
2/14 IEEE TKANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 2, APRIL moo

Performance and Scalability of the Back-end sub-system in the ATLAS DAQ/EF
Prototype

I. Alexandrov', A. Amorim', E. Badcscu', D. B u r c k h a d , M. Caprini'.', L. Cohen', P.-Y. D u d ,
R. Hart', R. .Jones4, A. Kazarov7, S. Kolos".', V. Kotov', D. Laugier', L. Mapelli', L. Moneta',
Z. Qian', A. Radu', C.A. Ribeiro', V. Roumiantsev', Y . Ryabov7, D. Schweiger"'", I. Solovievn'7

'Joint Institute for Nuclear Research. Duhna, Russia
'Lisbon Institute of Physics, Lishnn, Portugal

'Institute of Atomic Physics, Bucharest, Romania
'CERN, Geneva, Switeerland

'Ccntrc dc Physique des Particules, Marseille, France
'NIKHEF, Amsterdam, Netherlands

'Petcrsburg Nuclear Physics lnstitutc (PNPI), Gatchina, St. Petersburg, Russia
'Section de Physique, Universite de Geneve, Geneva, Swilzerland

'Institute fur Expcrimcntal Physics, Innsbruk, Austria

Abstract
Thc DAQ group of the futurc ATLAS experiment has

developed a prototype system based on the TriggerIDAQ
architccturc descrihctl in tlic ATLAS Technical Propusal [I]
to support studios of the full system lunctionality,
nrchitccturc BS wcll as availnhlc hardware and software
technologies.

Onc sub-systcm of this prototype is thc hack-end which
cncompasses the softwarc nccdcd to configure, control and
monitor tlic DAQ, hut cxcludcs lhc processing and
transportation of physics data.

The back-end consists OS a number of coinponents
including run control, configuration datahascs and messago
reporting system. l'hc softwnrc has hccn dcvelnped using
standard, external softwnrc technologies such as 00
databases and CORHA. It has been portcrl to several C++
compilers and opcrating systcms including Solaris, Linux,
WNT and LynxOS.

This paper gives an ovcrvicw of thc hack-end software,
its performance, scalability and current status.

I. INTRODUCTION
The ATLAS data acquisition (DAQ) and Evcnt Piltcr

(EF) prototype "-1" project [ZI is inlended to prodnce a
protatypc systcin rcpresenting a "full s l i d of a DAQ
suitahlc for evaluating cmdidate tcchnologies and
architectures for the final ATLAS DAQ system on the LHC
iicceleratar at CERN. Within the prototype project, the back-
cnd sub-system encompasses the software for configuring,
conlrolling and !monitoring thc DAQ bul specifically
cxcludes the management, processing or transportation of
physics data. The hack-end software must co-cxist and co-
operate with the other suh-systems. I n particular: interfaces
arc rcquired to the triggers, proccssor farm, accelerator, cvcnt
builder, Local DAQ (i.c. detector rea&l-uut crntc controller)
and Detector Control System (DCS).

It is expcctcd that the operational environment for the
hack-end softwtue will he a lhctcrogcneous collection of
workstations and PCs running WindawsNT or UNIX and

embedded systems running various rlavours of real-timc
UNIX operating systems (e.g. LynxOS) connected via a
Local Area Nctwork (LAN), Figurc 1 shows on which
proccssors thc hack-cnd software is expectcd to run, that is
the cvent filtcr processors, supervisor and tlic LDAQ
processors in the detector read-out crates.

A sCt of operator workstations, situated arter the event
filter processor farm, dcdicatcd lo providing the man-machine
interface and hasting many of the control functions far the
DAQ systcm will also run hack-end software.

11. BACK-END SOFTWARE COMPONENTS

A . The software componen.t inodel
The user requirements gathcretl ror the hack-cnd suh-

systcm [3l have bccn divided into groups related to activities
providing similar functionalily. The groups have been further

0018-9499/00$10.M) 0 7.000 IEEE

developed into components ol tlie back-cnd wilh a well
dcfined purpose and boundaries. The cninponenls have
interfaces with other components kind external systems. Each
component offers smne unique functionality and has its own
architecture.

The components have hccn gmuped into two scts: core
componcnts and TriggerlDAQ and detector integration
components. For all core coinponcnts tin implementation
exists and funclionality and performancc tests have hcen
performed. For most detector integration components thc
high level design is complctc and an initial implementation is
available. A short dcscription oi tlic camponcnts with somc
performance test rcsults follows. I'm further inforonnation on
the back-end componcnts d e r to [4].

R. Core components
Tlie corc components cnnstitiitc the essential lunctionelity

or thc back-cnd suh-system and have been givcn priority in
ordcr to havc a bascline sub-system that can be used for
integration tests with tlie data-flow and event filter sub-
system.

I) Run coneol

The run control (RC) cnmponent controls tlie data taking
activilies by coordinating llic operations oC tlie DAQ sub-sys-
tcms, back-end s o b a r e components and cxtcmil systems. It
has user interfaces Cor tlie shift opcsators lo control and
supervise the dale taking session and softwarc intcrfaces with
thc DAQ sub-systems and other back-cnd software
components.

Due to the s i x and complexity of the DAQ, thc run
control component consists of many programs executing on
several dislributcd computers connected through a network.
Such a distrihuted systcm rerlcets the stwclurc of the DAQ
ilself and is impleinentcd as a hierarchy of cntities called
controllers, each with rcsponsihility lor I I well-dcfincd
elemen1 of the DAQ system. Tlie controller's statte is the
simplified external view or thc currcnt working condition of
the elemcnt illider its rcspansibility. Thc controllers arc
organized into a IhierarcliiCiil trcc structure that reflccts the
general organization al thc DAQ system itsclf and is defincd
in tlie configuration dalahase. The behaviour of each
controller in tlie Run Control trec l ias becn inodcllcd using
state charts. State charts rallccting tlic different aspects of a
run conaollcr's behaviour have becn designcd and
subsequently implemented as C++ code using tlie CHSM lan-
guage system [5]. The conlroller skclcton is customised using
C++ inheritancc by deve lops or individual controllers in
thc tree by ;idding code to implcmenl tlic rcquired
functionality.

An important task ol tlic DAQ hack-end software is to
marshal tlie DAQ tlirnugh its start-iili and shutdown
prnccdures so that they are performed i n an orderly manncr.
The DAQ Supervisor program encompasses this
functionality. It is responsiblc for the crciition of all saltwarc
processes (including all the controllers) during start-up of tlic
DAQ according to tlic configuration delinctl in the database.
It uses the Process Manager to create processcs on the
processors OF thc DAQ system. I t is also responsible for

ensuring tlic orderly shut-down of tlie DAQ system at the end
of data taking activities.

In ordcr to determinc tlie overhead of using the run control
to marshal data taking activities, a suite uC tests have hecn
defincd, giving thc possibility to measure the "cold start" time
(time it takcs to start all controllers, assaciatcd servers and do
all necessary transitions to get lo the Running statc),
"lukewarm start" time (assuming all thc controllers are startcd
and in tlie Initial statc, time to gcl to the Running state),
"warm start" time (time to start a run with the same c m -
liguratiun) and the corresponding "stop" times. Diflerent con-
figurations havc been tested 161, with up to 2SO controllers in
the trcc and up to 10 levcls in the hierarchy. Some results are
presentcd in the Table I .

Tablc 1
Run Control scalability results (time in seconds averaged nvei

I O cyclcs)
Contrallcr Nnmher ; COltl start

cold stop 4.0 18.0

lukewarm star thp 0.5 1.0 3.0
warm rtartlstop 0.4 I .0

The test results show that, wen for thc largest
configuratinn cxpectcd, the time to change the statc 01 tlic
controller tree is in an acccptable range (maximum Is per
command).

ZJ Conjigumtion databuse
A data acquisition system needs a largc number of psramc-

ters to describe its system architecture, hardware and software
components, running modes and status. Onc of thc ,na,jor
design issues of ATLAS DAQ is to he as flexible as possible
and so the software is paramcterized by the contents of the
configuration database.

After an evaluation of various commercial and shareware
persistence systems (relalional databases, ohjcct databases and
objccl managers), it wils dccided to adopt n two-tier archi-
tecLure, using a light-weight in-memory persislcnt object man-
ager to support tlic real-lime requirements and a full Ohject
Datahase Management System (ODBMS) tis a back-up ant1 ior
long term data niatiagement (71. Pur tlie run-time object man-
ager, a package called OKS (Object Kernel Support) [8] has
been developed on top or Rogue Weve's Toals.h++ C++ class
library. Thc OKS systcm storcs database schema and data in
portablc ASCII filcs and allows differen1 schcma and data files
to be merged in a single database. It includcs Motif based
GUls to design databasc schema and to manipulatc OKS
objects. For the hack-up and for long-term data management, a
commercial object oriented database managcment systcm
Objectivity/DB has bccn chosen by the cxpcrimcnt.

Data access libraries (DAL) are used to hide the details of
the low-level persistent ob,jcct system lrom a programmcr.
Three DALs have been implemented Cor the DAQ config-
uration datahasc: "data flaw application view" (maps the
datahasc object schcma tu the data flaw application view),

"back-end application view" and an automatically generated
C++ DAL (maps database schema to C++ classes and
database objects to C++ objects with get ... Olsct ... (1 methods).

In order to provide acccss to the configuration databases
from rcmote applications or from applications writtcn in a
language other than C++, a COKBA interface has bccn
implemented. The clients (C, C++, Java, etc.) access, through
an IDL interface, a remote server written in C++ [9].

Tests have been performed on the configuration databases
to evaluatc the performance for different configurations
(including expected DAQ configurations), to test
compatibility of OKS with commercial persistent object
managers and 10 asscss it's reliability 1101. An independent
perfarinancc and functionality benchmark [I I] has becn used
to provide a comprehensive profile. Thc tests have hcen
made far different configurations, where the number of
objects varies from 5,000 to 1,000,000. The benchmark
shows that OKS rcquires less system resoiirccs when working
with rclatively small configurations. For the biggest
configuration, the sizes of data files are comparablc. but OKS
rcquires inorc time and mcinory for initialization (OKS is an
in-memory database). OKS shows better performance of
read-only operations for configurations of any size: the
transversals arc faster by about 10 times, tlie queries are
faster by up to I00 times (I000 times far path luokup). The
rcsults of the benchmark show that OKS is preferred when
working with small configurations (which arc close to the
expectcd DAQ canfiguratinns) and from this point of view is
hctter far run-time usage. The 01,jectivityiDB works better
with large databases (which correspond to inultiple DAQ
configurations including versioning) in an off- line
environment.

Anothcr benchmark evaluates the performanccs for
various expectcd DAQ configurations upto the final ATLAS
DAQ (200 crates and -100,000 databasc abjccts) on diffcrcnt
computers running various operating systcmn (Sun Solaris,
HP-UX, LynxOS and Windows NT) and shows what are the
hardware requiremcnts to achicvc acceptdble rcsponse times.
This benchmark has been performed with OKS only (and not
ObjectivityiDB) becausc it is the run-time object manager
and lrcnce directly affects the DAQ performancc during data
taking activities. By the benchmark's results the fastest
computers rcquire abnut one second for initialization of a
medium-siacd configuration (i.e. prototype-l DAQ) and
about half of one second for it's complete travcrsal and shut-
down. The average front-end computer (IO0 MHz PowerPC
with 32 MB running real-time LynxOS) requires nboui 3,000
ms to initialise the database and load il medium-sized
configuration.

The two-tier architecture hclps cover all rcquirements for
the configuration daobascs (high performance, availability
for rcal-time operating system running embedded proccssors,
data and schema versioning) and c a m data exchange with
off-linc applications. The performed tests and bcnchmarks
show robustness and compatibility 111 OKS and
Ob.jectivity/DB.

3J Message reporling ryrlern
Thc Message Reporting System (MRS) dlows software

components in the ATLAS on-line systcm to report and

Numbcr of senden =>
1 receiver

5 receivers

10 rmcivers

1 10 50

6.0 2.5 3.1

8.0 6.6 6.6
12.0 9.5 10.6

which must bc unique across all other objects in one server),
a type (a string idcntifier of a particular typc of information),
a value and a time stamp. lnformation objects arc storcd on a
server which must have a unique name across all the scrvcrs
in a particular partition. Any client application can access any
inCormation in any server of any partition. It can crcatc,
update or deletc an information of any type, rctrieve tlie
value of an inlormatian or obtain the list 01 all information
cxisting on a server. A subscription mechanism allows a
client to subscribe to a particular incormation object or group
oC information objects and he notified when theinformation is
changed. A servcr can backup and restore a11 thc information
objects and all the sithscriptions to a file Cor check pointing
purposes.

The multi-server architccture gives the possibility to have
diffcrent scrvcrs for different DAQ domains and assures
scalability. Tests h m c bcen performed to evaluate tlie
performance of the IS and thc capability of the system to
work wilh multiplc information nhjects and multiple souices
[14]. Thc tcsts measure the mean information publishing
timc, the mean update and notify cyclc and their dcpcndcncc
upon the number of sources and receivcis as well as the size
of information, on thc samc machine and for distributed
configurations. Three typcs of information objects have been
used: "large" with 34 fields (mast of them arrays), "medium"
kith 10 ficlds and "small" with only one field. The
configurations chosen for thcsc tests were all possible
comhinations of I , S antl 10 receivcrs and I , 10 and SO
sources working in the same partition. The test conditions
reproduced a s closely as possiblc thc true operational
environment for thc Information Service (servers on
workstations, multiple sources antl receivers on the front-end
machines and on the workstations). Table 3 presents the
results of the tests an B distributed configuration (server on a
Solaris inachinc and sources and receivers on IWUX and
LynxOS machines) lor the whole information cyclc (from
source to receiver) for the update opcratinn (in milliseconds)
for large, medium and small information sizes.

Table 3
Information Scrvice: Mean values of the updating time for a

distributed configuration (in ms)

large 5 reccivcrs
10receivcis 35.0 28.3 13.6

I iec~ivrr
niediiim 5 receivers

10 ieccivcrs 8.5 11.2 9.0
I ieccivcr 3.5

small 5 rcccivcrs 5.0 3.7 2.4
I0 receivers 8.5 10.4

It is expected that most of thc information used in the data
acquisition systcm will havc sevcral fields (mcdium size).
Far such information, on onc server with 50 S O U ~ C ~ S and 5

receivers i t is possible to have up to 400 information updatcs
pcr second.

5) Process munager

The Proccss Manager (PMG) pcrforms basic job control
of thc DAQ software componcnts. It is capable or starting,
stopping and monitoring the status (c.g. running or exited) of
softwarc components on the DAQ praccssars independenlly
of the undcrlying operating system.

The process manager scrvice consists of three main ele-
ments: agents, clients and the dynamic database. The purpose
of an agent is to manage processes on a single computer host.
Each computer participating in the DAQ activities on which
the scivices of the process manager is required must run an
agent. The agents wait far client requcsts and crcate or kill
processes, give the updated information to thc dynamic
databasc, chcck periodically the proccsses stales and call thc
concerned clients when somcthing happens to their
proccsscs. The dynamic database stores thc data about thc
crcatcd proccsses and the running agcnts of thc PMG and is
implemcntcd as an Information Scrvicc scrvcr. The PMG
provides a C++ clicnt interface as a library that uses the
configuration database to retrieve details of programs it is
requested to start. The primary client of the PMG is the DAQ
Supervisor program dcscribcd abovc.

In order to test the scalability and performancc of thc
process manager, thc timc to crcate and destroy a process in
various circumstances has bccn mcasured. The proccss
creation and destruction timc havc an cffcct on the DAQ
system availability when changing configuration or starting a
ncw data taking session. The time measured rcprcsents the
dclay hctween a process manager client making thc serics of
requests and rcceiving confirmation that thc operations havc
been completcd. Initial mcasurcmcnts show that the delay in
creating a proccss using thc proccss manager increases
slowly with the numhcr of processcs managed. For IO0
processcs pcr agcnt thc dclay is lcss than 200 ms. For process
destruction a dclay of lcss than 100 ms was obtained. Thc
tests have hccn made with clients and agents working in a
distributcd configuration.

C. Trigger/DAQ and detector. integration com-
ponents

Given that the core componcnts dcscribed above exist, thc
following components arc rcquired to complete tlie back-end
Cunctionality when intcgratcd with other on-line suh-systems
and dctcctors.

I) Resource munager

The DAQ contains many resources (both hardware and
software) which cannot be shared and so their usage must be
controlled to avoid conflicts. The Resource Managcr (RM) is
needed to formalisc the allocation of DAQ resources and
allow groups to work in parallel without interference.

The RM is a separate server to which clients make
requests to reserve and release resource tokens. Tokens
represent thc dynamic state (i.e. allocated or available) of
limited resourccs. Thc RM controls tokens but not the access
to the associated resources themselves. It is the rcsponsibility

248

of applications (directly or indircctly via the process
managcr) to ensure they do not access limited resources
without first acquiring the necessary tokens. The RM-Client
class implements thc clicnt part of the RM scrvicc and is the
intcrface bctwcen user programs and the RM.

21 On-line bookkeeper
The on-line bookkeeper (OBK) archives information

about the dam rccordcd to permanent sturagc by the DAQ
system. It records information on a per-run basis and pro-
vides a number of interraces for relrieving and updating tho
information.

ORK includes a process that listens For DAQ messagcs,
either Crom the Information Service or the Mcssage
Rcporting System, and stoics tho information on tlic
Bookkccpcr databasc. Uscrs may add thcir own messages to
the database via the interface.

3) Tesr manager
The Test Manager (TM) organises individual tesls for

hardware and software components. The individual tests
themselves are not the responsibility of the test manager
which simply assures their execution (via the proccss
managcr) and vcrifics thcir output. The individoal tests arc
intended to verify the functionality of a given component.

The test manager consists of two main parts: a clicnt
class, which is thc intcrfacc to thc uscr and a repository class,
which contains a sct of tcsts. Thc TM uses lhe Process
Managcr to start and stop a test and the Configuration
Database to store the descriptions thc tests.

4j Intcgmrcd graphical user inreiface
Thc integrated graphical uscr intcrraace (IGUI) gives a

view of the s ta tu of the data acquisition systcm and allows
the user to control its uperation. Thc IGUl is intendcd mainly
for gencral iiscrs, such as a shiCt operator at a test beam, hut it
also pravidcs functionality Sor DAQ cxpcrts to control and
dcbug the DAQ system.

A prototypc version ofthc IGUI writtcn in Java (JDK 1.2)
communicates with other components through Java IDL. The
IDL definitions used for the component C+t intcrfaces have
bccn rcused without modification. The user can set thc run
parameters and scnd commands to the DAQ supervisor (to
boot or shutdown thc DAQ configuration) and to Run
Control (to start data taking activities). In different pancls thc
uscr can sce the run control tree and the cuntrollcrs status, the
list of PMG agents and running processes, receivcd MRS
messages as wcll as infnrmations ahout other sub-systcms
(data flow, event filter) via the IS.

51 Diugno.rrics package
The diagnostics packagc uscs the tests held in thc test

manager to diagnose prablcms with the DAQ and verify its
functioning status. By grouping lests into logical scqucnces,
thc diagnostic framework can exnminc any single component
of thc systcm (hardware or Software) at diffcrcnt levels of
detail in order to dctcrminc as accurately tis possible the
functional state of componcnts or the enlire system.

Figure 2: Dcpenrlencios helwmn lhc cure components and principal
externd packages

The integration tests simulate the control and
configuration a1 data taking scssions. This requires
completing the cnntent of the configuration databasc to
deCine a11 the necessary soStwarc elcments. Proccsscs are
launched by the DAQ supervisor (via the process managcr)
and the run control marshals lhe hierarchy of conlrollers from
an Initial to Running statc thcn hack again to rcprcscnt a
single data taking run. Information for various components is
made available in lhe Information Scrvicc and error messages
are distributcd to the aperalor displays and log riles using the
Mcssage Reporting System. The cyclc is repeated tu
represent a full dala laking session.

During thc tests the concept of partitions (independent
cntitics that can bc uscd to take datii or perform tests) proved
vcry usefnl. An implementation of partitioning using
CORBA Naming Servicc was included in tlic IPC package
[12] and uscd hy a11 back-end components, giving the
devclopcrs the possibility to run tests in parallcl. Component
specific dcveluper interfaccs (in Motii) and thc intcgratcd
graphical user interlace (in liwa) haw bccn used during the
tCStS.

A configuration management systcm based on thc
ATLAS Software Release Tools [IS] and integrated with
testing tools to produce static software tnetrics (Logiscope)
and codc covcrage ineiisurements (Insure++) has been used.
Thc configiiratiun manngemcnt policy is to build a new

249

rclcase every month and to use a nightly build cor
development and tcsting purposes.

IV. SUMMARY AND FUTURE
The unit and integration tests described above are

intended to provide a first version of the back-end system for
usc within the DAQEF Prototype -I projcct. The results on
performances and scalability are in accordance with the
DAQEF prototype requircments. Work will continue to
cover a wider spectrum of configurations to test scalability
for the final ATLAS DAQ system and to produce
infonnation about cventual limits and boundaries.

The software camponenl modcl has helped to sub-divide
[lie project into more manageable dcvclopment tasks and
encouraged the study of interactinns bctwccn different
elements of the system. The use of common software
technologies (161 for data persistence, communication etc.
has reduccd the total programming effort, made the
developers awarc of the structure of all the components and
allowed them to share software.

It is cxpected that intcgration with other sub-systems will
lcad to the identification of possible improvemcnts which,
coupled to evolving underlying tcchnalagies, will form the
basis of further developments of the back-end components.
Currently, the ILU CORBA bascd communication package is
used in the project [I71 but alternative implcmcntations have
recently becomc available and laycrcd services have also
bccn dcfined. Some activitics to investigate such packages
have already slartcd and will continue. We would likc to
extend the DAQ supcrvisor's capacity For decision making
and believe expert systems tn be a good candidate technology
for implementing thc logic of such an intelligcnt supcrvisor.

Usc of thc ATLAS prototype DAQEP project with proto-
type detectors in a test-beam environment will provide the
opportunity to determine ir the back-cnd sub-system require-
ments are relevant, its architecture suitahle and thc adopted
software standards, tools and tcchniques applicable. Given
the longevity of the ATLAS experiment, emphasis has bccn
put on analysis and dcsign of the sub-systcm sincc it is thcsc
aspects (rather than the actual code itsel0 which will rcmain
relevant up Lo and bcyond the experiment's start-up (2005).

V. ACKNOWLEDGMENTS

We would like to thank our computer systcm managers,
Corine Costaz and Tony Wildish.

VI. REPERENCES

[I] ATLAS Technical Proposal, CERNILHCCl94-43 (ISBN

12) G. Ambrosini et al., "The ATLAS DAQ and Evcnt Filter
prototype "-1 '' project". Coin/mter Phyrics
Communications, vol. 110, pp. 95-102, May 1998.

[3] ATLAS DAQ Back-end Software User Requirements
Document, ATLAS Internal Note DAQ-No-90.

9~-90~3-n67-0) .

http://iltddoc.cern.ch/Atlas/DaqSoft/dociiment/
draft-l .html.

[4] High-Lcvcl Dcsign of the ATLAS DAQ Back-end
software. ATLAS Internal Note DAQ-No-87,
http:/latlasinf~o.cern.cli/Atlasld~ciiincntationlnotesl
DAQTRIGI note87DAQ-NOTE-87 ,ps,gz,

[SI P. Croll et al., "Use of Statecharts in the Modelling the
Dynamic Behaviour of the ATLAS DAQ Prototype-I",

Transrrction,~ on Nuclear- Science, vol. 45, no. 4, p p
1983-1988, August 1998.

161 P.Y. Duval et al., "Test Report of thc Run Control for tlic
Atlas DAQ Prototypc-I", ATLAS DAQ Prototype -1
Technical Note 113, http://ntddnc.ccrn.ch/AtlasMotcs/
113/Notel13- I.html.

[7] R. Jones, I . Soloviev, "Configuration Databascs in the
ATLAS Prototype DAQ", CHEP'98, Chicago, USA,
September 1998, http://www.hep.netlchep98/PDF/66.pdl.

[8] R. Jones et al., "The OKS Persistent In-mcmary Object
Manager", IEEE Transactions on Nuclear Science, vol.
45, pp. 1958-1964, August 1998.

[9] S. Kolos, I. Solavicv, "Remote Database Acccss library:
Users Guidc", ATLAS DAQ Prototype -I Technical Note
122, hltp://atddoc.ccrn.ch/Atlas/Notcs/l22INotc 122-
1 .httnl.

1101 I. Soloviev, "Test Report of thc Configuration Databascs
for the Atlas DAQ Prototypc-I", ATLAS DAQ Prototypc
- I Technical Note 1 14. http://atddoc.cern.ch/ AtlasINotes
/ I 14INotel14-l.html.

[I11 M.J. Carey et al., "A Statns Report on the 0 0 7
OODBMS Bcnchmark Effort", Procccdings of
OOPSLA'94.

[I21 S. Kolos et al., "Applications of CORBA in the ATLAS
prototype D A Q , Proceedings of the IEEE Real Time
Conference, Santa Fe, USA, Junc 1999.

[I31 D. Burckhart et al., "Unit Test Report of the Message
Reporting System h r the Atlas DAQ Prototype-I",
ATLAS DAQ Prototype -1 Technical Note 121,
http:/Iatddoc.cern.ch/ Atlas/Notes/l21/Note 121-1 .html.

[I41 E. Badescu et al., "Tcst Report of the Motmalion Servicc
for the Atlas DAQ Prototypc -I", ATLAS DAQ
Prototype -I Technical Notc 118, http://atddoc.ccrn.ch/
AtlasINotes/ll8/Notel 18-l.html.

[I51 L. Tuura, "Overvicw of ATLAS Softwarc Rclease
Tools", CHEP'98, Chicago, USA, Scptcmhcr 1998,
http:/lhomc. cern.ch /-lat/slides/98-36/.

[I61 D. Rurckhart et al., "Software technologies for a
protolype ATLAS DAQ', Cumjmer Physics
Co,n,nunications, vol. 110, pp. 113-119, May 1998.

[I71 A. Amoriin et al., "Use of Corba in the ATLAS Prototype
D A Q , I I Z E Transactions on Nucleur Science, vol. 45,
no. 4, pp. 1978-1982, August 1998.

http://iltddoc.cern.ch/Atlas/DaqSoft/dociiment
http://ntddnc.ccrn.ch/AtlasMotcs
http://www.hep.netlchep98/PDF/66.pdl
http://atddoc.cern.ch
http:/Iatddoc.cern.ch
http://atddoc.ccrn.ch
http:/lhomc

