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Abstract

A study of b semileptonic decays into D, D�� and D��� �nal states is
presented. The D0, D+ and D�+ mesons are exclusively reconstructed in Z
decay data recorded from 1992 to 1995 in the DELPHI experiment at LEP.
The overall branching fractions are measured to be:

BR(b! D0`���`X) = (7:04 � 0:34 (stat)� 0:36 (syst:exp)� 0:17 (BRD))%

BR(b! D+`���`X) = (2:72 � 0:19 (stat)� 0:16 (syst:exp)� 0:18 (BRD))%

BR(b! D�+`���`X) = (2:75 � 0:17 (stat)� 0:13 (syst:exp)� 0:09 (BRD))%

where the D0 and D+ results include also contributions from D�0 and D�+

decays. A �t to the distribution of the �� impact parameter to the primary
interaction vertex provides a measurement of the b semileptonic branching frac-
tions into the D0��X, D+��X and D�+��X �nal states. Assuming that single
pion decay modes of B mesons dominate, the partial rates for �B ! D�`� ��` and
�B ! D��`� ��` have been obtained, corresponding to a total branching fraction:

BR( �B ! D�`� ��`) + BR( �B ! D��`� ��`) = (3:40 � 0:52 (stat)� 0:32 (syst))% :

This result agrees well with the observed di�erence between the total B semilep-
tonic branching fraction and the sum of the �B ! D`� ��` and D�`� ��` branching
fractions.

(Accepted by Physics Letters B)
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1 Introduction

The study of �B meson semileptonic decays into any D� or D�� �nal state is interest-
ing for several reasons. Present measurements of �B semileptonic decays into D`���` and
D�`���` imply that these �nal states account for only 60% to 70% of all �B semileptonic
decays [1]. The remaining contribution could be attributed to the production of high-
er excited states or non-resonant D(�)� �nal states, hereafter denoted D��. However the
ALEPH measurement of the D��`���` branching fraction does not fully account for the ob-
served discrepancy [2]. The ratio of branching fractions of �B decays into D�+��`���` over
all D�+`�X �nal states 1 is also a signi�cant contribution to the systematic uncertainty
on �B0

d
, �md or Vcb measurements [1,3].

This paper describes a measurement of the branching fraction of �B ! D��`���` decays
in the DELPHI experiment at LEP. The decays of the D0, D+ and D�+ into D0�+� are
exclusively reconstructed 2. The analysis of D�� ! D(�)��� in �B semileptonic decays 3

relies on the impact parameter of the ��� candidate, de�ned as its distance of closest
approach to the reconstructed primary interaction vertex. A similar technique has been
applied previously in ALEPH [4,2] and DELPHI [5]. The single pion �nal states D0�+,
D+�� or D�+��, denoted \right" sign, are expected to dominate the decay widths. But
pion pair emission, such as D�+��, is also allowed and could provide \wrong" sign D0��,
D+�+ orD�+�+ combinations. SimilarlyDs orbitally excited states can decay intoD0K+

or D�0K+ which can be distinguished from D(�)0�+ if the kaon is identi�ed.
The overall semileptonic branching fractions of a b quark into D0, D+ or D�+ �nal

states are also presented in this paper.

2 The DELPHI detector

The DELPHI detector has been described in detail elsewhere [6,7]; only the detectors
relevant to the present analysis are briey described in the following. The tracking of
charged particles is accomplished in the barrel region with a set of cylindrical tracking
detectors whose axis is oriented along the 1.23 T magnetic �eld and the direction of the
beam.

The Vertex Detector (VD) surrounds a Beryllium beam pipe with a radius of 5.5 cm.
It consists of three concentric layers of silicon microstrip detectors at radii of 6, 9 and
11 cm from the beam line. In 1991-1993 all the VD layers were single-sided with strips
parallel to the beam direction. In 1994 and 1995, the innermost and the outermost layers
were replaced by double-sided silicon microstrip modules, providing a single hit precision
of about 8 �m in r�, similar to that obtained previously, and between 10 �m and 20 �m
in z [8] 4. For polar angles between 44� and 136�, a track crosses all the three VD layers.
The innermost layer covers the polar angle region between 25� and 155�. For charged
particle tracks with hits in all three r� VD layers, the impact parameter precision is [9]:

�r� =
a

p sin3=2 �
� b (1)

where a = 61 � 1 �m, b = 20� 1 �m and p is the momentum in GeV=c.
1Throughout the paper charge-conjugate states are implicitly included; ` indicates an electron or a muon, not the sum

over these two leptons.
2�� denotes the charged pion from the D�+ ! D0�+ decay.
3D stands for D0 or D+; ��� denotes the charged pion from the decay of a higher excited state of charmed meson or

from a non-resonant D(�)� �nal state.
4In the DELPHI coordinate system: z is along the beam line, � is the azimuthal angle in the xy plane, transverse to

the beam axis, r is the radius and � is the polar angle with respect to the z axis.
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The Inner Detector is placed outside the VD between radii of 12 cm and 28 cm. It
consists of a jet chamber giving up to 24 spatial measurements and a trigger chamber
providing a measurement of the z coordinate. The VD and ID are surrounded by the
main DELPHI tracking chamber, the Time Projection Chamber (TPC), which provides
up to 16 space points between radii of 30 cm and 122 cm. The Outer Detector (OD) at
a radius of 198 cm to 206 cm consists of �ve layers of drift cells. The average momentum
resolution of the tracking system is �(1=p) < 1:5 � 10�3 (GeV/c)�1 in the polar angle
region between 25� and 155�. The tracking in the forward (11� < � < 33�) and backward
(147� < � < 169�) regions is improved by two pairs of Forward drift Chambers (FCA and
FCB) in the end-caps.

Hadrons were identi�ed using the speci�c ionization (dE=dx) in the TPC and the
Cherenkov radiation in the barrel Ring Imaging CHerenkov detector (RICH) placed be-
tween the TPC and the OD detectors.

The muon identi�cation relied mainly on the muon chambers, a set of drift cham-
bers giving three-dimensional information situated at the periphery of DELPHI after
approximately 1 m of iron.

Electron identi�cation relied mainly on the electromagnetic calorimeter in the barrel
region (High density Projection Chamber HPC) which is a sampling device having a
relative energy resolution of �5.5% for electrons with 45.6 GeV=c momentum, and a
spatial resolution along the beam axis of �2 mm.

3 Event selection and simulation

Charged particles were required to have a measured momentum between 0.3 GeV=c
and 50 GeV=c, a relative error on momentum less than 100%, a track length in the TPC
larger than 30 cm and a distance of closest approach to the interaction point of less than
4 cm in r and less than 10 cm in z.

Hadronic events were required to have at least �ve charged particles with momentum
greater than 0.4 GeV=c and a total energy of the charged particles (assumed to be pions)
greater than 12% of the collision energy. A total of NZ = 3:51 million hadronic events
was obtained from the 1992-1995 data. Simulated hadronic events were generated using
the JETSET 7.3 Parton Shower program [10]: 8.5 million Z ! qq and 4.0 million Z !
bb generated events, corresponding to seven times the available statistics in real data for
bb �nal states. The B meson mean lifetimewas set to �MC

B = 1:6 ps. The generated events
were followed through a detailed detector simulation [7] and then processed through the
same analysis chain as the real data. The hadronic event selection e�ciency was thus
estimated to be �Z = 95:7%. The data sample contained also 0:2% of � pair events and
0:2% of Bhabha events.

The primary interaction vertex was computed in space for each event using an iterative
procedure based on the �2 of the �t. The average transverse position of the interaction
point, known for each �ll, was included as a constraint during the primary vertex �t.
In order to increase the bb purity of the selected sample, using the impact parameter of
all measured charged particle tracks in the event, the probability that all these tracks
originate from the primary vertex was required to be smaller than 0.1 [11]. This selection
retains 15% of Z ! u�u, d �d and s�s events, 48% of Z ! c�c events and 94% of Z ! b�b
events.

In order to estimate the reconstruction e�ciencies and the invariant mass resolu-
tions, dedicated samples of events containing a �B meson decaying into D0�+`���`X,
D+��`���`X or D�+��`���`X were generated. Physical backgrounds have also to be stud-
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ied. These can be due to b! cW� decays followed byW� ! cs and c! `���`X (hereafter
denoted b ! c ! ` background), or followed by c ! `+�`X with W� ! �DX (denoted
b ! c ! ` background). For this purpose, some dedicated samples of �B ! D �DsX or
D �DKX decays, with the �Ds or �D decaying semileptonically, were generated.

4 D
(�)
`
� selection

4.1 Lepton selection and identi�cation

Both muon and electron candidates were selected with a momentum larger than
2 GeV=c. The lepton candidate was required to have at least one hit associated in
the Vertex Detector.

The muon identi�cation algorithm is described in reference [7]. A \loose" selection cri-
terion provided an identi�cation e�ciency of (90�2)% for a probability of misidentifying
a charged hadron as a muon of 1.2% within the acceptance of the muon chambers.

A neural network procedure, combining information from several detectors, has been
developed for electron identi�cation. Electrons were identi�ed with an e�ciency of (65�
2)% and a misidenti�cation probability that a hadron be identi�ed as electron of about
0.4% [12].

The lepton transverse momentum relative to the D(�) meson momentum vector (as de-
�ned below) was required to be larger than 0.7 GeV=c. This cut reduced the contamina-
tion of leptons from b semileptonic decay into � and from b! c! ` or b! c! ` decays.

4.2 D(�) decay channels

The D(�) meson candidates were reconstructed in the following decay channels: D0 !

K��+ or K��+�+�� (for D0 not coming from a D�+ decay), D+ ! K��+�+ and
D�+ ! D0�+� with a D0 decaying into K��+, K��+�+�� or K��+(�0) where the �0

was not reconstructed. In order to optimize the statistical precision of the measured
production rates, slightly di�erent selection criteria, as described below, were chosen in
each D(�) meson sample.

Only charged particles with momentumvectors in the hemisphere de�ned by the lepton
direction were considered for the reconstruction of charmed mesons. The kaon candidate
from the D decay was required to have the same charge as the identi�ed lepton. The kaon
momentum was required to be larger than 1 (2) GeV=c in the D0 (D+) channel. The
momentum of each pion from the D0=+ decay had to be larger than 1 GeV=c, except for
theK��+�+�� �nal state where the minimummomentumof candidate pions was lowered
to 0.5 (0.3) GeV=c in the D0 (D�+) analysis. Any charged particle with a momentum
between 0.3 GeV=c and 4.5 GeV=c and a charge opposite to that of the kaon was used
as pion candidate for the D�+ ! D0�+� decay channel.

To reduce the combinatorial background for all channels, except in the D�+ !

(K��+)�+
�
decay, the kaon candidate of the D was required to be identi�ed according to

the RICH and dE=dx information [7]. In the D0 ! K��+ and D0 ! K��+(�0) decay
channels, the angle �� between the K��+ momentum vector and the kaon direction in
the K��+ rest frame was required to satisfy the condition cos �� > �0:8. For genuine
D0 candidates an isotropic distribution in cos �� is expected whereas the background is
strongly peaked in the backward direction.

The �� candidate and at least two particles from the D0=+ decay were required to have
at least one hit associated in the Vertex Detector.
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4.3 D vertex

After the previous selections, a K��+, K��+�+ or K��+�+�� vertex was �tted in
space. In the K��+�+�� decay channel, in order to reduce the large combinatorial back-
ground, the impact parameters of charged particle trajectories, relative to the common
D0 vertex, were required to be smaller than 150 �m. In the D+ ! K��+�+ channel,
either these impact parameters had to be less than 100 �m or the �2 probability of the
K��+�+ vertex had to be larger than 10�4.

The momentum vector of each particle, attached to the D vertex, was recomputed at
this vertex. In each channel, the scaled D energy, XE(D) = E(D)=Ebeam, was required
to be larger than 0.15.

The apparent decay length of the D0 or D+ candidate, �L, was computed in the
plane transverse to the beam axis. It was given the same sign as the scalar product of
the D momentum direction with the vector joining the primary to the D vertices. In the
D�+ channel, �L was required to be positive. In the D0 and D+ channels, which have
a higher combinatorial background, the value of �L divided by its error was required to
be larger than 1.

4.4 B vertex

Finally a D0`, D+` or D0��` vertex (denoted \B" vertex in the following) was �tted
in space. The B decay length was de�ned, as above, as the signed distance between the
primary vertex and the secondary D(��)` vertex in the plane transverse to the beam axis.
This B decay length divided by its error was required to be larger than 1 for all channels.
In order to reduce further the combinatorial background, the decay length divided by its
error between the D and the B vertices was also computed: it was required to be larger
than -1 in the D0 samples and in the D�+ ! (K��+�+��)�+� sample, and to be positive
in the D+ sample.

4.5 D invariant mass

The selection of D�+`� events relied on the small mass di�erence (�M) between
the D�+ and the candidate D0. On the contrary, D�+ candidates were rejected from
the D0 and D+ samples as follows: the D0 candidates were rejected if at least one
�� particle was found in the event giving a �M value less than 160 MeV/c2; in the
D+ ! K��+�+ sample, both K��+ pairs were associated to the remaining �+ and a
�M mass di�erence was computed, the K��+�+ combination was rejected if at least
one �M value was found smaller than 160 MeV/c2.

Figure 1 shows the invariant mass (or mass di�erence) distributions in each of
the previously selected D meson channels. In the D�+ ! (K��+)�+

�
channel, the

K��+ invariant mass had to be within 75 MeV/c2 of the nominal D0 mass. In the
D�+ ! (K��+(�0))�+� channel, the K��+ invariant mass had to be between 1500 and
1700 MeV/c2. In the D�+ ! (K��+�+��)�+

�
channel, the �M mass di�erence had

to be within 2 MeV=c2 of the nominal D�+ � D0 mass di�erence. The invariant mass
of the D0 ! K��+ channel has a resolution of about 25 MeV/c2 whereas it is less
than 15 MeV/c2 in the K��+�+�� �nal state. Thus, in the particular case of the
D�+ ! (K��+)�+� decay channel, the K��+ invariant mass was constrained to the
D0 mass value and a constrained (D0��`) kinematic �t was performed. This improved
the resolution of the (D�+ �D0) mass di�erence by 30% in this channel.
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A clear signal corresponding to D`� events is observed in each distribution (data
points), whereas the wrong sign D`+ combinations (hatched histograms) present a much
smaller D meson contribution. The right sign invariant mass distributions were �tted
with a signal component described by the sum of Gaussian functions, and a combinatorial
background parameterised with a polynomial form. In the D0 ! K� and K��� samples,
the contribution from missing �0 appears as a \satellite" peak for mass values smaller
than the nominal D0 mass. This contribution was parameterised as the sum of Gaussian
functions with their parameters �xed according to the simulation. In each channel, the
relative amounts and relative widths of the Gaussian functions describing the D signal
were tuned according to the simulation. The free parameters of the �ts were thus the
coe�cients of the polynomial background, the normalisation of the \satellite" peak (in
theK� and K��� invariant mass distributions), the average width and mean value of the
signal shape and the number of D signal candidates. For each decay channel, the mass
distributions of the wrong sign D`+ events were �tted with the same shape parameters
as the right sign signals. This allowed the contribution of the fake lepton events to be
determined and then subtracted. The observed numbers of D mesons, within the quoted
range around the D0=+ mass and D�+ �D0 mass di�erence, is indicated in Table 1.

Mass range (MeV=c2) Nb. of Nb. of

D sample M(D0=+) �M D`� D`+

D0 ! K��+ 1820-1910 >160 752�41 6�18
D0 ! K��+�+�� 1840-1890 >160 689�43 39�26
D+ ! K��+�+ 1830-1910 >160 763�44 66�19
D�+ ! (K��+)�+� 1790-1940 143.5-147.5 416�24 18�5

D�+ ! (K��+�+��)�+� 1840-1890 143.5-147.5 303�21 5�5
D�+ ! (K��+(�0))�+

�
1500-1700 <155 522�33 15�12

Table 1: Mass selections and number of D candidates observed in each decay channel
(with their statistical error). Note that most of the D�+ ! D0�+� candidates were
removed from the selected D0 sample; the D+ sample also includes D�+ ! D+�0 (or )
decays.

5 Semileptonic b decay rate into D�`
�
X or D�

�`
�
X

In this section, a search for any D��� �nal state is described, based on the impact
parameter distribution of the ��� candidates relative to the primary interaction vertex
and using the D decay channels selected in the previous section.

5.1 D
��
`
� selection

The selection criteria for the additional ��� candidate were identical for all decay chan-
nels. All charged particles with a momentumgreater than 0.5 GeV=c and produced in the
hemisphere de�ned by the D(��)`� momentum vector were considered as ��� candidates.
The invariant D(��)���` mass had to be smaller than 5.5 GeV=c2. The ��� track was
required to have at least 2 hits in the Vertex Detector. Its combined RICH and dE=dx
information had not to be compatible with the kaon hypothesis. The impact parameter
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of this ��� relative to the previously �tted D(��)` vertex was required to be smaller than
100 �m.

For each ��� candidate, the impact parameter relative to the primary interaction vertex
was computed in the plane transverse to the beam axis. The sign of this impact parameter
was de�ned with respect to the D(��)` direction. It was positive if the intercept between
the ��� and the D(��)` momentum vectors was downstream of the primary vertex along
the D(��)` direction, and negative if it was upstream [11].

The ��� impact parameter distribution of simulated B semileptonic decays is shown in
Figure 2a. Compared with charged particles produced in b quark fragmentation or gluon
radiation in jets (see Figure 2b), ��� from �B ! D��`���` decays present a tail at large
positive impact parameters due to the long B lifetime.

5.2 Backgrounds

For real data D��` candidates, two sources of background had to be subtracted:

� Fake D associated to a lepton candidate: this combinatorial background was es-
timated by using events in the tails of the mass distributions of Figure 1, after a
normalisation to the fraction of events below the D signals. Figures 3a-c present the
impact parameter distributions of all pion candidates associated to a fake D (points
with error bars) and to a D in the tails of the mass distributions (histograms) from
the D samples selected in the qq simulation. A good agreement is found between
the true background and the mass tail estimate.

� True D associated to a fake lepton: this background is due to charged pions and
kaons misidenti�ed as leptons. It has been subtracted by using the ��� candidates
produced in the same direction as a wrong sign D`+ event (shown in the hatched
histograms of Figure 1) where the D candidate was selected in the mass range
de�ned in Table 1. Figure 3d presents the impact parameter distributions of all pion
candidates associated to a fake lepton (points with error bars) and to a D`+ event
(histograms) from the D samples selected in the qq simulation. Here also a good
agreement is found between the true background and the `+ estimate.

In the real data events, the same procedure was applied. The shapes of these backgrounds
were taken from the real data themselves and their normalisation was estimated according
to the �t of the mass distributions of Figure 1.

After the subtraction of these backgrounds, all the remaining pions can be attributed
to b decays intoD�`�X �nal state. However, four kinds of pions are still to be considered:

� genuine ��� from �B ! D��`���` decays (see Figure 2a);
� particles from jet fragmentation (see Figure 2b);
� \�; c ! `" background: it includes pions produced in D�� decays when the D�� is
not issued from a direct semileptonic (e or �) b decay. This D�� can be produced
in b! D������� decay, or in b! D�� �D(s)X (or b! D �D��X) transitions, when the
other �D(s) (or D) meson decays semileptonically;

� \hadronic" background: it is due to other hadrons, denoted H, produced from the c
in b! c! ` decay events or from the c in b! c! ` (when the other charm quark
fragments into a D meson). Such hadrons can be also emitted directly from the �B
meson.

Despite the momentum and transverse momentum cuts applied to the lepton, these last
two classes were not fully eliminated. Their impact parameter distributions were similar
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to the impact parameter distribution of genuine ��� from b semileptonic decays. These
two last backgrounds were thus �tted together with the genuine ��� signal and subtracted
only afterwards. Measured results were used for their rates and their selection e�ciencies
were obtained from the simulation (see Section 5.4.3).

5.3 Total yield

In the real data, the impact parameter distributions of the ��� candidates of the
\right" sign D0�+`�, D+��`� and D�+��`� samples are shown in Figure 4. They were
�tted, �xing the fake D and fake lepton backgrounds, but letting free the normalisation
of the fragmentation and ��� components. Figure 5 shows the same distributions, after
subtraction of the fake D and fake lepton backgrounds. Similar �ts were performed to
the \wrong" sign D0��`�, D+�+`� and D�+�+`� samples and are shown in Figure 6
after the subtraction of the fake D and fake lepton backgrounds.

Instead of rejecting kaons in order to select ��� , kaons were also identi�ed in order
to select K�� from Ds1 ! D�0K+, D�

s2 ! D0K+ decays or any other D0K+X �nal state
from other DsJ resonances. The corresponding impact parameter distributions are shown
in the same �gures as above. The kaon rejection requirement led to a ��� identi�cation
e�ciency of (92� 1)% and a probability of wrong assignment as a kaon of (8� 1)%. The
kaon identi�cation requirement lead to a K�� identi�cation e�ciency of (60 � 2)% and
a probability of wrong assignment as a pion of (40 � 2)%. These factors were obtained
from the real data, as explained in Section 5.4.1 (f�id correction). The numbers of �tted
D0�`� and D0K`� were 163� 34(stat) and 39� 15(stat) (48� 21(stat) and 5� 8(stat))
in the \right" sign (\wrong" sign) samples. These values need to be corrected in order
to take into account the fraction of kaons misidenti�ed as pions.

The �nal amounts, N(D�`�), of \right" and \wrong" signs �tted candidates are pre-
sented in Table 2 for all considered channels. In the D0 channel, the separated contri-
butions of D0�, D0K and the total D0h are also indicated (where \h" means that the
��� candidate was selected without identi�cation). Signi�cant numbers of \right" sign
candidates are �tted for all channels, whereas the number of \wrong" signs are clearly
smaller.

5.4 D��`� e�ciency

The semileptonic branching fraction of a b quark intoD� �nal state was then measured
as follows:

BR(b! D�`�X) =
�Z
NZ

1

2Rb

N(D�`�)

2 �D` ���

f�B
fcor

1� f�;c!`

BRD
� FH � FD� (2)

where NZ and �Z are de�ned in Section 3, Rb = 0:2166� 0:0007 is the Z hadronic decay
rate into bb events [13]; the branching fractions, BRD, in the three decay modes BR(D0 !

K��+) = 0:0385�0:0009, BR(D+ ! K��+�+) = 0:090�0:006 and BR(D�+ ! D0�+
�
) =

0:683� 0:014 are used [1]. The e�ciencies to reconstruct and select the D`� and ��� (or
K��) candidates from �B ! D��`���` decays, denoted �D` and ��� respectively, are indicated
in Table 2. They were obtained from the simulation and corrected by the factors fcor
and f�B which are described below. The correction factors f�;c!` and FH account for the
\�; c! `" and \hadronic" backgrounds introduced in Section 5.2; FD� is the background
due to residualD�+��`� which applies to the \wrong" signD0��`� and D0K�`� samples
only.
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Sample D0h`� D0�`� D0K`� D+�`� D�+�`�

N(\right" sign) 202 � 37 182 � 39 20 � 18 75 � 25 132 � 22
N(\wrong" sign) 53 � 23 55 � 24 �2 � 10 41 � 20 24 � 16

�D` 0:127 � 0:002 0:095 � 0:002 0:150 � 0:002
��� 0:655 � 0:006 0:649 � 0:008 0:654 � 0:005
fK� 1:87 � 0:09 1 3:02 � 0:16
fMD

0:94 � 0:01 0:98 � 0:01 1:01 � 0:01
fVD 1:00 � 0:03 1:00 � 0:03 1:00 � 0:03
fDvtx 1 0:97 � 0:03 1
fKid 0:84 � 0:02 0:83 � 0:02 1
f�id 1 0:92 � 0:01 0:92 � 0:01
f�B (\right" sign) 1:02 � 0:02 0:98 � 0:02 0:98 � 0:01
f�B (\wrong" sign) 0:98 � 0:02 1:02 � 0:02 1:03 � 0:03
f�;c!` 0:075 � 0:030 0:075 � 0:030 0:075 � 0:030
FH (�10�3) 1:06 � 0:29 0:78 � 0:22 0:28� 0:09 0:40 � 0:12 0:41 � 0:11
FD� (�10�3) 0:25 � 0:06 0:23 � 0:06 0:02� 0:01 0 0

Table 2: Number of �tted D�`� candidates; reconstruction times selection e�ciencies of
the D`� and ��� (or K��) from �B ! D��`���` decays; correction factors introduced in
equation (2). Errors are statistical only (except for f�;c!` and FH). Note that most of the
D�+ ! D0�+

�
candidates have been removed from the selected D0 sample; the D0 sample

also includes D�0 ! D0�0 (or ) decays; the D+ sample also includes D�+ ! D+�0 (or
) decays.

5.4.1 E�ciency correction

The correction to the reconstruction and selection e�ciency is expressed as
fcor = fK� fMD

fVD fDvtx fKid f�id:

� In the D0` and D�+` samples, only the K� decay channel was used to estimate the
�D` e�ciency. For these samples, fK� = N(D`)=N(DK� `) where
N(D`) = N(D`�) � N(D`+) is the di�erence between the total number of D`
candidates quoted in Table 1 and N(DK�`) is the same di�erence computed in the
K� decay mode only of the D0. In the D+` sample, fK� = 1.

� Due to the D mass ranges required in Table 1, fMD
accounts for the mass width

di�erences observed in real data and simulation.
� A large sample of D�+ ! (K��+)�+

�
reconstructed inside b-tagged jets was used in

order to estimate selection e�ciencies related to the detector response: the Vertex
Detector information which was required for all channels (fVD factor), the vertex
quality cuts for the D+ sample (fDvtx), and the kaon identi�cation for the D0 and
D+ samples (fKid). For the study of theK��+�+ vertex quality in the D+ sample, a
three tracksK��+�+� vertex was also �tted in the dedicated D�+ sample and similar
cuts were applied.

� The kaon rejection (or identi�cation) requirement of the ��� (K��) candidates was
also checked on the same dedicated D�+ sample and a correction factor f�id was
inferred.
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5.4.2 B lifetime correction

The di�erence between the known values of the B mesons' mean lifetimes (�B+ =
1:65� 0:04 ps, �B0 = 1:56� 0:04 ps [17], �Bs

=�B0 � 0:99� 1:01 [18]) and that used in the
Monte Carlo simulation (�MC

B = 1:6 ps) has two consequences:

� It a�ects the decay length selection e�ciencies described in Section 4. But as these
selections were applied to the decay lengths divided by their errors, the relative
correction to �D` was found to be of about �0:2% only. It was thus included in the
following f�B factor.

� It also a�ects the shape of the impact parameter distribution of simulated
��� candidates which is used to �t the amount of D�`� candidates in real data.
The distribution shown in Figure 2a was thus recomputed by weighting each simu-
lated event and by using the B0 mean lifetime for \right" sign D0h+`� and \wrong"
sign D(�)+�+`� candidates, or the B+ mean lifetime for \right" sign D(�)+��`� and
\wrong" sign D0h�`�. These new ��� impact parameter shapes were used to �t the
real data distributions shown in Figures 4-6. The di�erence between the number of
�tted D(�)���`X candidates observed with and without the weighting procedure is
described by the correction factor, f�B , given in Table 2.

5.4.3 Physical background correction

The physical background contributions are determined in the following way:

� According to the simulation, still (7:6 � 0:4 (stat))% of D�+ ! D0�+� remained in
the D0 sample; this value was used to determine the FD� factor.

� The fraction of b! � ! ` events is evaluated as:

f�!` =
BR(b! �����X)BR(�� ! `���`�� )

BR(b! `���`X)

��!`

�`
= 0:0075 � 0:0020 (3)

where BR(b ! �����X) = (2:6 � 0:4)%, BR(�� ! `���`�� ) = (17:64 � 0:06)% and
BR(b ! `���`X) = (10:99 � 0:23)% [1]; ��!`=�` = 0:18 � 0:04 (stat) is the ratio of
the lepton selection e�ciencies in b! �����X and b! `���`X simulated events.
The fraction of b! c! ` events is evaluated as:

fc!` =
BR(b! c! `)

BR(b! `���`X)

�c!`

�`
= 0:047 � 0:012 (4)

where BR(b! c! `)) = (1:6 � 0:4)% [14]; �c!`=�` = 0:32 � 0:02 (stat) is the ratio
of the lepton selection e�ciencies in b! c! ` and b! `���`X simulated events.
The fraction of b ! c ! ` events is obtained as previously, but the probability,

PW!D, for the virtual W� to decay into a D
0
or D� meson has to be taken into

account:

fc!` =
BR(b! c! `)

BR(b! `���`X)
PW!D

�c!`

�`
= 0:020 � 0:005 (5)

where BR(b ! c ! `) = (7:8 � 0:6)% [1] and PW!D = (9:0 � 1:9)% [14]. Finally
the fraction of D�� not issued from a direct semileptonic b decay is evaluated to be:

f�;c!` = f�!` + fc!` + fc!` = 0:075 � 0:017 � 0:025 : (6)

In the �rst error, which is the sum of the uncertainties quoted in equations (3-5),
the errors on fc!` and fc!` have been added linearly because PW!D was used in
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reference [14] to evaluate BR(b ! c ! `). The second error in equation (6) is an
estimate of the uncertainty due to possible phase space or QCD corrections between
the b! ` and the b! �; c! ` decay channels with a D�� in the �nal state.

� The \hadronic" background is evaluated as:

FH = BR(b! DX) (1 � PW!D) BR(b! (c or c)! `�)
�b!DH`X

�D`���
(7)

with

BR(b! (c or c)! `�) = BR(b! c! `) + BR(b! c! `) PW!D

= (2:30 � 0:56)% ; (8)

BR(b ! D0X) = (60:1 � 3:2)% [1], BR(b ! D+X) = (23:0 � 2:1)% and
BR(b ! D�+X) = (23:1 � 1:3)% [15]; the di�erence BR(b ! D0X)�BR(b !
D�+X)BR(D�+ ! D0�+) = (44:3 � 3:3)% is used for the D0`� analysis, where the
D�+ were rejected. In the D�`� analyses, �b!DH`X=(�D`���) = 0:084 � 0:010 (stat)
was determined from the simulation as the ratio of selection e�ciencies be-
tween hadrons from charm decay in b ! c ! ` events, and genuine ��� in
�B ! D��`���` decay; in the D0K`� analysis, this ratio was estimated to be
0:030 � 0:006 (stat). The resulting FH values are reported in Table 2.

5.5 Systematics

The systematics are detailed in Table 3. As a cross-check of the procedure, the same
analysis was repeated on simulated qq and bb samples:

� 1998 � 107 (1017 � 73, 870 � 62) D�� candidates were �tted in the \right" sign
D0�+`� (D+��`�, D�+��`�) samples whereas 1934 (1106, 879) D�� were expected;

� 396� 67 (219� 52, 60� 38) D�� candidates were �tted in the \wrong" sign D0�+`�

(D+��`�, D�+��`�) samples whereas 333 (235, 62) D�� were expected.

A good agreement was thus obtained in the simulation between the �tted and expected
��� contributions, the related statistical error being used to estimate the systematic
uncertainty due to the subtraction of the fake D and fake lepton backgrounds. The
remaining statistical error of the Monte Carlo simulation is due to the limited number of
generated �B ! D�`���`X events.

Following the detailed study of reference [16], a �0:3% uncertainty is assigned to the
reconstruction e�ciency of each charged particle.

The uncertainty on the impact parameter resolution has two sources:

� Impact parameter relative to the primary interaction vertex:
the uncertainty on the parameters a and b of equation (1) a�ects the impact pa-
rameter distributions of Figure 2 and thus the result of the �t to the real data; the
corresponding relative systematic error is estimated to be at most of �1%.

� Selection of the impact parameter of the ��� candidate relative to theD(��)`
� vertex:

this impact parameter was required to be smaller than 100 �m, which allowed the
selection of about 82% of genuine ��� candidates. A variation of �10% of the
impact parameter resolution modi�ed the relative e�ciency by about �2:5%, the
magnitude depending on the considered D decay channel. A similar uncertainty
was also inferred by comparing, in D�+`� real data and simulation, the e�ect of a
cut on the impact parameter of the lepton relative to the D0��`

� vertex.
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The overall systematic uncertainty due to the impact parameter resolution is given in
Table 3.

The uncertainty due to the ��� momentum spectrum was evaluated by comparing the
��� selection e�ciencies in simulated DJ ! D� and D�� decays: a relative di�erence of
�1% was observed.

Error source D0h`� D0�`� D0K`� D+�`� D�+�`�

b! ` decay model [13] �1:2 �1:2 �1:2 �1:2 �1:2
�B [17] �1:9 �1:8 �2:2 �1:6 �1:2

��� momentum spectrum �1:0 �1:0 �1:0 �1:0 �1:0
�; c! ` background �3:5 �3:5 �4:2 �3:5 �3:5

\hadronic" background �2:5 �2:1 �9:2 �2:4 �2:3
BR(D0 ! K��+) [1] �2:3 �2:3 �2:3 { �2:3

BR(D+ ! K��+�+) [1] { �6:7 {
BR(D�+ ! D0�+) [1] { { �2:0

fake D` backgrounds �5:4 �5:4 �5:4 �7:2 �7:1
MC statistics �2:0 �2:0 �2:3 �2:6 �1:7

track reconstruction �1:3 �1:3 �1:5 �1:6 �1:6
impact parameter resolution �3:2 �3:1 �3:7 �3:7 �2:8

mass resolution �1:2 �1:1 �1:4 �1:1 �1:1
VD requirement �3:3 �3:2 �3:9 �3:2 �3:3
D vertex selection { �3:3 {

K (from D) identi�cation �2:6 �2:6 �3:1 �2:6 {
��� (or K��) identi�cation { �2:1 �18:1 �1:2 �1:2

lepton identi�cation �2:0 �1:9 �2:3 �2:0 �2:0

Total �9:9 �9:9 �22:9 �13:3 �10:6

Table 3: Relative systematic uncertainties (%) on the b semileptonic branching fractions
into D��`���` �nal states (\right" sign only).

5.6 Results

From the previous study, the b semileptonic branching fraction can be computed in
eachD�`� or D0K`� �nal state. The corresponding results are reported in Table 4 which
includes the statistical and systematic errors. The \right" sign values are in agreement
with those measured by the ALEPH collaboration [2], except for the D0�+`�X channel
where the DELPHI result is two standard deviations larger.

The \wrong" sign results are at less than 2 standard deviations from zero, thus D��
�nal states will be neglected in the following. The D0K`� production rate is also found
to be compatible with zero. Thus only D�`� �nal states will be considered in the follow-
ing. As a further cross-check, Tables 5-6 present the b semileptonic branching fraction
measurement for electrons and muons separately and for the various D decay channels.

Using the production fraction BR(b ! �B0) =BR(b ! B�) = 0:395 � 0:014 [17], the
following branching fractions are measured:

BR( �B0
! D0�+`� ��`) + BR( �B0

! D�0�+`� ��`) = (2:70 � 0:64 (stat)� 0:28 (syst))%

BR(B�
! D+��`� ��`) + BR(B�

! D�+��`� ��`) = (2:08 � 0:47 (stat)� 0:20 (syst))% :



12

BR(b! D��`���`) (�10�3)
D0h`�X D0�`�X D0K`�X D+�`�X D�+�`�X

DELPHI \right" sign
11:6 � 2:4 � 1:1 10:7 � 2:5 � 1:1 1:0 � 1:1� 0:2 4:9 � 1:8 � 0:7 4:8� 0:9� 0:5
DELPHI \wrong" sign
1:9� 1:4 � 0:4 2:3� 1:5 � 0:4 �0:4� 0:6� 0:1 2:6 � 1:5 � 0:4 0:6� 0:7� 0:2

ALEPH \right" sign
{ 4:7� 1:3 � 1:0 2:6 � 1:2� 0:8 3:0 � 0:7 � 0:5 4:7� 0:8� 0:6

Table 4: Semileptonic branching fractions BR(b ! D��`���`) measured in DELPHI for
each D�`� or D0K`� �nal state. Similar results obtained in ALEPH are also present-
ed [2]. The �rst errors are statistical and the second systematic. Note that D0s from the
D�+ ! D0�+� decay mode are removed from the D0`� results, which still include D0s
from D�0 ! D0�0 (or ) decays; results on D+ also include D�+ ! D+�0 (or ) decays.

BR(b! D��`���`) (�10�3) D0h+`�X D+��`�X D�+��`�X

e 8:8 � 3:0 5:3� 2:3 5:1� 1:2
� 14:6 � 3:4 4:5� 2:5 4:4� 1:2

Average 11:6 � 2:4 4:9� 1:8 4:8� 0:9

Table 5: Semileptonic branching fraction for electrons and muons separately. Errors are
statistical only.

BR(b! D��`���`) (�10�3) D0h+`�X D�+��`�X

K� 13:6� 2:6 5:5� 1:5
K��� 9:8� 4:1 5:7� 1:8
K��0 3:9� 1:3
Average 11:6� 2:4 4:8� 0:9

Table 6: Semileptonic branching fraction for the di�erent D decay channels. Errors are
statistical only.

According to isospin conservation rules and assuming that only D� and D�� �nal
states contribute, the ratios between �nal states involving charged and neutral pions are
predicted to be:

D0�+ +D�0�+

D+�0 +D�+�0
=
D+�� +D�+��

D0�0 +D�0�0
= 2 ; (9)

allowing the following branching fractions to be inferred:

BR( �B0
! D�`� ��`) + BR( �B0

! D��`� ��`) = (4:05� 0:96 (stat)� 0:42 (syst))% (10)

BR(B�
! D�`� ��`) + BR(B�

! D��`� ��`) = (3:12� 0:71 (stat)� 0:30 (syst))% (11)
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These values are in good agreement. NeglectingD�� �nal states and using as a constraint
the equality of equations (10) and (11), the overall B meson semileptonic branching
fraction into any D(�)� �nal state can be obtained:

BR( �B ! D�`� ��`) + BR( �B ! D��`� ��`) = (3:40 � 0:52 (stat)� 0:32 (syst))% :

Assuming that the isospin invariance used in equation (9) applies also to D� and D��
separately, the following branching fractions are also inferred:

BR( �B ! D�`� ��`) = (1:54 � 0:61 (stat+ syst))%

BR( �B ! D��`� ��`) = (1:86 � 0:38 (stat+ syst))%

with a correlation coe�cient of -0.33 between the results.

6 Overall b decay rate into D`
�
��`X �nal states

In this section, a measurementof the semileptonic branching fractions BR(b! D`�X),
where D stands for D0, D+ or D�+, is presented. The method used is similar to that
described in Section 5.4:

BR(b! D`�X) =
�Z
NZ

1

2Rb

N(DK�`)

2 �D` �D`

1

f
0

cor

1 � f�;c!`

BRD
� F

0

D� + FDh` (12)

where N(DK�`) = N(D`�)� N(D`+) is the di�erence between the total number of D`
candidates quoted in Table 1, using only the K� (K��, K���) decay mode in the D0

(D+, D�+) analyses; f
0

cor = fMD
fVD fDvtx fKid; F

0

D� is only used for the D0 sample where
a fraction of (7:6 � 0:4 (stat))% of D�+ ! D0�+� decays is included.

According to the simulation, the reconstruction e�ciency of D` �nal states depends
slightly on whether or not the D meson originates from a D��. In the absence of D��,
the reconstruction times selection e�ciency, �D`, of Table 2 has to be multiplied by the
factor �D` = 1:08 � 0:02 (1:13 � 0:02, 1:07 � 0:02) for a D0 (D+, D�+) �nal state. Thus
the observed production fraction of D�`� and D0K`� �nal states (denoted Dh`�) has
to be taken into account in equation (12) and the following factor is introduced:

FDh` =
�D` � 1

�D`
BR(b! Dh`�X) : (13)

The overall b semileptonic branching fractions are thus measured to be:

BR(b! D0`���`X) = (7:04 � 0:34 (stat)� 0:36 (syst:exp)� 0:17 (BRD))%

BR(b! D+`���`X) = (2:72 � 0:19 (stat)� 0:16 (syst:exp)� 0:18 (BRD))% (14)

BR(b! D�+`���`X) = (2:75 � 0:17 (stat)� 0:13 (syst:exp)� 0:09 (BRD))%

where theD0`� result includes also D0 coming fromD�0 and also (contrarily to Section 5)
D�+ ! D0�+� decays, the D+`� result includes also D+ coming fromD�+ ! D+�0 (or )
decays and X means \anything" (possibly a hadron coming from a D��). These results
are compared in Table 7 with those measured by the OPAL collaboration [19]: theD0 and
D�+ values are in agreement whereas the D+ results present a di�erence of two standard
deviations. The systematics are detailed in Table 8.

The relative yield of D�+�`���`X over allD�+`���`X is a contribution to the systematic
uncertainty of various measurements, particularly of Vcb [3,5,20]. From Table 4 and
equations (9) and (14), the following ratio is obtained:

BR(b! D�+��`���`X) + BR(b! D�+�0`���`X)

BR(b! D�+`���`X)
= 0:26 � 0:05 (stat)� 0:02 (syst)
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which signi�cantly improves on a previous DELPHI measurement [5].

BR(b! D`���`X) D0`� D+`� D�+`�

(%)

DELPHI 7:04 � 0:34 � 0:36 � 0:17 2:72 � 0:19 � 0:16 � 0:18 2:75� 0:17 � 0:13 � 0:09
OPAL 6:55 � 0:36 � 0:44 � 0:15 2:02 � 0:22 � 0:13 � 0:14 2:86� 0:18 � 0:21 � 0:09

Table 7: Overall semileptonic branching fractions into D`� �nal states as measured in
DELPHI and OPAL [19]. The �rst errors are statistical, the second are experimental
systematics and the last are due to the exclusive D branching fractions, BRD.

Error source D0`� D+`� D�+`�

b! ` decay model [13] �1:2 �1:2 �1:2
�B [17] �0:2 �0:2 �0:2

�; c! ` background �1:8 �1:8 �1:8
BR(D0 ! K��+) [1] �2:3 { �2:3

BR(D+ ! K��+�+) [1] { �6:7 {
BR(D�+ ! D0�+) [1] { { �2:0

MC statistics �2:4 �2:4 �2:7
track reconstruction �0:9 �1:2 �1:2
mass resolution �1:1 �1:0 �1:0
VD requirement �2:0 �2:0 �2:0
D vertex selection { �3:1 {
K identi�cation �2:4 �2:4 {

lepton identi�cation �1:8 �1:8 �1:8

Total �5:5 �9:0 �5:6

Table 8: Relative systematic uncertainties (%) on the b semileptonic branching fractions
into D`���`X �nal states.

7 Summary and conclusion

Using DELPHI data recorded from 1992 to 1995, the overall b semileptonic branching
fractions into D0, D+ or D�+ �nal states have been obtained:

BR(b! D0`���`X) = (7:04 � 0:34 (stat)� 0:36 (syst:exp)� 0:17 (BRD))%

BR(b! D+`���`X) = (2:72 � 0:19 (stat)� 0:16 (syst:exp)� 0:18 (BRD))%

BR(b! D�+`���`X) = (2:75 � 0:17 (stat)� 0:13 (syst:exp)� 0:09 (BRD))%

where the D0 and D+ results include also contributions from D�0 and D�+ decays.
Evaluating the yield of charged pions from higher excited states or from non-resonant

D(�)� �nal states, the following branching fractions have been measured:

BR(b! D0�+`� ��`X) = (10:7� 2:5 (stat)� 1:1 (syst))10�3

BR(b! D+��`� ��`X) = (4:9� 1:8 (stat)� 0:7 (syst))10�3

BR(b! D�+��`� ��`X) = (4:8� 0:9 (stat)� 0:5 (syst))10�3
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and

BR(b! D0��`� ��`X) = (2:3� 1:5 (stat)� 0:4 (syst))10�3

BR(b! D+�+`� ��`X) = (2:6� 1:5 (stat)� 0:4 (syst))10�3

BR(b! D�+�+`� ��`X) = (0:6� 0:7 (stat)� 0:2 (syst))10�3

where the D�+ ! D0�+
�
decay mode is not included in the BR(b! D0��`� ��`X) results.

Neglecting D�� �nal states and assuming isospin invariance, the separated branching
fractions are inferred:

BR( �B ! D�`� ��`) = (1:54� 0:61 (stat+ syst))%

BR( �B ! D��`� ��`) = (1:86� 0:38 (stat+ syst))% :

The measured overall branching fraction:

BR( �B ! D�`� ��`) + BR( �B ! D��`� ��`) = (3:40 � 0:52 (stat)� 0:32 (syst))%

is found, in good agreement with the expectation from the di�erence [1]:

BR( �B ! `� ��`X) � BR( �B0
! D+`� ��`)� BR( �B0

! D�+`� ��`) = (3:85 � 0:42)%

but is larger than a previous ALEPH result of BR( �B ! D�`� ��`)+BR( �B ! D��`� ��`) =
(2:26 � 0:29 (stat)� 0:33 (syst))% [2].
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Figure 1: Invariant mass distributions in the (a) D0 ! K��+ (b) D0 ! K��+�+��

(c) D+ ! K��+�+ and (e) D�+ ! (K��+�+��)�+� decay channels; mass di�er-
ence distributions M(K��+�+� ) � M(K��+) in the (d) D�+ ! (K��+)�+� and (f)
D�+ ! (K��+(�0))�+� decay channels. The reconstructed D�+ candidates have been
removed in a,b,c. Right charge D`� (dots) and wrong charge D`+ (hatched histogram)
events are shown. The solid line curves are �ts which include a background parameteri-
sation (dashed curve alone) and Gaussian functions for the signal (see Section 4).
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Figure 2: Impact parameter relative to the primary interaction vertex in simulated B
semileptonic decays for a) ��� from D�� decay (using a B mean lifetime value of 1.6 ps)
and b) charged particles from jet fragmentation (see Section 5.1).
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background subtracted \right" sign D0�+, D0K+, D+�� and D�+�� candidates. The
hatched and empty area histograms are the �tted contributions from jet fragmentation
and ��� from D�� decays, respectively (see Section 5.3).
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Figure 6: Same as Figure 5 for background subtracted \wrong" sign D0��, D0K�, D+�+

and D�+�+ candidates.


