244

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 2, APRIL 2000

Performance and Scalability of the Back-end sub-system in the ATLAS DAQ/EF
Prototype

I. Alexandrov', A. Amorin'’, E. Badescu’, D, Burckhart', M. Caprini*, L, Cohen’, P.-Y, Duval’,
R. Hart’, R. Jones®, A. Kazarov', S. Koles"', V. Kotov', D. Laugier’, L. Mapelli*, L. Moneta®,

Z. Qian’, A. Radu’, C.A. Ribeiro’, V. Roumiantsev’, Y. Ryabov’, D. Schweiger™’, I. Soloviev"’
'Toint Institute for Nuclear Research, Dubna, Russia
*Lisbon Institutc of Physics, Lishon, Portugal
Tnstitute of Atomic Physics, Bucharest, Romania
*CERN, Geneva, Switzerland
*Centre de Physique des Particules, Marseille, France
‘NIKHEF, Amsterdam, Netherlands
"Petershurg Nuclear Physics Institute (PNPD), Gaichina, St. Petersburg, Russia
*Section de Physique, Universite de Geneve, Geneva, Swilzerland
*Institute for Experimental Physics, Innsbruk, Austria

Abstract

The DAQ group of the futurc ATLAS experiment has
developed a prototype system based on the Trigger/DAQ
architecture described in the ATLAS Technical Proposal [1]
to support studies of the full system [unctiomality,
architecture as well as available hardware and software
technologies,

One sub-system of this prototype is the back-end which
cncompasses the software needed to configure, control and
monitor the DAQ, but cxcludes the processing and
transportation of physics data.

The back-end consists of a number of components
including run control, configuration databases and message
reporting system, The softwarc has been developed using
standard, external softwarc techmologics soch as OO
databases and CORBA. It has been ported to several Ci+
compilers and operating systems including Solaris, Linux,
WNT and LynxOS,

This paper gives an overvicw of the back-end software,
its performance, scalability and current status.

L. INTRODUCTION

The ATLAS data acquisition (DAQ) and Lvent Filter
(EF) prototype “-1” project [2] is intended to produce a
prototype system representing a “full slice” of a DAQ
suitable for evaluating candidate technologies and
architectures for the final ATLAS DAQ system on the LHC
accelerator at CERN. Within the prototype project, the back-
end sub-system encompasses the software for configuring,
controlling and monitoring the DAQ but specifically
excludes the management, processing or transportation of
physics data. The back-end software must co-exist and co-
operate with the other sub-systems. In particular; interfaces
are required to the triggers, processor farm, accelerator, event
builder, Local DAQ (i.c. detector read-out cratc controller)
and Detector Control System (DCS).

It is expected that the operational environment for the
back-end software will he a heterogeneous collection of
workstations and PCs running WindowsNT or UNIX and

embedded systems running various [lavours of real-time
UNIX operating systems {c.g. LynxOS) connected via a
Local Area Network (LAN), Figure 1 shows on which
processors the back-end software is expecied to run, that is
the ovent filter processors, supetvisor and the LDAQ
pracessors in the detector read-out crates.

Detectors

Read-O ut Driven

Vo mssnrs mnning
Hack-Fiud sofbware

i AN ‘

12 docjsh 2 datw
TN
IU' vy
HEH [ — - - —HiE

Procuser g - - - [
B - ---
[ DaotaXtorage

werimntes L]

Figure |; Back-end DAQ Operational Environiment

A set of operator workstations, situated after the event
filter processor farm, dedicated (o providing the man-machine
interface and hosting many of the control functions for the
DAQ system will also run back-end software.

II. BACK-END SOFTWARE COMPONENTS

A. The software component model

The user requirements gathered for the back-cnd sub-
system [3] have been divided into groups related to activities
providing similar functionality. The groups have been further

0018-9499 /00510.00 © 2000 IEER



developed into componenis of the back-end with a well
defined purpose and boundaries, The components have
interfaces with other components and cxternal systems. Each
component offers some unique functionality and has its own
architecture.

The components have been grouped into two sets: core
components and Trigger/DAQ and  detector integration
components. For all core components an implementation
exists and functionality and performance tests have been
performed. For most delector infegration components the
high level design is complete and an initial implementation is
available. A short description of the compoenents with some
performance fest results follows. For further information on
the back-end componcents refer to (4].

B. Core components

The core components constitute the essential functionality
of the back-end sub-system and have been given priority in
order to have a baseline sub-system that can be used for
integration tests with the data-flow and event filter sub-
system.

1) Run control

The run control (RC) component eontrols the data taking
activities by coordinating the operations of the DAQ sub-sys-
tems, back-end software components and external systems. It
has user interfaces for the shift operators 1o control and
supervisc the data taking scssion and software interfaces with
the DAQ sub-systems and other back-end  software
components.

Due to the size and complexity of the DAQ, the vun
control component consists of many programs cxecuting on
several distributed computers connected threugh a network,
Such a distributed system reflects the struciure of the DAQ
itself and is implemented as a hierarchy of catities called
controllers, each with responsibility for a well-defined
clement of the DAQ system. The controller’s state is the
simplified external view of the current working condition of
the element under its responsibility. The controllers are
organized into a hierarchical tree structure that reflects-the
general organization of the DAQ system itself and is defined
in the configuration database. The behaviour of each
controller in the Run Control trec has been modelled using
state charts. State charts reflecting the different aspects of a
run  controller’s  behaviour have been  designed and
subsequently implemented as C++ code using the CHSM lan-
guage system [51. The controlter skeloton is customised using
C++ inheritance by developers of individual controliers in
the tree by adding code to implement the required
functionality.

An important task of the DAQ back-end software is to
marshat the DAQ through its start-up and shutdown
procedures so that they are performed in an orderly manner.
The DAQ Supervisor program  cncompasses  this
functionality. It is responsible for the creation of all software

processes {inctuding all the controllers) during start-up of the’

DAQ according to the configuration defined in the database.
It uses the Process Manager to create processes on the
processors of the DAQ system. It is also responsible for

ensuring the orderly shut-down of the DAQ system at the end
of data taking activities.

In order to determine the overhead of using the run control
to marshal data taking activities, a suite of tests have hecn
defined, giving the possibility to measure the “cold start” time
(time it takes to start all controllers, associated servers and do
all necessary transitions to get (o the Running state),
“lukewarm start” time (assuming all the controllers are started
and in the Initial state, time to gel to the Running state),
“warm start” time (time to statt a run with the same con-
figuration) and the corresponding “stop” times. Different con-
figurations have been lested [6], with up to 250 controllers in
the tree and up to [0 levels in the hierarchy. Some results are
presented in the Table |.

Run Control scalability restljllz;béfirlrne in seconds averaged over
10 cycles)
Controller Number 11 51 251
cold start 23 6.0 28.0
cold stop 1.5 4.0 8.0
lukewarm statt/stop 0.5 1.0 3.0
warm stact/stop 02 0.4 1.0

The test results show that, ecven for the largest
configuration expected, the time to change the state of the
controller tree is in an acceptable range (maximum ls per
command).

2} Configuration database

A data acquisition system needs a large number of parame-
ters to describe its system architecture, hardware and software
components, ruaning modes and status. One of the major
design issues of ATLAS DAQ is to be as flexible as possible
and so the software is parameterized by the contents of the
configuration database.

After an evaluation of various commercial and shareware
persisience systems (relational databases, object databases and
objeclt managers), it was decided to adopt a two-tier archi-
tecture, using a light-weight in-memory persistent object man-
ager to support the real-time requirements and a full Object
Database Management System (ODBMS} as a back-up and for
long term data management {7]. Tor the run-time object man-
ager, a package called OKS (Object Kernel Support) [8] has
been developed on top of Rogue Wave’s Tools.hit+ CH+ class
library. The OKS sysicm stores database schema and data in
portabic ASCIT files and allows different schema and data files
to be merged in a single database. Tt includes Motit based
GUls to design database schema and to manipulate OKS
ohjects. For the back-up and for long-term data management, a
commercial object oriented database management systern
Objectivity/DB has been chosen by the experiment.

Data access libraties (DAL) are used to hide the details of
the low-level persistent object system from a programmer.
Three DALs have been implemented for the DAQ config-
uration database: “data flow application view” (maps the
database object schema to the data flow application view),

245



246

“back-end application view"” and an automatically generated
C++ DAL (maps database schema to C4++ classes and
database objects to C++ objects with get...()/set...() methods).

In order to provide access to the configuration databases
from remote applications or from applications written in a
language other than C++, a CORBA interface has been
implemented. The clients (C, C++, Java, etc.) access, through
an IDL interface, a remote server written in C-++ [9],

Tests have been performed on the configuration databases
to evaluate the performance for different configurations
(including expected DAQ  confipurations), to test
compatibility of OKS with commercial persistent object
managers and to assess it’s reliability [10]. An independent
performance and functionality benchmark [|1] has been used
to provide a comprehensive profile. The tests have been
made- for different configurations, where the number of
objects wvarics from 5,000 wo 1,000,0600. The benchmark
shows that OKS requires less system resources when working
with relatively small configurations. For the biggest
configuration, the sizes of data files are comparable, but OKS
requires more time and memory for initialization (OKS is an
in-memory database). OKS shows better performance of
read-only operations for configurations of any size: the
transversals are faster by about 10 times, the querics are
faster by up to 100 times (1000 times for path lookup). The
results of the benchmark show that OKS is preferred when
working with small configurations (which are close to the
expected DAQ configurations) and from this point of view is
better for run-time usage. The Objectivity/DB works better
with large databases (which correspond to multiple DAQ
configurations including versioning) in an off- line
environment.

Another  benchmark evaluates the performances for
various expected DAQ configurations upto the final ATLAS
DAQ (200 crates and ~100,000 database objects) on diffcrent
computers running various opetating systems {Sun Solaris,
HP-UX, LynxOS and Windows NT) and shows what are the
hardware requirements to achicve acceptable response times.
This benchmark has been performed with OKS only (and not
Objectivity/DB) becausc it is the run-time object manager
and hence divectly atfects the DAQ performance during data
taking activities. By the benchmark’s results the fastest
computers require about one second for initialization of a
medium-sized configuration (i.e. prototype-1 DAQ) and
about half of one sccond for it's complete raversal and shut-
down, The average (ront-end computer (100 MHz PowerPC
with 32 MB running real-time LynxOS) requires about 3,000
ms to initialise the database and load a medium-sized
configuration.

The two-tier architecture helps cover all requirements for
the configuration databases (high performance, availability
for real-time operating system running embedded processors,
data and schema versioning) and eascs data exchange with
off-line applications. The performed tests and benchmarks
show robusiness and compatibility of OKS and
Objectivity/DB.

3) Message reporting system

The Message Reporting System (MRS) allows software
components in the ATLAS on-line systom to report and

receive error messages, The MRS performs the transport,
filtering and routing of messages,

The MRS has a client - server architecture and is based on
the IPC package, which provides the basic functionality for
working with partitions and assures an interface to a CORBA
implementation [12}. The server interface is described in IDL
and provides the message reporting, the filtedng and
subscription mechanism. The clients can be senders and/or
receivers of messages. A message is composed at the sender
side as a data stream and contains the name, the severity level,
a message text, some qualifiers (imachine name, process id, a
time stamp, other optional qualifiers) and some optional
parametets, Messages can be further defined in a message
database (implemented in OKS), which the server uses to
complete the message during the reporting process. The
receivers can subscribe for groups of messages defined by a
subscription criteria (a logical expression containing message
names, severity levels and optional gualifiers). If a reported
message fulfils the subscription criteria, the subscribing
receivers are notified by a callback mechanism.,

Scalability and performance tests for MRS provide
information about the transport time of a message from a
sender to a receiver under a chosen set of test conditions. A
large number of tests with a varying number of senders and
receivers have been performed on single platform systerns
(Solaris, HP-UX, Lynx08, WindowsNT and Linux) as well as
on distributed configurations with combinations of the
mentioned platforms [13], Table 2 presents the results from
the performance tests with 1, 10 and 50 senders and 1, 5 and
10 receivers on a distributed configuration including a server
on a Seolaris machine and senders and reccivers on HP-UX and
LynxOS machines. The results indicate the mean transfer time
(in milliseconds) of one MRS message from one sender to one
of the receivers.

Table 2
Message Reporting System: Reporting time per message
(ms/msg) for a distributed configuration

Number of senders => 1 10 50
1 receiver 6.0 25 3.1

5§ receivers 20 6.6 6.6

10 reccivers 12.0 9.5 10.6

The capacity of the component can be quantified as the
maximum number of received messages per sccond. For a
distributed system with 50 senders, it is approximately 325
messages for a single receiver, 150 messages for 5 receivers
and 100 messages for 10 receivers.

4) Information service

The Information Service (IS) provides an information
exchange facility for software components of the DAQ, Infor-
mation {defincd by the supplier) from many sources can be
categorised and made available to requesting applications
asynchronously or on request.

The I8 has a multi-server architccturc and uses also the

IPC package as an interface to a CORBA implementation. An
information is an object having a name (a string identifier



which must be unique across all other objects in one server),
a type (a string identifier of a particular type of information),
a value and a time stamp. Information objects arc stored on a
server which must have a unique name across all the servers
in a particular partition. Any client application can access any
information in any server of any partition, It can creale,
update or deletc an information of any type, retrieve the
value of an information or obtain the list of all information
existing on a server. A subscription mechanism allows a
client to subscribe to a particular information object or group
of information objects and be notified when theinformation is
changed. A server can backup and restore all the information
objects and all the subscriptions to a file for check pointing
purposes.

The multi-server architecture gives the possibility to have
different servers for different DAQ domains and assures
scalability. Tests have been performed to evaluate the
performance of the IS and the capability of the system to
work with multiple information ohjects and multiple sources
[14]. The tests measure the mean information publishing
time, the mean update and notify cycle and their dependence
upon the number ol sources and receivers as well as the size
of information, on the same machine and for distributed
configurations. Three types of information objects have been
used: "large" with 34 fields (most of them arrays), "medium"
with 10 ficlds and "small" with only one field. The
configurations chosen for these tests were all possible
combinations of 1, 5 and 10 receivers and 1, 10 and 50
sources working in the same partition, The test conditions
reproduced as closely as possible the truc operational
environment for the Information Service (servers on
workstations, multiple sources and receivers on the front-end
machines and on the workstations). Table 3 presents the
results of the tests on a distributed configuration (server on a
Solaris machine and sources and receivers on HP-UX and
LynxOS machines) for the whole information cycle (from
source to receiver) [or the update operation {in milliseconds)
for large, medium and small information sizes,

Table 3
Information Service: Mean values of the updating time for a
distributed configuration (in ms)

Numiber of Sources => 1 10 50

1 receiver 11.0 4.6 35

large 5 receivers 20,0 14.5 4.5
10 receivers 35.0 283 13.6

| receiver 4.0 1.6 13

medinm 3 receivers 5.0 43 2.5
10 reccivers 8.5 11.2 2.0

1 receiver 35 1.2 0.8

small 3 receivers 5.0 37 24
10 receivers 85 10.4 58

It is expected that most of the information used in the data
acquisition system will have several fields (medium size).
For such information, on one server with 50 sources and 5

receivers it is possible to have up to 400 information updates
per second,

J) Process manager

The Process Manager (PMG) performs basic job control
of the DAQ software components. It is capable of starting,
stopping and monitoring the status {¢.g. running or exited) of
software components on the DAQ processors independently
of the underlying operating system.

The process manager service consists of three main ele-
ments: agents, clients and the dynamic database. The purpose
of an agent is to manage precesses on a single computer host.
Each computer participating in the DAQ activities on which
the sorvices of the process manager is required must run an
agent. The agents wait for client requests and create or kill
processes, give the updated information to the dynamic
database, check pericdically the processes states and call the
concerncd clients when  something  happens to  their
processes. ‘The dynamic database stores the data about the
created processes and the running agents of the PMG and is
implemented as an Information Service server. The PMG
provides a C++ clieat interface as a library that uses the
configuration database to retrieve details of programs it is
requested to start, The primary client of the PMG is the DAQ
Supervisor program described above,

In order to test the scalability and performance of the
process managet, the time to create and destroy a process in
various circumstances has been measured. The process
creation and destruction time have an cffect on the DAQ
systemn availability when changing configuration or starting a
new data taking session. The time measured rcpresents the
delay between a process manager client making the series of
requests and receiving confirmation that the operations have
been completed. [nitial measurements show that the delay in
creating a process using the process manager increascs
slowly with the number of processes managed. For 100
processcs per agent the delay is less than 200 ms. For process
destruction a delay of less than 100 ms was obtained. The
lests have becn made with clients and agents working in a
distributed configuration,

C. Trigger / DAQ and detector integration com-
ponents

Given that the core components described above exist, the
following components arc required to complete the back-end
functionality when integrated with other on-line sub-systems
and detectors.

1) Resource manager

The DAQ contains many resources (both hardware and
software} which cannot be shared and so their usage must be
controlled to avoid conflicts. The Resource Manager (RM) is
needed to formalise the altlocation of DAQ resources and
allow groups to work in parallel without interference,

The RM is a separate server to which clients make
requests to reserve and release resource tokens. Tokens
represent the dynamic state (i.e. allocated or available) of
limited resources. The RM controls tokens but not the access
to the associated resources themselves, It is the responsibility

247



248

of applications (directly or indircctly via the process
manager) to ensure they do not access limited resources
without first acquiting the necessary tokens. The RM_Client
class implements the clicnt part of the RM service and is the
interface between user programs and the RM,

2) On-line bookkeeper

The on-line bookkeeper (OBK) archives information
about the data recorded to permanent storage by the DAQ
system. It records information on a per-run basis and pro-
vides a number of interfaces for retrieving and updating the
information,

OBK includes a process that listens for DAQ messages,
either from the Information Service or the Message
Reporting  System, and stores the information on the
Bookkeeper database. Users may add their own messages to
the database via the interface.

3) Test manager

The Test Manager (TM) organises individual tests for
hardware and software components. The individual tests
themselves are not the responsibility of the test manager
which simply assures their execution (via the process
manager) and verifics their output. The individual tests are
intended to verify the functionality of a given component,

The test manager consists of two main parts: a client
class, which is the interface to the user and a repository class,
which contains a set of tests. The TM uses the Process
Manager to start and stop a test and the Configoration
Database to store the descriptions the tests.

4) Integrated graphical user interface

The integrated graphical user interface (IGUI) gives a
view of the status of the data acquisition system and allows
the user to control its operation. The IGUI is intended mainly
for general users, such as a shift operator at a test beam, but it
also provides functionality for DAQ cxperts (o control and
debug the DAQ system.

A prototype version of the TGUI written in Java (JDK 1.2)
communicates with other components through Java [DL. The
IDL definitions used for the component C++ interfaces have
been reused without modification. The user can set the run
parameters and send commands to the DAQ supervisor (to
boot or shutdown the DAQ configuration) and to Run
Control (to start data taking activities). In different pancls the
user can sce the run control tree and the controllers status, the
list of PMG agents and running processes, received MRS
messages as well as informations about other sub-systems
(data flow, event filter) via the IS,

5) Diagnostics package

The diagnostics package uses the tests held in the test
manager to diagnose problems with the DAQ aund verify its
functioning status. By grouping tests into logical sequences,
the diagnostic framework can examine any single component
af the system (hardware or software) at different levels of
detail in order to determine as accurately as possible the
functional state of componcents or the entire system.

ITI. INTEGRATION AND VALIDATION

BEach component was subjected to unit tests to assess its
functionality, performance, scalability and reliability. For
each component a test plan has been prepared and the test
results have been reported [6], [10], [13], [14]. The
integration of the core components was made in a step-wise
manner, according to the dependencies between components
and the underlying external packages (both commercial and
shareware) as shown in Figurc 2. Integration and scalability
tests are based on the two most relevant scenarios for an
integrated DAQ system representing 1he likely configurations
for the DAQ/EF Prototype “- 1” project and the final ATLAS
DAQ/EF system.

Exomal  JChjsctiviy Tools.hie i CHSM
Packagas | datibase G+ fibrary Cotba service finii state machines]
| 1
0Ks IPC
in-memory Inter Process
abjecl manager Communleatlen
Confguraten
Datahases
Massage Reporling information
Jyskm Bervice
I
Nen-core componen's Procass Manager
nol shown

I Run Controt |

Figure 2. Dependencics between the core components and principal
external packages

The integration tests simulate the control and
configuration of data taking scssions. This requires
completing the content of the configuration database to.
define all the necessary software elements. Processes are
launched hy the DAQ supervisor {via the process manager)
and the run control marshals the hierarchy of controllers from
an Initial to Running state then hack again to represent a
single data taking run. Information for various components is
made available in the Information Service and error messages
are distributed to the operator displays and log files using the
Message Reporting System. The cycle is repeated to
represent a full data taking session.

During the tests the concept of partitions (independent
cntitics that can be used to take data or perform tests) proved
very useful. An implementation of partitioning using
CORBA Naming Service was included in the IPC package
[12] and used by all back-end components, giving the
developers the possibility to run tests in parallel. Component
specific developer interfaces (in Motif) and the integrated
graphical user interface (in fava) have been used during the
tests.

A configuration management system based on the
ATLAS Soltware Release Tools [15] and integrated with
testing tools to produce static software metrics (Logiscope)
and code coverage measurements ([nsure++) has been used.
The configuration management policy is to build a new



release every month and to use a nightly build for
development and testing purposes.

V. SUMMARY AND FUTURE

The unit and integration tests described above are
intended to provide a first version of the back-end system for
use within the DAQ/EF Prototype -1 project. The results on
petformances and scalability are in accordance with the
DAQ/EF prototype requirements. Work will continue to
cover a wider speetrum of configurations to test scalability
for the final ATLAS DAQ system . and to produce
information about eventual limits and beundaries,

The software component model has helped to sub-divide
the project into more manageable development tasks and
encouraged the study of interactions between different
clements of the system. The use of common softwarc
technologies {16] for data persistence, communication etc.
has reduced the total programming effort, made the
developers awarc of the structure of all the components and
allowed them (o share software.

It is expected that integration with other sub-systems will
Icad to the identification of possible improvements which,
coupled to evolving underlying technologies, will form the
basis of further developments of the back-end components.
Currently, the ILU CORBA based communication package is
used in the project [17] but alternative implementations have
recently become available and layered services have also
been defined. Some activities to investigate such packages
have already slarted and will continue. We would like io
extend the DAQ supervisor’s capacity for decision making
and believe expert systems to be a good candidate technology
for implementing the logic of such an intelligent supervisor,

Usc of the ATLAS prototype DAQ/EF project with proto-
type detectors in a test-beam environment will provide the
opportunity to determine if the back-end sub-system require-
ments are relevant, its architecture suitable and the adopted
software standards, tools and techniques applicable. Given
the longevity of the ATL.AS experiment, emphasis has been
put on analysis and design of the sub-system since it is these
aspects (rather than the actual code itselD) which will remain
relevant up lo and beyond the experiment’s start-up (2005).

V. ACKNOWLEDGMENTS

We would like to thank our compuier system managers,
Corine Costaz and Tony Wildish.

VL. REFERENCES
f1] ATLAS Technical Proposal, CERN/LHCC/94-43 (ISBN
92-5083-067-0),

[2} G. Ambrosini ¢t al., “The ATLAS DAQ and Event Filter
prototype e project", Computer  Physics
Communications, vol. 110, pp. 95-102, May 1998.

[3] ATLAS DAQ Back-end Software User Requirements
Document, ATLAS Internal Note DAQ-No-90,

htp:/fatddoc.cern.ch/Atlas/DaqSoft/document/
draft_I.html.

[4] High-Level Design of the ATLAS DAQ Back-end
software. ATLAS  Internal Note DAQ-No-87,
http://atlasinfo.cern.ch/Atlas/documentation/notes/
DAQTRIG/ note87/DAQ_NOTE_87 ps.gz.

5] P. Croll et al,, “Usc of Statecharts in the Modelling the
Dynamic Behaviour of the ATLAS DAQ Prototype-1”,
IEEE Transactions on Nuclear Science, vol. 45, no. 4, pp.
1083-1988, August 1998,

[6] P.Y. Duval et al., “Test Report of the Run Control for the
Atlas DAQ Prototype-17, ATLAS DAQ Prototype -1
Technical Note 113, http://atddoc.cern.ch/Atlas/Notes/
[13/Notel 13- 1.html.

[7]1 R. Jones, I. Soloviev, “Configuration Databases in the
ATLAS Prototype DAQ”, CHEP'98, Chicago, USA,
September 1998, hitp:/fwww.hep.net/chep98/PDE/GG, pdf.

[8] R. Jones ct al., “The OKS Persistent In-memory Object
Manager”, [EEE Transactions on Nuclear Science, vol.
45, pp. 1958-1964, August 1998,

9 S. Kolos, L. Soloviev, “Remote Database Access libraty:
Users Guide”, ATLAS DAQ Prototype - Technical Note
122, hup:i/atddoc.cern.ch/Atlas/Notes/122/Note  122-
L.html.

[10] L. Soloviev, "Test Report of the Configuration Databases
for the Atlas DAQ Prototype-17, ATLAS DAQ Prototype
-1 Technical Note 114, hitp:/atddoc.cern.ch/ Atlas/Notes
/114/Notel 14-1.html,

[11} M:J. Carey et al, “A Status Report on the 007
OODBMS  Benchmark  Effort”, Proccedings of
OO0PSLA'94.

[12] 8. Kelos et al., “Applications of CORBA in the ATLAS
prototype DAQY”, Procecdings of the IEEE Real Time
Conference, Santa Fe, USA, June 1999,

[13] D. Burckhart et al,, “Unit Test Report of the Message
Reporting System for the Atlas DAQ Prototype-17,
ATLAS DAQ Prototype -1 Technical Note 121,
http:/fatddoc.cern.ch/ Atlas/Notes/121/Note121-1 . html.

{14] E. Badescu et al., “Test Report of the [nformation Service
for the Atlas DAQ Prototype -1, ATLAS DAQ
Protatype -1 Technical Note 118, http:/fatddoc.cern.ch/
Atlas/Notes /118/Notel18-1 html.

[15] L. Tuura, “Overview of ATLAS Softwarc Release
Tools”, CHEP’98, Chicago, USA, Scptember 1998,
http:/home, cern.ch /~lat/slides/98-36/.

[16] D. Burckhart et al., “Software technologies for a
prototype  ATLAS  DAQ", Computer  Physics
Communications, vol. 110, pp. 113-119, May 1998,

[17] A. Amorim et al., “Use of Corba in the ATLAS Prototype
DAQ”, IEEE Transactions on Nuclear Science, vol, 45,
no. 4, pp. 1978-1982, August 998,

249


http://iltddoc.cern.ch/Atlas/DaqSoft/dociiment
http://ntddnc.ccrn.ch/AtlasMotcs
http://www.hep.netlchep98/PDF/66.pdl
http://atddoc.cern.ch
http:/Iatddoc.cern.ch
http://atddoc.ccrn.ch
http:/lhomc

