
CERN–TH/99-359

hep-ph/9911517

November 1999

A Note on New Sources of Gaugino Masses

Karim Benakli1

CERN Theory Division CH-1211, Geneva 23, Switzerland

ABSTRACT

In IIB orientifold models, the singlet twisted moduli appear in the tree-level gauge kinetic

function. They might be responsible for generating gaugino masses if they acquire non–

vanishing F -terms. We discuss some aspects of this new possibility, such as the size of gaugino

masses and their non-universalities. A possible brane setting is presented to illustrate the

usefulness of these new sources.
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Supersymmetry breaking is a major issue in superstring and M-theory. It is for instance

necessary to lift the degeneracy of vacua. For phenomenological applications, supersymmetry

breaking will provide mass splitting between supersymmetric partners, explaining why these

have not been observed in nature yet. The precise dynamics involved in the generation of

such masses is still unknown, but one can use a phenomenological parametrization which

turns out to be useful for many purposes dealing with low-energy predictions.

For weakly coupled heterotic strings, such a line of ideas was advocated in [1], where

non–vanishing F -terms were assumed for the moduli fields S (dilaton) and Ti (associated

to the Kahler structure of the compact internal space). The gauge groups originating from

reduction of the ten-dimensional gauge symmetry have a universal tree-level coupling. Non-

universalities of couplings and gaugino masses arise at one-loop through a Ti dependence of

threshold corrections.

Another convenient framework to pursue these investigations is provided by type IIB

orientifolds. Soft terms for such compactifications have been discussed in [2]. It was no-

ticed that non-universal gaugino masses could be generated if for instance different parts

of the standard model gauge group originated from different sets of branes [2, 3]. To allow

unification of gauge couplings one would then need to construct models where the mod-

uli, controlling the gauge couplings on different branes, get potentials with minima at the

same value. Here we will address another origin for soft terms: twisted moduli related to

blowing-up modes.

The IIB orientifolds are obtained as compactifications on three tori T 1, T 2, T 3 on which

different points are identified under a discrete symmetry ZN , which leads to a set of fixed

points. Requiring N = 1 supersymmetry and Poincaré invariance in four dimensions allows

the presence of 9- and 5-branes (equivalently under T -dualities 3- and 7-branes).

The space group action of the orbifold is defined by some twist eigenvector v = (v1, v2, v3).

In the sector twisted by θk the orbifold group acts as Xi → θkXi, θ = exp 2πiv · J , where

J = (J1, J2, J3), with Xi and Ji the coordinate and generator of rotation in the i-th torus

respectively. For a given twist θk one finds
∏3

i=1 4 sin2 πkvi fixed points that we label by an

index f . In a similar way, the orbifold acts also on the Chan-Paton factors through some

twist parametrized by a vector Va with model-dependent fractional entries l/N . In the case

of even N , some sets of D5i-branes are present, sitting at the origin Xj = Xk = 0 in the

j 6= i and k 6= i complex planes. We label by an index pi the 4 sin2 πkvi fixed points located

in the world-volume of the D5i-branes.
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In addition to the dilaton S and to the three moduli Ti, i = 1, 2, 3, parametrizing the

Kahler structure (volume) of the tori, there are the twisted moduli Y k
f associated to blowing-

up the orbifold singularities f due to a twist θk 2. The new feature in IIB orientifolds is

that these moduli couple at tree-level to gauge kinetic terms. The gauge kinetic functions

for gauge fields on the D9- and D5-branes are given by [4, 5, 6]

f 9
b = S +

1

N

[N−1/2]∑
k=1

cos 2πkV 9
b∏3

i=1 2 sin πkvi

∑
f

Y k
f

f 5
ia = Ti +

1

N

[N−1/2]∑
k=1

cos2πkV 5
ia

2 sinπkvi

∑
pi

Y k
pi
. (1)

In general (1) results in different independent linear combinations of Yai of the Y k
i for

each of the gauge kinetic function corresponding to gauge groups Ga. So F -terms for the

twisted moduli Y k
i will be a new source of tree-level gaugino masses:

Ma =
∑

i

ci
aMYai

, (2)

where MYai
are the contributions of different Yai and the coefficients ci

a are model-dependent.

We see that the gaugino masses and the associated complex phases could be non-universal

in these models.

The cases of odd N lead to a drastic simplification. Only one linear combination, which

we denote as Y , of the twisted moduli appears in the gauge kinetic function. The coefficient

of the dependence for the group Ga is given by the beta-functions ba of the running of the

corresponding gauge coupling [7]:

f 9
a = S +

ba

2
Y. (3)

In the absence of an F -term for S but for Y , a tree–level gaugino mass proportional to

the one-loop beta-function coefficient will be generated (using the convention of [1]):

Ma =

√
3

2

bag
2
a

16π2
m3/2 e−αY (KY

Y )−1/2 =

√
3

8

bag
2
a

16π2
m3/2 e−αY (4)

where we have used Ref 9
a = 8π2/g2

a with ga the four-dimensional gauge coupling. In (4), αY

is the complex phase, K is the Kahler potential which we assumed in the second equality

2We have changed notation from the usual Mk
f to avoid confusion with masses.
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to be given by (Y + Ȳ + · · ·)2. The fact that the form of the gaugino masses is similar to

a one-loop form can be traced back to the fact that the dependence on Y is there to cure

sigma-model anomalies [8]. One-loop contributions to gaugino masses could be important

in this case3.

The relation (4) means that the gauginos have non-universal masses but a unique phase.

The beta-functions coefficients ba take into account all the states that are massless at the

string scale. If these are identified with the low-energy ones, one then has the low-energy

prediction:

M3

b3
=

M2

b2
=

M1

b1
, (5)

where M3, M2 and M1 are the gaugino masses associated with the SU(3), SU(2) and U(1)

factors of the standard model.

The presence of both FS and FY will obviously lead to non-universal gaugino masses

with two independent phases, one of which could be chosen to vanish. The FS is expected

to dominate because of the coupling constant suppression of the FY .

Does this non-universality also mean that gauge unification is lost? The crucial issue

here is that although we have used non-vanishing FY k
i
, we have made no assumption on the

vacuum expectation values of Y k
i moduli themselves. In fact, to be more precise, the gauge

kinetic function is given in the string basis by linear multiplets l and yas:

fa =
1

l
+

∑
s

casyas, (6)

where cas are model-dependent constants. Under linear-chiral duality, l is associated with

the dilaton while yas are associated with the Y k
i moduli. It was argued in [6] that the latter

modulus yas should have a vanishing4 vev to be in the orientifold limit, where our results are

valid. This ensures automatic unification.

Let us turn to some brane setting to illustrate how this new possibility can be useful.

In general one might have 9-branes and three types of 5i–branes corresponding to the

different choices T i of the torus on which the 5-branes are wrapping. There are three kind

of charged states that originate from open strings stretched between 9-branes denoted as

3A nice discussion of such effects might be found for example in [9].
4Supersymmetry breaking could lead to vevs yas, but these should remain very small to keep the orientifold

picture valid.
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(99) states, those stretched between 5-branes denoted as (5i5j) and those stretched between

5-branes and 9-branes denoted as (5i9). The (99), (5i5i) ≡ (55)i strings give rise to gauge

vector multiplets of the corresponding gauge group G9 and G5
i , respectively. They also lead

to chiral multiplets (99) and (55)i charged only under G9 and G5
i respectively. In contrast,

the (5i5j) lead to chiral fields charged under both G5
i and G5

j , while (5i9) open strings lead

to chiral superfields charged under both G5
i and G9.

Suppose that the standard model gauge symmetry originates from 9-branes. We also

assume that there are two (or three, but the the last one plays no role) sets of D5-branes:

51 located at X2 = X3 = 0 and 52 located at X1 = X3 = 0. The gauge coupling on the two

sets are given by:

f 5
1a = T1 +

1

N

[N−1/2]∑
k=1

cos2πkV 5
1a

2 sin πkv1

∑
p1

Y k
p1

f 5
2a = T2 +

1

N

[N−1/2]∑
k=1

cos2πkV 5
2a

2 sin πkv2

∑
p2

Y k
p2 (7)

Consider the 51-brane to be a hidden sector where non-perturbative effects break su-

persymmetry breaking and generate F–terms for some of the Y k
p1 moduli. This could arise

from gaugino condensation (or string-scale breaking as the brane–antibrane models of [10]

if the string scale is at an intermediate region [11]), which leads to a potential which goes

as e−c/g2
1a , which depends on the Y k

p1 and could lead to F -terms for the latter. The 9-brane

standard model gauge kinetic function involves all the twisted moduli and will thus have the

corresponding gaugino masses generated at tree-level.

We identify the standard model matter fields as coming from (529) open strings. These

feel only the Y k
p2 moduli, which share with the Y k

p1 set only the modulus Y k
0 associated to

the blowing-up mode of the origin X1 = X2 = X3 = 0. If FY k
p1
6= 0 for p1 6= 0 and FY k

0
= 0,

then the scalar soft masses will be generated at one-loop only, mediated by gaugino masses.

This might provide a brane realization for the scenario5 proposed in [12]. However, here the

gaugino masses are generically non-universal. A µ-term of the same order as the gaugino

masses will be generated through a Kahler potential [15] if there is a coupling Y k
p2H1H2. Such

a term is expected for instance for the case of compactifications of the form (K3×T 2)/Γ with

a singular K3 and Γ a discrete symmetry as ZN . Before compactification on T 2 and acting

5The nice phenomenological peculiarities of soft terms as suggested in [12] were also present in [13]. The

low-energy predictions are also similar to [14]. I thank A. Pomarol for stressing these points to me.
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with Γ, it is known from [4] that there are couplings Y k
q F 2 with F 2 the six-dimensional gauge

field strength from the (99) sector and Y k
q are the twisted moduli associated with blowing

up the K3 singularities. Now upon the reduction to some of the gauge-field components will

lead to chiral fields in four dimensions that could be identified with the Higgs doublets. It

is interesting to look for explicit string models with such properties.

In conclusion, we have seen that in addition to contributions from the dilaton S and the

moduli fields Ti, there might be new contributions from twisted moduli Y k
f corresponding to

blowing-up modes for the singularities of IIB-orientifolds. These are generically present and

allow an extension of new possiblities for soft-terms as generic non-universalities of masses

and phases, as well as the possibility to naturally restrict the tree-level soft-terms to part of

the spectrum while generating other masses at higher orders.

I am grateful to C. Kounnas, Y. Oz, A. Pomarol and A. Uranga for useful discussions. I

wish also to thank G. Giudice and M. Quirós for comments on the manuscript.
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