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Abstract

We investigate the different perturbative QCD-based models for nuclear shadow-

ing of gluons. We show that in the kinematic region appropriate to RHIC experiment,

all models give similar estimates for the magnitude of gluon shadowing. At scales

relevant to LHC, there is a sizable difference between predictions of the different

models.



1 Introduction

Understanding the initial stages of a ultra-relativistic heavy ion collision is of outmost

importance in order to understand the outcome of the proposed heavy ion experiments,

soon to go online at RHIC and later to follow at LHC. Understanding the modifications

of the parton distributions in nuclei as compared to free nucleons (shadowing) will be an

important step towards pinning down the initial conditions of a heavy ion collision.

At high energies (small x), there are much more gluons than any other parton species

in a hadron/nucleus wavefunction. There are a number of processes which are sensitive to

gluon shadowing. High energy production of mini-jets is one such example. Mini-jets will be

important at RHIC and will dominate at LHC over soft phenomena. Nuclear shadowing of

initial gluon distribution could significantly reduce the initial mini-jet and total transverse

energy production. As a result, the subsequent parton thermalization will also be affected

due to the reduced initial energy density. Production of heavy quarks is another example

where gluon shadowing may make a dramatic difference since the probability for making a

heavy quark pair is proportional to the square of gluon distribution function and therefore

any depletion in number of gluons will make a significant difference in the number of heavy

quark pairs produced.

In recent years, there has been considerable progress made towards understanding

gluon shadowing in perturbative QCD. Shadowing of gluons defined as

S(x, Q2, bt, A) ≡ xGA(x, Q2, bt)

AxGN(x, Q2, bt)
(1)

can be understood at high energies as a recombination effect due to high gluon number

density in the frame where the nucleus is fast, the so called Infinite Momentum Frame

(IMF) or as a multiple scattering effect in the rest frame of the nucleus where there is a

destructive interference between multiple scattering amplitudes. Off course, so long as one

calculates the same physical quantity, with the same approximations made, one must get

the same result.

In this note, we continue our numerical study of the shadowing of gluons [1] using

two different QCD based formalisms; one is based on an all twist, Wilson renormalization
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group and effective action approach to high gluon density region of QCD as developed in

[2, 3, 4]. This approach takes high gluon densities into effect by including and resumming

all n → 1 “hard pomeron” fusion terms in the evolution of both nuclear and nucleon gluon

distribution functions. The other formalism is based on a generalization of the Mueller-

Glauber multiple scattering formalism valid in the rest frame of the nucleus [5, 6, 7, 8]

(see also [9]). The two approaches lead to similar but different expressions for the gluon

distribution function. The difference between the two approaches is investigated in [10]

where it is shown that the effective action and renormalization group approach developed

in [2, 3, 4] is more general than the generalized Mueller-Glauber formalism [5, 6, 7, 8, 9]

and includes effects which are not present in the latter approach. However, the difference

between the two approaches becomes important only at very high energy (small x). Here

we investigate the predictions of the two approaches for gluon shadowing numerically and

show that the difference between the two is negligible in the RHIC kinematic region and

becomes more appreciable as one goes to higher energies. For a review of the experimental

status of nuclear shadowing, we refer the reader to [11]. For an interesting discussion of the

role of coherence in nuclear shadowing and its manifestation in different frames we refer

the reader to [12].

This work is organized as follows; in the next section we briefly review the two for-

malisms followed by a brief recall of our previous results as reported in [1]. In section 2,

we give the expressions for the nuclear gluon distribution function from the two different

formalisms and solve the equations numerically and show our results. We finish with a

discussion.

2 Shadowing in IMF vs. the rest frame

In the infinite momentum frame, shadowing can be understood as a result of high gluon

density at a given impact parameter. The nucleus is highly Lorentz contracted due to its

large speed. The small x gluons have large wavelengths compared to the longitudinally

Lorentz contracted nucleus size

λ ∼ 1

xp+
� 2R

γ
=

2mR

p+
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Therefore, small x gluons from different nucleons can spatially overlap and recombine into

a higher x gluon. This leads to depletion of the nuclear gluon density as compared to naive

expectation that xGA = AxGN . In the context of nucleons, this is referred to as saturation

of gluon density and slows down the unlimited growth of the gluon distribution function

which would otherwise lead to violation of the unitarity bound on physical cross sections

[13].

In [4], we derived an evolution equation for the gluon distribution function which

takes n → 1 gluon ladder fusion into account and is the generalization of GLR-MQ model

[14] which includes only 2 → 1 ladder recombination. The impact parameter dependent

evolution equation is

∂2

∂y∂ξ
xG(x, Q, b⊥) =

3

π3
Q2

[
1 − 1

κ
exp(

1

κ
)E1(

1

κ
)
]

(2)

where κ is

κ =
Ncαs

π

π3

3Q2
xG(x, Q, b⊥) (3)

with y = log 1/x and ξ = log Q2. The exponential integral function E1(x) is [15]

E1(x) =
∫ ∞

0
dt

e−(1+t)x

1 + t
, x > 0. (4)

In [1], we numerically solved this equation and calculated the nucleon and nuclear

gluon distribution function at zero impact parameter. As written, eq. (2) is a generic

evolution equation for gluons in either nucleons or nuclei. The distinction between nu-

cleon and nucleus gluon distribution function is made at the initial point x0 and Q0 after

which the nucleon and nucleus gluon distribution function are determined by the evolution

equation (see the remarks after eq. 12). We showed in [1] that the non-linearities in the

evolution equation induced by the recombination effects are important.

In the rest frame of the nucleus, shadowing is manifested through destructive interfer-

ence between multiple scattering amplitudes as described by Glauber-Gribov type models.
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This approach was used by Mueller to derive the following expression for the nuclear gluon

distribution function in perturbative QCD [5, 6, 7]

∂2

∂y∂ξ
xGA(x, Q, b⊥) =

2

π2
Q2

[
1 − e−

1
2
σgg

N
S(bt)

]
(5)

where

σgg
N ∼ xGDGLAP

N (x, Q2) (6)

is the cross section for scattering of a gluon pair from a nucleon inside the nucleus. It is

important to realize that relation (6) holds only at the low gluon density region and will

break down once higher twist effects become important.

This corresponds to the following physical picture in the rest frame of the nucleus: a

highly virtual DIS probe (or a photon) fluctuates into a gluon pair (or quark anti-quark

pair) well before it reaches the nucleus. At small x, this pair has a long life time τ ∼ 1
mx

and coherently scatters off the nucleons as it goes through the nucleus. The destructive

interference between the scattering amplitudes reduces the flux of photons as seen by the

nucleons sitting inside the nucleus which reduces the nuclear cross sections. The Mueller

formula (5) takes into account only the interaction of the fastest (or most energetic) gluon

pair with the nucleus. This equation was numerically solved in [6, 7] and we refer the

reader there for a comparison. It was shown in [7] that Mueller formula leads to gluon

shadowing which is almost independent of the initial non-perturbative shadowing input.

It is important to realize that Mueller formula is not a non-linear equation for the gluon

distribution function the same way GLR-MQ is. For instance, in Mueller formula, eq.

(6) reflects a linear relation between the cross section and the gluon distribution function.

This would not hold were there non-linear effects like higher twist terms present. It is

also known [6] that Mueller formula over estimates the amount of shadowing. Ayala et al.

[6] proposed to include the effects of scatterings of the next-fastest, etc. gluon pairs with

the nucleus by iterating the Mueller formula. To do this, one replaces the nucleon gluon

distribution function xGN in the exponent of eq. (5) by the nuclear gluon distribution
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function xGA. Furthermore, assuming a Gaussian form for the shape function S(bt), they

integrated over the impact parameter to get [6]:

∂2

∂y∂ξ
xGA(x, Q) =

3

4π2
R2

AQ2
[
C + ln(κagl) + E1(κagl)

]
(7)

where C ∼ 0.57 is the Euler constant and

κagl = 4
Ncαs

π

π3

3

1

πR2Q2
xGA(x, Q2) (8)

In [6], this replacement is justified by noticing that the new equation has the correct low

density properties such that it reproduces DLA DGLAP and GLR. It should be emphasized

that this modification of Mueller formula (5) is just an ansatz which seems to produce cor-

rect low density limits for the gluon distribution function and, unlike the Mueller formula,

was not derived from QCD. It is shown in [8] that, with a specific definition of the gluon

distribution function, one can get equation (7) from the F2 structure function calculated

from the generalized Mueller-Glauber formalism. It is interesting that both approaches

predict a slow down in the growth of the gluon distribution function at very small x such

that

xG(x, Q2) ∼ πR2Q2 ln 1/x. (9)

In the following, in order to compare the two equations, we will use the same Gaussian

ansatz as used by [6] to integrate over the impact parameter. We will then solve the two

equations numerically starting with the same exact initial conditions and compare the

results.

3 Nuclear gluon distribution function

Here we will use the Gaussian ansatz for the shape function

S(bt) =
1

πR2
e−

b2t
R2 (10)

so that
∫

d2btS(bt) = 1 in order to perform the impact parameter integration in eq. (2).

To do so, we first use the relation (4) to rewrite the right hand side of eq. (2) in an
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integral form. We then switch the order of integration and perform the impact parameter

integration first and then do the t integration. The result is

∂2

∂y∂ξ
xG(x, Q) =

3

π3
πR2Q2 exp(

1

κ̄
)E1(

1

κ̄
) (11)

where κ̄ is

κ̄ =
Ncαs

π

π3

3

1

πR2Q2
xG(x, Q). (12)

We now solve equations (11) and (7) numerically using the methods described in [1]

in full detail. Here we will just briefly highlight the approximations made in [1]. We

assumed that at some initial point x0 and Q0, there is no shadowing. This is motivated

by experimental results [11, 16] which show that the ratio xGA

AxGN = 1 at x ∼ 0.5 − 0.6

with weak Q2 dependence. We then used the semi-classical approximation to convert our

partial differential equations into coupled but ordinary differential equations which can

then be solved using Runge-Kutta methods. We refer the reader to [1] for details. The

only difference in our choice of parameters in this work is the nuclear radius R which was

taken to be 5fm for A = 200 in [1] while here we use a more realistic value of 7fm (more

precisely, RA = R0A
1/3 with R0 = 1.1fm being the nucleon radius). To see the effect of

integration over the impact parameter on shadowing, we first show our result for shadowing

at zero impact parameter in Figure 1.

The difference between the two equations as a function of x and at fixed Q = 5GeV

is shown in Figure 2. Comparing Figures 1 and 2, it is clear that averaging over the

impact parameter reduces the amount of shadowing as expected. Here, SJKLW refers to

the shadowing ratio as defined in (1) as calculated from the solution of eq. (11) while

SAGL is calculated from the solution to eq. (7). Also, SGLR is shadowing calculated from

the solution of GLR-MQ eq. [14] which is the second term in the expansion of eqs. (11)

and (7). The two expressions give very similar results for RHIC (x ∼ 0.01) and deviate

appreciably only at very small x appropriate to LHC (x ∼ 0.0001). For reference, we also

show the shadowing ratio calculated from GLR-MQ. As expected, GLR-MQ predicts more

shadowing than the other two expressions.
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Figure 1: Shadowing from eq. (2) as a function of x at bt = 0 and Q = 5GeV for different
nuclei.
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Figure 2: Model dependence of shadowing as a function of x at Q = 5GeV .
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We show the Q2 dependence of shadowing at fixed x as predicted by the two equations

in Fig. 3. It is interesting to see that both approaches predict very weak Q2 dependence

of gluon shadowing at RHIC. The difference between the two approaches becomes more

pronounced at LHC as x gets smaller. The unphysical trend at low Q is due to both DLA

and our semi-classical approximation breaking down at small Q as discussed in full detail

in [1].

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Q (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
S

(Q
,A

=
20

0)

S
JKLW

S
AGL

S
GLR

x=0.01

x=0.0001

Figure 3: Q dependence of shadowing ratio at RHIC (x ∼ 0.01) and LHC (x ∼ 0.0001).

The dependence of our results on the choice of the parameterization chosen for the

gluon distribution function is shown in Figure 4. In [1], We used the CTEQ [17] pa-

rameterization to determine the initial gluon distribution function at scale x0 = 0.5 and

Q0 ∼ 1GeV . Here we use both CTEQ and GRV94 [18] in order to compare the sensitivity

of our results to the choice of parameterization of gluon distribution function available.

We chose GRV94 since it is the closest in spirit to DLA approximation employed in all of

the perturbative QCD models. Note that GRV94 is known to fail [19] at small values of x

and Q but that is not relevant here since we use it at a high value of x where it is known

to work. As seen, the two parameterizations predict similar results for RHIC kinematic

region while for LHC there is a bigger difference.
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Figure 4: parameterization dependence of shadowing ratio from eq. (11).

4 Discussion

We discussed the different perturbative QCD-based models for nuclear gluon distribution

function and numerically investigated their predictions for x and Q dependence of shad-

owing in the kinematic region appropriate to RHIC and LHC. We showed that predictions

of different models for shadowing of gluons at RHIC are comparable while the difference

at LHC can be of order ∼ 10% for Gold or Lead. An important point which needs to

be investigated further is inclusion of initial shadowing of gluons due to non-perturbative

effects at the starting point of evolution x0 after which the perturbative evolution takes

place. This is currently under investigation and will be reported on later [20]. The more

experimentally relevant quantity to investigate is the shadowing of the nuclear structure

function FA
2 since shadowing of gluons is not directly observable. The all twist F N

2 and

FA
2 as well as the longitudinal structure function FL were computed in [2] at the classical

level. Including the quantum loop effects due to gluons is straight forward and is currently

under investigation [21]. One can then predict the experimentally measured shadowing

ratio FA
2 /F 2

N for different nuclei at different x, Q2 as well as the longitudinal structure

functions.
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