 −
1

2
Tr(UP )) (3)

where the sum extends over all the plaquettes P
and UP is the path–ordered product of the links
around P . Starting from S(β), one defines the
partition function

Z(β) =

∫

[dU ] exp(−S(β)) (4)

To insert a monopole – antimonopole pair, one
must create a flux tube with non trivial value with
respect to the center degrees of freedom: the cen-
ter monopoles lie at the two ends of the tube. The
flux is switched on by multiplying by a non trivial
center element z the plaquettes along a path, in
the dual lattice, joining the two monopoles. For
SU(2), the only non trivial center element is −1
and so multiplying a plaquette by z is equiva-
lent to flipping its coupling. Replicating this con-
struction at successive time–slices, we create an
elementary magnetic flux along a closed contour
C in the dual lattice, extending in one space- and
in the time-direction (temporal ’t Hooft loop). In
a similar way, we can make the closed contour C
extend only in spatial directions (spatial ’t Hooft
loop). The set P(S) of the plaquettes whose cou-
pling is flipped, β → −β, is dual to a surface S
supported by C. The action SS of the system
where an elementary flux along a closed contour
C has been switched on is then given, up to an
additive constant, by

SS(β) = −
β

2





∑

P /∈P(S)

Tr(UP ) −
∑

P∈P(S)

Tr(UP )



 (5)

and the partition function is

ZC(β) =

∫

[dU ] exp(−SS(β)) (6)

ZC(β) does not depend on the particular chosen
surface S, since different choices are related by a
change of integration variables.

The expectation value of the ’t Hooft loop gives
the free energy cost to create the flux loop. It is
obtained by comparison between the states with
the loop switched on and the states where it is off:

〈W̃ (C)〉 = ZC(β)/Z(β) (7)

This expression can be rewritten in the form

〈W̃ (C)〉 = 〈exp
(

− β
∑

P∈P(S)

Tr(UP )
)

〉 (8)

with the average taken with the standard Wil-
son action. The numerical computation of the
ratio (7), (8) is a very hard numerical task due to
the very poor overlap between the relevant phase
space of the numerator and the denominator.

Recently, the ’t Hooft loop, or special cases of
it, have been studied numerically on the lattice.
In [6,7] the sampling problem was solved by using
a multihistogram method. In our study, we adopt
a new approach, where the ratio ZC(β)/Z(β) is
rewritten as a product of intermediate ratios, each
easily measurable.

3. The numerical method

In this section we present the new numerical
technique that has been developed to measure the
expectation value of the ’t Hooft loop operator.
The direct evaluation of 〈W̃ (C)〉 with (7), (8) by
a single Monte Carlo simulation is not reliable.
Importance sampling of Z(β) leads to generating
field configurations whose contribution to ZC(β)
is negligible and vice versa. The usual approach
to overcome this difficulty is the multihistogram
method[6,7], where one performs several different
simulations in which the coupling of the stack of
plaquettes in P(S) is gradually changed from β
to −β. Instead, we interpolate in the number
of plaquettes in P(S) with flipped coupling. We
make use of the following identity, where N is the
total number of plaquettes belonging to P(S)

ZC(β)

Z(β)
=

ZN (β)

ZN−1(β)
·
ZN−1(β)

ZN−2(β)
· . . . ·

Z1(β)

Z0(β)
(9)

where Zk(β), k = 0, . . . , N (ZN ≡ ZC and
Z0 ≡ Z) is the partition function of the system
where only the first k plaquettes in P(S) have
flipped coupling. Consider the following figure
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where P(S) is the set of bold and thin plaque-
ttes, whose coupling has to be flipped to create
the loop. We interpolate between 0 and N flipped
plaquettes by considering a snake–like movement
where the coupling is progressively flipped.

C
S

Figure 1 shows the snake–like flipping move-
ment: bold plaquettes have coupling −β and
thin ones +β. Thus, performing N independent
Monte Carlo simulations – each corresponding to
a different number of plaquettes in P(S) with
flipped coupling – one can have a reliable estima-
tion of 〈W̃ (C)〉. The efficiency of the method can
be further enhanced through variance reduction
tricks, described in detail in [9]. An advantage
of our method over the multihistogram technique
is that the products in (9) give information on
smaller ’t Hooft loops for free; moreover, the er-
ror analysis is simpler and less delicate than in a
multihistogram analysis.

4. Results

We focus on the free energy F (R) of a pair
of static center monopoles as a function of their
separation R. It can be obtained as limRt→∞ −
Ln[〈W̃ (R, Rt)〉]/Rt by taking elongated R × Rt

rectangular loops, in the same way as one ex-
tracts the static potential between two chromo-
electric charges. We take Rt as large as possible,
i.e. equal to the lattice size L. This is analo-
gous to measuring the correlation of two Polyakov
loops, and is the correct approach at finite tem-
perature. Therefore we must flip the coupling of
R × L plaquettes. We do this with the snake–
like movement: we scan first the Rt− and then
the R−direction. With this ordering, the inter-

mediate partition functions ZL, Z2L, .., ZR×L in
(9) provide us with the free energy at separations
1, 2.., R respectively. The final ratio ZL×L/Z0

gives the free energy of a center vortex as com-
puted in [6].

At zero temperature the ’t Hooft loop is ex-

pected to obey a perimeter law: Zk/Z0 ∝ e−cP̃k ,
where P̃k is the length of the contour Ck. For
the sequence of ‘snake’ flipped plaquettes – up
to boundary effects occurring for very small or
very large contours – P̃k assumes only two differ-
ent values[9]. Indeed numerical simulations show
that Zk/Z0 centers around two values only, con-
firming the perimeter law. Furthermore, a direct
measurement of Creutz ratios χ(R, R) shows a
quick drop to zero with the distance R.

The free energy F (R) can be fitted by a Yukawa

form e−mR

R , up to an irrelevant additive constant.
However the screening mass m is rather large, so
that the signal quickly dies out. The measured
value of ca. 2 Gev for m is close to the light-
est gluonic excitation, the scalar glueball (∼ 1.65
GeV), as observed in [7,8]. More precise state-
ments would require a much more ambitious nu-
merical study.

At finite temperature, the spatial and the tem-
poral loops can have different behaviours. This
difference can be understood by the following ar-
gument. Consider a spatial ’t Hooft loop, that is
a loop in the (x, y) plane obtained by flipping the
coupling of plaquettes in the (z, t) plane. The
magnetic flux could diminish its free energy by
spreading out, but this is limited by the finite-
ness of the t–direction. Conversely a temporal
loop can spread its flux without limitation. Thus
we expect higher free energies for spatial loops
over temporal ones. Moreover, a dual behaviour
of the ’t Hooft loop with respect to the Wilson
loop leads to the following scenario. The spatial
Wilson loop obeys an area law below and above
Tc and so we expect a perimeter law behaviour,
with a Yukawa term, for the temporal ’t Hooft
loop. The temporal Wilson loop obeys a perime-
ter law above Tc and so the spatial ’t Hooft loop
should obey a perimeter law, with a Yukawa term,
below Tc and an area law above Tc, defining a dual
string tension. This is precisely what we observe.
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Figure 2 displays our results for the free en-
ergy vs. monopole separation at T > Tc. The
spatial ’t Hooft loop (full squares) shows a dual
string tension; the temporal ’t Hooft loop (other
data) shows a screening mass increasing with T .
An attempt to fit the data for the temporal loop

with the ansatz F0 +c e−mR

R +σR, including a lin-
ear term, gives a dual string tension σ consistent
with zero. In contrast, this linear term is required
to obtain an acceptable fit above Tc for the spa-
tial loop: a dual string tension appears. We have
measured the screening mass m at various tem-
peratures both for the spatial and the temporal
’t Hooft loops. In the former, it seems to be lit-
tle affected by temperature, while in the latter
we observe a linear dependence in T , much like
for the glueball excitation which it presumably
represents[12]. As for T = 0, an accurate numeri-
cal study is in order to make precise quantitative
statements.

The dual string tension σ depends on tempera-
ture and must vanish at Tc. Figure 3 shows that it
does so as σ ∝ t2ν , where t = T−Tc

Tc
is the reduced

temperature. The straight line is a power law fit
to the t < 1 data, and the curves are the pertur-
bative result, to leading (upper) and next (lower)
order. The fitted critical exponent ν, associated
with the correlation length ξ = σ−1/2, comes out
very close to that of the 3d Ising model: 0.66(3)
vs. ≈ 0.63. This should be expected since both
models are in the same universality class. This
dual string tension can then be taken as order pa-
rameter for the restoration of the (magnetic) ZN

symmetry, corresponding to deconfinement [4,13].

5. Conclusions

Using a new numerical method, we have shown
that the ’t Hooft loop is a dual order parameter
for the deconfinement phase transition in SU(2).
We have observed a dual string tension in the
deconfined phase with 3d Ising–like critical expo-
nent. We have measured the screening masses
and studied their dependence on the tempera-
ture; more accurate investigations are required for
more quantitative results on this point.
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