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ABSTRACT

We study s-channel unitarity effects in
multiperipheral production amplitudes due to
final state particle rescattering. For non-
diffractive events we show that - if the Pomeron
is required to have Q(O) =1 - the absorbed
overlap function Ileads to oin ™ (ln s)'q and
forward peak shrinking as (zn s)V similarly to
Reggeon field theories. Inclusive many-particle
distributions and production cross-sections are
calculated, and found to have logarithmic multi-
plicity and integrable, i.e., not very long-
range, correlations in the inelastic component.
The t-distribution for diffractive production of
large masses 1is found to have mno turnover at
small t in the model, but the probability of
large-gap events is damped by absorption, S0
that consistency with unitarity is achieved. By
the same token the Finkelstein - Kajantie paradox
is avoided and multiple diffractive events give
at most a small intercept renormalization. A
comparison of this s-channel point of view with

Reggeon field theory is also given.
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INTRODUCTION

Diffraction scattering in the NAL-ISR energy range is roughly charac-
terized by the trend of all total cross-sections to increase (the more exo-
tic, the first) and by the existence in inclusive distributions of sizeable
correlations of short- and long-range type 1). Two- and many-component
models have been constructed 2 which connect these features to the exist-

ence of diffractive excitation of resonances and large masses.

The common idea behind these models is that there is a basic short-
range order component (bare Pomeron) which, in a multiperipheral model, is
a Regge pole coming from the iteration of low-energy interactions (Fig. 1),
and giving a roughly constant cross-section. To this one has to add various
diffractive and absorptive effects (Fig. 2) characterized by small para-
Odiffﬁjtotzrcel/btot::1/5' A perturbative treatment of these
effects can give rise at the same time to both the increase in the total

meters, like

cross-sections and to the long-range correlations in production amplitudes.

The simple idea is made complicated by the requirement of s- and t-

channel unitarity. We mention two points in this respect.

a) The simplest multiperipheral models (no absorptive effects at all) are
consistent with the Froissart bound for the observed rise of the

Pomeron interaction)vertex gP(O,O,O) (Pig. 3) only for asymptotically
3
tot ‘
threshold effect.) Moreover, these models predict a positive Pomeron
5)

cut sign, contrary to t-channel 4) and s-channel arguments .

decreasing o (The observed increase is attributed to a huge

b) Models which include absorptive corrections and give negative cut sign
are ambiguous. One of these ambiguities is the relative importance of
s-channel versus t-channel iterations. Given the fact that Otot is

increasing, these models assume at some stage a (bare) Pomeron inter-

cept ao>>;. The problem then arises of wheth$§ it is the s-channel
iteration or the t-channel renormalization which prevents viola-
tion of the Froissart bound. The physical predictions are different
in the two cases, and a variety of models have been constructed giving

various admixtures of these points of view 8);

This paper is a study of a particular s-channel unitarity effect, i.e.,
the absorption coming from elastic rescattering of pairs of produced par-
ticles. We shall argue that this gives rise to a negative intercept renor-
malization and, provided @, and g8p are properly related, an absorbed
scattering amplitude comes out which is basically similar to a Regge pole.

It has factorized cross-sections increasing like (&n s)", logarithmically
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increasing multiplicity, and single components of basically short-range
order. These features are in agreement with t-channel approaches like the
Reggeon field theories l where the logarithmic deviations from a pure pole

behaviour have first been found 9)’10).

The occurrence of the previous results in an absorptive model comes at

6)’11> are known

first sight as a surprise because prototype calculations
to give rise to an asymptotic black disk and strongly modify both factor-
ization properties and multiplicity distributions.

Tet us recall the argument in the example of the Finkelstein-Zachariasen
model 6). The overlap function A(B,Y) in impact parameter, rapidity repre-
sentation is written as

A -

(A (0)
LAT . AT (B,Y) RO (1.7)
(o)

multiperipheral) and

R=S(eY)= |-AC(sY) . (1.2)
(o)

game) is a Regge pole with intercept higher than 1, i.e.,

where A is given via unitarity by a 2—N +transition amplitude (e.g.,

If one assumes that the bare Pomeron A (a complex potential in the

() sy o/ | -
A = PA @b e e e o ) S'«"-‘a(o"‘l >O, 1
44'Y |

the unitarity bound is asymptotically violated for

B ¢ 44'S5Y . (1.4)

This forces the rescattering factor R=S to vanish in that range, giving
rise to the (expanding) black disk picture, and to saturation of the Froissart
bound.

The model we are going to discuss is, on the other hand, defined 12)-14)

in terms of the 2— N+ 2 production amplitudes in the impact parameter re-

presentation (Pig. 4)

*) There is a controversy on whether Eq. (1.5) should be written with factors
of S or S2. The choice of S 1s supposed to be proper for non-planar
graphs, but is also not free of criticism in that case (T. Degrand, MIT
preprint). We therefore choose S2 as in the naive absorption model, in
order to reproduce the counting 1: -2 of diffractive versus absorptive
discontinuities of that model. This differs from previous papers
[Refs. 12, 13)3, where however the normalization was unimportant because
only one kind of events (absorptive or diffractive) was considered.
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where A; is assumed to be a multiperipheral matrix element. The partial
wave unitarity equation for this model is much more complicated than (1.1),
and its detailed analysis is the main purpose of this paper. A rough com-

parison with (1.1) can be obtained by the replacement

—Z A.-
R> <R = 4 TV I'S;')l> >~ e o , (1.6)
42)
where the average is defined over the weight |A§|2/AO.

It is clear that in (1.6) the absorption is enhanced by a multiplicity
effect. Since there are -~ %Nz terms in the sum, and each term is of order

1/Y for a pure Regge pole, it follows that (1.6) is roughly of order

CR> =~ =axp (- const NZ/Y) 5 (1.7)

which for <N> ~ GY can be arranged to cancel the e6Y factor in A(O) by
a proper choice of the couplings. In other words, one can arrange Hi>j|Sij|
to vanish as Y— ® at the desired rate, even if sij =1+0(1/Y) as it
happens for a Regge-like amplitude.

It turns out that the argument given before is only roughly correct,
due to the long-range nature of the Pomeron exchange (~ 1/Y), and that
Yh(zn Y)k terms actually arise in the exponent of (1.6) (subsection 2.2).
This singular behaviour means that a pure Pomeron pole is not self-consistent
if -- as it happens for a pure multiperipheral model of the bare pole -- the
coupling gP(O,O,O) #Z0. We are therefore faced with the non-perturbative
problem of summing the Yh(zn Y)kb terms and finding out the actual self-
consistent A(B,Y).

This problem is approximately solved in the paper (subsection 2.3%) by
using b, Y variables and s-channel concepts. It admits a parallel treatment
in the t-channel, in a form similar to, but not identical with Reggeon field

theories 9)’10) (RFT). We defer to the conclusion a thorough discussion of
the two approaches, but we note the encouraging fact that both s- and t-

channel treatments give rise to qualitatively similar results.

The starting point for solving the unitarity equation related to (1.5)

is the functional identity



- N ) N (V,;)
oxp gdv dv, &.\S(v-v)\ s eQe =N 5~-) N\ eq’ (1.8)
Suw, )S‘?(") Tl Y e ?

where viss(pi,yi) and dv=2db dy. By defining the generating functional
of v-distributions [V=(B,Y); voz(p_,o)'_]

N
G (‘{/)5 b2 gdv""AVN‘AN(V‘IVU " ,\/)\ ZE' (l+‘¥(\{;)) , (1.9)

v,V N

and analogously for AE, GO, we get

2

6,y (% 1): w{ (dv, dv, Bnls,, \mj G (e%1)
) -

Gv,v (¥=0) = A;“ (V-v,) = A(V-%

where

In ‘S(V)l = - AW + O (A?') , (1.11)

Equations (1.10) and (1.11) are non-linear integral equations for A(v)
and a knowledge of the multiperipheral generating functionai GO allows, in
principle, to write them explicity. Note that for the asymptotic calcula-
tions we perform here A(v) << 1, so that further terms A" occurring in
(1.11) (for S = 1—.A) do not really matter. The precise expression for S

is, however, crucial if we look for solutions for which AZX1 asymptotically.

Since Eq. (1.10) gives the physical generating functional for the
absorbed amplitude, one can obtain (once Ain is calculated) all particle

inclusive distributions at no extra cost.

The plan of the paper follows logically the gap expansion 15). We first

assume that A; contains only short-range interactions (no large-gap events).
We discuss how to obtain an approximate asymptotic Ain(V) in Section 2.

In particular, we discuss how the non-linear equations of our model can be
solved in the e-expansion 16 . In Section 3 we calculate vertex corrections
and physical inclusive distributions in the plateau region. We also give a
simple treatment of rescattering for fixed numbers of produced pérticles.

In Section 4 we introduce diffractive excitation in A§ and discuss absorp-

tive corrections for the triple-Pomeron formula. We also comment on the



resulting modifications of the flreball expansion. In the conclusive
Section 5 we give a summary of the results and a comparison with other

approaches.

OVERLAP FUNCTION FOR NON-DIFFRACTIVE EVENTS

2.1 Description of the model

In order to obtain the functional G(H’J) from Eq. (1.10), a specific
form for the bare functional G(o (ﬂ!) has to be assumed. In this section
we concentrate on describing the model for non-diffractive events, i.e.,
events in which particles are produced without large rapidity gaps (single
fireball).

For the bare production amplitude we assume a short-range model,

(o)
AN
like a multiperipheral model without Pomeron exchanges (Fig. 1), which gives

rise to a bare overlap function A(O)(V—vo) given, for large rapidity, by

a Pomeron pole with intercept ao>1 :

0 2 —§1 T
A“(v-v,); B ng e & = p oY F(v-y,) , (2.1)

A Y
where §=qg~=-1, 4a' =1, and V=(Y B), Vs :(O O) The bare functional
o

v V(u), defined in Egq. (1 9) with bare multlperlpheral amplitudes A° )

due to the general factorization properties of A can be expressed as

() nel o (o)
G (¥)= I [duedy, wonepw) T A (v, ), (20
: !

v,V n

with Vo1 =V, From this form of GO(\II) we can define the inclusive dis-

tributions in the v-space, for large rapidity differences:

(o) (o)

o (V) A(V-Vo)A (V-v) G F("‘Vo) F(V-V‘}
fev (v) = = (Vv
Yo A (V‘Vo) °

\
n
~

(2.3)

(] -Ve

e'l:.c.S where for simplicity we have set G=B". The inclusive y-distributions

p;(n (y1 .. yn) in the plateau region are related to DS,S}) by



o (n) | 4l n o (W (o)v
(3 con 3 = —— S 2 Lg 2 -—l saed ._‘.‘ (V.uov“) A( -Vo)
v Gomie )= 2 Sv o

‘ n

o~ oy -4,

* G , * bue-91»> 1,
consistently with our short-range order ansatz.

From Eq. (2.2) we have the interpretation of Go(¢) as a propagator
in the v-space of a non-relativistic field with an energy momentum gap §
[bare Pomeron A ° ] in presence of an external source U (v) (cf. Pig. 5).
From Fig. 5 it is easy to obtain a graphical representation of the functional
¢(¢). Prom Eq. (1.10), by replacing O(v) with V¥(v)=e (v)
fact

o)
G (v) = uP{S (|+v‘)§""?—‘ (l+%)g-‘;a&ﬂ\$\z\ & G (v),
-k ¢y,

with Gvov(o) = Ain(V-vo) ~ A(V-vo), and S(v) = 1-A(v). The action of

-1, we get in

(2.5)

the functional differential operator K is to connect any pair of points
Vi Vj in Fig. 5 with the rescattering function QnIS(vi-vj) and to re-
place ¥(v) with 1+V(v). Any point v can then be differentiated and
connected with other points an infinite number of times. The overlap

function A(V-vo) is then given by a sum of graphs of type in Fig. 6.

The non-linear aspect of this rescattering model is evident in Fig. 6:
the solution A(V-—vo) (output Pomeron) is also entering in the rescattering
function £n|S(vi-vj)|:j-A(vi-'vj). This non-linear problem can be

approached in an iterative scheme by assuming a specific form for the re-

scattering function zn]S . From the discussion in the Introduction, we
expect that (except for an intercept renormalization) the solution A(v)
does not differ greatly from the bare Pomeron A ° (v) in Eq. (2.1). We
assume then, for the rescattering function, the asymptotic form of a bare

Pomeron with «(0) =1 and a slope B'=rg'

mlsmlz A =gt Fw) , (958)

(2.6)

FwzF(k,ry) .

In this first iteration the output Pomeron A(v) is then given by a
sum of renormalization graphs of the type in Fig. 7, in which the Pomerons
in the right-hand side are all bare. Since a particle in the intermediate

state of a cut bare Pomeron can rescatter several times with other produced
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particles, in the graphs of Fig. 7 there are, in general, many Pomeron
vertices; a vertex with n rescattering Pomerons is associated with a
coupling proportional to gn. However, to a given order of g, the graphs
with only three Pomeron vertices are asymptotically dominating. Graphs of
Pig. 7 with only these vertices are a part of the full set of renormaliza-
tion graphs of a three-Pomeron interaction RFT 9)5 10) The essential dif-
ference is that the rescattering bare Pomeron is not renormalized [except
for being «(0)=1].

2.2 Generating functional and
overlap function to order g2

The functional G(¢) to order g2 can be easily obtained from

Egs. (2.5), and is simply given by

Gly)= (3 (\f) - Siv'o\.v F(v v') (lf\P(V'))(HW(v“))

. (2.7)
_s ¢) + O(q
T T G QI o)
which gives for the output Pomeron
(0) " " 0() vy ¢
A(V‘Vo)g A (V-v.) ( SJVJV F (v- )? fO(s)) (5.8)
{e)
s ’\ (V'VB) RWQ\, .
Similarly we can compute the output v-distributions defined by
4]
n)
(V-Vo) ?( (V‘ ucvv\) = 8 Gf (W) (2.9)
vV oV /
S\#(V.) e S\P(Vy\) ¥Y=0
and we obtain
(0', ( O(V\)
A(v_vo) ? V Q.'V“) A(v-"o){ e\lg‘\l (v‘m\l“) -
1‘ , o(n+2) -
-9 Se\vo\v F.(v -v)e (vjeuVa Vv ) + (5.10)

o (weY)

o (w)
+ Z SJV' Flev) ?V(" wV, V' )+ Z}ﬁ(‘ﬁ"‘j) ev,V (V.-°-Vn):)+0(g§)
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The interpretation of the various terms of the corrections to p(n) is
given in Fig. 8 for the two-particle distribution. Only the contribution

of graphs a and b corresponds to enhanced cuts in the Gribov language.

From Eq. (2.8) we can compute the absorbed cross-section cin(Y) to

order g2 and we get

AR SY 2._17 . ’
= |l - 96' r (2.11)
o (Y)= Pufp @ ( 2G o ymY.e0(3) ),
2mn lev
This contribution (Fig. 9a), for 6=0 and r=1, reproduces the second-
order Gribov graph of Fig. 9b provided that the three-Pomeron coupling

géo) (bare coupling) is related to g by

SS,: 96' . (2.12)

As in the Gribov calculus we have then that the g2 term in A(V) gives a
singular contribution to renormalization. This fact shows that higher g2
terms are important in Egs. (2.7), (2.8) and (2.10), and a non-perturbative

calculation is needed.

2.3 Non-perturbative approach and e-expansion

Possible non-perturbative treatments of Eq. (2.5) are centred around

two ideas.

i) There exist solutions which admit scaling properties in B,Y variables,

d

——

n-3? X
ABY)= Y © (RN, (2.13)

where d 1is the number of transverse dimensions (@ space), as pro-
7) in the RFT.

i.e., of the form

posed by Gribov and Migdal

ii) The "critical exponents" =m and v can be expanded in the parameter
e=4-4d starting from the values n=0, v=1 (pure Regge pole) for
d=4 [ec-expansion 16)].

We have already mentioned that the first approximation of Fig. 7, in
the iterative approach, is equivalent to a RPFT in two transverse dimersions,
where the unrenormalized rescattering Pomeron field ¢0 (input Regge pole)
is in interactiqn with the first-order output field ¢1 with 'igg ¢:¢1¢0
interaction. This problem, treated by renormalization group methods in the

literature 17 , admits a solution of form (2.13) with



vl ~ Y-l 2 &/ . (2.14)

A different approach 18), leading to the same result, is to start from

the equation

" (2) N
,‘LL—;, A(V-%9%) = = AW-vesd) i dyy B ) @) 00085 (20ns)

. which is easily derived from Eq. (2.5) within the iterative approximation

(2.6) and with the definition

2
() $ )
?v Vv (v, Vz) = : GV'V (

which gives the renormalized pair density in b,y space [cf. Eq. (2.9)].

(2.16)

Alv-v;q) SYv) Syv,) l%o

Equation (2.15) has the formal solution

(o) :
A (V-vo ) %‘) - A (V'Vo)> RV,V ) (2.17)

where the rescattering factor RVOV , which takes into account all absorp-

tive effects, is defined by
LS
R dv, d FVV)S%;[‘”‘) gt
vav = WP -~ S vl vg '.( l- | J 3 gvov(v]vz '9 ) / (2'18)

and is a generalization of the second-order result of Eq. (2.8). similar
generalization of Eq. (2.18) for p(n) distributions can be obtained and

are discussed in the next section.
(2)

at large rapidity difference, the rescattering function Fr(vz-v1) and

The effect of absorptive corrections in p is that of softening,
damping its slow decrease (Fr(v)~«1/y), which was the cause of the Y yn Y

divergence found in the second-order calculation in Eq. (2.11). It has been
(2)

shown in Ref. 18) that the screening at large rapidity due to p in
Eq. (2.18) is consistent with the screening of vertices in p(2) if the

*
rescattering factor RVOV is asymptotically scale invariant in rapidity ),

*) The dependence on the rapidity difference yp-yq only is true to lead-
ing order in the e-expansion (cf. M. Ciafaloni and S. Ferrara, in pre-
paration, for a direct justification on the relativistic Dyson equation).
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ice.,

S‘“‘ d b, F(v-v.)S}-\ag gt~ (98 g

for large Yo=Yy and B fixed. Actually the rescattering factor R y
o}
is scale invariant in perturbation theory for d=4 transverse dimension and

the calculation can proceed by e-expansion. To first order in e we then

perform in Eq. (2.18) b integration in d= 4 and replace the density p(g)
by the bare density pOKQ) for d=4 which is obtained from Eg. (3.3) with
2
| -5y
F(v) = — € p (2.20)
2 rS
® )

and analogous form holds for Fr(v). This gives

«‘3\« Rv,\/ = - 3;(83’ SJ" Jv F(v.)‘;(z-v)l)”v-’\) F (=) 7 (2.21)
Vv

where dvs= Zd{E dy, and the effective coupling é;(e) will turn out to be

of order ¢. After performing the b integration we have

9 *(g) 1 B Yy
P’*va-‘ : (‘""") 5 vy (Fs) MP! Y Uw)Y-va]

rS N E A e -
a ¢ (l-...—-...-)
LA (2.22)
N = Y e QV\Y ——— s--—- ) ‘l
- ‘n [' 2; 2; ( i+ : - ’

where A is a low rapidity cut-off which represents our ignorance of the

rescattering function in the low-energy region. Introducing (2.22) into

(2.17) we get

S 2~
_ Pa By (e LS EY.,( )l X )

~ Y
A (..B.,Y) - 27 Y|+1(W)-|) (K‘) € ,
o 2 (2.23)
V-1 = = dp T
l+ Yy W / n 1W2 (\+w) ’
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It is possible at this stage to renormalize the intercept at a(O): 1,
provided

S‘: n =% ' (2.24)

o

can be put equal to zero. Actually this condition involves not only high-
energy parameters like m, but also low-energy ones like A and the bare
intercept aO::1 +6 which in multiperipheral models depends on the strength
of the low-energy kernel. The value of 6' cannot be therefore reliably
estimated by the large rapidity rescattering function (2.19), and its

" vanishing is a dynamical requirement on low-energy interactions.

If we put &' =0 the overlap function (2.23) is not simply a Regge
pole with «(0) =1, but is consistent with (2.13) in the ec-expansion. The
actual calculation of g and v [and ég(e>] comes from the condition
(2.19) that the exponent of the rescattering factor be scale invariant in
d dimension. In order to compute the left-hand side of Eq. (2.19) we need
to anticipate from the next section some features of pvgv(v1vz). To order
e we found: (a) the integral of p(2) over the impact parameters 31 and
22 is a constant in rapidity; (b) o 2) shrinks as the propagator, i.e.,
<bi§ ~ y‘i’. On the other hand, in Eq. (2.19), Fr(v2-v1) is shrinking as
<(b2- b1)2> ~ (yz-y1) and gives a constant after its integration over one
impact parameter. The other impact parameter integration in d dimension
leads to a quantity which, for (a) and (b), scale as y-d/2v’ so that

d ¥ =2 - ~ %z 4 i+5/4 . A (2.25)

2 ' PR

The exponent ¢ 1is related to v Dby v=:1+~r/(14-r)n, where 1r is the

ratio of the slope of (2)

and the slope of rescattering Pomeron. Since
v>1 in the output Pomeron [or in p(z)] corresponds to r— ®», as in

Eq. (2.14) we have

n = Vel = 8/4_ . , (2.26)

Summing up, we have shown that owing to the scaling property (2.19) and
subject to the condition &' =0, the inelastic scattering amplitude has the

approximate form

. v
x;,\ (st) = B, B, (‘&45)‘2 ed t (as) (2.27)

a
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corresponding to a growing, but factorized, cross-section

"
\ ~ 5 (2.28)
Tin (3) = papg (F2) .

Y
The differential cross-section has a forward peak shrinking like (zn s)v,

and the contribution of Kin to the elastic cross-section is.

2 -

. . P ey (2.29)
~ S - i
(s) = - , (As) /(s-z-_ii_+0(e).

INCLUSIVE DISTRIBUTIONS AND

FORM OF PRODUCTION CROSS-SECTIONS

The approximate calculation presented before gives -- to leading order
in the e-expansion -- the absorbed amplitude A(@,Y) corresponding to
purely inelastic events. Here we will generalize the arguments by giving
absorptive corrections for higher-order scattering amplitudes, which are
relevant for calculating Pomeron vertices, and -- by Mueller diagrams -- the

inclusive distributions.

3.1 Vertex corrections

We discuss here the vertex function (Fig. 10) occurring in the absorp-
tive corrections to the purely inelastic overlap function. In the iterative

approach (unrenormalized rescattering Pomeron), this vertex is simply defined

by

= Jav'det Alhy) TOI)A-), ()
Y=o

The jEW coupling measured in inclusive experiments is instead defihed and

S Gyy (V)
Sy l

discussed in Section 4.

It is possible jo rewrite (3.1) in a form which allows the definition

of a rescattering factor for the vertex by using the identities
) - 2 (4 I W) |S
o k - K ep _3 SJV A (V V)(H-WV ):\Hv') mv) ,
' (3.2)
(o) _ (o) (')
W= G (O 6, (v,

V.V Vo V v

where K is defined in Eq. (2.5).
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In fact, substituting (3.2)vinto (3.1) we get

: - S Y "e lo) (o)
'é\?tvl GVoVM = k "_"['3 SN A(v' “"”s‘r"_] Guv (V) G,y N,)
(3.3)

S ?
- wr[-:,' S\lv, d, A, (”‘)M‘)s‘{ﬁ,] ev.v(q»-mw,)A(v.-v)) G (Y- ).
In other words, the absorptive corrections acting across the vertex can be

separated from those giving a propagator renormalization. Calculating (3.3)

to the leading order in the e-expansion, we get

B Gul]_= ARG Ry

where

'Q'\AR\IVV:" 3;(1) J.v,a(vt ?
' T

o ot 0 - )]

is the vertex rescattering factor. The various terms in,(3.4) correspond,

olt)
o (w) f W B (vevy)

VoV

(3.5)

respectively, to Figs. 11a-c. Asymptotically, only the first one survives,

-1 %)

because the others scale (for d=4) 1like Y . One has therefore,

after performing the b dintegrations

L
| v [BU-2) ¢ oxy)(B-1) ]

R e - (Y-W)‘x.jdx, e T s Umxor Yy (1)

°o [“30-*.) + (Y-s)(l—x,)}z (5.6)

- o (r-u)y
M Y A’ /

*) If one calculates (3.5) with renormalized quantities, it is possible
that for proper values of d, m, v, these terms are still scale invariant,
and not negligible. This happens, e.g., for pure pole exchange for 4= 2.
Enhanced multiple rescattering corrections can then be calculated as in
Ref. 12) and give an alternative mechanism of consistency with unitarity
[see also Ref. 13)].
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where A' is a low rapidity cut-off, of meahing similar to A [cf.
Eq. (2.22)]. The vertex rescattering factor is therefore approximately
given by
-
R%\N o~ (“ﬂ(Y-u)) ,y =y = 3 () (3.7)
Ya' e
In momentum space, the behaviour of ?(w1,£1; w2,52) can be obtained

from (3.1) and (3.7) by a Fourier-Laplace transform. For instance, at

k

_1=§2=O,<nw has

~ to) ~ 4y Iq-q -"’3"‘"3
r(w.'o;wz,o)= 9p Mlem) v, W, S‘l‘ind‘h 3?3:‘ A

(3.8)

r 7
X[ Y, Ua } A 32(0) (A|)7 _r (H:‘l—— [w. +wl J '
(‘&*‘h)A'
The vanishing of Eq. (3.8) at w,=w,=0 or, in other words, the
large y,Y behaviour of the rescattering factor (3.7) means that the effect-
ive rescattering interaction is softened, as required by (2.19). Recall,
however, that the absorptive vertex function (3.1) is physically different
from the diffractive one (Section 4), and is also automatically on the

"energy shell" (w=w -+w2). One cannot therefore infer from (3.8) the

1
vanishing of the physical 3]? vertex which is off energy shell, but with

w.ﬁ’—k?.
i =i

Note also that in our iterative approach, vy~ m by (3.7). This comes
from the ratio 1:1 of absorptive corrections to the vertex (Fig. 11a) and
to the propagator (Fig. 9a) coming from two-body rescattering. If, however,
the rescattering Pomeron is allowed to couple to other Pomerons, giving rise
to many-body rescattering (Fig. 12), the value of vy will be modified by
additional vertex corrections. An example in which this happens is the

RPT (cf. Section 5).

3.2 Inclusive distributions

The generating functional Gy y(¥) directly gives [Eqa. (2.9)] the

(n)
pVoV
dity space. Experimentally, however, one measures transverse momentum dis-

inclusive n-particle densities (v1 oo vn), in impact parameter,rapi-
tributions, and these are given in terms of off-diagonal matrix elements in
impact parameter space which cannot be calculated from G(¢) alone. TFor

simplicity, we compute therefore from (é.9) the integrated distributions
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(\'\) -\ ()
S)Y (4,5 4y ) = T (Y) Szag dbiceedbu A(v.w,)ev’vw‘...vn) /(3.9)
*)

which are basis independent and observable .

The single particle density is by (2.9)

() ‘ S Gy (W)

? (v) = e e e (3.10)
YRY

A (V-v,) ¢ Wi y="0
and is therefore simply related to the vertex function (3.1). Note that
this connection holds for two-body rescattering, but breaks down for many-
body interactions, because a Pomeron vertex is in that case not necessarily

associated with emission of a particle. From Eq. (3.10) we have, to order

€

) A(V-VO)A(V“V) !
(v) = —~ R
-S,V'v AlV-v,) WV

O(\) ) -2 , . |

>~ ?\w 200 -%‘t(ﬂ)«‘v'e‘v“ Fv w'..v') .;; (3.11)
old) | o) | o) |, o) or)

*\ Suy e Sy = R W)= (Of,, O ’

where we have neglected the corrections of Figs. 1%b and ¢ which are not of
leading order. The rescattering factor RéoVV for inclusive distribution
is given by the same form of the vertex rescattering factor RVOVV in

Eq. (3.6). However, while in a full self-consistent solution, as explained,

we expect that this last vertex Rv will have in general 'y% n , for the

oVV
inclusive vertex R% - the exponent vy still remains y==n5 to order €.
o

The modification to order e of the b distribution in p ! due to the
renormaliz ed propagator is of the form (v- 1) Iny [cf. Eq. (2.23)],
while the one corresponding to R! is, for Eq. (3.6), of order = (con-

(1) vovV

stant in y). The distribution shrinks then in b as the propagator

<b%>huy.

*) The effects of absorption on momentum distributions are likely to be
important and deserve further study. We discuss this point for the
triple Regge region (section 4).
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Equation (3.11) can be cast also in the form

] ~ ol) -2 WM Vo | o(3) (R oli) °u). N
vaV(V) 2 ?v.VlV) - 9p (©) SJV dv ﬁ(v.v )E;(?"" (vivv) —g".v(V)ﬁ’\(’v YUY is12)

in ugreement with Eq. (3.10). After b integration we obtain, from
Eq. (3.4) '

(S <;2

() =2 Jg'c‘q' ] °(3), . et |,
fY(\g): 6-31(1)8_____ [?y(”g)- GfY (53)J,(3.13)

~~

\.!'
e

(™ 3

where A<y"-y'<Y, end A& is the low rapidity cut-off for the rescatter-
ing function Fr(v"-v') [cf. Eq. (2.22)]. Cn the other hand, for large

y" -y' the integrand vanishes, due to Eq. (3.4), so that one has

")
?\( (y) > 6 (‘-'VlK.) ) (3.14)

The precise value of the constant K is dependent on short-range

1
order physics and therefore not specified in our model, or in other words,
cut-off dependent. In fact, by subdividing the integration region according

to whether y',y"<y or y'<y<y", we get

L. A (3.15)

Ky Xl

®R

o(3)

where A' 1is the cut-off which parametrizes o accross the vertex
[Q(y” -y! -A')]. From (3.16) it appears that the rapidity dependent terms
cancel, but not in general the cut-off dependent constants. In exponentiated

form (%.13) becomes

?Y (“j) < G(?_E{-——‘j)) Roth G(é‘) .
YA
We then see that after b integration, the growth of the Pomeron propagator

is compensated by the screening of the rescattering factor R(') to give a

yY
constant plateau as for the bare distribution; absorption only modifies the

value of the plateau.
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Both Egs. (3.11) and (3.12) are simply generalized to higher-order
distributions by application of (3.9) and (3.2). For two particles we have

\

) A(v,) Av) AVY-v,) R g'vv R wwy s (317
W2 Vi Yy )

(VW) =
?V.V A (V)

where the two-interval rescattering factor is given by

2 \ e oml ")
La R Y} T - 3! «) SJV' JV“ Fr (v-v") 9\'9‘6 (v PV,V Y . (3.18)
oY, e?

The b dependence of can be deduced, to order e, as for the case

1) p(2)

of o , and we found that it shrinks as the propagator, i.e., <bj2_>~y;’_

To leading order in e we get

® (4) @ @ 3.19)
?:V{".Vz) = ?‘: W) - 3: (t) SJV'JVHF AR [g V(vv v,v,) f: ‘“""Q (”J(

and after 21, _132 integrations

() 2 -2 dy' Ay“ \ (@) @ @ J(3 .20)
?\( (\’;qt) > 6 - gla) S (4" W |)1 G'l ? (3'1 1 ) ?“5 Y) PY("'
where A <y"-y'<Y and the integrand vanishes for large rapidity differ-

ences. A simple calculation shows that, for Yo=Yy >> A

(3

@ m L
IR - (\-zy)k‘) ~ [?YI } , (3.21)

and correlations are asymptotically vanishing. Actually, correlation
function can be directly computed from Egs. (3.13) and (3.20), and we

found

(v _w S ul
Cy M) 2 8 () = § (e py M)

- du! du! ol4)
= o 3(3;‘"; Cy gy ) = - 67K, )
-4

which is dependent on short-range order dynamics and asymptotically vanish-

(3.22)

nge.
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The results (3.16), (3.21) and (3.22) mean that after absorption one
still has a basically short-range order production mechanism, with logarith-
mic multiplicity and finite, small corrections to correlation functions.
Correlations decreasing as inverse powers of Yo~y are not excluded, and
in fact come from multiple rescattering also. However, the integrated cor-
relations should, by (3.23), increase not faster than &n s. A confirmation
of these results (giving all correlation moments increasing as £n s only)
comes from the evaluation of the absorptive corrections to the individual

oy given next.

3.3 Form of partial cross-section oy

The previous result that after absorption the production is still of
short-range type can be directly derived also from the study of production

cross-sections. Instead of computing o by the present formalism from

N
G(V), we prefer here to show the calculation for a naive, but perhaps more

intuitive model in which the bare production amplitudes are simply
©) v .. - (a-8)Y
\AN vy V| . 6 T ;(Q;-g;_.))ﬂ'fu;s:..) e (3.23)
43\

where f(Bz) is a normalized distribution for which <B%>::a'/G.

In order to compute the absorptive effects, we take from Eq. (2.19) the
result that the effective rescattering interaction, after b integrations,
behaves as ég/y2 for large rapidity differences. We then calculate the

cross-sections' rescattering factor

RN)Y -= < Q—XP (- .CZ>_3 Ae_‘% (.‘34‘.'3})) >N / (3.24)

by averaging over the distribution (3.2%3). A simple calculation shows that

2

(4:-4;) & kk-1)  Y*

We therefore replace yi in (3.24) by the average rapidity <yi>N==iY/N,

__.,‘.—--> _ N (N-v) 1 (k- ioj) (3.25)

to get

S I S E RPN S VO baN i
PRy y @ - % "t{"‘zz.:".}? "52N5[Q’?*O(N)]/

g; _':lY__ y a = Z .‘!(-1 . (3.26)
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It is now a straightforward matter to calculate from Egs. (3.23) and
(3.26) both the renormalized density p and the generating function. We

have in fact

S- N (3-€)Y + d(N,Y)
‘7'-“'3( G)Y@RN,Y:: e ¢

N ’
N!
2 . (3.27)
PN = N Bugy - N(WN-1) <5y N (a &) 00)
e N

- By the stationary phase method we get
A & 3 e 2 6Y) (3.28)

___9____35’32? , ?:‘:G-(\-3G—%FG' , .

to be compared with (3.19). [The parameter a corresponding to K, is still
unknown because (3.26) is valid only for yj-yi:>A, or k:>Ap.] Moreover,

we get
-2 3 2
-QMG'M ~ Y (S-G +e +2¢g:3 )-fy 5: "Qﬂo\fY (3.29)

which fixes &' and 1, consistently with Egs. (2.22) and (2.24).
This approach makes it clear that the generating function has the short-
range order form

]

Q) = Y (?cu-g)[l*u.lj; (:g»z(.zh-g(%)y*-gﬂz)_] J

- 2 _'). (3-30)
pla)= G6r (1-3ag; 6 7) .
This result is similar to that obtained by Arnold and Steinhoff 19) in a one-

dimensional fluid model with attractive nearest-neighbour forces and repulsive

long-range interactions. The main differences are that:

i) The exponent of R behaves essentially as NB/YQ, instead of N2/Y.

NY
This is typical of the 1/y2 repulsive interaction due to absorption

through the Pomeron itself.

ii) There is an additional NZ/Y2 4n N piece which gives Sin the factor

(in s)n: this is the source of the critical exponents.
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Note that any rescattering interaction which has a local asymptotic part
v P (p>1) will give rise to logarithmic multiplicities. This confirms the
expectation that the cancellation proved in (3.16) to lowest order in e 1is

indeed a general feature.

Note finally that a B dependent rescattering factor can also be com-

puted and used for studying o and shrinkage properties. In fact, from

NB
(3.23) one can show that, if <§§>w=a'/G and r==a'/aé, then

)/)-5&)(3.31)
)

‘1

s

B-\.-gd‘, N —— -_.1.
2
(4;-420" N Y * T\ -

From (3.31) the result (2.23) can be rederived.

|7

(;-b:)" * K

@VP (..Y _aL—:.) ) " Nz \ @%P _6§.§: -:T e
'3
N

\

+
1

ABSORPTION FOR DIFFRACTIVE EVENTS

Let us illustrate the absorptive model for the case where a single
large mass is diffractively excited. The bare production amplitude is
described in Fig. 14a where a bare Pomeron is exchanged so that particles
are produced with a rapidity gap O-y. Absorption for this Pomeron takes
place as described in Section 2. All produced particles in the range v-V
are assumed to rescatter not only among themselves, but also with inter-
mediate states of exchanged bare Pomeron as described in Fig. 14b. The
overlap function for these events is simply given in terms of the absorbed
functional G(¥) Dy

o s N 16N w6 (v,)G ()
e 4P -%%'Sf@;ﬁ(""(str.cw*w,w's)"”“ =5 S w“’ (a71)

where w(u)==e¢(v) -1, etc. Graphs contributing to the overlap function are
represented in Fig. 15. Note that in Eq. (4.1) we have introduced, in addi-
tion to the coupling gG (Fig. 16a) and gPO =gk (Fig. 16b), the coupling
g' related to the vertex in Fig. 16c involving no cut Pomerons. As men-
tioned in subsection 3.1, the latter can give rise to many-body rescattering
in the final state. Recall, however, that for the single fireball it would
modify the value of critical index v for the absorbed vertex function
RVOVV but not the one of the inclusive vertex correction Réovv, at least

to order €.

The leading particle inclusive distribution for these events can be

obtained from Eq. (4.1) by an impact parameter displacement, and we have



'Y |
g\{(’-‘iﬂ‘)i' o'{"mgf-}- = S:l_-‘.!..te,-i 2db d B ,M(v.v,v\/),
w491 Gx - (4.2)

where v, = (0,b'/2), v, =(0,-b'/2), v={(yy,b), and V=(Y,B). M(v vV)
is the three-Pomeron Mueller amplitude (Flg. 17) in the 1mpact parameter

space and to order e is glven by

M(V.V VV) ! WP[ 3‘8’ Ss F (S‘Q g% )] G}h Gv “’)G (‘4’:) va(*)

- : (4.3)
- @ ? > ) |
32 Afw)ALv)A(V-Y) Rv vV RVzVVY ’

G2
The rescattering factors ‘ﬁ have the same form as the vertex rescattering
factor R computed in Section 3 [Eq. (3.6)] but, in general, with a differ-
ent index that we call +v'/2. It is possible that y'=vy, but as discussed

in subsection 5.2, we cannot prove it at this level.

The y-distribution (yaﬂzn s/M2, M missing mass); is obtained from

Eqs. (4.2) and (4.3)

A da . ‘°5_l__ db 248 A(v)A(v.u) R (4.4)
S’Y” o' dy 2: ) S e

From the asymptotic form bf the vertex correction R [Eq. (3.7)] we have,
ﬁo order e , } '

: ;1’,
i (Y-y) (3 (Y-9) )

5’ (y) & M ar Tl

=T Gu(y) \ Ya! ’
) N-7
o () ¥ (4.5)
% fa ——-—"'2_?) 3 (9/a) (!-:?2-) y
/
-f-
~ ‘j/b //5= ?--.i. +D[£1)

We see here that the vertex correction compensates the increase at large
rapidities of renormalized propagator giving a y-distribution decreasing

faster than y-1, and therefore consistent with unitarity.
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9)

Besides this general result, similar to RFT , our explicit model
gives also the y, q2—distribution from Eq. (4.2), by including also the b
dependence of rescattering factors. A remarkable fact is that, due to the
positivity of the quantity in Eq. (4.2) for all impact parameters, the q2—
distribution is decreasing away from q2=:O, i.e., cannot have any turnover.

The distribution can be explicitly computed by observing that -

a -Liz/zg\) .
Alv-v, ) A (v-vy) 22 A W) e ; (4.6)
and, from Eq. (3.6) 2
~~ ~e ~ 2 -E:- .Z-'
~ 2 4
Rv,v\/ Rv,.v\/ ~ ( Rovv) & . (4.7)

From Egqs. (4.2) and (4.4) we have
—qt B (y)
b | Y
?Y(BA‘) ~ f\/(a) e /5(‘4) (4.8)

with

o/ y' WDty )m2atie? Y (4.9)
B('j,\'x zxg/(l. ;.-o-(vn) 5)~ t{t-r;.)a.

The q2—distribution in this model has a peak at q2:=O with a slope B(y)
sharper than the one of doel/dt (i.e., 2a'yv). This result is consistent
with the expected widening of the distribution at large q2. The consis-
tency of pY(y,q2) with unitarity in this model is then achieved not by a
turnover or a zero at q2:=O, but by the vanishing, faster than y-1, of

the distribution at large y, due to the vertex screening.

Screening effects are also present in multiple diffractive events
(Fig. 18). Here there are two important phase space regions: (a) the
Finkelstein-Kajantie region where all produced particles are largely sepa-
rated in rapidity; the size of the gaps Ai=:yi-yi are much larger than
the size of fireballs yi-yi_1. Here a Regge pole 2(0) =1 violates uni-
tarity, and rescattering corrections among produced particles are not suffi-
cient to enforce it 14). However, vertex corrections from intermediate
state rescattering arise as in Eq. (4.1) and reduce the probability p(Ai)
for a gap Ai as in Eq. (4.4). ‘The resulting contribution to Ciot is
therefore finite and small 9>, consistently with s-channel unitarity;
(b) the phase space région where the gap size Ai is much larger than the
fireball size (1 << Ai << Yy- yi_1), which gives the main contribution
to Oiot” _Noting that the probability of having the gap Ai at ¥ is pro-
portional to p§n)(y1, Yo oo yn), we can use the results of Section 3 to get
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z-v’

ol ) 2 |
< o T lY) g ) Fly-win) play) &, (4.10)
Ty, dA; )

/
- - . .
P(A)NAp ) (a0 << o=y ),
where oin(Y) is the single fireball cross-section, and we have identified
the cut-off A' occurring in Eq. (3.17) with the proper value of the gap.
It is straightforward to see that Eq. (4.10) gives a small positive inter-

cept renormalization. In fact, the n-gap cross-section is

syt . y-¥'
G LY) 2 Gy (cY) , s x g(:zj(old p(a)a (4.11)

n!
It is possible at this stage to renormalize the intercept at a(O): 1 for
the sum of all o, provided that &' in Eq. (2.24) is given by the value
in Eq. (4.11). This implies then that the single fireball amplitude in
Eq. (2.23) is damped at large Y by a factor e_é'Y, so that the cross-
section in Eq. (2.28) is increasing up to a rapidity Yosfn/é' and then

exponentially decreasing.

SUMMARY AND DISCUSSION

The general outcome of the absorptive model thgt we have presented is
that s-channel unitarity essentially affects the total cross-sections (the
logarithmic increase is the reminder of ao:>1) but not strongly the multi-
plicity distribution. If one thinks of the multiperipheral model more as
a phenomenological tool than as a theory, we see that it has only to be
supplemented by some conditions on Pomeron vertices and factorization

assumptions. We now explain in more detail what we have obtained.

5.1 Summary of results

1) The inelastic cross-sections are factorized and asymptotically
growing with s as oin(s)ajﬁABB(zn s/A)n. The slope B(s) of the elas-
tic differential cross-section is shrinking with s as B(s)23B04-20'(zn s)v.
The elastic cross-section 1s then finally decreasing as oelﬁﬁoin/B. The
critical exponents 1, v have been computed to order e for purely inelas-

tic events in the iterative approach and one gets nZXv - 12 ¢/4.

2) The Pomeron vertices are screened at large rapidities. The screen-
ing is characterized by a critical index v which in the iterative approach

to the single fireball, is to order e, y~m. The features of this solution
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9),10)

are similar in this respect to the RFT , but with different values of-

the critical indices (see below).

3) The average multiplicity is growing as gn s, and only integrable
correlations are introduced by absorption. These features can be under-
stood both in an inclusive and exclusive way. (a) From the study of inclu-
sive p n distributions we have shown that there is a general compensation
between the screening of the inclusive vertices and the growing -of cross-
sections. The p(n) distributions are therefore still factorized [p(n)::
nd (9(1))n] for large rapidity differences, so that no large-range correla-
tions are present to leading order in 4n s. (b) From the study of production
cross-sections cN(s),_ we have shown that the effect of long-range repulsive
interactions (absorption) leads essentially to an intercept renormalization
with a critical behaviour (Zn s)n for the total cross-section. It is
still possible, however, to define a pressure for the generating function

[Ea. (3.31)], so that only integrable correlations are present.

‘4) The triple Pomeron Mueller amplitude, relevant for the diffractive
production of a single large mass M, is in the impact parameter represen-
tation positive definite. This fact entails that the consistency with uni-
tarity of the leading particle inclusive cross-section is achieved in our
model by the screening in the large rapidity region of the three-Pomeron

vertex, and not by a zero or turnover of the distribution at q2:=0.

5) This same mechanism (screening of Pomeron vertices for large rapi-
dities) makes the Finkelstein-Kajentie region (where all produced particles
are largely separated in rapidity) also consistent with unitarity. When
all the possible diffractive events are taken into account (fireball expan-
sion), a small modification of the intercept renormalization for the single

fireball amplitude has to be considered.

As emphasized in Ref. 9), the relevance of these results at present
energies is dependent on the wvalue of the bare coupling gg. In fact, the

perturbation expansion parameter is g;/a' Y, so that we expect that the

transition region cut-off is Y:ga'/g;. The simplast possibility 9) is
just the triple-Pomeron coupling gP(O,O,O) measured in diffractive exci-
tation. In this case Y::20—40, according to the various estimate 20), S0

that only perturbation expansion is relevant at ISR energies, and our results

only for ultra-asymptotic consistency.

A different possibility is that g; is much larger than the observed
coupling gP(O,O,O), so that the non-perturbative solution gives at least
a sensible parametrization for comparison with experimental data. Despite
the fact that the normalization of the triple-Pomeron coupling in the e-
expansion éP(e) is too large, the smallness of the observed value of

-y !
gP(O,O,O) should be explained by the screening factor y Y  due to
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absorption. It is, in fact, clear that in these formulae ¢'y should be
replaced by B(y)::Bo4-a'y, and a sizeable value of Bo is anyway needed
to make the ratio oel/btot’ which results asymptotically decreasing, com-

patible with present data 1).

An importént remark, irrespective of which approach is valid, is that
the increase of %40t cannot be attributed in this model entirely to a
single class of events. If one takes the renormalized fireball expansion
of Eq. (4.2), it is clear that purely inelastic events (single fireball)
increase for a while, and at Yozjn/é start to exponentially decrease by
_ unitarity damping. Single diffractive events take then over up to
Y12:(n+-1)/6 and so on for multiple diffractive events. The phenomenolo-

gical result 20) that the increase of present data is compatible with the

one expected from single diffractive excitation 11), is from this point of

view very interesting but dependent on the experimental energy range.

5.2 Comparison with Reggeon field theory

The existence of critical indices =, y, v was long ago proposed by
Gribov and Migdal 7) for the theory of interacting Pomeron amplitudes, and
their values in the e¢-expansion have recently been given by renormalization

group methods 9),10)

Our results are the s-channel counterpart of these
approaches.

While RFT are motivated by t-channel discontinuity rules for Reggeons 4),

we try to enforce s-channel unitarity from the start, and we are able to
specify a definite set of final-state particles and production amplitudese.
The advantage of dealing with physical events is paid by the need of build-
ing up the Pomeron in an iterative fashion: in fact the absorptive effects
come in as soon as the cross-section builds up, and to start with we have

to assume the rescattering Pomeron be a pole, while the output is not.
Some peculiar features arise in the s-channel (iterative) approach:

1) There are several triple-Pomeron vertices, not just one. We have
defined three (Pig. 16): (a) the absorptive vertex; (b) the diffrac-
tive one and; (c) the vertex for Pomeron amplitudes. Since they
characterize in our approach different physical processes (e.g., two -
body rescattering versus three-body), these couplings are not a priori
equal. However, if we believe RFT, they should come out from taking
discontinuities of a single vertex function and therefore related to

the same coupling constant (see below).

2) The values of 1, y, v that we find for the single fireball are dif-
ferent from RFT. This is perhaps due to both the lack of complete
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*)

(two-body rescattering). We have already mentioned that the intro-

self-consistency , and to the explicit occurrence of only one process
duction of three- and many-body rescattering will modify vy, although

not o 2 (subsections 3.1 and 3.2).

The problem of the critical indices for various classes of events in a
fully self-consistent solution has not yet been solved. Also, it is not
clear whether self-consistency is an absolute requirement, since the dyna-
mics might evolve with energy 21). However, one can better understand what
we do by giving a discontinuity rule for Gribov graphs. We take the recipe
1:(-2) for the weight of diffractive versus absorptive discontinuities,
since the one of Gribov, Abramovskii and Kancheli 22) contains a different

*%
kind of process, the polyperipheral production (Fig. 19) ).

By the discontinuity rule we see (Figs. 20, 21) that a single Gribov
graph generates several cut ones. Comparing graphs 20a and 27a (two-body
rescattering) with the smplitudes 20y and 21a,8, we see that the counting
4:1 of vertex versus propagator corrections for amplitudes is modified
into 1:1 for the two-body rescattering contribution. This explains why
y=q 1in the iterative approach [Eq. (3.7)], while y=4n for RFT. The
former result will be modified at the single fireball level if we introduce
three-body rescattering graphs 21b,c. Graph 214 is instead an absorptive
correction to one-gap events, while graph 20b is the related one-gap ampli-

tude.

It is clear therefore that the RFT counting cannot be reproduced with-
out considering togzether several classes of events, with all vertices having
equal couplings. The approach we have followed is the most natural from an
s-channel point of view, and might turn out to be the correct one. We do
not consider, however, the particular values for the critical indices we
have given as very reliable, both because the e-expansion is poorly conver-
gent 23), and because we need a better understanding of mixed diffractive-
absorptive graphs like 21d and their relative couplings. While the physical
results we have mentioned are qualitatively independent of the size of n,
v, and v, a reliable calculation of these and of the rapidity scales A

that we have introduced, is essential for a comparison with experimental

data.

%) This should be the origin of the result v=1+ 7 (instead of v=1+%q
of RFT), because the output Pomeron has an infinite slope with respect
"to the rescattering one.

**%) We understand that the discontinuity rule of Ref. 22) may be in con-
trast with generalized Steinmann relations (T. Degrand, MIT Preprint).
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FIGURE CAPTIONS

Fig. 1 : DMultiperipheral model for the cut bare Pomeron.

Fig. 2 : Diffractive and absorptive corrections to the bare Pomeron.

Wavy line represents a Pomeron.

Fig. 3 : Three-Pomeron Mueller graph.

Fig. 4 : Typical elastic rescattering correction to a multiperipheral
production amplitude [cf. Eq. (1.5) in the text].

FPig. 5 : Bare Pomeron propagator Gsov(¢) in v-space in presence of an
external source U (v); v, = (pi,yi), vozz(Q,O), v=(B,Y).

Pig. 6 : Graphs contributing to the renormalized Pomeron A(v). Any
pair of point of cut bare Pomeron are connected by the re-
scattering function 4n IS]::—A.

Fig. 7 : DPirst iteration of the non-linear equation represented in

Fig. 6. The rescattering function gyn [SI is approximated by

a bare Pomeron.

Fig. 8 : Typical absorptive corrections contributing to p§2%(V1V2 to
o

order g2.

Fig. 9 Second-order Gribov graph. gg is the bare triple-Pomeron

coupling.

Fig. 10 : Three-Pomeron vertex function occurring in absorptive corrections

to purely inelastic overlap function.

Fig. 11 : Graphical representation of the various terms contributing to
order e to the vertex function in Fig. 10 Esee Eq. (3.5) in
the text].

Fig. 12 : Absorptive corrections due to three-body rescattering.

Fig. 13

.o

Graphical representation of the various terms to order e

(1)
p .

contributing to the single-particle distribution
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

14

15

16

17

18

19

20

21

Production amplitude for events in which a large mass is dif-

fractively excited:

(a) bare amplitude; (b) absorbed amplitude.

Absorptive contribution to the overlap function for events

where a large mass is diffractively excited.

Three-Pomeron vertices:

(a) vertex occurring in absorptive corrections to the single
fireball;

(b) vertex occurring in diffractive events;

(c) vertex occurring in absorptive correction to the diffrac-

tive vertex and in multiple rescattering.
Three-fomeron Mueller amplitude in the impact parameter space.
Multiple diffractive events.
Polyperipheral production graph.

(0) Second-order Gribov graph for Pomeron propagator;

(a)(b) Discontinuity contributions to the second-order graph,

according to the rules in the text.

(«yB)(a) Second-order Gribov graph for three-Pomeron vertex;
(a)(v)(c)(a) Discontinuity contributions to the vertex,

according to the rules in the text.
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