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Magnetic Oscillations in the Nambu – Jona-Lasinio model
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Abstract. The phase structure of a simple Nambu–Jona-Lasinio model

has been investigated at non-zero values of µ and H, where H is an external

magnetic field and µ is the chemical potential. On this basis magnetic oscilla-

tions effects were considered. It was shown that there are standard (periodic)

van Alphen–de Haas magnetic oscillations of some thermodynamical quanti-

ties, including magnetization, pressure and particle density in the NJL system.

Besides, we have found non-standard, i.e. non-periodic, magnetic oscillations,

since the frequency of oscillations is a H-dependent quantity. Finally, there

arises an oscillating behaviour not only for thermodynamical quantities, but

also for a dynamical quantity like the quark mass.

Magnetic oscillations effects are well-known phenomena in condensed matter physics. In

particular, the oscillation effect of the magnetization, which is called now the van Alphen–de

Haas effect, was for the first time predicted by Landau and then experimentally observed in

some non-relativistic systems (in metals) more than sixty years ago [1,2]. At present, a lot

of the attention of researchers dealing with magnetic oscillations is focused on relativistic

condensed matter systems (mainly on QED at nonzero values of the chemical potential µ and

external magnetic field H), since the results of these studies may be applied to cosmology,

astrophysics and high energy physics [3,4].

It was shown in the framework of QED that the thermodynamical potential Ω(µ, H)

of the system has in 1-loop approximation the following form Ω(µ, H) = Ωmon(µ, H) +

Ωosc(µ, H), where Ωmon(µ, H) is the monotonic part of Ω(µ, H), and all magnetic oscillations

are contained in the so-called oscillating part
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Ωosc(µ, H) =
∞∑

k=1

[Ak(H) cos(2πkω) + Bk(H) sin(2πkω)], (1)

where ω = (µ2 − m2)/(2eH) (e, m are electric charge and mass of fermions, respectively),

and Ak(H), Bk(H) are smoothly varying functions. Due to the presence of trigonometric

functions, expression (1) obviously oscillates over the variable (2eH)−1 with the frequency

(µ2 − m2), which is not an H-dependent quantity. In condensed matter physics such kind

of oscillations are usually called periodic ones.

In the present talk magnetic oscillation effects are considered in the framework of quan-

tum field theory with four-fermion interactions

L =
N∑

k=1

q̄ki∂̂qk +
G

2N
[(

N∑

k=1

q̄kqk)
2 + (

N∑

k=1

q̄kiγ5qk)
2], (2)

which is the N -fermionic extension of the simplest Nambu – Jona-Lasinio model (NJL) [5]. 1

Obviously, the model (2) is invariant under (global) SU(N) and U(1)V transformations as

well as continuous U(1)A chiral transformations: qk → eiθγ5qk ; (k = 1, ..., N).

We shall find the thermodynamic potential Ω(µ, H), which is related to the corresponding

effective potential VHµ(Σ) of the NJL system (2) by

Ω(µ, H) = VµH(Σ)
Σ=Σmin

(3)

and contains all the information about thermodynamical quantities such as magnetization,

particle density, etc. In the relation (3), one should first of all calculate the effective po-

tential VHµ(Σ). So, before considering the magnetic oscillations, we can study the vacuum

properties of the NJL model.

Notice that special attention has been paid to the analysis of the vacuum structure of

NJL-type models at non-zero temperature and chemical potential [6,7], in the presence of

external (chromo-)magnetic fields [8–10], with allowance for curvature and non-trivial space-

time topology [11,12]. The combined influence of external electromagnetic and gravitational

1For simplicity, we consider in the following fermions (“quarks”) of equal electric charge.
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fields on the dynamical chiral symmetry breaking (DCSB) effect in four-fermion field theories

was investigated in [13,14]. However, the influence of both an external magnetic field H and

chemical potential µ on the phase structure of the NJL model was not considered up to now.

Phase structure of the model. The necessary information about the phase structure

of a given field theoretical model is contained in the global minimum point of the corre-

sponding effective potential. In the presence of µ, H the effective potential VHµ(Σ) of the

NJL model has in leading order of large N the following form

VHµ(Σ) = VH(Σ) − eH

4π2

∞∑

k=0

αkθ(µ − sk)

{

µ
√

µ2 − s2
k − s2

k ln




µ +

√

µ2 − s2
k

sk





}

, (4)

where αk = 2 − δk0, sk =
√

Σ2 + 2eHk. VH(Σ) is the effective potential at µ = 0, H 6= 0

VH(Σ) =
H2

2
+ V0(Σ) − (eH)2

2π2

{

ζ ′(−1, x) − 1

2
[x2 − x] ln x +

x2

4

}

, (5)

where x = Σ2/(2eH), ζ(ν, x) is the generalized Riemann zeta-function, ζ ′(−1, x) =

dζ(ν, x)/dν|ν=−1, and

V0(Σ) =
Σ2

2G
− 1

16π2

{

Λ4 ln

(

1 +
Σ2

Λ2

)

+ Λ2Σ2 − Σ4 ln

(

1 +
Λ2

Σ2

)}

(6)

is the effective potential at H, µ = 0. In (6) Λ is the ultraviolet cut off parameter. Finally,

let us remark that Σ is an auxiliary scalar field, which, at the tree level, is proportional to

q̄q by the equations of motion. The global minimum point of the potential (4) defines the

vacuum expectation value of Σ and is equal to the dynamical quark mass.

At µ, H = 0 and G < Gc = 4π2/Λ2 the global minimum point of V0(Σ) equals to the

value Σ = 0. Hence, in this case quarks are massless and chiral symmetry remains intact.

If G > Gc, the effective potential (6) has a nontrivial global minimum point, which we shall

denote as M . (Evidently, M depends on the values of G and Λ [7].)

At µ = 0, H 6= 0 the chiral symmetry of the model is spontaneously broken for arbitrary

values of the bare coupling constant G. This is due to the fact, that the global minimum

point Σ0(H) of the potential VH(Σ) is unequal to zero [8,10].

In order to study the properties of the NJL model vacuum for the general case, when

both µ and H are nonzero, one should find all solutions of the stationarity equation
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∂

∂Σ
VHµ(Σ) =

∂

∂Σ
VH(Σ) +

2eHΣ

4π2

∞∑

k=0

αkθ(µ − sk) ln




µ +

√

µ2 − s2
k

sk



 = 0 (7)

and select that one, at which the potential VHµ(Σ) takes its smallest value. This is the global

minimum point for the function (4). The properties of this point as a function of µ and H

give us a lot of information about the ground state. We omit here the detailed consideration

of this procedure and present directly the phase structure description of the model (Figure

1).
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FIGURE 1. Phase structure of the NJL model. (Detailed description of the figure is given in the text.)

In this figure, in the plane (µ,
√

eH) the phase portrait of the model is qualitatively

represented for the case Gc < G < (1.225...)Gc, where M is the quark mass at µ = H = 0,
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M1 = (Λ2/2 − 2π2/G)1/2. Here one can see infinite sets of symmetric massless A0, A1, ...

phases, as well as massive phases C0, C1, ... with DCSB. In addition, there is another massive

phase B. Dashed and solid lines in Figure 1 are critical curves of first- and second-order

phase transitions, respectively. One can also see on this phase portrait infinitely many

tricritical points tk, sk (k = 0, 1, 2, ...) which lie on the boundary between massless and

massive phases (chiral boundary). (A point of the phase diagram is called a tricritical

one if, in an arbitrarily small vicinity of it, there are first- as well as second-order phase

transitions.) Numerical investigation gives the following values of the external magnetic

field corresponding to tricritical points t0 and s0 at different values of the bare coupling

constant G: eHt0/Λ2=0.01...; 0.08...; 0.13... as well as eHs0
/Λ2=0.006...; 0.056...; 0.103...

for G/Gc=1.01; 1.1; 1.2, respectively. We should also remark that the part
︷ ︸︸ ︷

t0µc(H) of the

chiral boundary is described by the equation VHµ(0) = VHµ(Σ0(H)).

Points (µ, H) of the phase diagram, lying above the chiral boundary, correspond to the

chirally symmetric ground state of the NJL model. One-fermion excitations of this vacuum

have zero masses. At first sight, it might seem that the properties of this symmetric vacuum

are slightly varied, when parameters µ and H are changed. However, this is not the case,

and in this region, as was mentioned above, we have infinitely many massless symmetric

phases of the theory corresponding to infinitely many Landau levels, as well as a variety of

critical curves of second-order phase transitions. Let us next show this.

It is well-known that the state of thermodynamic equilibrium (the ground state) of an

arbitrary quantum system is described by the thermodynamic potential (TDP) Ω, which is

just the value of the effective potential at its global minimum point (see (3)). In the case

under consideration, the TDP Ω(µ, H) at µ > M1 (see Figure 1) has the form

Ω(µ, H) ≡ VHµ(0) = VH(0) −

− eH

4π2

∞∑

k=0

αkθ(µ − ǫk)
{

µ
√

µ2 − ǫ2
k − ǫ2

k ln
[(√

µ2 − ǫ2
k + µ

)

/ǫk

]}

, (8)

where ǫk =
√

2eHk. We shall use the following criterion of phase transitions: if at least one

first (second) partial derivative of Ω(µ, H) is a discontinuous function at some point, then
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this is a point of a first- (second-) order phase transition.

Using this criterion, let us show that lines lk = {(µ, H) : µ =
√

2eHk} (k = 1, 2, ...), are

critical lines of second-order phase transitions.

Indeed, from (8) one easily finds

∂Ω

∂µ

∣
∣
∣
∣
(µ,H)→lk+

− ∂Ω

∂µ

∣
∣
∣
∣
(µ,H)→lk−

= 0, (9)

as well as:

∂2Ω

(∂µ)2

∣
∣
∣
∣
(µ,H)→lk+

− ∂2Ω

(∂µ)2

∣
∣
∣
∣
(µ,H)→lk−

= − eHµ

2π2
√

µ2 − ǫ2
k

∣
∣
∣
∣
µ→ǫk+

→ −∞. (10)

Equation (9) means that the first derivative ∂Ω/∂µ is a continuous function on all lines lk.

However, the second derivative ∂2Ω/(∂µ)2 has an infinite jump on each line lk (see (10)), so

these lines are critical curves of second-order phase transitions. (Similarly, we can prove the

discontinuity of ∂2Ω/(∂H)2 and ∂2Ω/∂µ∂H on all lines ln.)

The presence of an infinite set of massive phases Ck on the phase portrait is conditioned

by a special structure of the stationarity equation (7). Analytical and numerical considera-

tions of it show that below the chiral boundary the effective potential global minimum point

Σ(µ, H), which is identical to the quark mass, has µ and H dependences. The function

Σ(µ, H) is a continuous one inside each of regions Ck. However, it is a discontinuous one

on each of the curves
︷ ︸︸ ︷

Mtk, where the quark mass changes its value by a jump. That is

why boundaries between Ck-regions are the first order phase transition lines. In contrast,

in the phase B, the global minimum point is equal to Σ0(H) (≡ quark mass in the case

µ = 0, H 6= 0), which is a µ-independent quantity. This means that the particle density

n ≡ −∂Ω/∂µ in the ground state of the phase B is identically equal to zero, whereas in each

phase Ck this quantity differs from zero.

Magnetic oscillations. Now we want to show that there arise, from the presence of

infinite sets of massless Ak phases as well as of massive Ck ones, magnetic oscillations (the

so-called van Alphen–de Haas-type effect) of some physical parameters in the NJL model

gauged by an external magnetic field.

6



Let the chemical potential be fixed, i.e. µ = const > M1 (see Figure 1). Then on the

plane (µ,
√

eH) (see Figure 1) we have a line that crosses the critical lines l1, l2, ... at points

corresponding to some values H1, H2, ... of the external magnetic field. The particle density

n and the magnetization m of any thermodynamic system are defined by the TDP in the

following way: n = −∂Ω/∂µ, m = −∂Ω/∂H . At µ = const these quantities are continuous

functions of the external magnetic field only, i.e. n ≡ n(H), m ≡ m(H). We know that all

the second derivatives of Ω(µ, H) are discontinuous on every critical line ln (see (10)). The

functions n(H) and m(H), being continuous in the interval H ∈ (0,∞), therefore have first

derivatives that are discontinuous on an infinite set of points H1, ..., Hk, ... Such a behaviour

manifests itself a phenomenon usually called oscillations.

Analogously to QED and condensed-matter physics [1,2], let us again separate the ex-

pression for a physical quantity with oscillations into two parts: the first monotonic one

does not contain any oscillations, whereas the second part, which is of particular interest

here, contains all the oscillations. Following this rule, we can write down, say, the TDP (8)

of the NJL model in the form Ω(µ, H) = Ωmon(µ, H) + Ωosc(µ, H). In order to present the

oscillating part Ωosc(µ, H) in an analytical form, we shall use the technique elaborated in [4],

where manifestly analytical expressions for this quantity were found in the case of a perfect

relativistic electron–positron gas. This technique can be used without any difficulties in our

case, too. So, applying in (8) the Poisson summation formula [1]

∞∑

n=0

αnΦ(n) = 2
∞∑

k=0

αk

∞∫

0

Φ(x) cos(2πkx)dx, (11)

where αn = 2 − δn0, one can get for Ωosc(µ, H) the following expression

Ωosc =
µ

4π3/2

∞∑

k=1

(
eH

πk

)3/2

[Q(πkν) cos(πkν + π/4) + P (πkν) cos(πkν − π/4)], (12)

where ν = µ2/(eH). The functions P (x) and Q(x) in (12) are connected with the Fres-

nel integrals C(x) and S(x) [16]: C(x) = 1
2

+
√

x
2π

[P (x) sin x + Q(x) cos x], S(x) =

1
2
−
√

x
2π

[P (x) cosx − Q(x) sin x]. They have, at x → ∞, the following asymptotics [16]:

P (x) = x−1 −3x−3/4+ ..., Q(x) = −x−2/2+15x−4/8+ ... Formula (12) presents, in a mani-

festly analytical form, the oscillating part of the TDP (8) for the NJL model at µ > M1. In
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the case under consideration, since the TDP is proportional to the pressure of the system,

one can conclude that the pressure in the NJL model oscillates when H → 0, too. It follows

from (12) that the frequency of oscillations over the parameter (eH)−1 equals µ2/2 and does

not depend on H . So, in this case we have periodic magnetic oscillations. Then, starting

from (12), one can easily find the corresponding expressions for the oscillating parts of n(H)

and m(H). These quantities oscillate at H → 0 with the same frequency µ2/2 and have a

rather involved form, so we do not present them here.

Finally, we should note that the character of magnetic oscillations in the NJL model

at µ > M1 resembles the magnetic oscillations in massless quantum electrodynamics [3,4].

Indeed, in this case in both models one can find periodic magnetic oscillations of some

thermodynamic parameters.

Now let us show that at a fixed value of the chemical potential and M < µ < M1 the

character of magnetic oscillations is changed. In this case on the plane (µ,
√

eH) we have

a line drawn through an infinite set of the Ck-phases. Hence, the thermodynamic potential

of the NJL system has the following form: Ω(µ, H) =VHµ(Σ(µ, H)), where Σ(µ, H) is the

global minimum point of the potential VHµ(Σ). Applying in (4) again the formula (11), one

can find the following expression for the oscillating part of TDP

Ωosc ∼
∞∑

k=1

(
eH

πk

)3/2

[Q(πkν) cos(2πkω + π/4) + P (πkν) cos(2πkω − π/4)], (13)

where ν = µ2/(eH), ω = (µ2 − Σ2(µ, H))/(2eH). From (13) one can see that the TDP

Ω(µ, H) oscillates with frequency (µ2 −Σ2(µ, H))/2 if the variable (eH)−1 tends to infinity.

Since Ω(µ, H) is, up to a sign, equal to the pressure in the ground state of the system,

also in the present case the pressure in the NJL model is an oscillating quantity. Moreover,

other thermodynamic quantities such as particle density n = −∂Ω/∂µ and magnetization

m = −∂Ω/∂H oscillate with the same frequency.

Here we should do an important remark. In the NJL model at M < µ < M1, in

contrast to QED, the magnetic oscillation frequency is a H-dependent quantity. (Since the

quark mass Σ(µ, H) has H-dependency.) So, strictly speaking, in the NJL model magnetic
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oscillations are not periodic ones. Recently, similar peculiarities of magnetic oscillations

are observed in some ferromagnetic semiconductive materials such as HgCr2Se4 [17], where

non-periodic magnetic oscillations over the variable (eH)−1 were found to exist for electric

conductivity as well as magnetization.

Finally, we should remark that in the NJL model not only thermodynamic quantities

oscillate, but some dynamical parameters of the system do as well. This concerns, in partic-

ular, oscillations of the dynamical quark mass. In fact, by applying the Poisson summation

formula (11) to the stationarity equation (7) and searching for the solution Σ(µ, H) of this

equation in the form Σ(µ, H) = Σmon + Σosc, one can easily find the following expressions

for H → 0:

Σosc(µ, H) ∼ (eH)3/2

µM̃

∞∑

k=1

sin(2πkω̃ − π/4)

k3/2
, (14)

where ω̃ = (µ2 − M̃2)/(2eH), and M̃ ≡ M(µ) is the quark mass at H = 0, µ 6= 0.

Conclusions: Let us point out once more that for strongly correlated fermionic systems

there is a possibility to observe nonperiodic magnetic oscillations. Moreover, in such systems

in the presence of an external magnetic field some dynamical quantities (for example, fermion

masses) should oscillate as well. Our results may be applicable in astrophysics, in the physics

of neutron stars etc, where one should take into account the relativistic character of different

phenomena.

Note that the strength of the surface magnetic field of a neutron star is about 1012 G

and in the interior it is probably 1018 G [18]. Our numerical estimates of the Hs0
values

using Λ = 700 Mev show that the magnetic field corresponding to the tricritical point s0

varies in the interval 1017 G÷ 1018 G, when 1.01 < G/Gc < 1.2. Hence, the typical neutron

star magnetic field strengths are much smaller, than the value of Hs0
, and are located in

the oscillation region of the NJL model (see Figure 1). So, the H-dependency of different

physical parameters (such as particle density, magnetization, quark mass, etc) inside neutron

stars possibly has a nonperiodic oscillating character.

Despite the relativistic character of our investigations, we believe that qualitatively the

9



presented results are valid for nonrelativistic electronic systems, and may be applicable in

condensed matter physics, too.

More complete information about phase structure as well as magnetic oscillations in

several NJL-type models one can find in our recent paper [19].
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