IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 2, APRIL. 2000

Using Linux PCs in DAQ applications

G.Unel’, G. Ambrosini', HP.Beck®, S.Cetin’, T.Conka', G. Cronc’, A. Fernandes', D.Francis’, M.Joos",
G.Lehmann®’, J.Lopez’, A Mailov’, L.Mapelli’, G.Mornacchi’, M Niculescu™, I.Petersen’, L. Tremblet’,
S.Veneziano", T.Wildish®, Y.Yasu'.

Laboratory for High Energy Physics, University of Bera, Switzertand.
"CERN, Geneva, Switzerland.
Tnstitute of Atomic Physics, Bucharest, Romania.
‘Bogazici University, Istanbul, Turkey.
‘University College London, London, England.
'KEK, Tsukuba, Japan.

Abstract

The ATLAS Data Acquisition / Event Filter
Prototype “.1” (DAQ/EF-1) project provides the
opportunity to explore the use of commeodity hardware
(PCs) and Open Source Software (Linux) in DAQ
applications.

In DAQ/EF-1 there is an element called the LDAQ
which is responsible for providing local run-control,
error-handling and reporting for a number of Read-Out
modules in Front End crates. This element is also
responsible for providing event data for monitoring and
for the interface with the globat control and monitoring
system (Back-End).

We present the results of an evaluation of the Linux
operating systern made in the context of DAQ/EF-1
where there are no strong real-time requirements.

We also report on our experience in implementing the
LDAQ on a VMEbus based PC (the VMIVME-7587) and
a desktop PC linked to VMEbus with a Bit3 interface
hoth running Linux. We then preseni the problems
encountered during the infegration with VMEbus, the
status of the LDAQ implementation and draw some
conclusions on the use of Linux in DAQ applications,

I. INTRODUCTION TO DAQ/EF —1 PROJECT

The goal of the ATLAS DAQ/EF Prototype -1
(DAQ/EF -1) project is to produce a protolype system
representing a "full vertical shice" of a DAQ suitable for
cvaluating candidate technologies and architectures for
the final ATLAS DAQ system. It has been organised into
four major subsystems: DataFlow, Back-End, Event
Filter and Detector Interface, [1] The DataFlow is the
hardware and software elements responsible for
rcceiving, buffering, distributing event data, providing
event data for monitoring; and storing event data from
the detcctor. These functions are provided by the Front-
End DAQ for the collection, buffering and forwarding of
data fragments from the deteclor; the Event Builder for
the merging of event [ragments into full events; the Sub-
Farm DAQ for the sending to and retrieving of cvents
from the Event Filter and for sending cvents to mass
storage. These subsystems are made from one or multiple

copies of their basic crate units; Readout Crate (ROC})
for Front-End DAQ, Dataflow manager crate (DFM) for
Event Builder and Subfarm crate (SFC) for Sub-Farm
DAQ. The element which is common to all the crates in
all subsystems is the Local DAQ (LDAQ) which is
vesponsible from local control and monitoring together
with interfacing with the Back-End, The cutrent im-
plementation of this logical model is based on VMEbus
single board computers (SBC). A typical example is the
ROC where different elements such as LDAQ, ROB
(ReadOutBuffer), TRG (trigger intcrlace), EBIF (cvent
builder interlace} cte, are implemented as applications on
PowerPC bascd SBCs running a conventional real time
operating system, LynxOS. In the current prototype these
SBCs arc cither RIO2 modules {rom CES [2] or MVME
2x00 modules from Motorola [3].

(Read—Out Drivers

Front End

Consisting of

Read-Out Crates

[=)
——
Bl
g 2o
s -

From trigger

systems [F2A, L2R, ROI)

[Yo tevel 2

Event Tvent Fll
: v Switching¥etwork
Builder
| Y
. L | LpAQ| | s
Event Filter| =
Event Handler -
Sub-Farm SFO
(SFI+SFO+LDAQ) l—» Mass Storage

Figure 1: Global scheme of DAQ/EF —1 project.

0018-9499 /00$10.00 © 2000 JEEE

169

110

II. LDAQ AND LINUX

The gencral use of today’s commodity computer
hardware, Intel compatibie PCs, for HEP applications such
as off-line farms and even on the on-line typically as
processor farms in some experiments, raises the question of
having PC based hardware in the DAQ crates as well. PC
market opens doors to a much bigger number of hardware
choices as well as manufacturers.

The choice of a suitable Operating System (O8) for PC
compatible hardware is naturally dependent on the expected
functionality. Since the softwarc tools, like compilers and
utilities {¢.g. debuggers) which make a usable OS out of a
simple kernel are, often, Open Source Sofiware / GNU
products, and they are considered as the “commoditics” of
the Internet, one may also consider the possibility of using a
commodity Open Source OS, Linux[4].

Deeper understanding and control of the operating system,
due to its openness, can be used in many different ways in a
DAQ project. For the areas which require direct access to
the hardware, where one ftries to get the maximum
performance, the knowledge of the internal details of the
operating system is a possible source of improvements. In
the local control of the hardware, a trustworthy and robust
operating system would ease the development of the
applications by letting the OS handle difficult tasks (e.g.
scheduling, multi-threading). At the global control level, the
key demands become portability, scalability and
interoperability.

A. LDAQ and its prerequisites

The natural candidate to try out a PC based
implementation is the LDAQ, since in the modular Data
Flow system, it provides all the high level DAQ functions
which are not related to the main flow of the cvent data. It is
also the interface point to the Back-End DAQ system (BE)
for the run control, configuration databases, Message
Reporting System and the Information Service [5]. This
interfacing task brings some hardware and softwarc
functionality requirements for the LDAQ application. In
DAQ -1, The primary hardware requirement is the support
for YMEDbus, via which control and monitoring the modules
in any Dataflow crate is donc. For example, assuming a few
Kbytes of data at a ratc of 100 Hz, the requirement for
VMEbus data transfer for the LDAQ (including the data
sampling for monitoring task) is of the order of few
Mbytes/sec. The basic software functionality requirement is
the support for the typical workstation class software
(multitasking, X11 development, scripting languages etc)
since LDAQ is a control oriented application.

B. Linux and Its highlights

Linux is an independent implementation of the POSIX
operating system specification, with SYS-V and BSD
extensions. [4] Linux is freely distributable under the GNU
Public License [6]. It runs on almost all the modern CPUs
including Intel-PC compatibles, Alpha, SUN sparc, Power-
PC, Motorola 68K and MIPS, It has most of the features one

would cxpect in a modern fully-fledged Unix, including
the possibility to add real-time extensions to the standard
operating system.

Its attractive features include POSIX compliance,
modular custom kernel, good performance, RT
extensions, availability of latest development tools,
continuous development to support new hardware, ease
of admiuistration and integration with other systems, full
availability of the source code, free availability of the
full system, large support over the Internet and the
possibility of having commercial support.

The POSLX standards define, among other things, an
interface to the OS, interprocess communications (1.b,
Real-Time Extensions) and multitasking system calls
(1.c, Thread Extensions). These standards arc important
to any project for portability and compatibility issues.
Linux is POSIX conformant in the sense that it supports
Posix Threads, Semaphores, Timers and Alarms, Shared
Memory, Message Queues (implemented on top of
systemV functions), Asynchronous I/O and Real-Time
Signals, The last two ate only implemented in the V2.1
of the gnu C library.

Linux is supported by CERN-IT division (AFS,
CERNIib, ASIS, SUE, HEPIX eic) and it is being used in
the off-line as a working environment and/or as an
analysis platform in ATLAS and other experiments at
CERN (e.g. wa93, na48, nas9).

Linux started to be used in the LDAQ context as a
development platform for some applications such as the
stand alone GUI and the GUI-LDAQ communications.
The source code developed under Lingx were used in the
current target platform (LynxOS) easily due to their
common Unix properties and the GNU tools used in both
systems. The main reasons for using Linux as a
development platform were the wide availability of
Linux based PC stations, the existence of many
development and debugging tools, latest libraries,
utilities, compilers which speed up the initial creation
phase, and the availability of fast, even SMP
{Symmetrical MultiProcessing), systems profiting from
price-performance ratio as COTS (Commodity Of The
Shelf) solutions.

C. Real Time Extensions

Real Time extensions to Linux make it more
deterministic. This is accomplished cither by the
insertion of a Real-Time kernel layer between Linux
kernel and hardware interrupts (RTLinux) [7] or by
changing the current scheduling policy inside the kernel
to a tighter onc (KURT Linux) [8].

In the DAQ -T project, the LDAQ does not have any
hard real time requirements. On the other hand, other
modules have tight timing constraints imposed by high-
rate data flow, Applications that deal with VMEbus are
using hardware access libraries to bypass the kernel
drivers for performance reasons; thus real time properties
of LynxOS are not really used. This approach is
acceptable since they are single tasked, thercfore there is

no resource sharing within a VMEbus module. Since the
standard Linux has been found adequate for LDAQ
application, it was decided to use it as such, keeping in mind
the possibility to use RT extensions in the future.

IIT, COMPATIBILITY AND PERFORMANCE TESTS

Before considering a Linux implementation of the
LDAQ application a series of tests were done (o understand
the performance of Linux and to see its compatibility with
the exisling software. As the test environment, two Intel
based computers were used: A “standard” desktop PC and an
embedded VMEbus computer from VMIC, the
VMIVME7587 [9]. The idea behind the study of the
performance of the desktop PC is to understand the
possibility of using it as a VMEbus CPU via a PCI-VME
interface, for example Bit3 617 {10]. The following table is
a feature summary of these computers:

Table 1
Testbed Systems.
Embedded PC Desktop PC
CPU Pentium 100Mhz PentiumPro?200Mhz
Memory 32Mb+512K L2 64 Mb+256K L2
SCST Interface Adaptec Aic7xxx Adaptec AiCTXXx
Fthernet Interface Onboard SMC9194 | PCI Intel Eepro
VMEbus Interface Tundra Universe Bit3 617
Extension siots 1 pPMC 4 PCIT

A. Benchmarks

A small set of benchmarks have been performed, to
compare Linux 2.0 with the latest 2.1 series and thus to have
an idca about the way Linux is cvolving. The first of these
tests basically estimates the raw performance of the CPU
(Dhrystones), whereas the rest are some specific operating
system call measurements: system V semaphores lock-
unlock timing, the context switch time and the interrupt
latency[11]. In table 2, the results from LynxOS and Linux
on the same hardware (VMIC) together with some
measurements with the Desklop PC are presented.

Table 2
Comparison Tests

Platform / OS Dhrystone | Lock Context
Unlock Switch
VMIC / LynxO082.4 133000 12.8 us Nia
VMIC/ Linux2.0 160000 12.5 us 16.1 ps
VMIC/ Linux2.0* 170000 12.3 ps 14.8 ps
VMIC/ Linux2.1 160000 10.6 s 144 ps
Desktop / Linux2.0 400000 9.5 us 6.0 ps
Desktop / Linux2.(* 446000 9.2 s 5.6 s
Desktop / Linux2.1 400000 6.8 s 4.2 ps

*With Pentium optimizations.

In these tests the context switch time was measured to
be half of the difference between the semaphore
lock/unlock time between two processes and twice of the
semaphore lock/unlock time in a single process. From
these results it is possible to scc that the addition of new
features to Linux is not stowing it down, on the contrary
V2.1 is performing hetler than V2.0; the effect of the C
compiler on petformance is obvious from the fluctuation
in the dhrystones on the same SBC, In this context, for
modern Intel systems, the Pentium optimized compiler is
recommended for critical applications.

To measure the interrupt latency of the driver, a
{unction generator connecied to a VMDIS 8004 VMEbus
display module have been used to gencrate inferrupts in a
continuous manner. The time between two adjacent
interrupt acknowledge signals at the maximum frequency
has been measured and found to be around 7.5
microseconds being the interrupt latency of the hardware
and the kernel.

To fully understand a system, one needs a global test
which utilizes most of the system resources relevant to
the final application (all ideally) and which pushes the
software/hardware to its limits. The software package for
LDAQ communication was a good candidate for such a
global test program since it basically uses the 10
subsystem, the CPU, the Posix threads and signals,
systemV semaphores, shared memory access and
message queucs. In table 3, the measured number of
exchanged messages per second with different number of
senders/receivers communicating via a single dispatcher,
are given for the same VMIC board running two different
operating systems. These measurements show that, on
the same hardware Linux and LynxOS have a similar
overall performance.

Table 3
Messages/sec under Linux and LynxQS
Senders/Receivers | LynxOS 2.4 Linux 2,1
S:1R:1 2400 2800
S:1R:2 1330 1515
S:2R: 2 725 806

B. VMIC VMEbus Driver Functionality and
Performance Issues

On the VMIC card, the PCI/VMEbus interfacing is
provided by the Universe Tundra chip [12] as on the
MVME 2x00 cards. The existing driver for Linux 2.0
[13] supports single cycles, single and chained mode
DMA transfers and handling ol VMEbus interrupts. To
understand it’s performance, a series of data transfer tests
have been done. A VMEbus memory module (MMI16390,
[14]) capable of A32-D64 MBLT transfers has been used
in the benchmarks, The data transfer timing has been
measured on the VMEbus (using a VMETRG VMEbus
analyser [15]) as well as in the kerncl space and in the
user space by the means of software methods. The

111

112

summary of the DMA measurements performed is outlined
in the following table:

Table 4

Time in microseconds to transfer 4000 bytes over VMEbus
DMA VMEbus | Kernel User Improved
mode Space space Version
A32.-1132 | 224ps 343us 438us 300ps
Rea
A32-D64 113ps 222ps 309us 187s
Read
A32-D32 194ps 303us 380us 255us
Write
A32-D64 104ps 220ps 2961s 172ps
Write

The bottleneck for the driver’s performance was the
transfer of the data from/to kernel space to/from user space,
which involves memory copy functions. To overcome this
problem, some contiguous space was reserved in the
memory and from the driver to the user space, instead of the
data itself, only the address of it was transferred, The results
of this exercise are presented in the rightmost column of
table 4. The overhead for DMA access has been measured to
be around 70 microseconds for alf access modes,

C. Bit3 VMEbus Driver Functionality and
Performance Issues

The SBS bit3 617 device [8] is made out of two cards, a
PCI module for the desktop computer and a VMEbus
module for the crate. It does not support MBLT transfets.
The Functionality of the existing Linux driver [11] has been
successfully tested during our studies. The hardware itself
has a higher data transfer rate on the VMEbus (28 Mbytes/s
compared to 20 Mbytes/s for the Tundra Universe in D32
BLT) but also a higher DMA Latency (120 microseconds).
Given the familiarity with the Tundra Universe chip through
the MVME modules, it was decided to have the first LDAQ
implementation on the VMIC VMEbus SBC.

IV. IMPLEMENTING A LINUX BASED LDAQ

The first implementation of a Linux based LDAQ was
done with a functional system with 2 ReadOut, 28ubFarm
and 1 Data Flow Manager crates running in emilation mode,
the message passing being based on system V message
queues instead of VMEbus. This exercise basically consisted
of replacing the POSIX.4 calls used for LynxOS with the
POSIXI.c calls for Linux and reatranging the resources to
have all 5 virtual crates running on the same computer, A
benefit of this exercise is to have improved the portability of
the applications.

To implement the LIDAQ application communicating
with other modules over VMEbus under Linux, the low level
access libraries written for LynxOS had to be ported to
Linux or replaced by functionally equivalent counterparts if
this proved to be impossible. These libraries deal with

contiguous physical memory, VMEbus access, DMA
transfers etc. Since the original target for the DAQ/EF -1
project was to have the final applications on LynxQ8, all
the Linux implementations arc kept AP compatible with
the LynxOS versions.

The standard Linux kernel does not allow reserving
contiguous memory larger than 128Kbytes. Thus, the
“Big Physical Arca” (BPA) cxtension [16] has been
applied allowing the user to specify an amount of
memory which will be marked as I/O space at boot time,
Therefore this part of the DRAM, still accessible to the
kernel through its physical address, serves as a “shared
memory” between different processes which send/freceive
the pointers to data segments. To let the different
applications allocate, use and deallocate segments from
this contiguous memory, a simple memory manager
kernel module (driver) has been written for both Intel
i386 and PPC platforms. The APl compatibility
requirement with the LynxQOS has been fulfilled with a
uscer level libraty communicating with the driver via
simple [OCTL calls:

VMEbus access library was implemented using a
static VMEbus mapping donc from user space as a part
of the bootstrap procedure. To access the PCT
configuration space on the VMIC card from user code,
special C funclions (inl/outl) which require superuser
permissions had to be used. On the MVME2x00, the
work was much simpler since contrary to Intel
architecture, as on PowerPC based cards the PCI
configuration registers arc memory mapped.

To use the current message passing scheme, each
participant VMEbus module reserves a contiguous
memory space with a physical address known in
advance, accessible by other modules through the
VMEbus back plane. This memory, used to store pointers
to actual data buffers, was implemented using SRAM on
CES RIO or RTPC cards and NVRAM on Motorola
MVME cards since they are the only memory locations
whose addresses are known in advance. The NVRAM
optioh was also possible with Linux, but the access to
NVRAM being bytewise and non-standardisation on the
usage of NVRAM belween different manufacturers
necessitated to find another solution. Se, a kernel module
has been written to reserve, at boot time, 4 Kbytes of
DRAM in a tixed address within the BPA, The DRAM
portions reserved for the contiguous buffers in LynxQS
can be anywhere in the total system memory, thus one
has to map all memory to the VMEbus requiring a
compromise between the total number of modules in the
crate or their total physical memory. In Linux since all
the buffers will be in the initially rescrved BPA arca, this
inconvenience is well handled. Another point which is
worth mentioning is the possibility to "clean” the BPA
huffers since the bookkeeping is done at the kernel level.
This featurc adds more robustness to Linux based
applications.

VMEDbus interrupts are needed in the message passing
between different modules, In DAQ/EF -1 project, a
general purpose interrupt handler had been written using

the VMEbus IRQ and vector decoding facilities provided by
LynxQ$8. The interrupt handling in the Linux Tundra
Universe driver has been reused to provide these facilities in
the Linux port of this driver. The result was a kernel module
which is API compatible with the existing user library. The
functionality and performance of this package has becn
tested on the VMIC board using the RCB8047 module from
CES [2]. The interrupt latency at the user program has been
measured to be 19 microscconds which is comparable to 25
microseconds that has been previously obtained [17] from
PPC based SBCs.

The current message passing scheme requires that any
VYMEbus CPU can read from and write to both local and
remote memories, In an environment where all the other
CPUs are big endian, to have a little endian CPU with such a
requirement imposes the need of defining a global
endianness mode. This mode has been chosen as big endian
and on little endian CPUs all the data related to the
VMERbus, even the ones to be written on the local memory,
have to be byte swapped since it was requircd to be able 1o
insert and remove the VMIC module without changing the
LynxOS API and without disturbing the rest of the system.
The resulting message passing library port might not be
giving the optimum performance because of the continuous
byte swapping but its functionality and performance has
been tested using PPC bascd VMEbus modules. The
bandwidth between the VMIC and another 100Mhz PPC
based SBC (RTPC8067 from CES) with a custom VMEbus
interface has been measured to be 3.9 Mbytes/sec with an
overhead of 4.7 microseconds for single cycle access. These
values are comparable to the ones previously obtained [18]
from twe PPC based such SBCs: 3.3 Mbytes/sce for the
bandwidth and 4.8 microseconds for the overhead. Trom
these results it is clear that the effect of byte swapping is
negligible.

V. CONCLUSION

The Linux evaluation done has shown that it meects the
requirements of DAQ/EF-1 project applicalions with no
sirong real-time needs. On the same hardware, Linux and
LynxOS performances of DAQ/EF-1 project applications are
quite similar,

The message passing over VMEbus, cssential for LDAQ
application, has been implemented and tested for single
cycles access between the PC and PPC based SBCs, The
byproduct of this excreise is to have Linux on the Motorola
MVME 2x00 mocule as an alternative to LynxOS. The fully
functional LDAQ application on the embedded VMEbus PC
will be availablc at the end of summer 1999,

The port to the desktop PC with the Bit3 617 YMEbus
interface is expected to be completed by end of 1999,

PC based hardware together with Linux has proven to he
a cheap, commodity systcm to be used in the context of
DAQ /EF —1. The effort needed to implement Linux
versions of the existing LynxOS applications was minimal
because of the common POSIX features of the two systems.

In view of these results, other parts of the ATLAS
DAQ/EF-1 system (Sub-Farm and Event Builder) will be
made available on Linux in addition to LynxOS.

VI. REFERENCES

[11 G. Ambrossini ct al,, "The ATLAS DAQ and Bvent
Filter Prototype “-1" Project", Computing in High
Energy Phyics, Berlin, Germany, 1997.

[2] Creative Electronics Systems, S. A., 70 route du
Pont Butin, 1213 Petit-Lancy 1, Switzerland
http://www.ces.ch

[3] Motorola Inc., hitp://www.mecg.mot.com

[4] G. Unel, Bvaluation of the Linux Operating System
for the DAQ/EF Prorotype —1 Project, Technical
Note 110, http://atddoc.cern.ch/Atlas/post-
script/Note110.ps
http:/fwww.linux.org and references therein,

[5] L. Alexandrov et al., "BackEnd Subsystem of the
ATLAS DAQ Prototype", Computing in High
Energy Phyics, Chicago, USA, 1998,

[6] Free Software foundation., http:/fwww.gnu.org.

[7] RT-Linux Project, http://www.rtlinux.org/~rtlinux.

[8] Kansas University RT Linux project,

http://hegel.itte.ukans.cdu/projects/kurt/index . html

[91 This device is manifactured by VME Microsystems
International corp,, 2090, South Mecmorial
Parkway, AL 35803-3308. htip://www.vmic.com

[10]This device is manufactured by SBS Technologics

inc,, 1284, Corporate Center Drive, MN 55121-
1245. http:/fwww.bit3.com.

[11]1G. Ambrossini et al., " Operating System studics for
DAQ applications", Computing in High Energy
Phyics, Berlin, Germany, 1997,

[12]This device is manufactured by Tundra
Semiconductor Corp., http:/fwww.tundra.com.

[13]1Linux Lab. Project, http:/fwww llp,fu-bertin.de
[14]This device is manufactured by Micro Memory inc.,
htip://www.umem.com

[15]This device is manufactured by VMETRO inc., 1180
Diary Ashford, #3535, TX 77077

[16]1Big Physical Area extensions, http://wwww,.uni-
paderborn.de/fachbereich/AG/heiss/linux/bigphysare
a.htin}

[171M., Joos and J. Petersen, General Purpose Interrupt
Handler for CES RIO8060 and RTPC 8067 modules
running LynxOS, ATLAS DAQ/EF Prorotype -1
Technical Note 19, http://atddoc cern.ch/Atlas/post-
script/Note019,ps

[18]G. Crone et al., Inter and Intra-IOM communication
Summary Document, ATLLAS DAQ/EF Prorotype —1
Technical Note 120, http:/fatddoc.cern.ch/Atlas/post-
script/Note120,ps

113

http://www.ces.ch
http://www.mcg.mot.com
http://atddoc.ccrii.ch/Allas/post
http://www.linux.org
http://www.gnu.org
http://www.rtlinux.org/-rtlinux
http://htip://www.vmic.com
http://littp://www.bit3.com
http://www.tundra.com
http://www.llp.fu-berlin.de
http://wwww.uni
http://alddoc.cern.ch/Atlas/post
http://atddoc.cern.ch/Atlas/post
http://www.umem.com

