CERN LIBRARIES, GENEVA

LT Aecises

e —a
CM-P00060972 T~

Submitted to CERN/D.Ph.II/PHYS 74-17
Nuclear Physics B (Ref. TH - 1800-CERN)
22.5.1974

RAPIDITY CORRELATIONS AT FIXED MULTIPLICITY IN

CLUSTER EMISSION MODELS

Edmond L. Berger

CERN, Geneva

ABSTRACT

Rapidity correlations in the central region among hadrons produced
in proton-proton collisions of fixed final state multiplicity n at NAL and
ISR energies are investigated in a two-step framework in which clusters of
hadrons are emitted essentially independently, via a multiperipheral-like
model, and decay isotropically. For n N %-<n>, these semi-inclusive distri-
butions are controlled by the reaction mechanism which dominates production
in the central region. Thus, data offer cleaner insight into the properties
of this mechanism than can be obtained from fully inclusive spectra. A
method of experimental analysis is suggested to facilitate the extraction
of new dynamical information. It is shown that the n dependence of the
magnitude of semi-inclusive correlation functions reflects directly the
structure of the internal cluster multiplicity distribution. This conclusion

is independent of certain assumptions concerning the form of the single

cluster density in rapidity space.
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INTRODUCTION

The idea that hadrons are produced in clusters provides a popular
interpretation [1,2] of several features of multiparticle production data
at CERN Intersecting Storage Ring (ISR) and Fermi National Accelerator
Laboratory (NAL) energies. In particular, the postulate of independent
emission of isotropic clusters has been applied by several authors to re-
produce the observed [3-7] positive, short range character of fully in-
clusive two-particle rapidity correlation functions in the central region.
The general idea is that groupings of hadrons (clusters) are produced
according to some basic dynamical amplitude, and that observed hadrons are
decay products of these clusters. A crude sketch is given in fig. 1. At
present, it is not clear that clusters have intrinsic dynamical signifi-
cance (e.g. generalised resonances) or whether they are primarily a pheno-
menological artifice, a convenient imitation of more complex dynamics.
Taking them seriously as dynamical entities, we should search for experi-
mental quantities which would help to specify the character of the cluster
production mechanism, as well as the intrinsic properties of clusters,

such as their isospin, charge, spin, mass and multiplicity distributions.

Recently, data have become availablé on rapidity correlations in the
central region at fixed values of the final state hadron multiplicity [8-10].
In this article I discuss in some detail what these semi-inclusive data may
imply for clusters, in particular, for their intrinsic multiplicity dis-
tribution. Based on the concept of independent emission of isotropic
clusters, expressions are derived and presented here for two particle
semi-inclusive rapidity correlations in proton-proton collisions. A method
of experimental analysis is suggested for extracting most directly the new
physical content of semi-inclusive data. This article is an expanded, gen-
eralized version of a letter published earlier {l11]. A number of phenom-

enological papers have appeared [12]; they may be consulted for other viewpoints.

Despite oft-stated reservations, I present the discussion in terms of
the rapidity correlation function, as usually defined, but for fixed final

state multiplicity n.
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do 2 do do

C (y..y) = = —B— (—l —2 =2 (1.1a)
7 = - . .

n 172 n dyl dy2

1 2 don dcn
Rn (yl,yz) cn (yl,yz)/(;;) <§l—> (5;;) (1.1lb)

Variables associated with transverse momenta pT are supressed. In prin-

ciple, it would be valuable to study y correlations for fixed ET' Thus,
eq. (l.1) can be understood as applicable at each set of fixed.ETi, or as
expressions for quantities integrated over the pT's. Multiplicity index
n may denote total charged multiplicity, pion multiplicity, negatives ...,
etc. Cross section o, is the relevant partial cross section for multipli-

city n.(All rapidities y are center of mass quantities).

The single and two-particle inclusive y spectra satisfy the normali-

zation conditions

l~/- do
n
on dy
2

1 d 0n
— JJay.a —_— = -1); 1.
o./]ylyz oy ay. - (1.3)

n 172

and
ad a C = -n 1.

In eq. (1.3) the assumption is made that the two observed hadrons are

identical; i.e. both are charged pions, both negatives, etc.

Semi-inclusive correlations provide several advantages and yield
important information [11]. First, contributions to the correlation func-
tion from competing reaction types are more readily separated, removing a
source of ambiguity which plagues analyses of the fully inclusive corre-
lations. As discussed in sect. 3.2, by restricting multiplicity n to
values n g L «n>, one should effectively eliminate diffractive contribu-
tions to Cn(0,0). Semi-inclusive data at the larger n values reveal more

cleanly properties of the reaction mechanism which dominates production

in the central region.
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Second, the postulate of isotropic cluster decay can be tested over
a range of multiplicities. According to the models discussed here, the

effective correlation length (§) should be independent of n for n ¥ % <n>.

Third, and perhaps most interesting, dependence of the intrinsic multipli-
city distribution within clusters on the overall final state hadronic multipli-
city can be investigated. A mean of <k> = 3 to 4 total hadrons per cluster
is determined from data on fully inclusive correlation functions [1].

However, this figure results after an average over both the multiplicity
distribution of hadrons within clusters and the multiplicity distribution
for production of clusters. Separation of the two effects is aided by

fixing the final state hadronic multiplicity.

Defining p(k) to be the probability that k hadrons of some specific

type decay from one cluster, one finds that the fully inclusive correla-

tion function (for the "non-diffractive" component) has the form [1,2]

_ k(k-1)> (1 do }
C (y,ryy) = k> (’dy,),NOG (y,=¥,) (1.5)

when yl and y2 are in the central region. Here the (unrestricted)

averages are

<k> = I kp(k); (1.6)
and <k (k-1)> = I k(k-1) p(k). (1.7)

The Gaussian function

L (v,"¥,)
2

G(yl-yz) = 35 S exp |- ’ (1.8)

1
4 8
has an effective "correlation length" 28. It is particularly relevant at

small values of (yl-yz). For pions, which comprise the bulk of the charged
particles in the central region, the numerical value of § is 0.6 to 0.9

(c.f. sect. 3.1); it is smaller for heavier particles.

In sect. 4, for semi-inclusive correlation functions in the central

region, I derive the new result (egq. (4.29) of the text)
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do ; do do
1 n 1 1 n 1 n
c (y,.v,) = A (-—' ———) G (y,-y,) - = (1+2 ) (“'——') (‘”“"')
n 1°°2 o \o dy =0 12 n o on dyl o dy2

(1.9)

. . 1
This expression applies for n > 5-<n>.

Quantity Ao in eq. (1.9) is in general a function of n. Its n depen-

dence reflects directly the structure of the internal cluster multiplicity

distribution p(k), as is described in detail in sect. 4. 1If p(k) is very
*
narro'v(v,)Ao is independent of n and s[Ao = <k0—1>; sect. 4.1], whereas if

p(k) is broad, Ao increases considerably with n[A0= (n-1) <k>/<n>; sect. 4.2].
These conclusions are shown to be independent of assumptions concerning the

n and y dependences of o;l don/dy.

From the point of view of cluster models, the new physical content
of semi-inclusive data resides in the function AO. It is suggested, therefore,

that data be fitted to eqg. (1.9), and that Ao be extracted as a function of n.

For reasons described in sect. 4.3, the n dependence of this function
is more readily interpretable (and less subject to model dependent kinemati-

cal corrections) than that of Cn(0,0) or of Rh(0,0).
By comparing eq. (1.8) and (1.9), one may identify Ao as

_ <k (k-1)>
Ao - <k>

n

Thus, Ao describes how the ratio of cluster averages varies with final

state multiplicity.

In preliminary analysis of ISR correlation data along the lines of
eq. (1.9) , AO is found to vary slowly with n, if at all [8]. Thus, narrow
distributions p(k) are favored. The mean number of hadrons per cluster

(charged plus neutral) is between 3 and 4.

(*) i.e. has very small dispersion in multiplicity about <k>.
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The article is organized in the following way. Because the formalism

and assumptions underlying the cluster emission viewpoint have not before
been published, I fill this void with a general treatment in sect. 2. In
sect. 3, I present explicit expressions for isotropic cluster decay
(sect. 3.1), and for independent cluster production according to a multi-
peripheral-like production model (sect. 3.2). The main new phenomenological
results are developed in sect. 4, to which the expert reader may wish to

turn directly. Various remarks are collected in sect. 5.

GENERAL FORMATION

A two-step process 1is envisaged in which clusters of hadrons are
produced according to some basic dynamical scheme, and subsequently decay
into observed hadrons. Expressions are derived for cross sections, not
for amplitudes. The basic dynamical scheme should contain peripheral,
diffractive and non-diffractive effects and, in principle, applies through-

out phase space.

Correlations among hadrons in the central region of rapidity are the
main subject of this article. In keeping with the apparently energy-
independent (scaling) character of fully inclusive two-particle rapidity
correlation data in the central region [3-7], it is usually assumed that
the dominant dynamical production mechanism in this central region is of
an independent-emission or multiperipheral-type [1]. To be sure diffrac-
tive effects also contribute. For the general purposes of sect. 2, how-
ever, specification of the details of production are not necessary. General
expressions will be given first and, later, in sect. 3, specific assumptions

will be introduced about production and decay dynamics.

2.1 Notation and Definitions

The basic production mechanism provides several distributions. First,
there are cross sections ON for production of N clusters as a function of
N and of energy s; Py = ON/O. Second, the single-cluster rapidity distri-

bution
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(1) - L __N_
P (s, ¥y rPp) = (2.1)

N a 2
dp
I\IchT
is to be given as a function of s, the cluster rapidity y , and the (whole)
c

cluster's transverse momentum PT. When integrated over PT, this is the

probability for finding a cluster centered at yc in a N cluster final state.

Third, we require the two-cluster distribution

(2)
Py (81 Y v Yor Prgr Prpe @)

5 (2.2)
- N

2 2
dPTl dPT dé

o}
d
N dycl yc 2

2

Here, ¢ is the azimuthal angle between the transverse momentum vectors

->
3 and P of the two clusters.
T1 T2

The rapidity, transverse momenta, and azimuthal angles of hadrons

are denoted by lower case symbols y, pT and ¢, respectively.

It would be valuable to study the PT and ¢ dependences of rapidity
correlations. These may give important information on the PT and ¢
dependences of expression (2.2). However, in this article I am concerned
only with the y correlations present after an integration has been made
over all pT and ¢. Thus, instead of expressions (2.1) and (2.2), it is

sufficient to deal with the integrated quantities

do
(1) _ 1 °x
DN (s, Yc) =3 . (2.3)
N [}
and
d20
(2) 1 _N
P (s, Y .+ ¥ ) = — T (2.4)
N cl c2 ON dycl dyC2
These satisfy the integral relations
(1) _
foN (s, y) dy_ =N (2.5)

and
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(2) = -
ﬁN (s, Y Ycz) dycl dyc2 = N(N-1). (2.6)

The integrals extend over all phase-space. The clusters are assumed

identical.

Disintegration of a cluster into observed hadrons of type h (e.g.
charged hadrons, n—, 5, or any other specific species) is described by

(1)

function D, (y, yc), normalized to unity.

(1) _
th (v, yc) dy =1 . (2.7)

Function Dh may be different for different h. It is an inclusive quan-

tity in the sense that

1
<ky> D}(1 ) (¥, v)) (2.8)

is the inclusive yield in y of type h hadrons decaying from a cluster at
yc; <kh> is the mean number of type h hadrons which come from the cluster.

Again, transverse momenta have been summed-over.

Function D is assumed here to be independent of the cluster's decay

multiplicity. (This point is discussed further in sect. 3.1).

The inclusive decay of one cluster into hadrons hl and h2 is des-

cribed by

(2)
Dh h (Yll Y2

fdy fdy2 Dr(lzli =1 . (2.9)

The multiplicity distribution of hadrons of type h from a single

Y )
C
with

basic cluster is p(k). (I drop the subscript h).

Zpk) =1. (2.10)

This basic distribution is left unspecified. Its properties are to be
extracted from data, insofar as is possible. The mean number of hadrons
<k> (of given type h) which arise from a given basic unrestricted cluster

is
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<k> = I kp(k), (2.11)
and k
<k (k-1)> = I k(k-1) p(k) . (2.12)
k

-1 -1.2
. . £1
The hadron inclusive spectra On don/dy and Gn d on/dyldy2 at fixed
multiplicity n of hadrons (of type h), are obtained after a convolution

over yc and a sum over k and N; for example,

do
1 n (1) (1)
— — = k .
T o LEM( )fdyc oy (Y) DT(¥ay) (2.13)
n N k
The convolution over yc follows in obvious fashion from the definitions
above. The multiplicity combinations leading to MNn(k) are discussed

below.

2.2 Multiplicity Combinations

All clusters are assumed here to have the same decay spectrum p(k),
a distribution which would be measured if one were to observe a single
cluster. However, a cluster is generally not observed in isolation.
Rather, in dealing with a final state of fixed hadron multiplicity n, we
see the results of a convolution of p(k) with the cluster production dis-

tribution P = 0 /O,
N N

Some general expression for observables are derived here, for arbi-
trary PN and p(k). Then, in subsect. 2.2.1 special forms are chosen for

p(k), resulting in simplified specific formulas.

Throughout this article, symbols N, k, and n stand for the multi-
plicity of clusters, the multiplicity of hadrons within one cluster, and

the number of hadrons of some specific type in the final state, in that order.

The probability that cluster i in an n hadron and N cluster final

v
state decays into ki hadrons is denoted.pi(ki;N,n). Thus,

: N N
Bi(ki;N,n) =% ...I2 I 1 B, (k) {):

k j= =
N k, kl j=1 j=1

k, = rl} (2.14)
J
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As indicated, the (N -1) summations in (2.14) are made subject to

N
the constraint that n = § k.. No sum is made over k,6, which is fixed.
i

j=1
The probability that n hadrons are produced in an N cluster final

state is then

qN(n) = I gi(ki;N,n) . (2.15)
k,
1

It is easy to deduce that I qN(n) = 1, and that
n

<n>N = in:qN(n) = N<k> . (2.16)

The net probability that n hadrons are produced, after summation over N,

is

L ©]
Il

P = . .
z NqN(n) = on/o (2.17)
N
<n> = InQ = <N> <k> . (2.18)
n

In an n hadron, N cluster final state, the joint probability that

cluster i decays into ki hadrons and that cluster j decays into k, hadrons
J

is (1 # 3J)
N
J,., (k. ,k,;Nyn) = ¥ ... I I 0 p (k)
ij i3 . 272
k 4=
kN K2 1 2=1
{N=2Xk, }. (2.19)
) £

On the right, no sums are made over ki and kj, which are fixed. From the

definitions it is clear that

V]
p,(k ;N,n) =
1 1

J, . (k ,k N,n) . (2.20)
i3 i3

z
k.

J
In later expressions it will be useful to have deduced several inter-

mediate quantities from the above definitions.

In an N cluster, n hadron final state, the mean number of hadrons

per cluster is
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= —l ,\J o
<k> n (qN(n)) E ki 1 (ki.N,n)
i
= n/N. (2.21)
Likewise

<k (k-1)> = ( (n) -1 r k. (k.-1 5 (k ;N 2.22
( ) N,n - qN n)) s Ry ) Pi 7 M) (2.22)

i

These are not directly observable quantities since clusters themselves

are not seen.

In an n hadron final state (after a sum over the unobservable cluster

spectrum PN), the mean number of hadrons per cluster is

%> =@ T TP Tk (kNm) . (2.23)
n n N i i 1
N k.
i
Moreover,
-1 N
<k (k-1)> =Q " P_ I (k,)(k.-1) p,(k,;N,n) (2.24)
n n N i i i i
N ki

Both <k>n and <k(k-l)>n are, in principle, functions of n. Their n

dependence gives information on p(k), as will be described below.

In a fully inclusive measurement (sums over both N and n), the mean

number of hadrons per cluster is

N
<k> . = . L P % k. p(k.;N,n)
incl N i i
n N k.
i
= P (X k.p (k)) =<k . (2.25)
N i1 1
N k

i

This is identical to the unrestricted quantity defined in eqg. (2.11).

N
Lk (k-1)>, =L X P_I k (k,-1) p,(k, ;N,n)
incl ) i i i i
n i k.
i
= P ¥ k (k-1)p (k) =<k(k-1)> . (2.26)
N N K i 1 11

1
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Thus, we see that from fully inclusive data one measures in principle
the averages within a cluster. Semi-inclusive data provide the n dependences

of these cluster averages.

Expressions for <n>N and <n> were given above, in eq. (2.16) and (2.18).

Quantities involving n(n-l) are more involved.

1]
I~ 2
~

nqu(n) 5 2 qN(n)

+ N(N-1) 2 I k.k, J, .(k, ,k,;N,n) . (2.27)
i3] 13 1 ]
k., k.
1]

The last equality is obtained after a little algebra from the definitions

given in egs. (2.14), (2.15) and (2.19).

Upon summing this last equation over n, we find that at fixed N,

<n(n—l)>N = N<k(k-=1)> + N(N-1) <k>2 (2.28)
Moreover,
<n(n-1)> = <N><k(k-1)> + <N(N—l)><k>2 (2.29)
and
_ 2
f2 = «n(n-1)> —-<n>

<N><k (k-1)> + {<N(8§-1)> - a>?} <x>?

. 2 . .
Defining F2 = <N(N-1)> - <N>", one may rewrite the last equation as

f2 = <N><k(k-1)> + <k>2 F2 . (2.30)

2.2.1 specific forms for p(k)

2.2.1la Delta function

Perhaps one case of physical interest is that in which the
basic clusters have a very narrow multiplicity distribution [11]. In the

extreme, we may assume a fixed cluster multiplicity, such that
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pk) = ﬁ(k-ko) . (2.31)

If so, <k> = <k> =k and <k(k-1)> = <k(k-1)> =k (k -1).
n o n o o

Moreover,
5. (k.;N,n) = 8(n-Nk ) 8(k,~k )3 (2.32a)
1 1 (o] 1 (o]
1 n
qN(n) = §(n-Nk ) = o 6(N - K—) V (2.32b)
o o
0 =+ 5 . (2.32c)
n ko (N____E__)' . C
k
and °
J..(k.,k.;N,n) = §(n-Nk ) §(k.-k ) &(k.-k ) . (2.324)
1] 1 J o 1 (o] J o

2.2.1b goisson Form for p(k)

A second case of interest, particularly because it allows
simple expressions in closed form, is that in which p(k) has a Poisson

form:

pk) = e 25/t . (2.33)

Here z = <k>.

Noting that a product of N Poisson distributions is itself a Poisson
distribution characterized by a mean N times as great as that of the single

cluster, one obtains

Nz n-k

n . _ e (N-1) 1z .

p, (k N,n) = k! (oK) ! i (2.34a)
e—szn n
qQn) = =7 (2.34b)
Q = (E PN qN(n))(= on/c); (2.34c)
and

e—szn(N_z)n—k-Q

le (k,2;N,n) = k! %! (nk-2)! . (2.344)

Furthermore, after trivial algebra, one derives
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<k> o 1
<k> = ——— (2.36)
n On
<k (k-1)> _ nlo-l) (2.36)
N,n 2
N
<k>2 o 5
<k(k—1)>n = ———E——E-—- . (2.37)
n

It will be noted that eq. (2.37) is valid for an arbitrary choice of

PN, the probability function for production of N clusters.

The derivation of eq, (2.37) is recorded here inasmuch as it is
a prototype of other results important in sect. 3. From (2.22) and (2.34a),

one may write

n e_Nz(N l)n-k n
_ _ - Z
qN(n) <k(k_l)>N,n = I k(k-1) k! (n-k)!
k=2
(k -~ k-2)
) é—szn n;Z (N—l)n~2_k(n—2)!
(n=-2)! k=0 k! (n-2-k)!
e—szn n-2
_ GTEFN . (2.38)
Then
‘ _ -1
,<k(k—l)>n = Qn g PN qN(n) <k(k—l)>N'
-1 2 _
= Qn z X PN qN(n 2)
N
2 _ 2
=z Qn—2/Qn = <k> 0n—2/0n

2.3 1Inclusive Distributions

It is straightforward to combine the expressions given in subsect. 2.1
and 2.2 so as to obtain the inclusive single and two-particle rapidity
-1 -1.2
distributions On don/dy and On d"o /dyldy2 at fixed multiplicity n of
n

final hadrons.
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After the sum over N identical clusters, the inclusive yield of hadrons

in an N cluster, n hadron final state is

do
1 Ngn -1 (1) v (1)
o - av [qN(n)] fdycpN (y)) dy ]Z< k p(ksN,n) D7 (y,y ) - (2.39)

After a sum over all cluster multiplicities,

do

1l no_ -1 (1) v . (1)
n v Qn f] PN fdprN (YC) i k p(k;N,n) D (Y,Yc) . (2.40)

QqQ

Upon integration over y and yc, this last expression gives n, as

required. Thus,

, 4o . N
fdy (O—d—;5 Q" LB NZkp(kNm
n N k

n Q;ll LP o q(n) =n. (2.41)
N

The last equalities are obtained by using eqg. (2.21).
The fully inclusive y distribution is
do

.
ony

1l do
o

g2

) (1) v (1)
=11 PNfdycpN (v)) Ik B(:Nm) D (y,y)

n N k
_ (1) (1)
= <k> 1§ PNfdycpN (v) D "y ) - (2.42)

The two-particle inclusive distribution receives contributions from
two sources. Both final hadrons may originate from the same cluster, or

each may come from a different cluster. Thus, there are two terms:

2
g
_l_d__n__
g dy.,dy
n 172 -1 1 2 v
otrr fag oMy ) ¥ (v v sy ) T k(k-1) plkiN,n)
n N N c N c 172 "¢ X

-1 (2) (1) (1)
z
* Qn N PN _/fdycl dyc2 pN (ycl'ch)D (yl'ycl)D (y2,y02)

k k J. (k. ,k_; i )
]}i 1K Ry rkysNum) (2.43)
21

N~ ™
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By virtue of eq. (2.27), the integral of (2.43) over y., and y2, gives

1
n(n-1) as required. Thus,
1 dzc’n
[avar, & e
f 1°2 On dyldy2
-1 N
=Q L P NI k(k-1) p(k;N,n)
n N
N k
-1
P - r I k J k ;
+ Qn : N N (N-1) y kl 2 12( l,k2,N,n)
2 1
...1 _
= n(n-1) Q L P qN(n) = n(n-1) . (2.44)
n N N

The fully inclusive two particle rapidity distribution is

2
L_iz_o_»_.:.l_z_gg_
a
o dy,dy, 0, dy,dy,
(1) (2)
= - P .
<k (k-1)> ﬁ N.,ﬂdyCoN (y) D (yl,yz.yc)
2 (2) (1) (1)
+ > P d
<k>" I ngl]éycl Yo Oy (WY ) Dy Y ) DY, )

N

(2.45)

The semi-inclusive correlation function Cn(yl'y2) is defined as
C(y. ,y.)=—~————"/"""-—7 —T"—"——"—. (2.46)
n ag

I rewrite this as a sum of two terms in order to distinguish the rapidity
correlations arising from within one cluster from those contributions to

Cn arising from other sources. Thus,

(c) (r)
cn (yl,yz) + C

Cn(ylryz) n

(yl,yz) . (2.47)

Rapidity correlations arising from one cluster provide the function
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Ny ,w)=g e fdy oy ) 'y vy T k(k-1) Blcavn)
1 °2 n N N N Kk

(2.48)

The remaining contribution to Cn is the difference

(x)
cn (Yl:yz)

_ 1 (2 (D (1)
= QI PN[/dy 1 Py (ycl,ycz) Dy, ey ) DY,y )

* k.k J_ _(k.,k_;N,n)

i i 127127172
2 1

-2 S (1) (1) v
- o II\IIPNfdy Loy p Py ikp(k,N,n)

vxr far . oM ) 2P yy ) E Kk BkiMn)
y M c2 "M c2 2% e2 N T (2.49)

In order to reduce egs. (2.40), (2.43), (2.48) and (2.49) to expressions

which may be compared with data, a simple parametrization must be given for

the cluster production distributions pél)(y ) and p( )(y l'yc2) and for the
c

(1) (2)

decay functions D and D . These subjects are treated in sect. 3.

CLUSTER DECAY AND PRODUCTION DYNAMICS

The properties ef the clusters themselves are assumed to be energy
independent. In particular, the multiplicity distribution p(k) and the
decay spectra, ( )(y,y ) and D( )(yl,yz,y ), are all taken to be s-independent.
Any important s dependence in data is presumed to be associated with production
dynamics. (Some s-dependence, however, may be associated with phase-space
effects, in the sense that, for given n, if s is too small, clusters may not

be fully developed).
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3.1 Cluster Decay

>
If (q,w) denotes the four-vector momentum in the cluster rest frame,
and y is rapidity in that frame, then, after integration over azimuthal

angle ¢, one obtains the transformation of variables:

3> . 2
d g _ 2n dg dy (3.1)
w 2 ) )
cosh y
-
Here g = lq|.

Denoting an average decay distribution in the cluster rest frame by

.+
D(g), one may write

dD -2 2 >
— = 2m(cosh y) qu D(g) . (3.2)
dy

In general, D may depend on cosf (i.e. on y). However, the common

assumption is made now that cluster decay is isotropic in the cluster rest

+
frame: D(gq) > D(g). Setting r = q/<qk>, we obtain [13]

2
ab 2n<q, >
v = T, I (y,u,<qk>)a (3.3a)
Y cosh y
with
Ly
I(y.u,<q,>) =f dr D(r) . (3.3b)
L,

In eg. (3.3), <qk> is the average momentum of a decay hadron (of
given type) in a k hadron decay of the cluster. The lower and upper limits

of integration are
2

L = (—-—-—-—“ sinh y) ; (3.4a)

<qk>

L, = —53 {(M2 - )%y o - (u—Mr)z)} (3.4b)
4M <qk>

M is the cluster mass p is the mass of the decay hadron under con-
sideration; and Mr is the minimum mass of the set of (k-1) particles re-

maining from the original cluster [Mr = (k-1)uy if all particles in the

cluster have the same mass].
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All dependence of dD/dy on multiplicity k and on decay particle type

is contained in the integral factor I(y,u,<qk>).

The value of <qk> is related experimentally to the observed mean
transverse momentum <pT>n of hadrons in an n hadron final state. At
205 GeV/c, <pT>n shows little n dependence over the (wide) range of n
values, from (negative multiplicity) n = 2 to 7 [l4]. Therefore, <qk> can

be assumed here to be roughly independent of k. Thus, to the same appro-

cimation, D(y,y ) is independent of cluster multiplicity k.
o

For pions, (u/<pT>)2 f 0.25. For not too large k, one may then set

Ll = 0 and L2 = o in eq. (3.3b). With this simplification and normalized
to unity,
- 2
0.5 -(y-y )
D(Y.,¥ ) = : =~ exp |—=—| . (3.5)
1 "¢ 2 Svam 2
cosh (y—yc) 28

. . . . . =2 .
The Gaussian form is a good numerical approximation to cosh 'y, if

dispersion [13]

It will be noted, however, that additional y dependence is present
to the extent that (u/<pT>) is non-zero. The effect is to cut-off D(yl,yc)
at large Iy-ycl faster than cosh—2 (y—yc), and thus to reduce the effec-
tive dispersion below 6§ = 0.9. For example, the value of Gp (for protons)
should be less than that of dﬂ. In fig. 2, a numerical study of these
effects is presented. Clusters are allowed to decay isotropically
via pure phase-space into four pions or three pions plus one
nucleon. The numerical results are compared with Gaussian curves. The
effective dispersions of the pion and baryon distributions are 0.70 and

0.36, respectively.

Comparison with data is the best test of whether isotropic decay is
a sensible approximation. At the fully inclusive level, it does seem in

fact that the shape of C(yl,y2) at small Ay = ]yl—y is in keeping with

expectations of such a decay scheme [1,2]. However, the full range of y
is not large, even at ISR energies, and some s-dependence of the effective

dispersion of C(yl,yz) might be discerned in the Pisa-Stony Brook data [4].
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Perhaps the reason for success is simply that clusters have fairly low
mass (1 to 2 GeV) and spin. Polarization effects and elongation may
therefore be relatively insignificant. A more detailed examination of the
isotropic decay guess, at least of its n independence, is provided by the

study of Cn(yl,yz), as described below.

For the two-hadron decay function, the simplest postulate is

(2) . _ (D) (1)
D (yl,yz.yc)—D (yl,yc)D (yzlyc) (3.6)

This expresses independent decay. The reliability of eq. (3.6) may be
studied in a Monte Carlo calculation, in which energy and momentum conser-
vation are fully respected. As demonstrated by fig. 3, the approximation

is not unreasonable.

After trivial algebraic manipulation, we can rewrite eq. (3.6) as

(2) 1 1 1 1 2
D (Y /¥ 3Y ) = exp |- ——= (v y) - = (S(y ty )y ) |-
172" ¢ 21T(52 462 1 §2 27172 c
(3.7)
Note that
(2) _ 1 _ 1 _ 2
fdch (yl,yz'yc) = Do/ SFP — (yl yz) . (3.8)

44

Upon inserting eq. (3.7) into eq. (2.48), we conclude that the
c)

correlation function Ci (yl,yz) has the general form of a function of the

difference (y 722) times another function of the sum (y1t¥2l:

1

(c) _ _ (2)

C (yl,y ) G(yl yz) %X fN((y +y ), Y) M n(k)

N k

where

G(yl-yz) s/ SXP — (y y) 7 (3.10)
and

£y, 47,0, V) = 5 Dy e |- 55 Gy, - v)°

| ! Yo 62 21 °2 c

(3.11)

(Y = logs)
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3.2 Production Dynamics

Distinct reaction mechanisms, with different characteristic properties,
have been identified and to some extent isolated in the enlarged phase space
available at NAL and ISR. Among these one may cite single inelastic peri-
cheral proton scattering (diffraction dissociation), production at large pT,

and central region production.

In the central region of rapidity space, the main features of data
are roughly consistent with the hypothesis that the basic dynamics is one
of purely short-range order, although long-range correlation effects are
no doubt present also (if for no other reason, from the tail of diffractive
effects) [1l]. Dominant short range order (or pure short-range correlations)
predicts a scaling plateau in the central region (0_l do/dy - constant,
independent of y and s). While this expectation is not fully supported
at ISR, even for pion production [15], one may view the data as suggesting
its asymptotic validity. The more crucial prediction of short range order
is that the inclusive correlation function C(yl,yz) should (1) be s inde-
pendent, (2) be a function only of (yl-yz) and (3) decrease rapidly in

magnitude as Iyl—y' increases. These expectations are consistent with

N
published data for the ratio [3-7]
do
R(y,¥,) = C(v, /¥ )/ . dy ) G

as long as both yl and y_ are restricted to |yi| < 1l. To be sure, more

2
detailed investigations would be helpful on the s dependence of C(yl,yz)

for hadrons of specific type (7, K, p, etc.) and well defined pT.

3.2.2 Several Mechanisms

As summarized above, one may accept as a working hypothesis at
present that the controlling mechanism in the central region is one for
which correlations are purely of short range character. Nevertheless,
the existence of other mechanisms affects the interpretation of correla-

tion functions in an important way [1,2].
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The inelastic cross section for multiplicity n is written as the sum

of (at least) two contributions:

SR other
o =0 + 0 ' (3.13)
n n n

SR . . . .
where ¢ is that part of n hadron inelastic cross section attributed to
n
other

the short-range dynamics. The remainder, o, , is made up largely of
. L e other D
inelastic diffraction, and thus one often identifies On = cn. A

similar decomposition gives

SR D
do do g
1 n SR 1 n D1 d n
o a& "~ % R ay "% o ay (3-14)
n V4 nog Y n g Y
n n
and
SR SR D D
= 0 + O
cn(yl,yz) n <, (yl,yz) n Cn(yl.yz)
D SR Cross
o~ o C . 3.15
n % S (yl,yz) ( )
SR SR D SR
Here o =0 /O ; o = OD/O ;7 C (y.,y.) and CD(y ,y¥_) are the rapidity
n n n n n n n 172 n 172

correlation functions at fixed n for the purely non-diffractive and

diffractive mechanisms, respectively. For example,

2 SR
dZOSR dOSR do
cSR_ 1 n _( l) n n (3.16)
n 0SR dyldy2 GSR dyl dy2
n n
Cros 1 dOSR 1 do
X S n n
C (y. o v)=|\—T/—"T7T"-———""1 X 12 . (3.17)
172 oSR dyl cD dy
n n

By dropping multiplicity subscript n in egs. (3.15-3.17), one obtains
equations for the decomposition of the fully inclusive correlation function

. . . . SR D
C(yl,yz). As in the fully inclusive case, even if both Cn ‘and Cn were

both of a purely short range character (vanish for Ay = |yl—y2| >> A),
Cross . .
the presence of Cn gives a long-range correlation component to Cn.

D -1 D
Because OD ~ 7mb, and (o) do /dy can be shown theoretically at least,

to be substantial even near y = 0, an understanding of C(Yl'y2) requires

proper understanding of each of the three terms in eq. (3.15). Stated
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otherwise, fits to fully inclusive correlation data require model-dependent
assumptions about the non-short-range order part of Oinel, and about its
separation from OSR. The semi-inclusive data offer a significant advantage
in this regard. For large enough n, contributions to On from the diffractive

term become negligible. Therefore, semi-inclusive correlations at fixed

large n may offer cleaner insight into the dynamical mechanism which domi-

nates production in the central region. Arguments given below suggest that

only the first term in eq. (3.15) is important for n ¥ 1/2 <n>.

A separation of on and of don/dy into "diffractive" and "non-diffractive"
parts may be relatively clean at small n, but it is necessarily ambiguous
at larger n where mechanisms overlap in phase space. Nevertheless, adopting
reasonable operational procedures, experimenters using NAL data estimate
[16] that O:/on < 20% for n = 1/2 <n> and < 10% for n = <n>. Similar figures
may be obtained theoretically, for example, from a model [17] in which one
assumes that the diffractive mechanism is represented by Pomeron exchange,
with the Pomeron- proton subamplitude being non-diffractive in character.
For small n, dci/dy surely peaks near y = * log /st However, as n increases,
the chance increases that a diffractively produced system will populate the
region near y = O, perhaps even roughly uniformly [1]. This, taken together
with the normalization condition(*) [eg. (1.2)], suggests that the difference
given in square brackets in eq. (3.17) vanishes in the central region as n
increases. Combining these two arguments (on and do /dy) and supported by

D SR CCross in

model calculations [18], I find that the net cross-term a o
n n

eq. (3.15) may be ignored for n v 1/2 <n>. Likewise, aD C  should be
n n

Y Y

ignorable for y X y2 N Owhenn Y 1/2 <n>. Thus, attention is henceforth

1
directed solely to the pure short-range contribution to Cn' and conclusions

are restricted ton ¥ 1/2 <n>. The superscript SR is hereforth dropped.

The prototype of pure-short-range order models is the multiperipheral
model [19]. 1In the simplest versions, in which pions are emitted singly

and all exchanged trajectories are equal, zero correlation is predicted

(*) The normalization condition applies separately to each component of oinel
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asymptotically (i.e. R(0,0) Y 0). Positive correlation would result if

resonances were emitted instead of single pions. Following this kind of
argument, we invoke the multiperipheral approach as the basic dynamical
mechanism for cluster production in the central region [1,20-22]. Clusters
of hadrons (resonance-like objects) are emitted more or less independently,
and correlations between cbserved hadrons are explained as owing to the
existence of these clusters. The positivity of R(0,0) and the specific
rapidity dependence of R(yl-yz) are to be associated with properties of

clusters.

The simplest multiperipheral amplitude is one in which all exchanged
trajectories are identical, and in which Pomeron exchange (aP(O) = 1) is
excluded. If we assume that identical clusters are produced by such a

mechanism, then in an over idealized high-energy limit [23],

PN(s) = cN/O = [exp(- <N>)] <N>N/N! (3.18)
with
<N> = BY = B log s (3.19)
and
do
(1) N N
o} y) = — —/—/— = 3 (3.20)
N oy y Y

These equations give a Poisson distribution of cluster multiplicity
N(F2 = 0), and provide a single cluster density Oél)(y) which is a uniform
Y
plateau in y extending over the full range —‘E < Y 5-5, for each N. The

plateau height at fixed N falls as Y_l
The fully inclusive y spectrum is

>
g dy

B . .
Yo N Y (3.21)
N

Owing to energy-momentum conservation, if nothing else, the production
distribution PN will no doubt be cut-off faster than Poisson at large N.
For this, and other reasons, it is useful to keep an open-mind about PN.

Thus, the Poisson form given in eq. (3.18) is not employed here explicitly.
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The extreme single-cluster rapidity distribution, eq. (3.20), is
also unnecessarily specific. Doubtlessly, as N increases, there is
shrinkage of the effective interval in y over which clusters spread. To

maintain the exact normalization condition

1
/'pl\(I )(yc) dyc = N (3.22)

the height should then grow faster than N. Expression (3.20) is also
incompatible with energy conservation, coupled with the (experimental)
requirement that <pT>n be nearly independent of n (c.f. sect. 4.3).

Keeping options open and avoiding unnecessary assumptions, I write

p(l)

N (yc) = NgN(Y, yc) ’ (3.23)

where properties of the function gN will be discussed as needed. Factoring

out N in eq. (3.23) takes care of the most prominent dependence on N.

Because the clusters are produced essentially independently, the two

cluster production density at fixed N is

(2)

_ N-1 (1) (1)
Py (yc Y L) = o (y Jp

c2 N N cl’"N ¥eo) - (3.24)

1 c2

It satisfies the exact normalization condition

fol\(lz)dycl dy , = N(N-1) . (3.25)
In case pgl) = N/Y, one obtains

ol\(]z)(ycl,ycz) = N@-1)/¥? (3.26)
and

R S £o pl?) o MNLZ g2 pov? L (3.27)

o dyldy2 o] N N 'N Y2 2 : -

3.3 Semi-Inclusive Distributions

In this section, I collect expressions for semi-inclusive rapidity

distributions, based upon the equations for isotropic cluster decay and
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independent cluster production derived in sect. 3.1 and 3.2. I define,
first,

(1) _ (1) )
Ho (Y,y) —fdyc gN(Y,yc) D Y,y )s (3.28)

(2)
HN (Y,(yl+y2))

1 -1 1 2
= — — — + .
s Tr/dyc gN(Y,yc) exp [62 (yc 5 (yl y2))] (3.29)
. , , , (L) . )
Function gN(Y,yC) is given in eq. (3.23), and D (y,yc) is given
1
explicitly by eq. (3.5). Note that both H( ) and H(z) are obtained by

convolution of g_ with a Gaussian form. The dispersion of this Gaussian

is ¢ for H(l), and 6//E,for H(2).

The single- and two-hadron semi-inclusive spectra are therefore

do
1 -1 1 N
= 2 - o InNp s v,y) Tk B (ksn,n) (3.30)
o] dy n N N
n N k
and
d20
1 n -1 (2) i
— —— = G(y,7Y,) Q L NP H (Y,y.+y. ) I k(k-1) p(k;N,n)
(4] d b
n dyl y2 172 n N N N 1 72 K
-1 ) (1) (1)
+ — P H H ’
Qn L N(N-1) N 3y (Y,Yl) » (Y Y2)
N
* Yy ¥ k.k_ J (k. ,k_7N,n)
5 ,
_ 12 1 1 2

The Gaussian function G(yl—yz) is given by eq. (3.10), and the multi-

plicity factors were explained in sect. 2.2.

Although simplified somewhat from their most general expressions
(eq. (2.40) and eq. (2.43)), the present forms for don/dy and d20n/dyldy2
are still too complicated for direct confrontation with data. In order
to illustrate more explicitly the physical content of semi-inclusive
correlations, I will choose rather specific (extreme) forms for the single

1
cluster density p; )(yc) and for the single cluster multiplicity distribution
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p(k). These simplifications are made in sect. 4 and lead to expressions

whose n and y dependences are more transparent.

PRACTICAL PHENOMENOLOGY

In this section, simple expressions are derived for semi-inclusive
rapidity spectra and correlation functions. Although based on rather
naive approximations for the internal cluster multiplicity distribution
p(k) and for the single cluster rapidity spectra pél)(yc), they have the

virtues of being simple enough for comparison with data and of illustrating

a range of possibilities.

4.1 Narrow Cluster Multiplicity Distribution

The simplest situation [11] arises when p(k) = §(k-k ) and pél)(y )y = N/Y
o c

[c.f. subsect. 2.2.1 and egs. (3.20) and (3.26)]. Although extreme, the case

p(k) = G(k—Ko) may be taken as representative of situations in which the
internal cluster multiplicity distribution is "narrow". The choice
1 . . . . .
ps )(yc) = N/Y is the (very) asymptotic multiperipheral expectation. One
obtains
g
1% _n (4.1)
o Y :
n dy
2
dc n(k -1) n(n-k )
. e G(y,-vy,) + - (4.2)
d K4 : ‘
on dyl y2 ) 172 Y2
n(k -1) nk
C (¥ 17,) > Gly,~y,) - 5= (4.3)
n ‘1’72 Y 172 72 : :

The Gaussian function G(yl—y2) is given by eq. (3.10).

Rewritten in a form which appears more general, the correlation

function becomes

1 N ko 1 do 1 do
C = (k -1 —_— — G — - — L __n = 1 .
n(yl'y2) (k1) (0 dy )O (v,7v,) = 3 <°n dy )(on dy )

1 2

(4.4)
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These expressions are all independent of whatever arbitrary form is
chosen for PN. Although eq. (4.4) was derived under the assumption that
both yi are in the central region, we may conjecture that it remains valid
outside this region, provided that we employ a realistic (i.e. the observed)
y dependence of G;l doh/dyi in the second term (this guess is justified by

the analysis of sect. 4.3).

[The fully inclusive correlation function in this "model" is

1 do 1l do 1l do ki F2
C(y.,y,) = (k -1) (— ——) G(y.-y.) + (— )(— )
172 o g dy y=0 172 a dyl g dy2 <n>2

(4.5)

The last term vanishes if the cluster production multiplicity distribution
is Poisson (F2 = 0). More generally, it will be negative (F2 < 0), owing
to energy-momentum conservation, even in an independent cluster model.

Eg. (4.5) is obtained after simple algebra upon summing egs. (4.1l) and
(4.2) over n and using eq. (2.30). It is, of course, valid only for the

"non-diffractive" component of the fully inclusive correlation function.

The structure of eqg. (4.4) is that of a positive term, which is
invariant with repsect to translations in rapidity [dependence only on
(yz—yl)], riding upon a negative "background". The positive (Gaussian)
term expresses the correlation owing to the existence of clusters. It is
suggestive therefore, that one attempt to fit semi-inclusive data to an

expression of the form given in eq. (4.4), that is, to a sum of two terms:

2
(y.-v.) do do
E 1
cnxp(yl,yz) = A exp |- ——2— 22 - B (—0 o n)(;— E—n) (4.6)
48 n ¥1/\%, ¥,
exp

According to the model discussed here, one should find that:

(a) "Correlation length" 2§ is independent of n and s, with § =~ 0.6
exp exp
to 0.9. This length is the distance in Ay = (yl-yz) over which the

correlation function falls to l/e of its maximum.

(b) The ratio.%/ l/Gn doh/dy . is independent of n and s, provided

y=0
that the mean number of particles per cluster kO is so independent,
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as would seem reasonable. Thus, this ratio gives a direct measure

of (ko—l) as a function of n.
do

(c) Coefficient B is equal to (ko/n), independent of s. Because %—-E;E-z $7
the following additional remark may be added: n
n (ko-l) k
. _ o
(d) ¢, (0.0) log s 28V log s (4.7)
Re-expressed in terms of the popular ratio
do do
I’
n-"172 n o2 dyl dy2
n
statement (d) becomes
(k -1) k
log s
J 2 2 (4.8)

Rn(0,0) = 26V1  log s

-1
Note that Rn(0,0) falls off as n and grows as log s. These n and
s dependences of Rh(0,0) are in respectable agreement with preliminary ISR

results [8] (at which energies Rn(o,o) is positive).

In the simple model discussed here, the linear growth of Cn(0,0) with

n_appears automatically. However, this prediction is by no means true for

all choices of p(k). Thus, as detailed in sect. 4.2, a Poisson form for
p(k) gives quite different predictions. Moreover, as discussed in sect.
4.3, kinematic effects and adoption of a more realistic expression for
0;1 don/dy result in a decrease of n_l Cn(0,0) versus n, over the full

range of n, even if p(k) = G(k-ko) is retained.

4.2 Broad Intrinsic Cluster Multiplicity Distribution

The second case treated explicitly is that for which p(k) is a Poisson
(1)
N

section 2.2.1 and egs. (3.20) and (3.26)]. By contrast to p(k) = G(k—ko),

distribution with average z = <k>, and, again, p (y ) = N/Y [c.f. sub-
c

this Poisson example is chosen as representative of a "broad" internal

cluster multiplicity distribution.
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-N n-k
101, g ke TS
- ' _ '
On dy YQn N N k! (n-k)!
1 NPN e—Nz nNn—l
Z
= X .
Yo T (4.9)
n
_n 4.9
- ( )
d20 -Nz n-k n
1 n_ Gly.—y.) 1 INP 3 k(k-1)e (N-1) zZ
] - [
cn dyldy2 172 YQn N N Xk k! (n-k)!
-Nz n n-k-m
k N-
+ IN@N-1) BT I ;’:,em, (i_]i_mf? (4.10)
Y0 W Sxm T :

The Gaussian function G(yl—yz) is given in eq. (3.10); PN is the

probability that N clusters are produced.

After modest algebraic simplifications, eq. (4.10) can be reduced

to

2

1 9% -k (On-l)G(y s BTl (nol)<ko (On—l)
Y 2 2 )
%n dyldy2 %n 172 Y Y %n

(4.11)

Thus, the semi-inclusive correlation function takes the form

o) do '
n-1 n-1 1 n
= <k> —_— — —) G -
C, (¥ ry,) k < 5 ) < o ) (O ay ) (v,=v,)
n n o

(o} do do
-= |1+ ——(n;l) —2_1 <k> (i—- o n) (%— . n) (4.12)
n n yl n y2

S

All reference to PN is eliminated in these expressions; instead,

the observable partial cross sections On appear as explicit factors.
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[The fully-inclusive correlation function is

1 do
= <k>{— — G -
C(yl,yz) (0 dy)g (yl y2)
F
(o)
Ee)s) 5
Y1 P <N>

The same remarks apply here as were made immediately after eq. (4.5).]

The structure of eq. (4.12) is again that of a positive term, which

is invariant with respect to translations in rapidity (dependence only on

|y2—yl|), riding upon a negative "background". The positive (Gaussian)

term expresses the correlation owing to the existence of clusters. If one

therefore attempts again to fit semi-inclusive data to an expression of the

form given by eq. (4.6), one should find that

(a)

(b)

"Correlation length" 26 is independent of n and s, with § ~ 0.6
exp exp

to 0.9, as before.

The ratio A//<l/on don/dy> 420 is no longer independent of n and s.
Indeed, this ratio in general depends strongly on both n and s. As
an example, we may choose n = <n> and fit a Poisson distribution to

On locally. Then

(n-1) o__./no_ N (n-1)/<n>

.

Expanding this expression about n = <n>, one finds
do
A/(L____rz) - ao [l+_(.l\_r.1:.ll]
o dy <n>
n
y=0
In the neighborhood of n = <n>, the ratio
d
)
On dy
y=0

. . . . . -1
thus grows linearly with n, but its derivative decreases as <n> ,

. -1 C s .
that is, as (logs) ~. Deviations from the constant prediction of
our previous model may not be easy to observe at very high energy, in

1
the relatively narrow range of relevant n values (5 <n> <n <N 2 <n>).
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(c) To further illustrate the contrast between the simple situation
p(k) = 8(k-k ) and the Poisson choice for p(k), we note that with
o

the Poisson choice, near n = <n>,
2
Cn(0,0) «n , (4.14)

as opposed to the previous linear growth. Thus,

: o] . o
n <k> (n-1) n-1 1 N (n-1) n-1
= - 4 —t = k>
Cn(0,0) log s 26 VYT n o log s 1 n o
n n.
(4.15)
~ _D <k> (n-1) _ _ 1 | . (n-1) <k> 16
V' log s )28/1" <n> log s L <n> (4.16)
For the ratio Rn(0,0), one finds
log s <k> (n-1) _ 1 <k> (n-1)
Rn(0,0) N 26/T?<n> a 1 + ———’—"‘"‘<n> . (4.17)

In fig. 4, numerical evaluations of egs. (4.7) and (4.16) are compared.
The parameters used are (ko—l) =<k> = 2.6, <n> = 12, and § = 0.7. The
choice of <k> =.(k0—l) imposes equal values in the two models for the fully

inclusive correlation function C(0,0).

The contrast in n dependences of Cn(0,0) is understandable physically,
at least in a qualitative sense. Imagine that clusters have both an in-
trinsic multiplicity distribution, which is essentially unobservable, and
an effective average multiplicity distribution, which is seen when they
contribute to an n hadron final state. These intrinsic and effective
spectra are sketched in fig. 5 for the case in which the intrinsic distri-
bution is very broad. If the overall final state multiplicity n is very
small, only small k values from each cluster are admissible, and the
effective width (dispersion) of the cluster is small. By contrast, if n
is large, one may sample k values from the entire p(k), and the effective
cluster dispersion will be large. Therefore, if the basic clusters have
a very broad p(k), a large n variation of the correlation is inevitable.

For very narrow clusters, no such n dependence is possible; one either
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samples the cluster or not. The zero width case treated in sect. 4.1

gives the slowest possible rate of growth with n of

on dy ~0

Y

4.3 "Realistic" Single Particle Spectrum

In sect. 4.1 and 4.2 I focused on the n dependence of Cn(yl,yz), as
it relates to p(k), the intrinsic cluster multiplicity distribution. In
both examples treated, the extreme asymptotic assumption p;l) = N/Y for
the cluster density led to a simple linear growth with n of the single

particle y spectrum:
(4.18)

This is a reasonable if crude approximation to the n and s dependences of
dcn/dy near y = O [8-10], but it is clearly inadequate outside the central
region. Moreover, Cn is computed as the (small) difference of two (large)
terms [eq. (2.46)]. The n dependence of o;l don/dy enters linearily in
the first of these terms, but quadratically in the second. Thus, a syste-
matic deviation from linearity of this n dependence could have pronounced

effects on the predicted n dependence of Cn.

In this subsection, I report one investigation of the extent to
which (experimental) deviations from eq. (4.18) affect our conclusions.
The consequences for Cn are non trivial, but the corrections enter in such
a way that the suggested method of data analysis based on fits to eq. (4.6),

discussed in sect. 4.1, remains appropriate.

A full treatment of the present issue might be properly
carried out with a Monte Carlo simulation of events, in which energy and
momentum are conserved properly event-by-event, and in which transverse
momentum spectra and leading particle effects (diffraction, etc.) are
reproduced [1]. Fortunately, an analytic approach is also possible. I

adopt the more general form for the single cluster density, pél)(yc) = NgN(Y'yc)

[cf. eq. (3.23)], but I retain p(k) = S(k—ko). Thus,
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do

1 n (1) (1)

— == = Y, , ) )

T R (0 n_/dyC g (y) 2 vy (4.19)
and 2

L% n ok -1) B2 (¥,y 4v.) . Gly,-v.)

o dy.dy o n Yty - BT,

192
) (1)
+ n(n ko) Hn (Y,yl) Hn (Y,y2) . (4.20)

The correlation function becomes

(2)

cn(ylyz) = n(ko—l) Hn (Y, (y +y2)) G(yl-yz)

1
cnk 1Y v,y 58P vy (4.21)
o n 1 n 2

function G(yl-yz) is the usual Gaussian, eqg. (3.10), and

Hiz)(Yl(yl+y2))= g%?ufﬁdyc g (Yry ) exp |- iz'(yc— %‘(yl+y2))2
(4.22)
In egs. (4.19) and (4.22), N . ko = n, owing to the choice p(k) =
G(k—ko). (I assume that n = Nko holds for non integer N and n, also).
Expressed in the fashion of our previous results
x -1 82, vty ) do
c, 7,7,) = = (1)n — (i_'a§£> Gly)7vy)
Hn (Y,0) n o
I (;_ i’.q) <_l__ ﬁ_) .23,
n On dyl on dy2
When compared with eq. (4.4), the present result is seen to possess
only one additional factor; namely, the ratio [Hiz)/H;l)], which multiplies
the Gaussian. This ratio depends on n, Y = logs, and (yl+y2).
1 H(2)(Y,(yl+y2))
Rytyywy) =3 (k™D =T, (2) Cly vy =X
H (Y,yl) H (Y,y2)

(4.24)
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(2) (L

The functions H and H cannot be obtained unless one is given
n n

the cluster density functions gN(Y,yC). A reasonable phenomenological

procedure would seem to be to determine gN(XLyC) from experimental data

-1
on (noh) doh/dy by unfolding eq. (4.19). Having thus determined the

gN(Y'yc)' one may insert them into eq. (4.22) and obtain Hiz)(Y,(yl+y2)).

-1
Not having sufficiently precise data on o do /dy at either NAL or
n
ISR energies, I follow a somewhat less satisfactory procedure. I adopt
Gaussian expressions for gw(yc),
1 2 2 4
W) T T I o v/2 d), (4.25)

d
i

and use the energy conservation "sum rule" to determine their dispersions
4. .
N

No claim is made that Gaussian forms are particularly good either

theoretically, or as fits to data. However, they are easy to use and serve

the limited purpose intended.

Applying the energy conservation sum rule [24] to clusters at fixed

cluster multiplicity N, one may write

~/ﬁE g (y)dy =95, (4.26)
c N "¢ o]

where Ec = <MT> cosh yC is the energy of a cluster located at y and
s c
2 2] £

having mean transverse mass <MT> = <[M +PT If eg. (3.20) is adopted,

one obtains (at large Y) the "prediction"
=Y
<MT>N /N (4.27a)

Alternatively, if pN = NKY—dV), applicable over a narrower range,
L

chl < Y—dN, where dN is some N dependent cutoff, eq. (4.27a) is replaced

by

<MT>N = (Y—dN)/N (4.27b)
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Both the rapid decrease with N and the log s growth with s predicted here

seem inconsistent with data [14].

Instead, as a specific analytic approximation for shrinking of the
extent in y, as N increases, I use the Gaussian forms, eq. (4.25). The

energy sum-rule then requires

1 2
N <MT>N exp (—-dN) = /51,

2
oxr
at =2 log [—‘/s—‘—] . (4.28)
N N < ?N

For fixed s, if <MT>N is fairly constant, as would seem suggested
by the rough constancy of <pT>n as a function of n [14], dN decreases
-1
with N, and N pN(O) grows. These are desirable properties. If taken

too seriously, however, the s dependence of eq. (4.25) is unreasonable.

It is difficult to make consistent with scaling the fully inclusive single

particle spectrum. Thus,

No
do _
d_’ = I ONDN « X 3
Y y=o N y=0 N [log (’/-S-'/N )]

rather than the expected (do/dy) = Bo.

I restrict therefore my use of the Gaussian forms to an investigation
of the n dependence of Cn(yl,yz) at fixed s; I would not use them to study

s dependence at fixed n.

The Gaussian forms can be regarded as cluster density distributions
corrected grossly for kinematic (i.e. energy conservation) effects at

fixed s.

Having chosen <MT>N = 2.0 GeV, I plot dN vs. N eq. (4.28) in fig. 6,
for two values of Vs in the ISR range. The choice <MT> = 2.0 GeV, is
somewhat arbitrary. However, fits to fully inclusive data suggest <k>= 4
total hadrons per cluster [1,2]. Assigning each of these hadrons 0.4 to

0.5 GeV of energy leads to roughly the correct constant, <pT>N.
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In fig. 6, the abcissa is labeled by the cluster multiplicity N.
This may be converted to hadron multiplicity n of hadrons of some specific
type h upon multiplying N by ko' where kO is the multiplicity of type h
hadrons in one cluster (e.g. for negative hadrons, ko ? l). Note that

the dispersion dN is of order 1 to 2.

In fig. 7, the single hadron inclusive density, divided by n, is
plotted versus y for three values of N. These curves are obtained from
egs. (4.19), (4.25) and (4.28), with 8 = 0.7, <M > = 2 GeV and Vs'= 32 Gev.
Systematic shrinkage of the spread in y is evident as N increases. The
rise with N of the y = O value of these curves is shown in fig. 8a. A
50% increase is present from N = 3 to N = 8, in contrast to the absence

of N dependence associated with the extreme asymptotic expression
(1)
P

N
*
action of energy conservation. The 50% figure may be a slight exaggeration( ),

= N/Y. This is not a small effect. This increase is forced by the

owing to our use of the Gaussian forms [eq. (4.25)] and assumption that
<MT>N is independent of N. Ignoring these questions of detail, I retain

the present expressions in order to illustrate the effects of a more

. ) (1)
h £ .
sensible choice o pN (Yc) on Cn(yllyz)

As remarked just after eq. (4.23), the relevant new factor is the

ratio

(2) (1)
H (Y,(Y1+Y2)) /Hn (Y,o),

n

which multiplies the Gaussian term in the correlation function. 1In fig. 9,

(2)

the function Hn is plotted versus (yl+y2) for three choices of N at

Vs = 32 GeV. For 3 £ N g 7, it will be noted that Héz) changes by at most

14%¢ over the range O < (yl+y2) < 2 (again, § = 0.7 and <MT> = 2.0 GeV).
This change is similar for different n values. By contrast, the Gaussian
term G(yl—yz) drops by a factor of v 8 as Ay changes from O to 2.

(Ay = iyl-yzl). Thnus in the neighborhood of yl = 0, y. = O, the y dependence

2

-1
(*) Note, however, that at 205 GeV/c, (noy,) do,/dy at y=0 changes from
0.20 at n=1 to 0.30 at n=5, where n stands for multiplicity of negatives.
[Table 2, ref. 10].
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of the first term in eq. (4.23) can still be approximated well by G(yl—yz),
with the effective dispersion being independent of n.

The ratio Héz)/H(l)at yl=y2=0 is shown in fig. 8b as a function of N.
n

It changes by less than 10% over the interval 2 < N < 10. Consequently,

adopting again the expression suggested in eqg. (4.6), I find that the

important n dependence of the ratio

. <%;-d0n>
on dy y=0

reflects the structure of the internal cluster multiplicity distribution

) 1
p(k), and is little influenced by assumptions about pé )(yc).

The present analysis, conbined with that of sect. 4.1 and 4.2, con-
firms the utility of eqg. (4.6) and suggests that semi-inclusive rapidity
correlation data in the region |yl| < 2 and lyzl < 2 be fitted to the

(more explicit) form

2
do - o do
CEXp(y y ) = Ao 1 f) exp _(yl yz) _ 1 (143 ) (l d n) <l n)
Y, T, g o]
n 172 zéexgn(cn dy L ‘ 462 n o n dyl n dy2

This expression applies for n > %‘<n>.

The relevant new physics results afforded by semi-inclusive data are
the n and s dependences of dexp and Ao. In the isotropic cluster approach,
§ o is expected to be independent of n and s, with numerical value

ex
(*)

$ = 0.6 to 0.9.
exp

of the internal cluster multiplicity distribution p(k). If p(k) is very

The n dependence of Ao reflects directly the structure

narrow, Ao should be independent of n and s [Ao ~ <k-1> as described in
sect. 4.1], whereas if p(k) is broad, AO should increase considerably

with n [Ao =~ (n-1) <k>/<n>, as illustrated in sect. 4.2]. The present
analysis verifies that these conclusions are independent of our assumptions
concerning the n and y dependences of G;l don/dy, which, a priori, could

have influenced conclusions substantially.

(*) These numerical values are appropriate for correlations among pions,
which comprise the bulk of hadrons in the central region. For heavier
particles, § is smaller (c.f. sect. 3.1).
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In preliminary analysis of ISR correlation data along the lines of
eq. (4.29), AO is found to vary slowly with n, if at all [8]. Thus, narrow
distributions p(k) are favoured. The mean number of hadrons per cluster

(charged plus neutral) is between 3 and 4.

Although the conclusions of sect. 4.1 and 4.2 regarding the physical
content of the positive Gaussian part of Cn(yl'y2) are strengthened by the

present investigation, the expected n dependence of C (0,0) itself is
n

altered considerably.

-1
Whereas n Cn(0,0) is predicted by eq. (4.7) to be independent of

n, the analysis of this subsection shows that n_l Cn(0,0) should fall with

n. This decrease comes about through the substraction of the two contri-

butions to Cn(0,0) in eq. (4.23). A numerical evolution of results is given
in fig. 8c, for V§1= 32 and 62 GeV. At sufficiently low s, the decrease

-1
of n Cn(0,0) with n results in a change of sign of Cn(0,0) as n increases.

The choice ko = 2.6 was made in the numerical evaluation of eq. (4.23), in
addition to <MT> = 2.0 GeV and § = 0.7. Thus, the Cn(0,0) values presented
are for correlations between two (arbitrary) charged hadrons, in a model
in which the mean number of all hadrons (charged plus neutral) per cluster

is 4.

The precise numerical values given in figs 7, 8 and 9 should not be
taken seriously as quantitative predictions, but rather as qualitative
trends. A more reliable phenomenological procedure was suggested above,
in which data on o;l don/dy are introduced directly, obviating use of the

hypothesized Gaussian forms, eq. (4.25).

The kinematic sign change of Cn(0,0) shown in fig. 8c at low values
of Yg'may help to explain the (roughly) zero values for Cn(0,0) observed
at 205 GeV/c [10] and, as such, aid in reconciling these data with ISR
results [8] at higher /S, where the kinematic (or subtraction) effects

are weaker.

In any case, it is clear that a less than linear growth of C (0,0)
n

by no means rules out independent cluster emission models, contrary to

allegations of Arnold and Thomas [12], and of Morel and Plaut [12].
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In fig. l1l0a, the correlation function n—l cn(y,O) is plotted versus
y for three values of N. (n = ko N). In fig. 1lOb, n Rh(y,o) is presented.
Again, these curves are for charged-charged correlations, at Vs'= 32 GeV.
For n not too large, the function Cn(yl,o) is maximum at yl =y, = 0.

2
It falls off most rapidly from this maximum in the direction yl = -y

5
In this particular direction, the positive Gaussian part falls as exp
4,2
(-y /87). For y2 = 0, the decrease from maximum follows the form
2 2 X
exp (- yl/4 §7). As lyl becomes large, the second term in takes over,

and Cn(y,O) approaches zero from below.

The positive (Gaussian) term in eq. (4.23) is absent if kO = 1. This
might occur for negative-negative correlations, if the mean number of
hadrons per (neutral) cluster is three. Although of limited statistics,
data on 205 GeV/c pp collisions studied by the ANL-NAL-SUNY collaboration
[10] are indeed consistent with little positive component in Cn(yl'y2)

above the negative second term in eq. (4.23).

In the absence of the positive correlation component, the function

Rh(yllyz) given in eq. (4.24) becomes
Rn(yl,yz) > - ko/n '

independent of y and s. Data on Rn for negative-negative correlations
from the 205 GeV/c analysis are reproduced here as fig. 1l. Within sta-

tistics they are parametrized effectively as
R = - l/n_ ’ (4.30)

supportive of the conclusion that the average number of negative hadrons
per cluster cannot be much above 1 [values greater than 1.3 seem clearly
excluded]. That ké—) > 1, however, [or, more accurately, (<(k_)2>/<k>) > 1]
is indicated by the fully inclusive data which show obvious evidence for

elongation of contours along the direction yl = y2 [6]. Barring peculiar
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behaviour of the cross—term [cf. eq. (3.17)] in the fully inclusive corre-

correlation function, this elongation requires positive <k_(k_—1)>/<k>.

Before concluding this section, I remark that if there were correla-
tions between clusters at fixed N, then eq. (3.24) would no longer be
valid. This would mean that the second term on the right of eq. (4.29)
should be altered to something more conplicated. The first term in
eq. (4.29) would, however, remain unchanged, since it is independent of

the two cluster density.

The first term in eq. (4.29), obviously expresses the correlation
coming from within clusters, whereas the second (and possible corrections
to the second) relates to correlation between clusters. It would be
instructive to attempt an analysis of data in terms of this separation of

the two effects.

REMARKS AND CONCLUSIONS

The main phenomenological conclusions were stated in the Introduction
and in sect. 4.3 and need not be repeated. If analyzed according to
eq. (4.29), semi-inclusive rapidity correlation data should provide valuable
qualitative insight into the structure of the internal cluster multiplicity\
distribution p(k) in independent cluster emission models. It is the n
dependence of AO in eq. (4.29) which is most relevant, not that of Cn(0,0)
or of Rn(0,0) . Owing to the nature of approximations one has to make in
order to obtain equations simple enough for confrontation with data, it
should be clear that one cannot extract precise quantitative information on
p(k). Rather, it appears that we must be content with more casual insight.
Data seem to favor a "narrow" spectrum p(k), much more narrow than Poisson,

to the extent that A is found to be independent of n [8].
o

The manner in which results are presented in sect. 4 may give the
mistaken impression that one can determine <k> itself from semi-inclusive
data. This is not true. The quantity determined is the n dependence of

the ratio of cluster averages

- <k (k-1)>
Ao - <k> .
n
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For the two choices of p(k) which I made, this ratio happens to
reduce to <k-1> and <k> (n-1) o l/n o , respectively. However, results
n- n

are in general more complicated.

Although I have concentrated on the variation of A with n, it may
o
be noted that our results suggest that measurement of A at n = <n> gives
o—

an independent determination of the unrestricted ratio

<k (k-1)>
<k>

This ratio would be measured directly if one were able to measure
the fully inclusive correlation function for the non-diffractive component
alone. In fully inclusive data, one observes a melange of non-diffractive
and diffractive effects, requiring model dependent assumptions for their
separation [1,2]. The semi-inclusive method for (approximate) determina-
tion of <k(k-1)>/<k>, without intervention of diffractive effects, may
serve as a useful consistency check.

. . . 1 .
The results given in sect. 4 pertain to n § — <n>, where estimates

N

suggest that diffractive effects can be neglected. The semi-inclusive
correlations for these values of n should allow direct insight into the
"pure non-diffractive" mechanism. For n < % <n> complications arise [18],
and statements are dependent on what one believes about the diffractive
mechanism. However, one simple statement is that, just as for the fully-
inclusive C(yl,yZ» the Gaussian part of Cn(yl'y2) will sit above a long-
range positive "background". Thus, fits to eqg. (4.29) for n v %‘<n> will
give values of 6exp which should decrease with n to the n independent
values taken on for n ¥ <n>.

As a technical remark, one may add that it is in principle not
necessary to employ a 4m solid angle detector to carry out the analyses
suggested here. It should suffice, for example, to determine multipli-
cities n in a counter set—-up which covers the central region, say, to the

extent of 2mw.

My use of the word "independent" in the phrase independent cluster

production model deserves comment. By independent, I intend the factored
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form of eqg. (3.24) for péz)(ycl,ycz). Specifically I do not assume a
Poisson form, or any other form, for PN the probability distribution for
producing N clusters. In the results given in sect. 4.1 and 4.2, the PN'S
do not appear. Wherever they are relevant, it was possible to replace
them by observable on's. If the factored form eq. (3.24) is not adopted,
then the second term of eq. (4.29) is considerably more complicated.
However, the first term of eqg. (4.29) would be unaltered. Thus, it is

the n dependence of AO as it appears in the first term of eqg. (4.29) which

is most significant.

Broaching the question of their existence, one may wonder whether
clusters are observable more directly than through secondary effects such
as discussed in this article [13]. On an intuitive level, it may be
imagined that in individual events, the rapidity values of charged par-
ticles corresponding to one cluster would be grouped together, with a
gap in y separating the tracks of one cluster from those of a neighboring
cluster. However, this is not the typical case. Using a logarithmic
parametrization, one finds that the mean multiplicity of charged hadrons
grows in proportion to (1.5 to 2) log s [25]. Taking <k> = 4 for the

number of hadrons per cluster, we conclude that
<N> v (1, to 1.5) log s .

This gives an expected mean spacing of Ay = 0.7 to 1. between
cluster centers. Since the spread in y of particles from one cluster is
of the same order, the rapidity positions of particles from neighboring
clusters will be overlapped in typical events. However, rapidity spectra
of events in which transverse momenta are required to be "large", and in
which tracks are labeled by their azimuthal angles, might reveal clustering

patterns.

By the same token, the cross section ON for N = 2 clusters should be
non-negligible at NAL and ISR energies, since it is a cross section which
feeds (e.g.) On for n = 6 and 8 charged hadrons. Part of GN=2 may be
roughly energy independent, corresponding to double diffractive excita-

tion. At NAL and ISR energies, the full range of rapidity available is
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large enough so that one should be able to observe the gaps in y space
between two clusters, if they are present. Thus an analysis of y spectra
for individual low multiplicity events should help in establishing at
least whether there is an important two-cluster component. Again, se-

lections on pT and ¢ could be further instructive.
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FIGURE CAPTIONS

Fig. la

Fig. 1lb

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Diagram illustrating an amplitude in which clusters of hadrons
are produced via a multiperipheral-like exchange mechanism.

The exchanges are denoted by dashed lines.

Single diffractive excitation diagram, in which a single Pomeron

link (wavy line) is present.

A numerical study of the single hadron cluster decay function
D(l)(y). In (a) it is assumed that an isotropic cluster of mass
1.5 GeV decays at rest into four pions via pure phase space. The
curve is reasonably well fitted by the Gaussian form exp (—y2/262)
with 8§ = 0.7. In (b), it is assumed that a cluster of mass 2.4 GeV
decays isotropically at rest into three pions plus one nucleon.

Decay spectra are shown for the pion and for the nucleon; these

curves have dispersions § = 0.72 and 0.36, respectively.

2
A numerical evaluation of the two hadron decay function D( )(yl,yz).

It is assumed that an isotropic cluster of mass 1.5 GeV decays at
. . . , 2
rest into four pions via pure phase space. Function D( ) is plotted
2
versus y,. for two selections on yl. Fitting these curves to the

2 2
form exp(-y2/26 ) one obtains 6 = 0.67 for the selection yl < 0.5

and § = 0.8 for the selection yl > 1.0.

Correlation function Cn(yl,yz) at yl = y2 = 0 is plotted versus n.
The curves are for the two models, discussed in sect. 4.1 and 4.2,
in which the intrinsic cluster multiplicity distribution p(k) is
Poisson (solid line) and a delta function (dashed-dot line).

Parameters are listed just after eq. (4.17) of the text.

A sketch of the intrinsic cluster multiplicity distribution p(k)
versus k, with dashed and dot-dashed curves showing the effective

distribution when the overall final state hadron multiplicity n

is small and large, respectively.
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FIGURE CAPTIONS (Cont'd)

Fig. © Dispersion of the cluster density functions, eq. (4.25) of the
text, determined from the energy conservation sum rule, at

/s'= 32 and 62 GeV, plotted versus cluster multiplicity N.

Fig. 7 The single hadron inclusive yield at fixed hadron multiplicity
n, divided by n, (ncxn)-l don/dy, is plotted versus rapidity y
at Vs = 32 GeV for three different values of the cluster multi-
plicity N. The values of n and N are related by n = Nko, where
ko is the (mean) number per cluster of hadrons of some specific
type. These curves are obtained from egs. (4.19), (4.25) and
(4.28) of the text.

Fig. 8 Plotted versus cluster multiplicity N are (a) the value at y=0
of (ncn)nl don/dy; (b) the value at y=0 of the ratio Héz)/H;l),
where these quantities are defined by egs. (4.19) and (4.22) of
the text; and (c) the value at yl = y2 = 0 of the correlation
function Cn divided by n, eq. (4.23) of the text. All results
are for Vs = 32 GeV, except in (c) where values for /s = 62 GeV
are also shown; n denotes final state hadron multiplicity.
Specific parameters used to obtain these results are given in

the text.

Fig. 9  Function Hn(Y,(yl+y2jL eq. (4.22) of the text, is plotted versus
%{yl+y2) at v¥s = 32 GeV for three values of the cluster multi-

plicity N.

Fig. 10 Plotted versus rapidity y for three values of cluster multiplicity

. -1
N, at /s = 32 GeV, are (a) n c (v,0) and (b) n R (v,0).

Fig. 11 The semi-inclusive correlation function ratio for two negative
hadrons, R;_(yl,yz), is plottéd versus Ay = (yl—yz) for yl fixed
in two selected intervals. Data are from ref. 10, at 205 GeV/c.
Index n denotes multiplicity of negatives: (a) n = 2; (b) n = 3;

and (c) n = 5.
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