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Abstract

We study a generalization of anomaly-mediated supersymmetry breaking (AMSB) scenarios,

under the assumption that the effects of the high-scale theory do not completely decouple and

D-term type contributions can be therefore present. We investigate the effect of such possible

D-term additional contributions to soft scalar masses by requiring that, for non-vanishing,

renormalizable Yukawa couplings Y ijk, the sum of squared soft supersymmetry breaking mass

parameters, M2
ijk ≡ m2

i +m2
j +m2

k, is RG-invariant, in the sense that it becomes independent

of the specific ultraviolet boundary conditions as it occurs in the AMSB models. These type

of models can avoid the problem of tachyonic solutions for the slepton mass spectrum present

in AMSB scenarios. We implement the electroweak symmetry breaking condition and explore

the sparticle spectrum associated with this framework. To show the possible diversity of the

sparticle spectrum, we consider two examples, one in which the D-terms induce a common

soft supersymmetry breaking mass term for all sfermion masses, and another one in which

a light stop can be present in the spectrum.

http://arxiv.org/abs/hep-ph/0003187v1


1 Introduction

Supersymmetry(SUSY) provides a well-motivated extension of the Standard Model (SM)

with an elegant solution to the so-called naturalness problem associated to the SM Higgs

sector. In low energy supersymmtric models the electroweak scale is naturally of the order

of the soft SUSY breaking parameters of the theory. Much work has been done in the search

for an appropriate mechanism for SUSY breaking, but, at present, it remains unknown.

Two types of SUSY breaking mediation mechanisms, supergravity-mediated [1] and gauge-

mediated [2], have been studied extensively. Recently, another type of mediation mechanism,

i.e. Anomaly–Mediated Supersymmetry Breaking (AMSB), has become under scrutiny [3,

4, 5].1 Each of these mechanisms has unique aspects which differ from each other. One of

the important aspects of AMSB is that the soft SUSY breaking terms are Renormalization

Group (RG) invariant, in the sense that they become independent of the specific ultraviolet

boundary conditions. In fact, the magnitudes of the soft SUSY breaking terms at any scale

are obtained in terms of values of the related gauge and Yukawa couplings at that scale, hence,

they are determined as a function of the measured values of those couplings at the weak scale.

Thus, the AMSB scenario yields definite phenomenological predictions. However, within the

framework of the minimal supersymmetric standard model (MSSM), one of the predictions

is quite problematic, since it implies the existence of negative values for the slepton squared

masses. The simplest way to solve this problem is to add a universal contribution m0 to all

soft SUSY breaking scalar masses [3, 8]. There is, however, no dynamical explanation for the

origin of this term and there is no obvious reason why extra contributions should not appear

as well for the other soft SUSY breaking terms: gaugino masses and the trilinear Yukawa

couplings Af which couple Higgs and scalar fermion fields. Moreover, the addition of the

universal value m0 to all soft scalar masses, although provides a solution to the tachyonic

spectra, it also violates the RG-invariance, which is one of the most attractive aspects in the

AMSB scenario.

Independently of recent works on anomaly-mediated SUSY breaking, RG-invariant rela-

tions of soft SUSY breaking terms have been studied in the literature[9, 10]. The relation

1See also Ref.[6, 7]. In Ref.[7] anomaly mediation has been discussed within the framework of supergravity.
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to the case of anomaly mediated SUSY breaking has been clarified in Ref.[11]. In Ref.[10]

the RG-invariant sum rule of soft scalar masses has been discussed and its importance has

been emphasized. That is, the sum of three scalar masses squared, M2
i,j,k ≡ m2

i + m2
j + m2

k,

corresponding to chiral fields for which the Yukawa couplings Y ijk 6= 0 are allowed, e.g.

(i, j, k) = (Q, u, H2), (Q, d, H1) and (L, e, H1)
2, is more important to RG-invariance than

any one of the scalar mass terms independently. This is the case since such a sum appears in

the β-functions of the Yukawa couplings and soft SUSY breaking masses themselves. Hence,

one could allow for additional contributions to each of the soft scalar masses, as long as the

sum itself is not affected. For example, this situation can be realized by additional D-term

contributions, which are proportional to a charge qi of the field under a broken symme-

try [12, 13] and such that in the allowed Yukawa couplings the charge must be conserved,

qi + qj + qk = 0. Then, in the sum of the soft SUSY breaking parameters, M2
i,j,k, the D-term

contributions cancel each other.

In the present work we shall investigate the possibility of having a similar behaviour as

the one explained above, assuming a generalization of anomaly-mediated SUSY breaking

models with residual, non-decoupling effects from extra U(1)’s at a high energy scale. In [5]

it was concluded that all effects coming from a high scale theory decouple in pure anomaly

mediation in the absence of light singlets. The authors of ref. [5] explored also extensions

of the AMSB scenarios in which non-decoupling effects survive at low energies allowing, for

example, for genuine D-term contributions. In a generic framework, D-term contributions

have been proposed as a solution to the tachyonic slepton mass problem both in Refs.

[5, 14]. Here we shall analyse the features of the particle spectrum depending on the specific

charge assignments of the additional D-term contributions to each of the soft scalar mass

parameters. We shall then explore the regions of the parameter space for which no tachyonic

slepton masses appear. A novel point of the present work is to study the phenomenological

aspects of these theories, making use of the RG-invariant sum of the soft SUSY breaking

scalar squared masses. In this way, we preserve one of the most appealing features of the

anomaly-mediated SUSY breaking scenarios, namely its high predictivity with induced soft

2Q=(u,d) and L=(νe, e) are the SU(2) left handed superfield doublets; H1, H2 are the two Higgs doublets

and u, d, e are SU(2) right-handed superfield singlets.
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masses which are independent of flavour physics, and we cure the main problem associated

to them, namely the tachyonic solutions for the slepton sector.3

The paper is organized as follows. In Section 2 we define the framework: we as-

sume additional D-term contributions to soft scalar masses m2
i , requiring that the sum

M2
i,j,k ≡ m2

i + m2
j + m2

k remains RG-invariant, a property shared by AMSB scenarios. We

implement the electroweak symmetry breaking condition and discuss generic class of models

with suitable D-term contributions to investigate the properties of the mass spectrum. In

Section 3 we investigate specific models in detail, imposing the present experimental bounds

on supersymmetric particle masses. We present two examples with fixed charge assignments

and study their mass spectra. Section 4 is devoted to our conclusions.

2 RG-invariant sum rule and D-term contributions

2.1 Sum rule

In the anomaly-mediated SUSY breaking scenario the soft SUSY breaking parameters, i.e.

the gaugino masses Mα, the soft scalar masses mi and the A-parameters are given by, [3, 4, 5]

Mα =
βgα

gα

mX , (1)

m2
i = −1

4





∑

α

∂γi

∂gα

βgα
+

∑

Y ijk

∂γi

∂Y ijk
βY ijk



 m2
X , (2)

Aijk = −βY ijk

Y ijk
mX , (3)

where gα, with α = 1, 2, 3, and Y ijk, with (i, j, k) = (Q, u, H2), (Q, d, H1), (L, e, H1), are

the gauge couplings and the Yukawa couplings, and βgα
and βY ijk are their β-functions,

respectively. Here γi are the anomalous dimensions of the chiral superfields. For explicit

calculations, it is convenient to define mF ≡ mX/(16π2), because β-functions include the

loop-factor 16π2.

3There has been other attempts of constructing generalizations of AMSB models, curing the problem

of tachyonic solutions in the slepton sector and still assuring a scale invariance of the solutions, like the

anti-gauge mediated model of ref. [5] or a complementary proposal in ref. [14].
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Eqs.(1)-(3) are RG-invariant, that is, they are valid at any scale. Thus, the soft SUSY

breaking terms are expressed as a function of gauge and Yukawa couplings at a given scale

times the overall magnitude mF . The consequent high predictability in the model leads to a

problem in the MSSM, since the β-function coefficients for the weak gauge couplings, b1 = 33
5
,

b2 = 1 and b3 = −3 render the squared soft SUSY breaking parameters for the sleptons

negative, yielding tachyonic slepton masses. Here we shall discuss phenomenological aspects

of a solution to the tachyonic slepton mass spectrum, based on contributions from D-terms

to those soft SUSY breaking parameters. We shall show that, depending on the specific

D-term charge assignments, the mass spectrum can be very different from the one obtained

in the framework of a universal m2
0 contribution to all the soft SUSY breaking squared mass

parameters.

At the present stage, it is a trivial statement that the sum,

Σm2

AM
≡ (m2

i )AM + (m2
j)AM + (m2

k)AM , (4)

is RG-invariant for non vanishing Yukawa couplings, Y ijk 6= 0, because each of the soft scalar

masses is RG-invariant. Now, let us assume additional contributions to soft scalar masses

m2
i , with the requirement that the sum Σm2

AM
does not change. This can be realized by

D-term contributions which are proportional to charges qi of the chiral superfields under a

broken symmetry, that is, the total soft scalar mass is given by,

m2
i = (m2

i )AM + qim
2
D, (5)

where mD is a universal parameter which defines the overall magnitude of the D-term con-

tributions. We require for the allowed Yukawa couplings that the total charge should be

conserved, i.e. qi + qj + qk = 0. Hence, the sum does not change,

M2
i,j,k ≡ m2

i + m2
j + m2

k = Σm2

AM
, (6)

and it is RG-invariant still after inclusion of the additional D-term contributions. The only

effect of the D term is to modify the boundary conditions of the scalar masses at the scale

where the U(1)’s get broken, but with no effects on the RG evolution of these masses. Eq.

(5) is therefore valid at any scale. For a fixed charge assignment, the free parameters of the
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theory are mF and mD. Similarly, the sum, eq.(6), does not change if additional contributions

to soft scalar masses are due to a certain type of supergravity theory, e.g. moduli-dominated

SUSY breaking in perturbative heterotic string models [15, 16]. In this case, the charge qi

for the D-term contribution is replaced by qi ∝ 1 + ni, where ni is the modular weight of

the field Φi. Hereafter, we mean charge qi as a coefficient of the deviation from the anomaly

mediated soft SUSY breaking mass parameters squared, with the universal magnitude m2
D

in eq.(5), to include the realization by the moduli-dominant SUSY breaking. For the D-term

contributions possible terms of O(g4) may also appear [5]. Our assumption includes the fact

that both the (m2
i )AM and the D-term contribution, which is of O(g2), are the significant

quantities and of comparable magnitudes. Thus, we neglect further contributions of O(g4)

compared with (m2
i )AM . A similar statement has been done already in Ref.[5].

2.2 Discussion on models

In order to proceed with our study, we need to assign the charges qi. For instance, in Ref.

[17] it is clarified that there are three U(1) symmetries, which are flavor-independent and

allow the usual Yukawa couplings, i.e. R, A and L up to the baryon number symmetry

B. That is exactly consistent with the four degrees of freedom to deform each mi keeping

the sum of the scalar squared masses of the superfields, (Q, u, H2), (Q, d, H1) and (L, e, H1)

fixed. The generic U(1) symmetry X is a linear combination of them,

X = mR + nA + pL + qB. (7)

We must then identify the charge qX
i with qi for each chiral superfield i = Q, u, d, L, e, H1

and H2. Charge assignments are shown in Table 1. Observe that the hypercharge is just a

linear combination of the B, L and R symmetries, 3Y − 3R− 3L = −B.

The extra U(1)’s appear naturally in GUT groups, like SO(10) and E6. Indeed in the

breaking E6 → SO(10)× U(1) the extra U(1) charges have the same sign for both left- and

right-handed lepton superfields[18] providing a possibility to obtain positive slepton masses.

We will discuss this kind of model in detail in Section 3.1.

It turns out that constructing a viable model starting from SO(10) is much more com-

plicated. One finds immediately that when SO(10) breaks directly to the Standard Model

6



Q u d L e H1 H2

R 0 –1 1 0 1 –1 1

A 0 0 –1 –1 0 1 0

L 0 0 0 –1 1 0 0

B –1 1 1 0 0 0 0

X −q −m + q m− n + q −n− p m + p −m + n m

Table 1: Charge assignment

.

gauge group or via SU(5)× U(1) with conventional assignments of the fermions in five and

ten dimensional representations, one cannot get positive slepton masses squared. On the

other hand, when the breaking is via SU(2)L × SU(2)R × U(1)B−L, the charged slepton

masses may become acceptable.

2.3 Generic aspects

Now let us discuss generic aspects of the sum rule. For concreteness, we write explicitly the

three types of sum rules, valid for all three generations,

m2
Q̃

+ m2
ũ + m2

H2 = (m2
Q̃

+ m2
ũ + m2

H2)AM , (8)

m2
Q̃

+ m2
d̃
+ m2

H1 = (m2
Q̃

+ m2
d̃
+ m2

H1)AM , (9)

m2
L̃

+ m2
ẽ + m2

H1 = (m2
L̃

+ m2
ẽ + m2

H1)AM . (10)

Here we parameterize the deviations of the Higgs masses from the anomaly-mediated ones

as

m2
Hi = (m2

Hi)AM − dHim
2
F . (11)

We fix the magnitudes of the µ-term and the B-term by use of the minimization conditions

for the Higgs effective potential, to assure proper radiative electroweak symmetry breaking,

2µ2 + M2
Z =

m2
H1 −m2

H2

− cos 2β
−m2

H1 −m2
H2, (12)
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2µB = sin 2β(
m2

H1 −m2
H2

− cos 2β
−M2

Z). (13)

In the above, we have considered the minimization conditions derived from the tree level

expression for the Higgs effective potential. The inclusion of the one-loop RG improved

effective potential would modify the above equations in such a way that the quantitative

behaviour of the solutions will be modified, but the qualitative features are expected to be

similar. First of all, the condition m2
L̃

+ m2
ẽ > 0 requires dH1 > 0.71. Another impor-

tant condition for the successful electroweak symmetry breaking is the present experimental

bound on m2
A, where m2

A = 2µ2 +m2
H1 +m2

H2 is the squared mass of the CP-odd Higgs field.

For explicit models, which shall be discussed later, we require the fulfillment of the present

experimental bound from LEP, mA > mexp
A ≃ 88 GeV [23]. However, if m2

F is large enough

compared with M2
Z , the condition m2

A > 0 is effectively equivalent to the experimental bound

and corresponds to ∆m2 ≡ m2
H1−m2

H2 > 0 (see Eq. 12). In addition to the overall scale m2
F ,

the difference ∆m2 depends on dH2 − dH1 and tanβ. Thus, the condition ∆m2 > 0 leads

to a minimum value of dH2 − dH1, which depends on tan β, and combined with dH1 > 0.71

leads to a minimum value for dH2. In the absence of D-terms, dHi = 0, i = 1, 2, we have

∆m2/m2
F = O(10) except around tan β ∼ 50. Such a large value of ∆m2 implies that a neg-

ative value of dH2 will be allowed, even after including a non-vanishing value of dH1 > 0.71.

On the other hand, around tanβ = 50 we have ∆m2/m2
F = O(0.1) and then, for dH1 > 0.71,

only positive values of dH2 are allowed. The smallness of ∆m2 close to tanβ = 50 is due to

the fact that for such large value of tanβ the bottom Yukawa coupling becomes strong and

very close in magnitude to the top Yukawa coupling. Hence, the evolution of the Higgs mass

parameters is very similar, (mH1)AM ≃ (mH2)AM , for tan β ≃ 50. The solid line in Fig. 1

shows the minimum value of dH2 against tan β under the condition ∆m2 > 0, that is, the

condition m2
A > 0 for m2

F ≫ M2
Z . For tan β > 50 there is a change in the slope for dH2.

This is due to a change in the sign of the β-function of the bottom Yukawa coupling after

a vanishing value is achieved due to a compensation between the effects associated with the

strong gauge coupling and the bottom Yukawa coupling itself.

Now let us consider the minimum value of mF . The gaugino mass M2 is obtained to be

M2 ≃ 0.43 mF . (14)
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As we shall show at the end of this section, in the whole (dH1, dH2) parameter space under

consideration, we always have M2 ≪ |µ|. This implies that the lightest chargino is wino-like.

Hence, the present experimental lower bound on the chargino mass, mχ± < 90GeV , implies

that the mass parameter mF is bounded to be

mF > 210 GeV. (15)

For example, for mF = 210 GeV, the condition mA > mexp.
A ≃ 88 GeV lifts up the curve

which defines the minimum value of dH2
in Fig. 1 by 0.3.

Next we calculate the stop mass, in particular the average stop mass mt̃,av, which is

defined as m2
t̃,av
≡ (m2

Q̃
+m2

ũ)/2+m2
t . In the limit under discussion in this section, m2

F ≫M2
Z ,

the contribution from the top quark mass is negligible and the average stop mass depends

only on dH2. The dotted lines in Fig. 1 show contours of constant values of the ratio

Rt̃ = mt̃,av/M2 for Rt̃ = 8, 10 and 12. Obviously, as dH2 increases, Rt̃ increases. The thick

solid line in Fig. 2 shows the minimum value of Rt̃ as a function of tanβ. The minimum

value of Rt̃ is at tanβ ≃ 3 and implies that mt̃,av ≥ 6.6M2. The thin solid line gives a

similar ratio for the average sbottom mass, Rb̃ = mb̃,av/M2 with m2
b̃,av
≃ (m2

Q̃
+ m2

d̃
)/2. The

dotted line corresponds to a similar ratio but for first and second generation squark masses

Rũ = mũ,av/M2 with m2
ũ,av ≡ (m2

Q̃1,2
+ m2

ũ1,2
)/2 being the average squared mass in the up-

squark sector. On can define the analogous quantity in the down sector Rd̃ = md̃,av/M2, with

m2
d̃,av
≡ (m2

Q̃1,2
+ m2

d̃1,2
)/2. It turns out, however, that the down-squark sector is stable as a

function of tanβ, with Rd̃ of order 10 for most tanβ regions. Such a behaviour is expected

since the main dependence on tanβ in the first and second generation down-squark sector

comes through dH1, which is fixed to its minimum value via the condition of positive slepton

squared masses, dH1 > 0.71. The up-squark sector instead, depends on dH2 and hence on

tanβ, as shown in Fig 2. From Fig. 2 it follows that, all squark masses are very heavy

compared to gaugino mass parameters, as expected from the underlying structure of AMSB

scenarios. This conclusion holds, unless there is a large hierarchy between the left and right

handed soft SUSY breaking parameters in the squark sector, as we shall discuss below.
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Fig.1: The minimum value of dH2 (solid line) and constant contours of Rt̃, the ratio of the

average stop mass to the SU(2) gaugino mass parameter, M2, which determines the

chargino mass in this large µ scenario, (dotted lines).
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Fig.2: The minimum of the ratio of the average stop mass (thick solid line), of the average

sbottom mass (thin solid line) and of the first and second generation up-sector squark

masses (dotted line) to the SU(2) mass parameter M2.

Now let us discuss the magnitude of µ in these models. In the case with dHi = 0, we
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have
µ2 + M2

Z/2

m2
F

∼ 10, (16)

for any value of 2 ≤ tanβ ≤ 60. Moreover, from the expression for µ2

µ2 = −m2
H1 + [(m2

A + M2
Z)

tan2 β

tan2 β + 1
−M2

Z ], (17)

in which the second term in RHS is always positive for tanβ > MZ/mA, one can derive the

following inequality,

µ2 > −m2
H1 > −(m2

H1)AM . (18)

The second inequality in eq.(18) is due to the constraint dH1 > 0. We combine eqs. (14),

(16) and (18), and find that |µ| is larger than M2. Fig. 3 shows the minimum value of the

ratio Rµ ≡ µ′/M2, with µ′ =
√

µ2 + M2
Z/2, as a function of tanβ, in the parameter space

(dH1, dH2) allowed by the conditions m2
L̃

+ m2
ẽ > 0 and ∆m2 > 0. To realize the minimum

value, an extreme value of the ratio rd = dH2/dH1 is sometimes required. For example, for

tanβ = 3 the minimum value of Rµ ≃ 2.5 is obtained, and that is realized for rd = −13.

Fig. 4 shows the minimum value Rµ as a function of rd for tan β = 3, 20 and 50. Note that

as tanβ increases, the minimum values of dH2 and rd increase. Hence, as a generic aspect of

these models, the mass parameter |µ| (as well as the the squark masses) is large compared

with the gaugino mass parameters, M1 and M2.

2
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Fig.3: The minimum value of Rµ =
√

µ2 + M2
Z/2/M2 as a function of tanβ.
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Fig.4: The minimum of the ratio Rµ as a function of the ratio rd = dH2/dH1.

3 Mass Spectrum

In order to show in detail possible mass spectra in generalized AMSB scenarios with extra

D-term contributions to the sfermion mass parameters, we discuss two explicit examples in

this section.

3.1 A simple example

First we consider a simple case, where additional contributions are degenerate for the

sfermions and for the Higgs mass parameters, respectively,

m2
f̃

= (m2
f̃
)AM + m2

D, m2
Hi = (m2

Hi)AM − 2m2
D. (19)

This type of charge assignment can be realized through the breaking E6 → SO(10)× U(1).

In the following we shall calculate mA. Note that in this example mD does not contribute

to ∆m2 or mA and hence the mass mA is determined by mF and tan β. The result is shown in

Fig. 5, where the region above the solid line defines the condition mA > 88 GeV. As a result,

mF > 270 GeV is required around tanβ = 50. In most of the tan β region, the requirement

mA > 88 GeV is less significant than the experimental lower bound on the chargino mass,

12



mF > 210 GeV. The dotted lines in Fig. 5 correspond to mA = 250, 500, 750 and 1000 GeV,

respectively.

0
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500
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700

800

900

1000

10 20 30 40 50 60

mF
[GeV]

tan β

250

500

750

1000

Fig. 5: Lines of constant values of the CP-odd Higgs mass, mA = 88, 250, 500, 750 and 1000

GeV, in the mF –tanβ plane.

Now we discuss the slepton masses and the Higgsino mass parameter µ, in both the

small and large tanβ scenarios. For example, we take tan β = 3 and 50. Fig. 6 shows µ and

mL̃ for tanβ = 3. In this case the masses mL̃ and mẽ are almost degenerate for all three

generations, since the corresponding Yukawa couplings contributing to Eq. 2 are very small.

The dotted lines correspond to |µ| = 0.2, 0.5, 1.0, 1.5 and 2.0 TeV. The solid lines correspond

to mL̃ = mẽ = 85, 100, 200, 400 and 600 GeV. The region below mL̃ = mẽ = 85 GeV is

excluded by present bounds on the smuon mass from the combined results of the four LEP

experiments [24]4. The region to the left of the dot-solid line is excluded due to the present

experimental bounds on the chargino mass.

4 The analogous lower bound on the selectron mass is about 90 GeV. The limits quoted here for slepton

masses include data up to
√

s = 189 GeV. The inclusion of the latest data up to
√

s = 202 GeV will improve

the bounds on smuons and selectrons by about 5 GeV, respectively. The precise value of the experimental

bound is not crucial for the general analyses performed in this paper.
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Fig.6: Contours of constant values for the smuon masses for mL̃ = mẽ = 85, 200, 400, 600

GeV (solid lines) and for µ = 0.2, 0.5, 1, 1.5 TeV (dotted lines) in the mF - mD plane, for

tanβ = 3.

The first and second families of slepton masses for tan β = 50 are almost the same

as those for tan β = 3. This is the case since, although the off-diagonal elements of the

slepton mass matrices have a tan β enhancement factor, they are also proportional to the

first and second generation lepton masses which are too small. Hence, ignoring the small

SU(2)L × U(1)Y D-term contributions, the two mass eigenstates, for the selectrons and

smuons are still approximately given by mL̃ and mẽ, respectively, independent of tan β.

On the other hand, for large tanβ the stau mass matrix has a sizable off-diagonal element,

which reduces the eigenvalue of the lightest stau mass. For the same values of the parameters

mF and mD, the stau mass, mτ̃1 , is smaller than the first and second generation slepton

masses and hence it excludes a wider region of that parameter space. In the following we

consider the experimental lower bound on the lightest stau mass from LEP, mτ̃1 > 70GeV

[24]. Fig. 7 shows the curves corresponding to the lightest stau mass, mτ̃1 = 70, 200, 400

and 600 GeV, as well as the curves for constant values of |µ| and the curve corresponding

to the experimental lower bound, mL̃ = mẽ = 85 GeV, for the smuons as a reference. The

region to the left of the dot-solid line corresponds to values of the CP-odd mass mA which

are experimentally excluded by LEP. The variation of the lightest stau mass, mτ̃1 with the
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sign of µ is negligible. In Fig. 7 the value of |µ| as a function of mF is slightly smaller than

in the low tanβ case of Fig.6.
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Fig.7: Contours of constant values for the stau mass, mτ̃1 = 70, 200, 400, 600 GeV for

tanβ = 50 (thick solid lines) and for |µ| = 0.2, 0.5, 1.0, 2.0 TeV (dotted lines). The thin

solid line shows the lower experimental bound on the smuon mass, mL̃ ≃ mẽ ≃ 85 GeV.

Similarly we can discuss the predictions of this model for the stop sector. For the stop

mixing angle θt, sin 2θt is always large. That is because m2
Q̃
− m2

ũ for the stop is small

compared with |µ| as well as |At|. For example, we have sin 2θt > 0.8 for tan β = 3,

mF < 500 GeV and µ > 0. The negative sign of µ leads to a slightly larger value of sin 2θt.

For tan β = 50 we have sin 2θt = 1, with mF ≤ O(1) TeV. Figs. 8 and 9 show the lightest

stop mass for tanβ = 3 and 50 for µ < 0. The solid lines correspond to different values for

the lightest stop mass, mt̃1
= 0.09, 0.2, 0.5, 1.0 and 1.5 TeV. Present experimental bounds

exclude the region mt̃1
< 90 GeV [24]. In Fig. 9 (tanβ = 50), the excluded experimental

bound on the lighetst stop mass is not shown, because it corresponds to a very narrow region

already excluded by the stau mass constraint. The experimental bound of the chargino mass

excludes the area to the left of the dot-solid curve and gives a stronger constraint, Eq. (15),

which implies that the minimum of the mt̃1
is about 500 GeV for tan β = 3. Furthermore,

for tanβ = 50 we have the constraint due to mA, i.e. mF > 270 GeV, which excludes the

region to the left of the dot-solid line in Fig. 9. Thus, in the case of large tanβ, with similar
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values of the bottom and top Yukawa couplings, the minimum value of mt̃1
is about 800

GeV. The case with µ > 0 leads to a slightly larger mass of the lightest stop.

In the case where a universal mass m0 is added to solve the problem of tachyonic solutions

in the slepton sector, the particle spectrum is such that the lightest stop is quite heavy and

|µ| is large. Hence, the present example is phenomenologically not very different from the

model with the universal m0 addition. This simple example shows two features which are

quite generic in this type of generalized AMSB models. One is that the lightest stop is in

general quite heavy and the other is that for most tanβ values (except around tan β = 50),

the chargino is predicted to be so light that present experimental bounds on chargino masses

put constraints on the allowed values of mF , which are stronger than those derived from

demanding a successful electroweak symmetry breaking, with mA > 88 GeV.
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Fig. 8: Contours of constant lightest stop mass, mt̃1
= 0.09, 0.2, 1, 1.5 TeV, in the mD–mF

plane, for tan β = 3 and µ < 0. The regions below the dotted line and to the left of the

dot-solid line are experimentally excluded.
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Fig. 9: Contours of constant lightest stop mass, mt̃1
= 0.2, 1, 1.5 TeV, in the mD–mF

plane, for tanβ = 50 and µ < 0 The same as in Fig. 8, the regions below the dotted line

and to the left of the dot-solid line are experimentally excluded.

It is interesting to notice that, in most of the allowed regions of parameters, the ligthest

supersymmetric particle (LSP) is the wino-like neutralino and the next-to-LSP (NLSP) is

the chargino. We have here the same spectrum for charginos as in minimal AMSB scenarios:

LSP wino-like and almost degenerate with the chargino making detection difficult [8, 19, 20].

In addition, in the region close to the region where the lightest stau mass is close to its

experimental limit, we may have the stau to be the LSP, although such region is narrow

against mD. A charged, stable LSP is cosmologically disfavoured. However, we can avoid

this problem by demanding mτ̃1 > M2 and none of the features discussed in this section will

vary in any significant manner.

3.2 A model with a light stop

Here we consider a special case in which, by significantly shifting the degeneracy between the

left and right handed stop/sbottom soft SUSY breaking parameters we obtain a light stop in

the spectrum. Note that, in general, the supersymmetric spectrum is constrained by direct

experimental searches and by the requirement that it provides a good description of the

precision electroweak data. This requirement implies that, to avoid an unacceptable large
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contribution from supersymmetric particle loops to the ρ parameter, and unless unnatural

cancellations take place, the soft SUSY breaking mass parameters for the left-handed top

squark should be larger that 300 GeV [21]. Quite generally, the heavier the supersymmetric

spectrum, and in particular the heavier the left-handed sfermions, the better the agreement

between the MSSM and the precision electroweak observables. Hence, in the following, we

shall consider a case with a light stop, which is mainly right-handed, so that the model is

not in any conflict with precision measurements.

First, let us discuss the charge assignment leading to a light stop. We take the sign

assignment of charges, qX
i ≡ Xi, such that m2

D > 0 in eq.(5). Obviously, the minimal

requirement that m2
L̃

> 0 and m2
ẽ > 0 implies XL = −n − p > 0 and Xe = m + p > 0,

which also yields the condition XH1 = −m + n < 0. In order to achieve proper electroweak

symmetry breaking, a large ∆m2 is desirable, and then we need XH1−XH2 = −2m+n ≥ 0.

That also implies that XH2 = m < 0. Combining all the previous conditions we have

m > −p > n ≥ 2m. (20)

The inequality XH2 < 0 requires XQ + Xu = −m > 0. In order to obtain a light stop,

either XQ or Xu should be negative. Therefore, if Q and u belong to a multiplet of a

larger gauge group like SU(5), (XQ = Xu), the present scenario predicts heavy stops. If

XQ < 0, then the lightest stop would be left-handed and most probably in conflict with

present constraints from precision measurements, unless its mass is sufficiently close to that

of the left-handed lightest sbottom which would also appear in the spectrum. Alternatively,

we have the possibility XQ > 0 and Xu < 0, which may lead to a right-handed lightest stop.

In any case, most sign assignment of charges are fixed in a light stop model.

As an example we take (m, n, p, q) = (−2,−4, 3,−3), i.e.,

(XQ, Xu, Xd, XL, Xe, XH1, XH2) = (3,−1,−1, 1, 1,−2,−2). (21)

In this case the CP-odd mass mA is independent of mD and the behaviour of the slepton

masses is similar to the case in which all the squarks are quite heavy. Figs. 10 and 11 show

the lightest stop mass for tan β = 3 and 50 and µ < 0. For the small tan β case, there is an

allowed region in the mD–mF plane where, even after imposing the chargino mass bounds
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on mF , mF ≥ 210 GeV, there are solutions which allow for a very light stop. In the case

tanβ ≃ 50, for which m2
H1 ≃ m2

H2 and a more stringent bound on mF follows from the

experimental bound on mA, only heavy stops are allowed unless mD ≥ 1 TeV. The solid

lines in Fig. 10 and 11 correspond to mt̃1
= 0.09, 0.2, 0.5, 1.0 and 1.5 TeV. The region to the

left of the curve mt̃1
= 90 GeV corresponds to the experimentally excluded region of stop

masses which excludes an important region of parameter space even for very large values of

mD. The region below the dotted line, mL̃ < 85 GeV and mτ̃ < 70 GeV, Figs. 10 and 11

respectively, is experimentally excluded. For tanβ ≃ 50 and fixed values of mD and mF , the

lightest sbottom has a mass of similar magnitude to the lightest stop mass shown in Fig. 10.
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Fig. 10: Contours of the lightest stop mass, mt̃1
= 0.09, 0.2, 0.5, 1.0 TeV, (solid lines) in the

mD–mF plane, for µ < 0 and tanβ = 3. The regions below the dotted line, to the left of

the dot-solid line and to the left of the line of mt̃1
= 90 GeV are experimentally excluded.
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Fig. 11: Contours of the lightest stop mass, mt̃1
= 0.09, 0.2, 0.5, 1.0, 1.5 TeV (solid lines) in

the mD–mF plane, for µ < 0 and tanβ = 50. Analogous to Fig 10, the regions below the

dotted line, to the left of the dot-solid line and to the left of the line of mt̃1
= 90 GeV are

experimentally excluded.

Similarly, we can discuss other cases leading to a light t̃1. For example we can vary q

fixing (m, n, p) = (−2,−4, 3) as in the previous case. Fig. 12 shows the lightest stop mass

values as a function of mD for mF = 250 GeV and tan β = 3, for q = −3,−4 and −5.

0

200

400

600

800

1000

0 200 400 600 800 1000

mt̃1
[GeV]

mD[GeV]

q = −3

−4

−5

Fig. 12 The lightest stop mass as a function of mD, for mF = 250 GeV, µ < 0 and

tanβ = 3 with q = −3,−4 and −5, respectively.

20



4 Conclusions

We have studied phenomenological aspects of a generalization of anomaly-mediated SUSY

breaking scenarios with non-decoupling effects from a high scale theory, which allow for

D-term contributions to be effective at the low energy scale. We have assumed that the

additional D-term contributions to the soft supersymmetry breaking scalar mass parameters,

mi, are such that the sum m2
i +m2

j +m2
k, corresponding to chiral fields in the allowed Yukawa

couplings, Y ijk 6= 0, remains RG-invariant as it occurs in the AMSB models. The extra D-

term contributions, depending on the charge assignment of the extra U(1)’s involved in the

model, can solve the problem of tachyonic solutions in the slepton sector, whereas preserving

the flavour independence of the solutions. Most interesting, since the RG-invariant sums of

non vanishing Yukawa couplings Y ijk 6= 0 appear directly in the renormalization group

evolution of the Yukawa couplings and soft SUSY breaking masses themselves, one could

allow for additional contributions to each of the soft scalar masses and, as long as the

sum itself is not affected, the soft scalar masses will remain RG-invariant. Given a fixed

charge assignment, the sparticle spectrum is uniquely determined as a function of the free

parameters mF and mD, tan β and the sign of µ. In general, the average stop mass and

the parameter |µ| are larger than the slepton masses and the gaugino mass parameters M1

and M2, as expected from the underlying AMSB structure. The mass spectrum in the most

simple case is similar to the case in which a universal contribution m2
0 is added, to all the

soft SUSY breaking scalar mass parameters squared, to cure the tachyonic mass problem.

However, as we have explicitly shown, it is possible to construct models in which a light

stop, compatible with present electroweak precision measurements will naturally appear in

the spectrum. Models with light third generation squarks demand a specific U(1) charge

assignment and yield constraints for the model building.

Note added: After completion of this work, an article [22] appeared, where D-term

contributions and sum rules of soft scalar masses are also discussed.
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