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Abstract
After making some general remarks, I consider two examples that illustrate the
use of Bayesian Probability Theory. The first is a simple one, the physicist’s
favorite “toy,” that provides a forum for a discussion of the key conceptual
issue of Bayesian analysis: the assignment of prior probabilities. The other
example illustrates the use of Bayesian ideas in the real world of experimental
physics.

1 INTRODUCTION

“We don’t know all about the world to start with; our knowledge by experience consists
simply of a rather scattered lot of sensations, and we cannot get any further without somea
priori postulates. My problem is to get these stated as clearly as possible.”

Sir Harold Jeffreys, in a letter to Sir Ronald Fisher dated 1 March, 1934.

Scientific inference has led to the surest knowledge we have yet, paradoxically, there is still dis-
agreement about how to perform it. The disagreement is both within as well as between camps, the
principal ones being frequentist and Bayesian. If pressed, the majority of physicists would claim to be-
long to the frequentist camp. In practice, we belong to both camps: we are frequentists when we wish
to appear “objective,” but Bayesian when to be otherwise is either too hard, or makes no sense. Until
fairly recently, relatively few of us have been party to the frequentist Bayesian debate. And society is
all the better for it! It is our pragmatism that has cut through the Gordian Knot and allowed scientific
progress. However, we find ourselves performing ever more complex inferences that, in some cases,
have real world consequences and we can no longer regard the debate as mere philosophical musings.
Indeed, this workshop is a testimony to this loss of innocence.

All parties appear, at least, to agree on one thing: probability theory is a reasonable basis for a
theory of inference. But notice the use of the word “reasonable.” That word highlights the chief cause
of the disagreement: any theory of inference is inevitablysubjectivein the following sense: what one
person regards as reasonable may be considered unreasonable by another and, unlike scientific theories,
we cannot appeal to Nature to decide which of the many inference theories is best, nor which criteria are
to be used. I used to think that biased estimates were bad. But while some of us strive mightily to create
them others look on bewildered, wondering why on earth we work so hard to achieve a characteristic
they consider irrelevant.

Physicists, quite properly, are deeply concerned about delivering to the world objective results.
Therefore, anything that openly declares itself to be subjective is viewed with suspicion. Since Neyman’s
theory of inference is billed as objective many of us regard it as reasonable and the Bayesian theory as
unfit for scientific use. However, when one scrutinizes the Neyman theory, its “objectivity” proves to be
of a very peculiar sort, as I hope to show. I then discuss the difficult issue of prior probabilities by way of
a simple model. In the last section, I describe a realistic Bayesian analysis to illustrate a point: Bayesian
methods are not only fit for scientific use, they are precisely what is needed to make maximal use of data.

But first here are some remarks about probability.



1.1 What is Probability?

Probability theory is a mathematical theory about abstractions calledprobabilities. Therefore, to put this
theory to work we are obliged tointerpret these abstractions. At least three interpretations have been
suggested:

• propensity (Popper)

• degree of belief (Bayes, Laplace, Gauss, Jeffreys, de Finetti)

• relative frequency (Venn, Fisher, Neyman, von Mises).

In parentheses I have given the names of a few of the proponents. According to Karl Popper, an unbiased
coin, when tossed, has a propensity of 1/2 to land heads or tails. The 1/2 is claimed to be a property
of the coin. According to Laplace probability is a measure of the degree of belief in a proposition:
given that you believe the coin to be unbiased your degree of belief in the proposition “the coin will
land heads” is 1/2. Finally, according to Venn if the coin is unbiased the relative frequency with which
heads appears in an infinite sequence of coin tosses is 1/2. Venn seems to have the edge on the other two
interpretations since it is a matter of experience that a coin tossed repeatedly lands heads about 1/2 the
time as the number of tosses, that is, trials, increases. Every physicist who performs repeated controlled
experiments, either real ones or virtual ones on a computer, provides overwhelming evidence in support
of Venn’s interpretation.

So, which is it to be: degree of belief or relative frequency? The answer, I believe, is both, which
prompts another question: is one interpretation more fundamental than the other and if so which? The
answer is yes, degree of belief. It is yes for two very important reasons: one is practical the other
foundational. The practical reason is that we use probability in a much broader context than that to
which the relative frequency interpretation pertains. It has been amply demonstrated that we perform
inferential reasoning according to rules that are isomorphic to those of probability theory. Any theory
of inference that dismisses the “degree of belief” interpretation would be expected to suffer a severely
restricted domain of applicability relative to the large domain in which probability is used in everyday
life.

The second reason is that the Venn limit—the convergence of the ratio of the number of successes
to the number of trails—cannot be proved without appealing to the notion of degree of belief[1]. The
issue here is one of epistemology. Empirical evidence, even when overwhelming, does not prove that
a thing is true; only that it is very likely, which is just another way of saying it is very probable. It
is easy to see why a mathematical proof, as commonly understood, cannot be established. Consider a
sequence of trials to test the Standard Model. Suppose each trial to be a proton anti-proton collision at
the Tevatron. Each trial ends in success (a top quark is created) or failure. LetT be the number of trials
andS the number of successes. Given the top quark mass, the Standard Model predicts the probabilityp
of successes. The Standard Model, we note, is a quantum theory. Therefore, the sequence of successes
is strictly non-deterministic, in a sense in which a coin toss and a pseudo-random number generator are
not.

However, a necessary (but of course not sufficient) basis for a mathematical proof of convergence
of a sequence to a limit is the existence of a rule that connects termT + 1 deterministicallyto T . But
for quantum theory it is believed that no such rule exists. What can be and has been proved, by several
people starting with James Bernoulli, is this:

If the order of trials is unimportant (that is, the sequence of trials isexchangeable), and if the
probability of success at each trial is the same, thenS/T → p, asT → ∞ with probability
one.

At this point, I can adopt two attitudes regarding this theorem: one is that clarity of thought is a virtue;
the second is that clarity of thought is nice but less important than pragmatism. As a pragmatist I would
say that this theorem proves that the Venn limit exists. But in this case I prefer clarity. Let us, therefore,



be clear about what this theorem actually proves and what it does not. Bernoulli’s theorem does not prove
thatS/T converges top. Rather it is a statement about 1) theprobability thatS/T converges top as 2)
the number of trials increases without limit, provided that 3) the order of trials does not matter and that 4)
theprobability at each trial is the same. Lurking behind these four seemingly innocuous statements are
deep issues that are far beyond the scope of what I wish to say in this paper. Let me just note that the word
“probability” occurs twice in the statement of Bernoulli’s theorem. If we insist that all probabilities are
relative frequencies then we would have to interpret “probability of success at each trial” and “probability
one” as the “limit with probability one” of other exchangeable sequences in order to be consistent. This
leads into the abyss of an infinitely recursive definition. Doubtless, von Mises was well aware of this
difficulty, which may be why he took the existence of the Venn “limit” as an axiom. However, even if one
is prepared to accept this axiom, I do not think it circumvents the epistemological difficulty of defining a
thing, probability, by making use of the thingtwice in its definition. As de Finetti[2] puts it

“In order for the results concerning frequencies to make sense, it is necessary that the con-
cept of probability, and the concepts deriving from it which appear in the statements and
proofs of these results, should have been defined and given meaning beforehand. In par-
ticular, a result which depends on certain events being uncorrelated, or having equal prob-
abilities, does not make sense unless one has defined in advance what one means by the
probabilities of the individual events.”

I agree.

The alternative interpretation of probability isdegree of belief. Thus the probabilityp is our
assessment of the probability of success at each trial, based on our current state of knowledge. That state
of knowledge could be informed, for example, by the predictions of the Standard Model. Bernoulli’s
theorem says that if our assessment of the probability of success at each trial is correct, and if our
assessment does not change, then it is reasonable to expectS/T → p asT →∞.

But what if our assessment, initially, is incorrect? This poses no difficulty. As our state of knowl-
edge changes, by virtue of data acquired, our assessment of the probability of success changes accord-
ingly. Bayes’ theorem shows how the degree of belief of a coherent reasoner will be updated to the point
where it closely matches the relative frequencyS/T .

1.2 Neyman’s Theory

Neyman rejected the Bayesian use of Bayes’ theorem arguing that the prior probability for a parameter
“has no meaning” when the latter is an unknown constant. He further argued that even if the parameters to
be estimated could be considered as random variables we usually do not know the prior probability. With
the benefit of hindsight, we can see that these arguments betray a confusion about of the notion of degree
of belief. Jeffreys[1] frequently lamented the failure of his contemporaries to really understand what he
was talking about. I would note that even amongst this illustrious gathering the confusion persists. So let
me belabor a point: when one assigns a probability to a parameter it is not because one deems it sensible
to think of the parameter as if it were a random variable—this is clearly nonsense if the parameter is
in fact a constant. The probability assignments merely encode one’s knowledge (or that of an idealized
reasoner) of the possible values of the parameter.

In his classic paper of 1937[3], Neyman introduced his theory of confidence intervals, which he
believed provided an important element of an objective theory of inference. He not only specified the
property that confidence intervals had to satisfy but he also gave a particular rule for constructing them,
although he left considerable freedom that can be creatively exploited[4]. Neyman’s theory is elegant
and powerful. Nonetheless, his theory is open to criticism. But in order to raise objections we need to
understand what Neyman said.

Imagine an ensemble of trials, or experiments,{E} to each of which we associate an interval



[θ(E), θ(E)]. The ensemble of experiments yields an ensemble of intervals. Neyman required the en-
semble of confidence intervals to satisfy the following condition:

For every possiblefixedpoint (θ, α) in the parameter space of the problem, whereθ is the
parameter of interest andα denotes all other parameters of the problem

Prob{θ ∈ [θ(E), θ(E)]} ≥ β. (1)

According to Neyman this probability is to be interpreted as a relative frequency. Thus, any set of
intervals is an ensemble ofconfidence intervalsif the relative frequency with which the intervals contain
the pointθ is greater than or equal toβ, for every possiblefixedpoint in the parameter space regardless
of its dimensionality. Neyman’s idea is intuitively clear: an interval picked atrandom from such an
ensemble, the proverbial urn of sampling theory, will have a100β% chance of containing the fixed point
θ, whatever the value ofθ andα. This is a remarkable requirement. Here is an example.

Suppose we wish to measure a cross section. Our inference problem depends upon the following
parameters: the cross sectionσ, the efficiencyε, the backgroundb and the integrated luminosityL.
Consider afixed point (σ, ε, b, L) in the parameter space. To this point we associate an ensemble of
confidence intervals, induced by an ensemble of possible experimental results. Some of these intervals
[σ(E), σ(E)] will contain σ, others will not. The fraction of intervals, in the ensemble, that containσ is
called thecoverage probabilityof the ensemble of intervals. A coverage probability is associated with
every point(σ, ε, b, L) of the parameter space. Moreover, the value of the coverage probability may vary
from point to point. Neyman’s key idea is that the ensembles of intervals should be constructed so that,
over the allowed parameter space, the coverage probability never falls below some numberβ, called the
confidence level. Both the coverage probability and the confidence level are to be interpreted as relative
frequencies.

The parameter space and its set of ensembles form what mathematicians call afibre bundle. The
parameter space is the base space to each point of which is attached a fibre, that is, another space, here
the ensemble of intervals associated with that parameter point. Each fibre has a coverage probability,
and none falls below the confidence levelβ. Since the fibres may vary in a non-trivial way from point
to point it is not possible, in general, to construct the fibre bundle as a simple Cartesian product of the
parameter space and a single ensemble of intervals. In general, a non-trivial fibre bundle is the natural
mathematical description of Neyman’s construction. Well natural if, like me, you like to think of things
geometrically!

There are two difficulties with Neyman’s idea. The first is technical. For one-dimensional prob-
lems, or for problems in which we wish to set bounds onall parameters simultaneously, the construction
of confidence intervals is straightforward. But when the parameter space is multi-dimensional and our
interest is to set limits on a single parameter no general algorithm is known for constructing intervals.
That is, no general algorithm is known for eliminating nuisance parameters. In our example, we care
only about the cross-section; we have no interest in setting bounds on the integrated luminosity. What
we do, in practice, is to replace the nuisance parameters with their maximum likelihood estimates. The
justification for this procedure is the following theorem:

−2 log
Pr(x|θ, α̂)
Pr(x|θ̂, α̂)

→ χ2, (2)

as the data samplex grows without limit, and provided that the maximum likelihood esti-
matesθ̂ andα̂ lie within the parameter space minus its boundary.

If our data sample is sufficiently large its likelihood becomes effectively a (non-truncated) multi-variate
Gaussian, and consequently the distribution of the log-likelihood ratio isχ2. Since that distribution is
independent of the true values of the parameters a probability statement about the log-likelihood ratio can



be re-stated as one about the parameterθ. But, and this is the crucial point, the theorem is silent about
what to do for small samples. Unfortunately, we high energy physicists insist on looking for new things,
so our data samples are often small. So what are we, in fact, to do? We must after all publish. Today,
with our surfeit of computer time, we can contemplate a brute-force approach: start with an approximate
set of intervals, computed using Eq. (2), and adjust them iteratively until they make Neyman happy. But
because of the second difficulty I now discuss the effort seems hardly worth the trouble.

The second difficulty is conceptual. It has been argued at this workshop, and elsewhere[5], that
the set of published 95% intervals constitute a bona fide ensemble of approximately 95% confidence
intervals. Here is the argument. Each published interval is drawn from an urn (that is, an ensemble of
experiments if you prefer a more cheerful allusion) whose confidence level is 95%. The fact that each urn
is completely different is irrelevant provided that the sampling probability from each is the same, namely
95%. Thus 95% of the set of published intervals will be found to yield true statements. And herein
lies the beauty of coverage! The flaw in this argument is this: each published interval is drawn from an
urn that does not objectively exist, because the ensemble into which an actual experiment is embedded
is a purely conceptual construct not open to empirical scrutiny. Fisher[6], not known for fawning over
Bayesians, made a similar point a long time ago:

“.. if we possess a unique sample on which significance tests are to be performed, there
is always ... a multiplicity of populations to each of which we can legitimately regard our
sample as belonging; so the phrase ‘repeated sampling’ from the same population does not
enable us to determine which population is to be used to define the probability level, for no
one of them has objective reality, all being products of the statistician’s imagination.”

This is true of our ensemble of experiments. Consequently, a few troublesome physicists, bent on giving
the Particle Data Group a hard time, need merely imagine a different set of urns from which the published
results could legitimately have been drawn and thereby alter the confidence level of each result!

Of course, the published intervals do have a coverage probability. My claim is that its value is a
matter to be decided by actual inspection—provided, of course, we know the right answers! It is not one
that can be deduceda priori for the reason just given. The fact that I am able to construct ensembles
of confidence intervals on my computer, by whatever procedure, and verify that they satisfy Neyman’s
criterion is certainly satisfying, but in no way does it prove anything empirically verifiable about the
interval I publish. Forgive me for flogging a sincerely dead horse, but let me state this another way:
Since I do not repeat my experiment, any statement to the effect that the virtual ensemble simulated on
my computer mimics the potential ensemble to which my published interval belongs is tantamount to
my claiming that if I were to repeat my experiment, then I would do so such that the virtual and real
ensembles matched. Maybe, or maybe not!

To summarize: A frequentist confidence level is a property of an ensemble, therefore, its objectiv-
ity, or lack thereof, is on par with the ensemble that defines it.

This whole discussion may strike you as a tad surreal, but I think it goes to the heart of the matter:
many physicists, for sensible reasons, reject the Bayesian theory and embrace coverage because it is
widely viewed as objective. But as argued above confidence levels may or may not be objective depend-
ing on the circumstances. Therefore, when confronted with a difficult inference problem our choice is not
between an “objective” and “subjective” theory of inference, but rather between two different subjective
theories. It may be reasonable to continue to insist upon coverage, but not because it is objective.

After this somewhat philosophical detour it is time to turn to the real world. But en route to the real
world, lest Bayesians begin to feel uncontrollably smug, I’d like to discuss an instructive “toy” model
that highlights the fact that for a Bayesian life is hardly a bed of roses[8].



2 THE PHYSICIST’S FAVOURITE TOY

The typical high energy physics experiment consists of doing a large numberT of similar things—
for example, proton antiproton collisions, and searching forn interesting outcomes—for example,tt̄
production. We invariably assume that the order of the collisions is irrelevant and that each interesting
outcome occurs with equal probability. Then we may avail ourselves of the well-known fact that the
probability assigned ton outcomes out ofT trials, with our assumptions, is binomial. Sincen << T ,
this probability can be approximated by a Poisson distribution

Pr(n|µ, I) =
e−µµn

n!
, (3)

and thus do we arrive at the physicist’s favourite toy. The symbolI denotes all prior information and
assumptions that led us to this probability assignment. Here, it is introduced for pedagogical reasons;
to remind us of the fact thatall probabilities are conditional. We shall assume that our aim is to infer
something about the Poisson parameterµ, given that we have observedn events. Just for fun, we’ll give
this problem to each workshop member. Naturally, being physicists, each of us insists on parameterizing
this problem as we see fit, but in the end when we compare notes we shall do so in terms of the parameter
µ, by transforming to that parameter.

There are, of course, infinitely many ways to parameterize a likelihood function and the Poisson
likelihood is no exception. For simplicity, however, let’s assume that each of us uses a parameterµp

related toµ as follows
µp = µp. (4)

“p” for physicist if you like! In terms of the parameterµp Eq. (3) becomes

Pr(n|µp, I) =
e−µ

1/p
p µ

n/p
p

n!
, (5)

which, we note, does not alter the probability assigned ton.

From Bayes’ theorem

Post(µp|n, I) =
Pr(n|µp, I)Prior(µp|I)∫

µp
Pr(n|µp, I)Prior(µp|I)

, (6)

each of us can make inferences about our parameterµp, and henceµ. Of course, no one can proceed
without specifying a prior probabilityPrior(µp|I). Unfortunately, being mere physicists we do not know
what its form should be. But since we are all in the same state of knowledge regarding our parameter,
coherence would seem to demand that we use the same functional form. So without a shred of motivation
let’s try the following form for the prior probability

Prior(µp|I) = µ−q
p dµp. (7)

Although this prior is plucked out of thin air, it is actually more general than it appears because, in
principle,q could be an arbitrarily complicated function ofp. Now each of us is in a position to calculate,
assuming that the allowed parameter space forµp is [0,∞). We each find that

Post(µp|n, I) =
e−µ

1/p
p µ

n/p−q
p dµp

pΓ(n− pq + p)
. (8)

But as agreed, each of us transforms our posterior probability to the parameterµ using Eq. (4). Thus we
obtain, from Eq. (8),

Post(µ|n, I) =
e−µµn−pq+p−1dµ

Γ(n− pq + p)
. (9)



Unfortunately, something is seriously amiss with the family of posterior probabilities represented by Eq.
(9): each of us has ended up making a different inference about the same parameterµ! We can see this
more clearly by computing therth moment

mr ≡
∫

µ
µrPost(µ|n, I) (10)

= Γ(n− pq + p + r)/Γ(n− pq + p),

of the posterior probabilityPost(µ|n, I). The moments clearly depend onp, that is, on how we have
chosen to parameterize the problem.

What does a Bayesian have to say about this state of affairs? Is it a problem? I would say yes,
it is. But there are some Bayesians who call themselves “subjective Bayesians” and others who believe
themselves to be “objective Bayesians.” I confess that these terms leave me a bit baffled. The latter
term because it seems to be an oxymoron and the former because it seems to be superfluous. The
fundamental Bayesian pact is this: The prior probability is an encoding of a state of knowledge; as such
it is a subjective construct. That construct may encode one’s personal state of knowledge or belief, and
that’s a fine thing to do and is very powerful. But it may also encode a state of knowledge that is not
specifically yours and that too is just fine. The issue is one of encoding a state of knowledge: Are there
any desiderata that should be respected? The subjectivist is probably inclined to say no: simply choose
the parameterization that makes sense for you and associate a prior, declare it to be supreme, and force
all other priors to differ from yours in just the right way to render an inference aboutµ unique. So a
“subjective” Bayesian would presumably reject Eq. (7).

I believe that to make headway, we should entertain some further principles. They should not
degenerate into dogma but should serve as a lantern in the dark. Here are two possible principles:

• Possible Principle 1: For the same likelihood and the same form of prior we should obtain the
same inferences.

• Possible Principle 2: The moments of the posterior probability should be finite.

Let’s apply these tentative principles to the moments in Eq. (10). Principle 1 says that each of us should
make the same inferences aboutµ, that is, the moments ought not to depend on the whim of a workshop
member; it ought not to depend onp. Principle 2 says thatmr < ∞. Together these principles imply
that

−pq + p = a > 0, (11)

wherea is a constant. This leads to the following prior

Prior(µp|I) = µa/p−1
p dµp. (12)

But we didn’t quite make it; our principles are insufficient to uniquely specify a value for the constanta.
We need something more. Here is something more, suggested by Vijay Balasubramanian[7]:

• Possible Principle 3: When in doubt, choose a prior that gives equal weight to all likelihoods
indexed by the same parameters.

That is, impose auniformprior on the space of distributions. This requirement is a much more reasonable
one (here is that word again) than imposing uniformity on the space of parameters because the space of
distributions is invariant, whereas that of parameters is not. The space of distributions is akin to a space
containing invariant objects like the vectors in a vector space, whereas the parameter space is analogous
to the non-invariant space of vector coordinates. In our case, we impose a uniform prior on the space
inhabited by Poisson distributions. Balasubramanian has shown that a uniform prior on the space of
distributions induces, locally, a Riemannian metric whose invariant measure is determined by the Fisher
Information,F . For our toy model the invariant measure is

Prior(µp|I) = F 1/2dµp, (13)



where

F (µp) = −
〈

d2 log Pr(n|µp, I)
dµ2

p

〉
. (14)

Equation (13) is called theJeffreys prior. It givesa = 1/2 and thus uniquely specifies the form of the
prior probability. Possible Principle 3 is a generalization of Possible Principle 1. Thus we conclude
that the prior probability that forces us all to make the same inference, regardless of how we choose to
parameterize the problem, is

Prior(µp|I) = µ
− 1

2
(2−p)

p dµp. (15)

This is all very tidy. However, when Jeffreys[1] applied his general prior probability to the Gaus-
sian, treating both its mean and standard deviation together he got a result he did not like. He therefore
suggested another principle:

• Possible Principle 4: If the parameter space can be partitioned into subspaces that,a priori, are
considered independent then the general prior should be applied to each subspace separately.

This gave him a prior he liked. Alas, for a Bayesian life is not easy. While the frequentist struggles with
justifying the use of a particular non-objective ensemble the Bayesian struggles to justify why some set
of additional principles for encoding minimal prior knowledge is reasonable. Meanwhile, the “subjective
Bayesian” says this is all a mere chasing after shadows. And so it goes!

3 THE READ WORLD

The foregoing discussion might suggest to “abandon all hope yea who enter” the real world of inference
problems. Fortunately, it is not quite so bleak. The real world imposes some very severe constraints on
what we can reasonably be expected to do. For one thing, the lifetime of a physicist is finite, indeed,
short when compared with the age of the universe. Technical resources are also finite. And then there is
competition from fellow physicists. Finally, uncertainty in abundance is the norm. Perhaps with enough
deep thought all inference problems can be solved in a pristine manner. In practice, we are forced to
exercise a modicum of judgement when undertaking any realistic analysis. We introduce approximations
as needed, we side-step difficult issues by accepting some conventions and we rely upon our ability not to
get lost amongst the trees. But when I reflect on what must be done to measure, say, the top quark mass,
a problem replete with uncertainties in the jet energy scale, acceptance, background, luminosity, Monte
Carlo modeling to name but a few, it strikes me as desirable to have a coherent and intuitive framework
to think about such problems. Bayesian Probability Theory provides precisely such a framework. More-
over, it is a framework that mitigates our propensity to get confused about statistics when the going gets
tough. The second example I discuss shows that real science can be done in spite of prior anxiety[8].

3.1 Measuring the Solar Neutrino Survival Probability

It has been known for over a quarter of a century that fewer electron neutrinos are received from the Sun
than expected on the basis of the Standard Solar Model (SSM)[9, 10, 11, 12, 13]. This is the famous solar
neutrino problem. Figure 1 summarizes the situation as of Neutrino 98. If the SSM is correct—and there
is very strong evidence in its favour[14], then the inevitable conclusion is that a fraction of the electron
neutrinos created in the solar core are lost before they reach detectors on Earth. The loss of electron
neutrinos is parameterized by theneutrino survival probability, p(ν|Eν), which is the probability that a
solar neutrinoν of energyEν arrives at the Earth.

Several loss mechanisms have been suggested, such as the oscillation of electron neutrinos to less
readily observed states such as muon, tau or sterile neutrinos[15, 16]. Manyχ2-based analyses have been
performed to estimate model parameters[17, 18, 19]. To the degree that a fit to the solar neutrino data
is good it provides evidence in favour of the particular new physics that has been assumed. From this
perspective, solar neutrino physics is yet another way to probe physics beyond the Standard Model.



Fig. 1: Predictions of the 1998 Standard Solar Model of Bahcall and Pinsonneault relative to data presented at Neutrino 98.

Courtesy J.N. Bahcall.

But I’d like to address a more modest question: What do the data tell us about the solar neutrino
survival probability independently of any particular model of new physics? We can provide a complete
answer by computing the posterior probability of different hypotheses about the value of the survival
probability, for a given neutrino energy[21, 22]. Our Bayesian analysis is comprised of four components

• The model

• The data

• The likelihood

• The prior

First we sketch the model. (See Ref. [21] for details.)

The solar neutrino capture rateSi on chlorine and gallium can be written as

Si =
∑
j

Φj

∫
p(ν|Eν)σi(Eν)φj(Eν)dEν , (16)

whereΦj is the total flux from neutrino sourcej, φj is the normalized neutrino energy spectrum andσi

is the cross section for experimenti. The predicted spectrum, plus experimental energy thresholds, are
shown in Fig. 2. The full spectrum consists of eight components (of which six are shown in Fig. 2), with
total fluxesΦ1 to Φ8[11].

The Super-Kamiokande experiment[23] measures the electron recoil spectrum arising from the
scattering of the8B neutrinos (plus higher energy neutrinos) off atomic electrons. We shall use the
electron recoil spectrum reported at Neutrino 98. The spectrum spans the range 6.5 to 20 MeV. Light
water experiments, like Super-Kamiokande, are sensitive to all neutrino flavors but do not distinguish
between them. There are, therefore, two possibilities: theνe deficit could be caused byνe conversions
to νx, wherex is eitherµ or τ . If so the measured neutrino flux would be the sum of these flavors. If,
however, theνe are simply lost without a trace, for example because of conversion into sterile neutrinos,
then the measured flux would be comprised ofνe only. Like the rates for the radiochemical experiments,



Fig. 2: Solar neutrino energy spectrum as predicted by the Bahcall-Pinsonneault 1998 Standard Solar Model, including the

neutrino energy thresholds for different solar neutrino experiments. Courtesy J.N. Bahcall.

the measured electron recoil spectrum is linear in the neutrino survival probability. The data are shown
in Fig. 3.

For solar neutrino experiments, a reasonable definition of sensitivity is the product of the cross
section times the spectrum[21]. This quantity is plotted in Fig. 4. Two points are noteworthy: each
experiment is sensitive to different parts of the neutrino energy spectrum and there are regions in neutrino
energy where the sensitivity is essentially zero. We should anticipate that these facts will constrain what
we are able to learn about the neutrino survival probability from the current solar neutrino data.

Since we do not know the cause of the solar neutrino deficit, let’s adopt a purely phenomenological
approach to the survival probability. Guided by the results from previous analyses [17, 18, 19, 20] we
write the survival probability as a sum of two finite Fourier series:

p(ν|Eν , a) =
7∑

r=0

ar+1cos(rπEν/L1)/(1 + exp[(Eν − L1)/b]) (17)

+
3∑

r=0

ar+9cos(rπEν/L2),

where now we explicitly note the fact that the survival probability depends upon the set of parameters
a. The first term in Eq. (17) is defined in the interval 0.0 toL1 MeV—and suppressed beyondL1 by the
exponential. The second term spans the interval 0.0 toL2 MeV. We have divided the function this way
to model a survival probability that varies rapidly in the interval 0.0 toL1 and less so elsewhere. The
parametersL1, L2 andb are set to 1.0, 15.0 and 0.1 MeV, respectively.

We now consider the likelihood functionPr(D|H, I), whereH denotes the hypothesis under
consideration. The likelihood is assumed to be proportional to a multi-variate Gaussiang(D|S,Σ),
whereD ≡ (D1, . . . ,D19) represents the 19 data—3 rates from the chlorine and gallium experiments
plus 16 rates from the binned Super Kamiokande electron recoil spectrum (Fig. 3);Σ denotes the19×19
error matrix for the experimental data andS ≡ (S1, . . . , S19) represents the predicted rates.

The remaining ingredient is the prior probability. First we assess our state of knowledge. There
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are two sets of parameters to be considered: the total fluxes(Φ1, . . . ,Φ8) and the survival probability
parameters(a1, . . . , a12). The hypotheses under consideration concern the values of these two sets of
parameters. The Standard Solar Model provides predictionsΦ0 ≡ (Φ0

1, . . . ,Φ
0
8) for the total fluxes,

together with estimates of theirtheoreticaluncertainties. So here is an analysis that must deal with
theoretical uncertainties in some sensible way. I do not know how such a thing can be addressed in a
manner consistent with frequentist precepts. For a Bayesian uncertainty is, well, uncertainty, regardless
of provenance; therefore, every sort can be treated identically. We represent our state of knowledge
regarding the fluxes by a multi-variate Gaussian prior probabilityPrior(Φ|I) = g(Φ|Φ0,ΣΦ), whereΦ0

is the vector of flux predictions andΣΦ is the corresponding error matrix[11].

Unfortunately, we know very little about the parametersa1, . . . , a12, so we shall short-circuit
discussion by taking, as a matter of convention, the prior probability fora to be uniform. In practice, any
other plausible choice makes very little difference to our conclusions. We may even find that a uniform
prior for a is consistent with the generalized Jeffreys prior. Thus we arrive at the following prior for this
inference problem:

Prior(a,Φ|I) = Prior(a|Φ, I)Prior(Φ|I) (18)

= daPrior(Φ|I),

whereI now includes the prior information from the Standard Solar Model.

Now we can calculate! The posterior probability is given by

Post(a,Φ|D, I) =
Pr(D|a,Φ, I)Prior(a,Φ|I)∫

a,Φ Pr(D|a,Φ, I)Prior(a,Φ|I)
. (19)

But since we aren’t really interested in the total fluxes probability theory dictates that we just marginalize
(that is, integrate) them away to arrive at the quantity of interestPost(a|D, I). Actually, what we really
want is the probability of the survival probability for a given neutrino energyEν ! That is, we want

Post(p|D, I) =
∫

a
δ(p − p(ν|Eν , a))P (a|D, I). (20)

Figure 5 shows contour plots ofPost(p|D, I) for the two cases considered, conversion to sterile and
active neutrinos.

Our Bayesian analysis has produced a result that, intuitively, makes a lot of sense. As expected,
given the sensitivity plot in Fig. 4, our knowledge of the survival probability is very uncertain between
1 and 5 MeV. In fact, the survival probability is tightly constrained in only two narrow regions: in the
7Be region just below 1 MeV and another at around 8 MeV, near the peak of the8B neutrino spectrum.
For neutrino energies above 12 MeV or so, the survival probability is basically unconstrained by current
data.

4 SUMMARY

It has been claimed by some at this workshop that Bayesian methods are of limited use in physics re-
search. This of course is not true as I hope to have shown. Bayesian methods are, however, explicitly
subjective and this may give one pause. I have argued that frequentist methods are not nearly as objective
as claimed. While Bayesians cannot avoid the irreducible subjectivism of prior probabilities, frequentists
cannot avoid the use of ensembles that do not objectively exist. Frequentists struggle with any uncer-
tainty that does not arise from repeated sampling, like theoretical errors, while for Bayesians uncertainty
in all its forms is treated identically. On the other hand, some Bayesians struggle to convince us that a
particular choice of prior is reasonable, while frequentists look on in amusement. The point is neither
approach is free from warts. But, of the two approaches to inference, I would say that the Bayesian one
has more to offer, is easier to understand, has greater conceptual cohesion and, the most important point
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Fig. 5: Survival probabilityvsneutrino energy assuming the neutrino flux consists ofνe only (left plot) andνe to active neutrinos
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of all, more closely accords with the way we physicists think[25]. And this is real reason why it should
be embraced.
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[13] S. Turck-Chíeze and I. Lopes, Astrophys. J.408(1993) 347.

[14] J. N. Bahcall, S. Basu and M. H. Pinsonneault, Phys. Lett. B433(1998) 1.

[15] V.N. Gribov and B.M. Pontecorvo, Phys. Lett. B28 (1969) 493;
J.N. Bahcall and S.C. Frautschi, Phys. Lett. B29 (1969) 623;
S.L. Glashow and L.M. Krauss, Phys. Lett. B190(1987) 199.

[16] L. Wolfenstein, Phys. Rev. D17 (1978) 2369;
S.P. Mikheyev and A.Yu. Smirnov, Sov. J. Nucl. Phys.42 (1986) 913;
S.P. Mikheyev and A.Yu. Smirnov, Nuovo Cimento C9 (1986) 17.

[17] N. Hata and P.Langacker, Phys. Rev. D50 (1994) 632, N. Hata and P.Langacker, Phys. Rev. D56
(1997) 6107.

[18] Q. Y. Liu and S. T. Petcov, Phys. Rev. D56 (1997) 7392;
A.B. Balantekin, J.F. Beacom, J.M. Fetter, Phys. Lett. B427(1998) 317.

[19] S. Parke, Phys. Rev. Lett.74 (1995) 839.

[20] C.M. Bhat, 8th Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, August
1997, FERMILAB-Conf-98/066;
C.M. Bhatet al., Proceedings of the 9th Meeting of the DPF of the American Physical Society, ed.
K. Heller et al., World Scientific (1996) 1220;

[21] C. M. Bhat, P. C. Bhat, M. Paterno and H. B. Prosper, Phys. Rev. Lett.81 (1998) 5056.

[22] E. Gates, L.M. Krauss, M. White, Phys. Rev. D51 (1995) 2631.

[23] K. Lande (Homestake), V.N. Gavrin (SAGE), T. Kirsten (GALLEX) and Y. Suzuki (Super-
Kamiokande), Neutrino 98, Proceedings XVIIIth International Conference on Neutrino Physics
and Astrophysics, Takayama, Japan, June 1998, eds. Y. Suzuki and Y. Totsuka;
Robert Svoboda, private communication 1998.

[24] The Super-Kamiokande Collaboration, Phys. Rev. Lett.82 (1999) 2644.

[25] See for example, G. D’Agostini, Bayesian Reasoning In High-Energy Physics: Principles And
Applications, CERN-99-03 (1999) 183.


