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Gluino contribution to radiative B decays: Organization of QCD corrections
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The gluino-induced contributions to the decayb→sg are investigated in supersymmetric frameworks with
generic sources of flavor violation. It is shown that, when QCD corrections are taken into account, the relevant
operator basis of the standard model effective Hamiltonian gets enlarged to contain~i! magnetic and chromo-
magnetic operators with a factor ofas and weighted by a quark massmb or mc , ~ii ! magnetic and chromo-
magnetic operators of lower dimensionality, also containingas , and~iii ! four-quark operators weighted by a
factor as

2 . Numerical results are given, showing the effects of the leading order QCD corrections on the
inclusive branching ratio forb→sg. Constraints on supersymmetric sources of flavor violation are derived.

PACS number~s!: 12.60.Jv, 12.38.Bx, 13.25.Hw
ric
at
o
pa
nt
tra

e
s

od
o

t

w
m

vo
hi
ch
ex
m
et
to
ib
in
n
h
tro
a

by

on
li

n
O

ent
this

re-
dels

ese
a-
ef-

ter
dis-
re-
e-
ies
eral

.
he

ult,

its
ely
I. INTRODUCTION
Processes involving flavor changing neutral currents~FC-

NC’s! provide invaluable guidelines for supersymmet
model building. The experimental measurements of the r
for these processes, or the upper limits set on them, imp
in general a reduction of the large number and size of
rameters in the soft supersymmetry-breaking terms prese
these models. Among these processes, those involving
sitions between first- and second-generation quarks, nam
FCNC processes in theK system, are considered as the mo
formidable tools to shape viable supersymmetric flavor m
els. Moreover, the tight experimental bounds on some flav
diagonal transitions, such as the electric dipole momen
the electron and of the neutron, as well asg22, help con-
strain soft terms inducing chirality violations.

Several supersymmetric models have so far emerged,
specific solutions to the chiral-flavor problem. Among the
are two classes of models in which the dynamics of fla
sets in above the supersymmetry breaking scale and in w
the subsequent flavor problem is destroyed by the me
nisms of communicating supersymmetry breaking to the
perimentally accessible sector. They are known as mini
supergravity models, MSUGRA, i.e. minimal supersymm
ric standard models in which supergravity is the media
between the supersymmetry-breaking sector and the vis
sector @1#, and gauge-mediated supersymmetry-break
models~GMSBs! @2#, in which the communication betwee
the two sectors is realized by gauge interactions. In ot
classes of models, particular flavor symmetries are in
duced, which link quarks and squarks: models in which
alignment of squarks and quarks is assumed@3#, and models
in which the solution to the flavor problem is obtained
advocating heavy first- and second-generation squarks@4–7#.
In the latter, the splitting between squarks of first and sec
generation and those belonging to the third generation re
on aU(2) flavor symmetry@5,7#.

Neutral flavor transitions involving third-generatio
quarks do not yet pose serious threats to these models.
0556-2821/2000/62~7!/075005~20!/$15.00 62 0750
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exception comes from the decayb→sg, the least rare flavor-
and chirality-violating process in theB system. It has been
detected, but the precision of the experimental measurem
of its rate is not very high at the moment. Nevertheless,
measurement already has the effect of carving out some
gions in the space of free parameters of most of the mo
in the above classes~see for example@8#; for a recent analy-
sis, see@9# and references therein!. They also drastically con-
strain several somewhat tuned realizations of models in th
classes@10,11#. Once the precision in the experimental me
surement has increased, this decay will undoubtedly gain
ficiency in selecting the viable regions of the parame
space in the above classes of models and it may help
criminating among the models by then proposed. It is, the
fore, important to get ready reliable calculations of this d
cay rate, i.e., calculations in which theoretical uncertaint
are reduced as much as possible, and which are gen
enough to be applied to generic supersymmetric models

The experimental situation is, at present, as follows. T
ALEPH Collaboration at the CERe1e2 collider LEP reports
a value of the inclusive decayB̄→Xsg of @12#

BR~B̄→Xsg!5~3.1160.8060.72!31024 ~1!

from a sample ofb hadrons at theZ resonance. The CLEO
Collaboration at the Cornell Electron Storage Ring~CESR!
has a statistically and systematically more precise res
based on 3.33106 BB̄ events@13#,

BR~B̄→Xsg!5~3.1560.3560.3260.26!31024, ~2!

but quotes a still very large interval@13#,

231024,BR~B̄→Xsg!,4.531024, ~3!

as the range of acceptable values of branching ratios.
Theoretically, the rate for this decay, characterized by

large QCD contributions, practically as large as the pur
©2000 The American Physical Society05-1
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electroweak ones@14#, is known with high accuracy in the
standard model~SM!. It has been calculated up to the nex
to-leading order~NLO! in QCD, using the formalism of ef-
fective Hamiltonians@15#. Results for LO and NLO calcula
tions and for power corrections can be found in@16–18#,
@19–23#, and@24#, respectively. The resulting theoretical a
curacy is rather astonishing: the inclusion of the NLO QC
corrections reduces the large scale dependences tha
present at LO (625%) to a mere percent uncertainty, on
the value of the parameters to be input in this calculation
fixed. This accuracy, however, is obtained through large
accidental numerical cancellations among different contri
tions to the NLO corrections and a subsequent cancella
of scale dependences@23,25#. The same accuracy, indeed,
not obtained for the NLO calculation of the rate BR(B̄
→Xsg) in simple extensions of the SM, such as models t
differ from the SM by the addition of two or more double
to the Higgs sector@23#.

The calculation of BR(B̄→Xsg) within supersymmetric
models is still far from this level of sophistication. There a
several contributions to the amplitude of this decay, usu
identified by the particles exchanged in the loop. Besides
W2 –t-quark andH2 –t-quark contributions, there are als
the chargino, gluino and neutralino contributions, resp
tively mediated by the exchange of chargino–up-squa
gluino–down-squarks and neutralino–down-squarks.
these contributions were calculated in Ref.@26# within
MSUGRA; their analytic expressions apply naturally
GMSB models also. The inclusion of QCD correctio
needed for the calculation of the rate, was assumed in@26# to
follow the SM pattern. No dedicated study of this dec
exists for the supersymmetric models mentioned above w
specific flavor symmetries. A calculation of BR(B̄→Xsg)
induced solely by the gluino contribution has been p
formed in @27,28# for a generic supersymmetric model, b
no QCD corrections were included.

A NLO analysis of BR(B̄→Xsg) was recently performed
@29# for a specific supersymmetric case~the corresponding
NLO matching conditions are also given in@30#!. This is
valid in a class of models where the only source of flav
violation at the electroweak scale is that of the SM, enco
in the Cabibbo-Kobayashi-Maskawa~CKM! matrix. It ap-
plies to MSUGRA and GMSB models~in which the same
features are assumed/obtained at the messenger scale! only
when the amount of flavor violation, generated radiativ
between the supersymmetry-breaking scale and the e
troweak scale, can be neglected with respect to that indu
by the CKM matrix. It applies, therefore, to the case
which only the lightest stop eigenstate contributes to
chargino-mediated loop and all other squarks and gluino
heavy enough to be decoupled at the electroweak scal
cannot be used in particular directions of parameter spac
the above listed models in which quantum effects induc
gluino contribution@31# as large as the chargino or the S
contribution @11,32#. Nor can it be used as a mode
discriminator tool, able to constrain the potentially lar
sources of flavor violation typical of generic supersymme
models.
07500
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Among these, flavor-violating scalar mass terms and
linear terms induce a flavor nondiagonal vertex gluin
quark-squark. This is generically assumed to provide
dominant contributions to quark-flavor transitions thanks
its large couplinggs . Therefore, it is often taken as the on
contribution to these transitions@33#, and in particular to the
b→sg decay, when attempting to obtain order-of-magnitu
upper bounds on flavor-violating terms in the scalar poten
@27,28#. Once the constraints coming from experimen
measurements are imposed, however, the gluino contribu
is reduced to values such that the SM and the other su
symmetric contributions can no longer be neglected. Any
and NLO calculation of theb→sg rate in generic supersym
metric models should then include all possible contributio

The gluino contribution presents some peculiar featur
related to the implementation of QCD corrections, that ha
not been detected so far. As already mentioned, the de
b→sg involves a quark-flavor violation as well as chiralit
violation. The first is directly related to the flavor violation i
the virtual sfermions exchanged in the loop. The second
be obtained as in the SM, through a chirality flip in th
externalb quark, and it is signaled by its massm̄b . It can
also be induced by sfermion mass terms originating fr
trilinear soft supersymmetry-breaking terms. These m
terms differ from fermionic mass terms by two units
R-charge under aU(1)R symmetry. The correctR charge for
this b–s transition is then restored through the insertion
the gluino massmg̃ in the gluino propagator. The two differ
ent mechanisms producing chirality violation are w
known. They give rise to operators of different dimension
ity when generating the effective Hamiltonian used to
clude QCD corrections to theb→sg decay. Indeed,mg̃ , the
mass of one of the heavy fields exchanged in the loop
naturally incorporated in the Wilson coefficient of the corr
sponding magnetic operator, which is now of dimensi
f ive @e gs

2 ( s̄smnPRb) Fmn#. On the contrary,m̄b , the run-
ning mass of one light field, with a full dynamics below th
matching scale, is naturally included in the definition of
magnetic operator, which is of dimensionsix

@e gs
2 m̄b ( s̄smnPRb) Fmn#.

Moreover, the presence of the strong couplingas in the
gluino contribution immediately sparks off the question
whether this coupling should be included in the definition
the gluino-induced operators or in the corresponding Wils
coefficients. Both choices are, in principle, acceptable. It
be observed, however, as will be discussed in Sec. II, that
first option does not require a modification of the program
implementation of QCD corrections established in the S
case. In particular, the anomalous dimension matrix start
order as and is used up to orderas (as

2) in a LO ~NLO!
calculation. The inclusion of theas coupling in the operators
imposes a necessary distinction of the dimensionsix gluino-
induced magnetic operatorse gs

2 m̄b ( s̄smnPRb) Fmn from

the SM magnetic operatore/16p2 m̄b ( s̄smnPRb) Fmn . As it
will be seen in Sec. II, a set of new four-fermion operato
induced by gluino exchanges, is also needed.

These features single out the gluino contribution to
decayb→sg as one that necessarily requires a dedica
5-2
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study of the implementation of QCD corrections already
the LO in QCD, before including chargino and neutrali
contributions and higher-order QCD corrections. In Sec.
the list of operators induced by gluino-mediated loops
given together with the list of those needed for the SM c
tribution. The number of operators depends on the source
flavor violation that are present in the particular supersy
metric model considered. In an attempt to reach the leve
generality advocated above, no restriction is made on
possible sources of flavor violation in the sfermion sect
These are surveyed in Sec. III. Also shown is the direct c
nection between flavor-violating sources and operators g
erated, emphasizing the differences between the analysis
generic supersymmetric model and the typical MSUGR
inspired analyses. The Wilson coefficients at the match
scale for the Hamiltonian generated by gluino contributio
are given in Sec. IV. They are calculated using the ma
eigenstate formalism, the most appropriate to deal with
ferent off-diagonal terms in the sfermion mass mat
squared, ofa priori unknown size. These coefficients evolv
down to the low-scalemb independently of the usual SM
coefficients, since there is no mixing between SM a
gluino-induced operators. The anomalous-dimension ma
governing this evolution at the LO in QCD and the resulti
analytic expressions for the low-scale Wilson coefficients
given in Sec. V. In Sec. VI, an expression for the LO ra
BR(B̄→Xsg), due to the SM and the gluino-induced Wilso
coefficients, is derived. Numerical evaluations of the bran
ing ratio are shown in Sec. VII, when only one or at mo
two off-diagonal elements in the down-squark mass ma
squared are non-vanishing. As already mentioned, the d
b→sg can be realistically used as a tool to select via
supersymmetric flavor models only when all contributions
BR(B̄→Xsg) are included. The numerical evaluations
Sec. VII, therefore, have only the purpose of illustrating t
effect of the LO QCD corrections, as well as the interpl
between SM and gluino contributions to the branching ra
Strictly speaking, they give results that are valid only in p
ticular directions of the parameter space of generic su
symmetric models, and provide, in general, some interm
ate results of an ongoing, more complete analysis.

II. ORDERING THE QCD PERTURBATIVE EXPANSION
AND THE EFFECTIVE HAMILTONIAN

In the SM, rareB-meson decays are induced by loops
which W bosons and up-type quarks propagate. The m
important corrections are due to exchanges of light partic
gluons and light quarks, which give rise to powers of t
large logarithmic factorL5 log(mb

2/mW
2 ).

The decay amplitude forb→sg obtains large logarithms
L only from loops with gluons. This implies at least on
factor of as for each large logarithm. Since the two scal
mb andMW are far apart,L is a large number and these term
need to be resummed: powers ofasL are resummed at th
LO, terms of the formas (asL)N are obtained at the NLO
Thus, the corrections to the decay amplitude are class
according to
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~LO!: GF ~asL !N, ~N50,1, . . .!,

~NLO!: GF as~asL !N,

whereGF is the Fermi constant.
The resummation of these corrections is usually achie

by making use of the formalism of effective Hamiltonian
combined with renormalization-group techniques. T
needed effective Hamiltonian is obtained by integrating
the heavy degrees of freedom, i.e., the top-quark and thW
boson. It is usually expressed as

H e f f
W 52

4GF

A2
VtbVts* (

i
Ci~m!Oi~m!, ~4!

whereVtb and Vts are elements of the Cabibbo-Kobayash
Maskawa~CKM! matrix. The Wilson coefficientsCi contain
all dependence on the heavy degrees of freedom, wherea
operatorsOi depend on light fields only. The operators re
evant to radiativeB decays can be divided into two classe

Current-current operators and gluonic penguin opera
@18#:

O15~ s̄gmTaPLc! ~ c̄gmTaPLb!,

O25~ s̄gmPLc! ~ c̄gmPLb!,

O35~ s̄gmPLb!(
q

~ q̄gmq!,

~5!

O45~ s̄gmTaPLb!(
q

~ q̄gmTaq!,

O55~ s̄gmgngrPLb!(
q

~ q̄gmgngrq!,

O65~ s̄gmgngrTaPLb!(
q

~ q̄gmgngrTaq!,

whereTa (a51,8) areSU(3) color generators;
Magnetic operators, with chirality violation signaled b

the presence of theb-quark mass:

O75
e

16p2
m̄b~m! ~ s̄smnPRb! Fmn ,

~6!

O85
gs

16p2
m̄b~m! ~ s̄smnTaPRb! Gmn

a ,

wheregs ande are the strong and electromagnetic coupli
constants. Both sets of operators, those in Eqs.~5! and in~6!
are of dimensionsix.

It is by now well known that a consistent calculation f
b→sg at LO ~or NLO! precision requires three steps:
5-3
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~1! a matching calculation of the full standard mod
theory with the effective theory at the scalem5mW to order
as

0 ~or as
1) for Wilson coefficients, wheremW denotes a scale

of orderMW or mt ;
~2! a renormalization group treatment of the Wilson co

ficients using the anomalous-dimension matrix to orderas
1

~or as
2);

~3! a calculation of the operator matrix elements at
scalem5mb to orderas

0 ~or as
1), wheremb denotes a scale

of ordermb .
That matters can be somewhat different is illustrated

the decayb→s l l̄ . The effective Hamiltonian~4! contains in
this case two additional operators:

O95
e2

16p2
~ s̄gmPLb! ~ l̄ gml !,

~7!

O105
e2

16p2
~ s̄gmPLb! ~ l̄ gmg5l !.

It turns out that in this case, the operatorO2 mixes intoO9 at
one loop: the paircc̄ in O2 can be closed to form a loop, an
an off-shell photon producing a pairl l̄ can be radiated from
a quark line. The first large logarithmL5 log(mb

2/MW
2 ) arises

without the exchange of gluons. This possibility has no c
respondence in theb→sg case. Consequently, the decay a
plitude is ordered according toGFL (asL)N at the LO in
QCD andGFasL(asL)N at the NLO. To achieve technicall
the resummation of these terms, it is convenient to rede
magnetic, chromomagnetic and lepton-pair operatorsO7 ,
O8 , O9, andO10 and the corresponding coefficients as fo
lows @34#:

O i
new5

16p2

gs
2

Oi , Ci
new5

gs
2

16p2
Ci ~ i 57, . . . ,10!. ~8!

This redefinition allows us to proceed according to the ab
three steps when calculating the amplitude of the decab

→s l l̄ @34#. In particular, the one-loop mixing of the oper
tor O2 with the operatorO 9

new appears formally atO(as).
In supersymmetric models, where the gluino–quar

squark vertex can be flavor violating, the exchange of glu
and squarks in the loop gives contribution to the decayb
→sg. Various combinations of the gluino–quark–squa
vertex lead touD(B)u5uD(S)u51 magnetic and chromo
magnetic operators~of O7-type, O8-type! with an explicit
factoras , and to four-quark operators, with a factoras

2 . The
complete effective Hamiltonian can then be split in tw
terms:

He f f5H e f f
W 1H e f f

g̃ , ~9!

whereH e f f
W is the SM effective Hamiltonian in Eq.~4! and

H e f f
g̃ originates after integrating out squarks and gluin

Note that ‘‘mixed’’ diagrams, which contain, besides aW
07500
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boson, also gluinos and squarks, give rise toas corrections
to the Wilson coefficients inH e f f

W ~at the matching scale!.
Such contributions can be omitted in a LO calculation, b
they have to be taken into account at the NLO level.

As far as the gluino-induced contribution to the dec
amplitudeb→sg is concerned, the aim is to resum the fo
lowing terms:

~LO!: as ~asL !N, ~N50,1, . . .!,

~NLO!: as as~asL !N,

respectively, at the leading and next-to-leading order.

While H e f f
g̃ is unambiguous, it is a matter of conventio

whether theas factors, peculiar to the gluino exchang
should be put into the definition of operators or into t
Wilson coefficients. In analogy to the decayb→sl1l 2 dis-
cussed above, it is convenient to distribute the factors ofas
between operators and Wilson coefficients in such a way
the first two of the three steps in the program for the S
calculation also apply to the gluino-induced contributio
This implies one factor ofas

1 in the definition of the mag-
netic and chromomagnetic operators and a factoras

2 in the
definition of the four-quark operators. With this conventio
the matching calculation and the evolution down to the l
scalemb of the Wilson coefficients are organized exactly
the same way as in the SM. The anomalous-dimension
trix, indeed, has the canonical expansion inas and starts
with a term proportional toas

1 . The last of the three steps i
the program of the SM calculation requires now an obvio
modification: the calculation of the matrix elements has to
performed at orderas andas

2 at the LO and NLO precision
With this organization of QCD corrections, the SM Ham

tonianH e f f
W in Eq. ~4! and the gluino-induced oneH e f f

g̃ un-
dergo separate renormalization, which facilitates all cons
erations.

The effective HamiltonianH e f f
g̃ , is further split into two

parts:

H e f f
g̃ 5(

i
Ci ,g̃~m!Oi ,g̃~m!1(

i
(

q
Ci ,g̃

q
~m!Oi ,g̃

q
~m!,

~10!

where the indexq runs over all light quarksq5u,d,c,s,b.
The operators contributing to the first part are

Magnetic operators, with chirality violation coming from
the b-quark mass:

O7b,g̃5e gs
2~m! m̄b~m! ~ s̄smnPRb! Fmn ,

O7b,g̃
8 5e gs

2~m! m̄b~m! ~ s̄smnPLb! Fmn ,

O8b,g̃5gs~m! gs
2~m! m̄b~m! ~ s̄smnTaPRb! Gmn

a ,

O8b,g̃
8 5gs~m! gs

2~m! m̄b~m! ~ s̄smnTaPLb! Gmn
a , ~11!

of dimensionsix, as the SM operators. A contribution to th
magnetic operatorO7b,g̃ is shown in Fig. 1. In this and the
5-4
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following diagrams, only the first in the series of possib
insertions of chiral-flavor-violating scalar mass terms
drawn. This has the advantage of showing pictorially
correlation among supersymmetric sources of flavor vio
tion and the generation of operators contributing to the
fective Hamiltonian~10!. Nevertheless, the actual calcul
tions presented in this paper are performed using squ
mass eigenstates, i.e. resumming over all possible sc
mass insertions.

Magnetic operators in which the chirality-violating p
rameter is the gluino massmg̃ , included in the correspondin
Wilson coefficients:

O7g̃,g̃5e gs
2~m! ~ s̄smnPRb! Fmn ,

O7g̃,g̃
8 5e gs

2~m! ~ s̄smnPLb! Fmn ,

~12!

O8g̃,g̃5gs~m! gs
2~m! ~ s̄smnTaPRb! Gmn

a ,

O8g̃,g̃
8 5gs~m! gs

2~m! ~ s̄smnTaPLb! Gmn
a .

Notice that these operators have dimensionfive, i.e. dimen-
sionality lower than that of all remaining operators, of d
mensionsix. Diagrams generating these operators are sho
in Figs. 2 and 3.

Magnetic operators, with chirality violation signaled b
the presence of thec-quark mass:

O7c,g̃5e gs
2~m! m̄c~m! ~ s̄smnPRb! Fmn ,

O7c,g̃
8 5e gs

2~m! m̄c~m! ~ s̄smnPLb! Fmn ,

O8c,g̃5gs~m! gs
2~m! m̄c~m! ~ s̄smnTaPRb! Gmn

a ,

O8c,g̃
8 5gs~m! gs

2~m! m̄c~m! ~ s̄smnTaPLb! Gmn
a .

~13!

The origin of these will become clear after discussing
second term in Eq.~10!. This contains

Four-quark operators with vector Lorentz structure:

O11,g̃
q

5gs
4~m!~ s̄gmPLb! ~ q̄gmPLq!,

O11,g̃
q8 5gs

4~m!~ s̄gmPRb! ~ q̄gmPRq!,

FIG. 1. Diagram mediating theb→sg decay through gluino
exchange and contributing to the operatorO7b,g̃ . A contribution to
the primed operatorO7b,g̃

8 is obtained by exchangingL↔R.
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O12,g̃
q

5gs
4~m!~ s̄agmPLbb! ~ q̄bgmPLqa!,

O12,g̃
q8 5gs

4~m!~ s̄agmPRbb! ~ q̄bgmPRqa!,

~14!

O13,g̃
q

5gs
4~m!~ s̄gmPLb! ~ q̄gmPRq!,

O13,g̃
q8 5gs

4~m!~ s̄gmPRb! ~ q̄gmPLq!,

O14,g̃
q

5gs
4~m!~ s̄agmPLbb! ~ q̄bgmPRqa!,

O14,g̃
q8 5gs

4~m!~ s̄agmPRbb! ~ q̄bgmPLqa!,

where color indices are omitted for color-singlet curren
They arise from box diagrams through the exchange of
gluinos and from penguin diagrams through the exchang
a gluino and a gluon. A typical penguin diagram is shown
Fig. 4. According to their Lorentz structure, these operat
will be called hereafter vector four-quark operators.

Four-quark operators with scalar and tensor Lorentz str
ture:

O15,g̃
q

5gs
4~m!~ s̄PRb! ~ q̄PRq!,

O15,g̃
q8 5gs

4~m!~ s̄PLb! ~ q̄PLq!,

O16,g̃
q

5gs
4~m!~ s̄aPRbb! ~ q̄bPRqa!,

O16,g̃
q8 5gs

4~m!~ s̄aPLbb! ~ q̄bPLqa!,

O17,g̃
q

5gs
4~m!~ s̄PRb! ~ q̄PLq!,

O17,g̃
q8 5gs

4~m!~ s̄PLb! ~ q̄PRq!,

O18,g̃
q

5gs
4~m!~ s̄aPRbb! ~ q̄bPLqa!,

O18,g̃
q8 5gs

4~m!~ s̄aPLbb! ~ q̄bPRqa!,

O19,g̃
q

5gs
4~m!~ s̄smnPRb! ~ q̄smnPRq!,

O19,g̃
q8 5gs

4~m!~ s̄smnPLb! ~ q̄smnPLq!,

FIG. 2. Contribution toO7g̃,g̃ from the insertion of the gluino
mass and of a scalar mass term simultaneously violating chira
and flavor. A contribution toO7g̃,g̃

8 is obtained through the inter
changeL↔R.
5-5
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FIG. 3. Contributions toO7g̃,g̃ from the insertion of the gluino mass and distinct chirality- and flavor-violating scalar mass terms.
approximationms50, the second diagram requires trilinear terms not linked to Yukawa couplings. The analogous contributions toO7g̃,g̃

8 are
obtained through the interchangeL↔R.
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O20,g̃
q

5gs
4~m!~ s̄asmnPRbb! ~ q̄bsmnPRqa!,

O20,g̃
q8 5gs

4~m!~ s̄asmnPLbb! ~ q̄bsmnPLqa!,
~15!

which are induced by box diagrams only and through
exchange of two gluinos. Examples of box diagrams
sketched in Figs. 5. In the following, the operators~15! will
be called scalar-tensor four-quark operators. Notice that,
different q’s, O11,g̃

q –O20,g̃
q are in general distinct sets of op

erators.
The four-quark operators in Eqs.~14! and ~15! are for-

mally of higher order in the strong coupling than the ma
netic and chromomagnetic operators~11!–~13!. As it will be
explicitly shown in Sec. IV, the scalar-tensor operato
O15,g̃

q –O 20g̃
q mix at one loop into the magnetic and chrom

magnetic operators. Given this fact, the necessity of incl
ing O7c,g̃ andO8c,g̃ in the operator basis becomes clear i
mediately: some of the operatorsO 15,g̃

q , . . . , O 20,g̃
q with q

5c mix into O7c,g̃ and O8c,g̃ . Such mixing terms can be
calculated by considering the one-loop matrix eleme
^sguO i ,g̃

c ub& and ^sguO i ,g̃
c ub& ( i 515, . . .,20), respectively.

In principle, also operators likeO7u,g̃ , O7d,g̃ andO7s,g̃ are
induced in an analogous way. These operators, however
weighted bymu , md and ms and are vanishing in the ap
proximation used here:mu5md5ms50.

Due to these mixing effects, the scalar-tensor opera
have to be included in a LO calculation for the decay am
tude. The remaining four-quark operators with vector str
ture O11,g̃

q –O14,g̃
q

~and the corresponding primed operato!
do not mix at one loop neither into the magnetic and ch
momagnetic operators nor into the four-quark operat

FIG. 4. Penguin diagram contributing to the operators~14!.
07500
e
e

or

-

s

-
-

s

re

rs
-
-

-
s

O15,g̃
q –O20,g̃

q . Therefore, these vector four-quark operato
become relevant only at the NLO precision.

We end this section with a comment on the definition
the strong coupling constant used in the various steps of
calculation. In the full theory, which consists here of the S
and gluino–down-squark sectors of a supersymmetric mo
all particles contribute to the running of this coupling, ind
cated by the symbolĝs(m). In order to perform the matching
with the effective theory, where only the five light quark
survive, all the heavy particles have to be decoupled. T
strong coupling constant in this regime, indicated bygs(m),
differs from ĝs(m) by logarithmic terms signaling the decou
pling of the heavy particles:

ĝs~m!5gs~m! @11gs
2~m!~decoupling log8s!#. ~16!

At NLO precision, these decoupling terms have to be tak
into account explicitly. At LO precision, however,ĝs(m) and
gs(m) can be identified andgs(m) is here always understoo
to be the modified minimal subtraction scheme (MS) strong
coupling at the renormalization scalem, running with five
flavors.

III. SOURCES OF FLAVOR VIOLATION

Supersymmetric models contain all sources of flavor v
lation present in a two Higgs doublet model of type II, i.
the vertices with a charged boson:ūL i –dL j –W1 and ūL i –
dR j–H1, ūR i–dL j –H1 ( i , j 51,2,3). Once the electrowea
symmetry is broken, a rotation in flavor space@35#

D o5Vd D, Uo5Vu U, D c o5Ud* Dc, Uc o5Uu* Uc,
~17!

of all matter superfields in the superpotential

W52Di
c o~hd! i j Qj

oHd1Ui
c o~hu! i j Qj

oHu2mHdHu ,
~18!

brings fermions from the current eigenstate ba
$dL

o ,uL
o ,dR

o ,uR
o% to their mass eigenstate bas

$dL ,uL ,dR ,uR%:

dL
o5VddL , uL

o5VuuL , dR
o5UddR , uR

o5UuuR ,
~19!
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FIG. 5. Diagrams contributing to the opera
tors ~15!. In the two upper diagrams, the quar

~squark! q (q̃) can be of up- or down-type and
the flavor violation on the lower squark line, no
explicitly indicated, can be realized through a d
rect flavor-chiral transition~see Fig. 2! or through
distinct chirality and flavor transitions~see Fig.
3!. In the lower diagrams, the down-type quarkdi

is ab- or ans-quark if a single flavor violation is
allowed in the squark lines.
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and the scalar superpartners to the basis$D̃,Ũ,D̃c,Ũc%.
Through this rotation, the Yukawa matriceshd and hu are
reduced to their diagonal formĥd and ĥu :

~ ĥd! i i 5~Ud
†hdVd! i i 5

md i

vd
, ~ ĥu! i i 5~Uu

†huVu! i i 5
mu i

vu
.

~20!

Tree-level mixing terms among quarks of different gene
tions are due to the misalignment ofVd and Vu ; all the
above verticesūL i –dL j –W1 and ūL i –dR j–H1, ūR i–dL j –
H1 ( i , j 51,2,3) are weighted by the elements of the CK
matrix V5Vu

†Vd . The supersymmetric counterpart of the

vertices, ūL i –D̃ j –W̃1, ūL i –D̃ j
c * –H̃1, ūR i–D̃ j –H̃2, are

also proportional toVi j in the limit of unbroken supersym
metry.

To illustrate the sources of flavor violation that may
present in supersymmetric models in addition to those
coded in the CKM matrix, it is instructive to consider
detail the contributions to the squared-mass matrix o
squark of flavorf. The relation between off-diagonal terms
this squared-mass matrix and the type of operators indu
the decayb→sg, will then become clear. Since present co
lider limits give indications that the squark masses are lar
than those of the corresponding quarks, the largest entrie
the squark mass matrices squared must come from the
potential, directly linked to the mechanism of supersymm
try breaking. When restricted to the terms relevant to squ
masses and quark-flavor transitions, the soft potential ca
expressed in terms of the current eigenstates scalar field

Vso f t.Q̃i
o * m Q̃ i j

2
Q̃j

o1D̃ i
c o * m D̃ i j

2
D̃ j

c o1Ũ i
c o * m Ũ i j

2
Ũ j

c o

1S 2
1

2
M3l3l31Ad,i j Hd Q̃i

oD̃ j
c o

1Au,i j Hu Q̃i
oŨ j

c o1H.c.D . ~21!

In Eq. ~21!, m Q̃
2 , m D̃

2 , andm Ũ
2 are Hermitian matrices. The

gluino g̃, a four-component Majorana spinor, is expressed
07500
-

n-

a

g

er
in
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-
rk
be
as

n

terms of the Weyl spinorl3 and has massmg̃5M3. Notice
that, for the trilinear termsAd,i j HdQ̃i

oD̃ j
c o , no proportional-

ity to the Yukawa couplings is assumed. These trilinear s
lar terms are left completely general and may also repre
non-holomorphic ones, of the typeAd,i j8 Hu* Q̃i

oD̃ j
c o discussed

in @36#.
Thus, in the interaction basi

(Q̃1
o ,Q̃2

o ,Q̃3
o ,Q̃1

c o * ,Q̃2
c o * ,Q̃3

c o * ), often denoted also a

(q̃L 1
o , q̃L 2

o , q̃L 3
o , q̃R 1

o , q̃R 2
o , q̃R 3

o ), the squared-mass matri
for a squark of flavorf has the form

M f
2[S m f , LL

2 1F f LL1D f LL ~m f , LR
2 !1F f LR

~m f , LR
2 !†1F f RL m f , RR

2 1F f RR1D f RR
D .

~22!

The term m f , LL
2 is m Q̃

2 , for both, up- and down-type

squarks;m f , RR
2 is m D̃

2 for a down-type squark andm Ũ
2 for

an up-type squark. The off-diagonal 333 block matrix
m f , LR

2 is Ad* vd for a down squark,Au* vu for an up-type one.
~The two vacuum expectation values are chosen to be re!
It should be stressed that, differently fromm f , LL

2 and
m f , RR

2 , the off-diagonal 333 matrix m f , LR
2 is not Hermit-

ian. In other words, it isAd,i j ÞAd, j i* as well asAu,i j ÞAu, j i* .
TheD-term contributionsD f LL andD f RR to the squared-

mass matrix~22!,

D f LL,RR5cos 2b MZ
2~Tf

32Qf sin2 uW!13 , ~23!

are diagonal in flavor space.
The explicit form for theF-term contributions can be ob

tained from scalar quartic couplings arising from the sup
potential~18!:

VF.vd
2 D̃ i

o * ~hd
†hd! i j D̃ j

o1vd
2 D̃ i

c o~hdhd
†! i j D̃ j

c o *

2~m vu D̃ i
o * hd,i j

† D̃ j
c o * 1H.c.!1vu

2 Ũ i
o * ~hu

†hu! i j Ũ j
o

1vu
2 Ũ i

c o~huhu
†! i j Ũ j

c o * 2~m vd Ũ i
o * hu,i j

† Ũ j
c o * 1H.c.!.

~24!
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The rotation~17! reducesF f LL and F f RR to their diagonal
form

md i
2 D̃ i* D̃ i , mu i

2 Ũ i* Ũ i , md i
2 D̃ i

c * D̃ i
c , mu i

2 Ũ i
c * Ũ i

c ,

as well asF f LR (F f RL5F f LR
† ) to

2m~md,i tanb!D̃ i* D̃ i
c * , 2m~mu,icotb!Ũ i* Ũ i

c * .

Therefore, once up- and down-quarks are brought to t
mass eigenstate basis through the rotation~17!, the only
sources of flavor violation in the squark sector arise from
off-diagonal terms in the soft mass matricesm f , LL

2 , m f , RR
2 ,

and m f , LR
2 .1 Their origin, as their magnitude, is a mode

dependent matter based on the interplay between the dyn
ics of flavor and that dictating the breaking of supersymm
try. In general, however, they give rise to large flavor-qua
transitions at the loop level, through large couplings of gl
nos to quarks and squarks belonging to different generati

One very drastic approach to this supersymmetric fla
problem is that of MSUGRA. In this model~or class of mod-
els! the soft potential~21! is characterized at some hig
scale, typically a grand unification scale, by the universa
of the scalar masses:

m Q̃ i j 5m Ũ i j 5m D̃ i j 5m̃ d i j ; ~25!

and the proportionality of the trilinear terms to the Yukaw
couplings, through a universal parameterA:

Ad,i j 5Ahd,i j ; Au,i j 5Ahu,i j . ~26!

At this high scale, the only source of flavor violation is co
tained in the superpotential, indicating that the breaking
supersymmetry occurs at a scale where the dynamics of
vor has already taken place.

An elegant solution to the flavor problem is obtained
GMSB models, in which the signal of supersymmetry bre
ing is transmitted to the visible sector of fieldsQ̃o, Ũo, D̃o,
H1 ,H2, etc., by flavor-blind gauge interactions. In the
models, at the scale of supersymmetry breaking, all matr
in Eq. ~25! are diagonal, although different, and the comm
value ofA in Eq. ~26! is set to zero.

In both MSUGRA and GMSB models, sources of flav
violation in the scalar sector are generated radiatively at
electroweak scale through the scalar quartic couplings
portional to Yukawa matrices. A simple inspection sho
that intergenerational mixing terms due to only one type
Yukawa matrix, get eliminated by the rotation~17!: no off-
diagonal terms are therefore possible inm f , RR

2 in these mod-
els. On the contrary, flavor-violating terms are not rota
away in them f , LL

2 sector in which radiative contribution
arise from quartic scalar couplings proportional to both m

1No new symbols are introduced to indicate the unknown matr
m f , LL

2 , m f , RR
2 , and m f , LR

2 after the rotation~17!. Notice, how-
ever, thatm u, LL

2 and m d, LL
2 , equal before this rotation, are no

related asm u, LL
2 5Vmd,LL

2 V†.
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trices hd and hu . Being loop-induced, this source of flavo
violation is, in general, small@26#, but it becomes non-
negligible for large values of tanb @32#. By this reasoning it
becomes clear that, while a contribution to the operatorO7b,g̃
can arise from an off-diagonal term mixing the second- a
third-generation left squarks (m d, LL

2 )23, as shown in Fig. 1,
no contribution toO7b,g̃

8 is possible in the MSUGRA and
GMSB models. The same holds for all other primed ope
tors. These operators may nevertheless acquire n
vanishing contributions in more general models, in whic
for example, there exists an off-diagonal term (m d, RR

2 )23.
Also vanishing, in MSUGRA and GMSB models, is th

contribution to the operatorO7g̃,g̃ coming from a left-right
mixing element (m d, LR

2 )23. A contribution to this operator
can, however, be induced, even in these models, by inter
erational mixing terms inm d, LL

2 , (m d, LL
2 )23, and the flavor-

diagonal left-right term (m d, LR
2 )33. In the mass-insertion

formalism, often used for the calculation of supersymme
contributions to FCNC processes@38#, the first non-
vanishing contribution toO7g̃,g̃ is then generated by th
double insertion shown in the first diagram of Fig. 3. It w
be shown later that, in generic supersymmetric models,
contribution toO7g̃,g̃ turns out to give the strongest con
straint on (m d, LL

2 )23, when reasonable values of (m d, LR
2 )33

are chosen.
As advocated in the Introduction, the aim of this paper

to provide a calculation as general as possible of the glu
contribution to the decayb→sg, i.e. a calculation that ap
plies to supersymmetric models with the most general s
terms. The QCD-corrected branching ratio for this decay
then be used to constrain the size of the off-diagonal e
ments of the mass matricesm d, LL

2 , m d, RR
2 , and m d, LR

2 .
Since different operators contribute to this decay, with d
ferent numerical impact on its rate, some of these flav
violating terms may turn out to be poorly constrained. Th
given the generality of such a calculation, it is convenient
rely on the mass eigenstate formalism, which remains v
even when the intergenerational mixing elements are la
The procedure used follows closely Refs.@37,26#. The diago-
nalization of the two 636 squark mass matrices squar
M d

2 and M u
2 yields the eigenvaluesmd̃k

2 and mũk

2 (k

51, . . . ,6). Thecorresponding mass eigenstates,ũk and d̃k

(k51, . . . ,6) arerelated to the fieldsũL j , ũR j and d̃L j , d̃R j
( j 51, . . . ,3) as

ũL,R5GUL,R
† ũ, d̃L,R5GDL,R

† d̃, ~27!

where the four matricesGUL,R and GDL,R are 633 mixing
matrices. The gluino-quark-squark vertices are explic
given in Ref.@26#.

IV. WILSON COEFFICIENTS AT THE ELECTROWEAK
SCALE

At the matching scalemW , the non-vanishing Wilson co
efficients for the SM operators in Eqs.~5! and ~6! are, at
leading order inas

s
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C2~mW!51,

C7~mW!5
xtw

24~xtw21!4
@28xtw

3 13xtw
2 112xtw27

1~18xtw
2 212xtw!ln xtw#,

C8~mW!5
xtw

8 ~xtw21!4
~2xtw

3 16xtw
2 23xtw22

26xtwln xtw!, ~28!

with xtw[mt
2/MW

2 .
Among the coefficients arising from the virtual exchan

of a gluino at the matching scale, the non-vanishing ones2

C7b,g̃~mW!52
ed

16p2
C~R!(

k51

6
1

md̃k

2 ~GDL
kb GDL* ks!F2~xgdk

!,

C7g̃,g̃~mW!5mg̃

ed

16p2
C~R!(

k51

6
1

md̃k

2 ~GDR
kb GDL* ks!F4~xgdk

!,

~29!

in the case of magnetic operators and

C8b,g̃~mW!52
1

16p2 (
k51

6
1

md̃k

2 ~GDL
kb GDL* ks! $@C~R!

2 1
2 C~G!#F2~xgdk

!2 1
2 C~G!F1~xgdk

!%,

C8g̃,g̃~mW!5mg̃

1

16p2 (
k51

6
1

md̃k

2 ~GDR
kb GDL* ks! $@C~R!

2 1
2 C~G!#F4~xgdk

!2 1
2 C~G!F3~xgdk

!%,

~30!

in the case of chromomagnetic operators. The coefficie
C7g̃,g̃(mW) and C8g̃,g̃(mW) are of higher dimensionality to
compensate the lower dimensionality of the correspond
operators. The ratiosxgdk

are now defined asxgdk
[mg̃

2/md̃k

2 ;

the Casimir factorsC(R) and C(G) are, respectively,
C(R)54/3 and C(G)53; and the functionsFi(x), i
51, . . . ,4, aregiven in Appendix A. The Wilson coefficient
of the corresponding primed operators are obtained thro
the interchangeGDR

i j ↔GDL
i j in Eqs.~29! and ~30!. The coef-

ficients of the magnetic and chromomagnetic operators,
portional to thec-quark mass, vanish at the matching scale
lowest order inas .

2The linear combination C7b,g̃(mW)O7b,g̃(mW)
1C7g̃,g̃(mW)O7g̃,g̃(mW) coincides with the expressio
dC7(mW)O7(mW) given in the literature~see e.g.@26,39#!, where
O7 is the standard model operator.
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Compared to the SM, there is a larger number of magn
and chromomagnetic operators with different chirality a
dimensionality. The different chiralities are due to the fa
that the gluino couples both to left- and right-handed qua
and the associated squarks. In contrast, theW has only left-
handed couplings and therefore right-handed fields only a
if their masses are not neglected; usually only~chromo!mag-
netic operators with right-handedb quarks are included
Similarly, the occurence of~chromo!magnetic operators with
differing dimensions can also be understood from the chi
ity structure of the gluino couplings. Some of the new ope
tors differ from the SM~chromo!magnetic operators only by
an additional factorgs

2 . These were introduced as addition
operators for practical reasons.

Penguin diagrams mediated by the virtual exchange o
gluino and a gluon, yield non-vanishing coefficients only f
the operatorsO11,g̃

q –O14,g̃
q :

C11,g̃
q

~mW!5
1

16p2

1

3 (
k51

6
1

md̃k

2 ~GDL
kb GDL* ks! $@C~R!

2 1
2 C~G!#F6~xgdk

!1 1
2 C~G!F5~xgdk

!%,

C12,g̃
q

~mW!52
1

16p2 (
k51

6
1

md̃k

2 ~GDL
kb GDL* ks! $@C~R!

2 1
2 C~G!#F6~xgdk

!1 1
2 C~G!F5~xgdk

!%,

C13,g̃
q

~mW!5C11,g̃
q

~mW!,

C14,g̃
q

~mW!5C12,g̃
q

~mW!, ~31!

as well as coefficients for the corresponding primed ope

tors, O11,g̃
q8 –O14,g̃

q8 , which can be obtained from those in E
~31! by interchangingGDR

i j ↔GDL
i j . These coefficients are ac

tually independent of the quark labelq.
Box diagrams,3 with exchange of two virtual gluinos

yield the following contributions to the coefficientsC11,g̃
q –

C14,g̃
q :

C11,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 1

36
~GD L

kb GD L* ks!~GQ L* hq GQ L
hq !

3@G~xdkg ,xqhg!220F~xdkg ,xqhg!#

1 dqd

1

12
~GD L

kb GD L* hs!~GQ L* kq GQ L
hq !

3@7G~xdkg ,xqhg!14F~xdkg ,xqhg!#J ,

3Note that these diagrams are finite and all the manipulati
needed to eliminate the charge conjugation matrices in the cro
topologies shown in Figs. 5 are well defined.
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C12,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 1

12
~GD L

kb GD L* ks!~GQ L* hq GQ L
hq !

3@7G~xdkg ,xqhg!14F~xdkg ,xqhg!#

1 dqd

1

36
~GD L

kb GD L* hs!~GQ L* kq GQ L
hq !

3@G~xdkg ,xqhg!220F~xdkg ,xqhg!#J ,

C13,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 2
1

18
~GD L

kb GD L* ks!~GQ R* hq GQ R
hq !

3@5G~xdkg ,xqhg!2F~xdkg ,xqhg!#

1 dqd

5

12
~GD L

kb GD L* hs!

3~GQ R* kq GQ R
hq !G~xdkg ,xqhg!J ,

C14,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 1

6
~GD L

kb GD L* ks!~GQ R* hq GQ R
hq !

3@G~xdkg ,xqhg!17F~xdkg ,xqhg!#

1 dqd

11

36
~GD L

kb GD L* hs!

3~GQ R* kq GQ R
hq !G~xdkg ,xqhg!J , ~32!

with the corresponding primed coefficients obtained throu
the interchangeGDL

i j ↔GDR
i j andGQL

i j ↔GQR
i j . Notice that the

symboldqd is the Kronecker delta, equal to one whenq is the
down-quark and zero whenq is a different quark. Forq5d,
also, the subscriptQ in the two combinations (GQ L* hq GQ L

hq )
and (GQ R* hq GQ R

hq ) has to be identified withD, typical of a
down-type squark exchanged in the box diagram. The b
diagram functionsG(x,y) andF(x,y) are explicitly listed in
Appendix A.

The remaining coefficientsC15,g̃
q –C20,g̃

q , in mass insertion
language, are characterized by an odd number ofL –R inser-
tions in each squark line. In the mass-eigenstate basis
for squarks in this analysis, they are

C15,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 11

18
~GD R

kb GD L* ks!

3~GQ L* hq GQ R
hq ! F~xdkg ,xqhg!

2dqd

8

3
~GD R

kb GD L* hs!

3~GQ L* kq GQ R
hq !F~xdkg ,xqhg!J ,
07500
h

x-

ed

C16,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 5

6
~GD R

kb GD L* ks!

3~GQ L* hq GQ R
hq ! F~xdkg ,xqhg!

1 dqd

4

9
~GD R

kb GD L* hs!

3~GQ L* kq GQ R
hq !F~xdkg ,xqhg!J ,

C17,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 2
11

18
~GD R

kb GD L* ks!

3~GQ R* hq GQ L
hq ! G~xdkg ,xqhg!

2 dqd

1

3
~GD R

kb GD L* hs!~GQ R* kq GQ L
hq !

3@G~xdkg ,xqhg!17F~xdkg ,xqhg!#J ,

C18,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 2
5

6
~GD R

kb GD L* ks!

3~GQ R* hq GQ L
hq ! G~xdkg ,xqhg!

1 dqd

1

9
~GD R

kb GD L* hs!~GQ R* kq GQ L
hq !

3@5G~xdkg ,xqhg!2F~xdkg ,xqhg!#J ,

C19,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 2
1

8
~GD R

kb GD L* ks!

3~GQ L* hq GQ R
hq ! F~xdkg ,xqhg!

1 dqd

1

12
~GD R

kb GD L* hs!

3~GQ L* kq GQ R
hq !F~xdkg ,xqhg!J ,

C20,g̃
q

~mW!5
1

16p2

1

mg̃
2 (

k,h51

6 H 3

8
~GD R

kb GD L* ks!

3~GQ L* hq GQ R
hq ! F~xdkg ,xqhg!

2 dqd

5

36
~GD R

kb GD L* hs!

3~GQ L* kq GQ R
hq !F~xdkg ,xqhg!J . ~33!

The considerations made for the coefficients~32! hold also
here: the corresponding primed coefficients are obtai
5-10
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through the interchangesGDL
i j ↔GDR

i j and GQL
i j ↔GQR

i j , and
dqd always vanishes, except forq5d. Under renormaliza-
tion, the operators corresponding to the coefficients~33! mix
with the magnetic and chromomagnetic operators in E
~11! and ~13! by undergoing a chirality flip proportional to
mq . Therefore, onlyq5b and q5c can contribute to the
decayb→sg in the approximation of massless light quar
made here.

V. WILSON COEFFICIENTS AT THE DECAY SCALE

As already mentioned in Sec. II, the two termsH e f f
W and

H e f f
g̃ in the effective Hamiltonian~9! undergo separate

renormalization. The anomalous-dimension matrix of the S
operatorsO1–O8 and the evolution of the correspondin
Wilson coefficients to the decay scalemb are very well
known and can be found in@23#.

The evolution of the gluino-induced Wilson coefficien
Ci ,g̃ from the matching scalemW down to the low-energy
scalemb is described by the renormalization group equati

m
d

dm
Ci ,g̃5Cj ,g̃~m! g j i ,g̃~m!. ~34!

The usual perturbative expansion for the initial conditions
the Wilson coefficients,

Ci ,g̃~mW!5Ci ,g̃
0

~mW!1
as~mW!

4p
Ci ,g̃

1
~mW!1•••, ~35!

as well as for the elements ofg j i g̃(m),

g j i ,g̃~m!5
as~m!

4p
g j i ,g̃

0
1

as
2~m!

~4p!2
g j i ,g̃

1
1•••, ~36!

is possible thanks to the choice of including appropri
powers ofgs(m) into the definition of the operatorsOi ,g̃ , as
discussed in Sec. II. Since no NLO results are presente
this paper, the symbolg j i ,g̃(m) will be used in the following
to indicate the LO quantityg j i ,g̃

0 (m). Similarly the Wilson

coefficientsCi ,g̃ will be indicating Ci ,g̃
0 , as already under

stood in the previous sections. The indicesi , j in Eqs. ~35!
and ~36! run over all gluino-induced operators: 12 magne
and chromomagnetic operators and 5 times~one for each
07500
s.

:

f

e

in

flavor q) 20 four-quark operators. The anomalous-dimens
matrix g j i ,g̃ is then a 1123112 matrix. It turns out, however
that primed and non-primed operators do not mix. This
duces the problem to the evaluation of two identical
356 matrices.

Moreover, given their lower dimensionality, th
dimension-five operatorsO7g̃,g̃ , O8g̃,g̃ , and O7g̃,g̃

8 , O8g̃,g̃
8 ,

do not mix with dimension-six magnetic operators. The
34 submatrix for these operators is a block-diagonal ma
with 232 blocks. The block corresponding toO7g̃,g̃ , O8g̃,g̃

is

g j i ,g̃5F 18 0

2
32

9

50

3
G ~ i , j 57g̃,8g̃!, ~37!

and differs from the known mixing matrix of the SM oper
torsO7 andO8 just by anomalous dimensions of the explic

massm̄b and of the couplinggs
2 in the definition of the op-

erators.
In general, the structure of the remaining 54354 matrix,

corresponding to the four-quark operatorsOi ,g̃
q ( i

511, . . .,20;q5u,d,c,s,b), magnetic operatorsO7b,g̃ ,
O7c,g̃ , and the chromomagnetic operatorsO8b,g̃ , O8c,g̃ , is
rather complicated. The fact that in a LO calculation only t
coefficientsC7b,g̃ and C7c,g̃ ~and corresponding primed co
efficients! are needed at the low scalemb , however, simpli-
fies the analysis considerably. Among the four-quark ope
tors, only those with scalar-tensor Lorentz structure, i.e.Oi ,g̃

q

( i 515, . . .,20), mix into the magnetic and chromomagne
operators at orderas . The vector operators@Oi ,g̃

q ( i
511, . . .,14)] on the other hand mix neither into the ma
netic and chromomagnetic operators nor into the sca
tensor four-quark operators.~The scalar-tensor operator
however, mix into the vector four-quark operators.! This im-
plies that the presence of the four-quark operators with v
tor structure is completely irrelevant for the evolution of t
coefficients of the magnetic operators. The observation
the scalar-tensor operators with the labelq mix into O7q,g̃
and O8q,g̃ , with the sameq, together with the fact tha
scalar-tensor operators mix among themselves in a fla
diagonal way, further simplifies the situation. It is inde
possible to restrict the problem at the LO level to the cal
lation of two 838 matrices, i.e. the two matrices corre
sponding to the operatorsO15,g̃

q ,O16,g̃
q , O17,g̃

q ,O18,g̃
q ,

O19,g̃
q ,O20,g̃

q , O7q,g̃ ,O8q,g̃ , for q5b andq5c.
For the caseq5b, the result of such a calculation, i

which the anomalous dimensions due to the explicit pow
of the couplingas are again included, is
5-11



le

BORZUMATI, GREUB, HURTH, AND WYLER PHYSICAL REVIEW D62 075005
$g j i ,g̃%5

l

44

3
0 0 0

1

3
21 2

1

3
1

26
98

3
0 0 2

1

2
2

7

6
21 0

0 0
44

3
0 0 0 0 0

0 0 26
98

3
0 0 0 0

16 248 0 0 36 0
28

3
24

224 256 0 0 6 18
20

3
28

0 0 0 0 0 0 26 0

0 0 0 0 0 0 2
32

9

74

3

m
. ~38!

The anomalous-dimension matrix corresponding to the caseq5c differs from the previous one in the submatrix responsib
for mixing of the four-quark operators into the magnetic and chromomagnetic operators:

$g j i ,g̃%5

l

44

3
0 0 0

1

3
21 0 0

26
98

3
0 0 2

1

2
2

7

6
0 0

0 0
44

3
0 0 0 0 0

0 0 26
98

3
0 0 0 0

16 248 0 0 36 0 216 0

224 256 0 0 6 18 2
16

3
28

0 0 0 0 0 0 26 0

0 0 0 0 0 0 2
32

9

74

3

m
. ~39!
Re

n
e
g in
e

rs
Using the anomalous dimensions matrices~37!, ~38! and
~39!, the renormalization group equation~34! can be solved
by the standard procedure, described, for example, in
@40#, using the Wilson coefficientsCi ,g̃(mW) given in Sec.
IV as initial conditions. The integration of Eq.~34! for C7g̃,g̃
andC8g̃,g̃ yields the following expressions for these Wilso
coefficients at the low scalemb :

C7g̃,g̃~mb!5h27/23C7g̃,g̃~mW!

1
8

3
~h25/232h27/23! C8g̃,g̃~mW!,
07500
f.

C8g̃,g̃~mb!5h25/23C8g̃,g̃~mW!. ~40!

Here and in the following, h denotes the ratio
as(mW)/as(mb). The low-scale Wilson coefficients for th
corresponding primed operators are obtained by replacin
Eq. ~40! all the unprimed coefficients with primed ones. Th
same holds for the following coefficients.

The Wilson coefficients of the dimension-six operato
C7b,g̃ andC8b,g̃ are at low scale:
5-12
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C7b,g̃~mb!5h39/23C7b,g̃~mW!

1
8

3
~h37/232h39/23! C8b,g̃~mW!

1R7b,g̃~mb!,

C8b,g̃~mb!5h
37
23C8b,g̃~mW!1R8b,g̃~mb!. ~41!

The remainder functionsR7b,g̃(mb) andR8b,g̃(mb) are given
in Appendix B. They turn out to be numerically very sma
with respect to the other terms on the right-hand sides of
~41!. Notice that, in the approximationR7b,g̃(mb)
5R8b,g̃(mb)50, the low-scale coefficientsC7b,g̃(mb) and
C8b,g̃(mb) are simply obtained through the integration of E
~34! with the anomalous dimension matrixg j i ,g̃ reduced to
the 232 block of Eq. ~38! corresponding to the operato
O7b,g̃ andO8b,g̃ .

Finally, the coefficientsC7c,g̃(mb) and C8c,g̃(mb) for-
mally have the same expression asC7b,g̃(mb) andC8b,g̃(mb),
when the indices 7b and 8b are replaced by 7c and 8c. Also
in this case, the functionsR7c,g̃(mb) andR8c,g̃(mb), listed in
Appendix B, are numerically small. In the approximatio
R7c,g̃(mb)5R8c,g̃(mb)50, the coefficientsC7c,g̃(mb) and
C8c,g̃(mb) vanish identically, since the corresponding W
son coefficients at the matching scale are vanishing.

VI. BRANCHING RATIO

The branching ratio BR(B̄→Xsg) can be expressed as

BR~B̄→Xsg!5
G~b→sg!

GSL
BRSL , ~42!

where BRSL5(10.4960.46)% is the measured semilepton
branching ratio. To the relevant order inas , the semilep-
tonic decay width is given by

GSL5
mb

5 GF
2 uVcbu2

192p3
gS mc

2

mb
2D , ~43!

where the phase-space functiong(z) is g(z)5128z18z3

2z4212z2 logz. The decay width forb→sg reads

G~b→sg!5
mb

5 GF
2 uVtbVts* u2 a

32p4
~ uĈ7u21uĈ78u

2!, ~44!

whereĈ7 and Ĉ78 can be expressed in terms of the SM a
gluino-induced Wilson coefficients evolved down to the d
cay scalemb as

Ĉ752
16A2p3as~mb!

GF VtbVts*
FC7b,g̃~mb!1

1

mb
C7g̃,g̃~mb!

1
mc

mb
C7c,g̃~mb!G1C7~mb!,
07500
q.

.

-

Ĉ7852
16A2p3as~mb!

GF VtbVts*
FC7b,g̃

8 ~mb!1
1

mb
C7g̃,g̃

8 ~mb!

1
mc

mb
C7c,g̃

8 ~mb!G . ~45!

Notice that, at the leading logarithmic level, it is not possib
to distinguish between the pole massesmb andmc from the
corresponding running quantities at the scalemb or mc . In
the following, these mass parameters are always treate
pole masses.

VII. NUMERICAL RESULTS
Numerical predictions for the QCD-corrected branchi

ratio BR(B̄→Xsg) induced by gluino-squark exchange ca
be obtained from Eqs.~42!–~45!. To show these results, it i
convenient to select one possible source of flavor violation
the squark sector at a time and assume that all the remai
ones are vanishing.

Following Ref. @28#, all diagonal entries inm d, LL
2 ,

m d, RR
2 , and m u, RR

2 are set to be equal and their commo
value is denoted bymq̃

2 . The branching ratio can then b
studied as a function of only one off-diagonal element
m d, LL

2 and m d, RR
2 , normalized tomq̃

2 , i.e. as a function of
one of the elements

dLL,i j 5
~m d, LL

2 ! i j

mq̃
2 , dRR,i j 5

~m d, RR
2 ! i j

mq̃
2 , ~ iÞ j ! ~46!

and/or of one diagonal or off-diagonal element of the 333
matricesm d, LR

2 , m d, RL
2 again normalized tomq̃

2 :

dLR,i j 5
~m d, LR

2 ! i j

mq̃
2 , dRL,i j 5

~m d, RL
2 ! i j

†

mq̃
2 . ~47!

The corresponding off-diagonal entries in the up-squ
mass matrix squared, relevant for the contributions com
from the gluino-induced four-quark operators~14! and ~15!
are set to be equal to those in the down-squark mass m
squared. Among the four-quark operators, only the sca
tensor operators~15! contribute to BR(B̄→Xsg), at LO in
QCD. Their effect is negligible and the above restriction
not likely to produce an unnatural reduction of their cont
bution. Indeed, due to their proportionality toGDR

kb GDL* ks , the
operatorsO i ,g̃

q ( i 515, . . .,20) are generated always togeth
with O7g̃,g̃ andO8g̃,g̃ . As will be discussed later, the latte
are the numerically important operators and the correcti
induced, e.g., byO8g̃,g̃ on the Wilson coefficentC7g̃,g̃(mb)
completely overshadow the effect of the four-quark operat
O i ,g̃

q . These induce corrections of the Wilson coefficie
C7b̃,g̃(mb) of the numerically less relevant operatorO7b̃,g̃
that are generically suppressed by a factor (mb /mg̃) at the
amplitude level. Analogously, the primed scalar-tensor

eratorsO i ,g̃
q8 ( i 515, . . .,20) are also expected to have a ve

small impact on the decay amplitude. The vector four-qu
5-13
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operators, on the other hand, can be generated withou
simultaneous generation ofO7g̃,g̃ andO8g̃,g̃ and no suppres
sion factor (mb /mg̃) is present in this case. Therefore, t
vector four-quark operators, although entering at NLO on
are in general expected to have a larger impact on the d
amplitude than the scalar-tensor four-quark operators. In
context of a NLO analysis, one should actually check if t
assumption of equal off-diagonal entries in the up- a
down-squark mass matrices squared is not an oversimp
cation, affecting the generality of the numerical results.

As for the remaining entries in the squark mass matri
squared, theD terms are calculated usingMZ591.18 GeV,
sin2 uW50.2316, and tanb52; theF termsF f LL andF f RR,
usingmb53 GeV andmt5175 GeV, in the approximation o
vanishing lighter quark masses, whereasF f LR5F f RL50 is
assumed. It is obvious that all the information gain
through the numerical evaluation of BR(B̄→Xsg) on the
size of (m d, LR

2 )33 can be extended to the combinatio
(m d, LR

2 1F f LR)33 and @(m d, LR
2 )†1F f RL#33 in realistic

cases, in whichmÞ0. For the diagonal entrymq̃
2 , the value

mq̃5500 GeV is in general used. Moreover, it is impos
that the eigenvalues of the two 636 up- and down-squark
mass matrices are larger than 150 GeV for all values of thd
ratios scanned. The value of 150 GeV is here taken as
average model-independent lower limit on squark mas
which can be inferred from direct searches of squarks
hadron colliders.

Finally, the remaining parameter needed to determine
branching ratio is

x5
mg̃

2

mq̃
2 , ~48!

wheremg̃ is the gluino mass.
In the following, the SM contribution to BR(B̄→Xsg) is,

in general, added to the gluino contribution: possible c
straints on the flavor-violating sources in the squark se
should be extracted, keeping into account that the SM c
tribution already successfully saturates the experimenta
sult for this branching ratio@12,13#. As already stressed in
Sec. I, this analysis applies to particular directions of
supersymmetric parameter space, in which charged Hi
chargino, and neutralino contributions can be safely
glected with respect to the gluino and SM contribution
Moreover, it should also be mentioned that the bounds
cussed in this section ondLL,23, dRR,23, dLR,23, anddRL,23,
obtained in these particular directions of parameter sp
have to be understood in an indicative sense, since they
extracted ignoring the error of the theoretical calculation.

It is useful to isolate the gluino contribution when illu
trating the impact of the LO QCD corrections on the gluin
induced Hamiltonian. In Figs. 6 and 7, indicated by so
lines, are shown the values of the QCD-corrected branch
ratio obtained, respectively, when onlydLR,23 anddLL,23 are
non-vanishing. Their values are fixed in the two figures
follows: dLR,2350.01 anddLL,2350.5. The branching ratio is
plotted as a function ofx, i.e. as a function of the gluino
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mass, for a given value ofmq̃ , mq̃5500 GeV. Also shown is
the range of variation of the branching ratio, delimited
dotted lines, obtained when the low-energy scalemb spans
the interval 2.4–9.6 GeV. The matching scalemW is here
fixed to MW . As can be seen, the theoretical estimate
BR(B̄→Xsg) is still largely uncertain (;625%). An ex-
traction of bounds ondLL,23 anddLR,23 more precise than jus
an order of magnitude would require, therefore, the inclus
of NLO QCD corrections. It should be noticed, however, th
the inclusion of corrections at the LO has already remov
the large ambiguity on the value to be assigned to the fa
as(m) in the gluino-induced magnetic operators~11!–~13!.
Before adding QCD corrections, the scale in this factor c
assume all values frommb to mW . The corresponding value
for BR(B̄→Xsg) for the two extreme choices ofm are indi-
cated in Figs. 6 and 7 by the dot-dashed lines (m5MW) and
the dashed lines (m54.8 GeV): the branching ratio is virtu
ally unknown. The choicem5MW gives values for the non

FIG. 6. Gluino-induced branching ratio BR(B̄→Xsg) as a func-
tion of x5mg̃

2/mq̃
2 , obtained when the only source of flavor viola

tion is dLR,23 ~see text!, fixed to the value 0.01, formq̃5500 GeV.
The solid line shows the branching ratio at the LO in QCD, f
mb54.8 GeV andmW5MW ; the two dotted lines indicate the rang
of variation of the branching ratio whenmb spans the interval 2.4–

9.6 GeV. Also shown are the values of BR(B̄→Xsg) when no QCD
corrections are included and the explicit factoras(m) in the gluino-
induced operators is evaluated at 4.8 GeV~dashed line! or at MW

~dot-dashed line!.

FIG. 7. Same as in Fig. 6 when onlydLL,23 is non-vanishing and
fixed to the value 0.5.
5-14
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QCD-corrected BR(B̄→Xsg) relatively close to the band
obtained for the QCD-corrected result, in the case show
Fig. 7, when onlydLL,23 is non-vanishing. Finding a corre
sponding value ofm that minimizes the QCD corrections i
the case studied in Fig. 6, when onlydLR,23 is different from
zero, depends strongly on the value ofx.

The results in Figs. 6 and 7 also show that the opera
O7b,g̃ gives much smaller contributions to BR(B̄→Xsg)
than the operatorO7g̃,g̃ . Indeed, the branching ratio obtaine
through O7b,g̃ only is typically suppressed by a facto
(mb /mg̃)2, with respect to that obtained fromO7g̃,g̃ , if simi-
lar values ofdLL,23 anddLR,23 are chosen. Analogous consid
erations hold forO7b,g̃

8 andO7g̃,g̃
8 . The elementsdLR,23 and

dRL,23 are therefore expected to be the flavor-violating p
rameters most efficiently constrained by the measuremen
BR(B̄→Xsg).

In Fig. 8, the dependence of BR(B̄→Xsg) is shown as a
function of dLR,23 when this is the only flavor-violating
source. The two horizontal lines correspond to the minim
and maximum values, 231024 and 4.531024, allowed by
the CLEO measurement. The branching ratio is obtained
adding the SM and the gluino contribution calculated
different choices ofx, and a fixed value ofmq̃ : mq̃
5500 GeV. The values of the gluino mass corresponding
the choicesx50.3, 0.5, 1, 2 aremg̃5274, 354, 500,
707 GeV. The branching ratio is plotted in this figure f
fixed values of the two scales:mb54.8 GeV and mW
5MW . The gluino contribution interferes constructive
with the SM for negative values ofdLR,23, which are then
more sharply constrained than the positive values. Ove
this parameter cannot exceed the per cent level. No inte
ence with the SM is present whendRL,23 is the only source of
flavor violation, as shown in Fig. 9. The results obtained
BR(B̄→Xsg) are then symmetric arounddRL,2350 and the
constraints onudRL,23u are upper bounds on its absolu

FIG. 8. Dependence of the QCD-corrected branching ra

BR(B̄→Xsg), obtained from the SM and gluino contributions, o
the parameterdLR,23, when (m d, LR

2 )23 is the only non-vanishing
off-diagonal element in the down-squark mass matrix squared.
branching ratio is shown for different values ofx5mg̃

2/mq̃
2 , with

mq̃5500 GeV: 0.3~short-dashed line!, 0.5 ~long-dashed line!, 1
~solid line!, and 2~dot-dashed line!. Low and matching scales ar
mb54.8 GeV andmW5MW .
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value: there are no small values ofdRL,23 for which the total
branching ratio falls off the band allowed by the CLEO me
surement.

Much weaker is the dependence of BR(B̄→Xsg) on
dLL,23 if ( m d, LL

2 )23 is the only off-diagonal element in th
down squark mass matrix squared. This dependence is i
trated in Fig. 10 for different choices ofx and mq̃
5500 GeV. The gluino-squark loop generates in this c
only the dimension-six operatorO7b,g̃ and the gluino contri-
bution interferes constructively with the SM contribution f
positive dLL,23. Notice that the mass insertion approxim
tion, given the large values ofdLL,23 allowed by the experi-
mental measurement, cannot be used in this case to obt
reliable estimate of BR(B̄→Xsg), whereas it is an excellen
approximation of the complete calculation in the cas
shown in Figs. 8 and 9. For completeness, also the cas
which the only off-diagonal element in the down-squa
mass matrix squared is in the right-right sector, (m d, RR

2 )23

Þ0, is shown in Fig. 11. The inclusive branching ratio, plo
ted versus the relevant parameterdRR,23, is now obtained
from the incoherent sum of the SM and gluino contributio

o

e

FIG. 9. Same as in Fig. 8, whendRL,23 is the only source of
flavor violation for the gluino contribution. The parameterx is fixed
to 0.3 ~short-dashed line!, 0.5 ~long-dashed line!, 1 ~solid line!, 2
~dot-dashed line!.

FIG. 10. Same as in Fig. 8, whendLL,23 is the only source of
flavor violation for the gluino contribution. The different lines co
respond to:x50.3 ~short-dashed line!, 0.5 ~long-dashed line!, 1
~solid line!, 2 ~dot-dashed line!.
5-15
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and shows conspicuous deviation from the SM result o
for very large values ofdRR,23.

As already observed, among the operatorsO7b,g̃ and
O7g̃,g̃ , the second one has the stronger impact on BRB̄
→Xsg). It is then legitimate to question whetherO7g̃,g̃ may
not provide a stronger constraint ondLL,23. SinceO7g̃,g̃ re-
quires a chirality flip within the loop, then at least an ad
tional off-diagonal element different from zero is needed
the left-left sector of the down-squark mass matrix squar
Indeed, the flavor-conserving left-right mixing ter
(m d, LR

2 )33 together with (m d, LL
2 )23 can also generate th

operatorO7g̃,g̃ ; see the first diagram in Fig. 3. The corr
sponding branching ratio is shown in Fig. 12, as a function
dLL,23 for different choices ofdLR,33. The value of the diag-
onal entries in the squark mass matrix ismq̃5500 GeV and
mg̃ is determined by the choicex50.3. As in the previous
plots, low and matching scales are fixed asmb54.8 GeV and
mW5MW . Both parametersdLR,33 and dLL,23 are chosen to
be positive. The solid line in this figure, obtained fordLR,33
50, then coincides with the short-dashed line in Fig. 10. T

FIG. 11. Same as in Fig. 8, whendRR,23 is the only source of
flavor violation for the gluino contribution. The values ofx corre-
sponding to the different lines are: 0.3~short-dashed line!, 0.5
~long-dashed line!, 1 ~solid line!, 2 ~dot-dashed line!.

FIG. 12. BR(B̄→Xsg) vs dLL,23, whendLL,23 anddLR,33 are the
only sources of chiral-flavor violation. The dependence ondLL,23 is
shown for different values ofdLR,33: 0 ~solid line!, 0.006 ~short-
dashed line!, 0.01 ~dot-dashed line!, 0.1 ~long-dashed line!. The
value ofx5mg̃

2/mq̃
2 is fixed at 0.3 andmq̃ to 500 GeV.
07500
y

-

d.

f

e

SM value of the branching ratio, at the LO in QCD, is th
value at which all curves meet fordLL,2350. The short-
dashed line is obtained for (m d, LR

2 )33.mq̃ mb , which corre-
sponds to a relatively large trilinear coupling in models
which the trilinear term in the soft potential is proportional
the Yukawa couplings. The corresponding maximally
lowed value ofdLL,23 already is, in this case, considerab
smaller than that obtained when only the operatorO7b,g̃ is
present. Larger values ofdLR,33 obviously induce even more
stringent constraints ondLL,23.

Two obvious lessons can be learned out of this analy
First, in directions of the supersymmetric parameter spac
which other contributions to BR(B̄→Xsg) cannot be ne-
glected, some of the constraints derived here may be inv
dated by possible interferences among different contri
tions. An illustration of this is provided by the comparison
the bounds imposed by BR(B̄→Xsg) on dLR,23 anddRL,23,
which are different precisely because contributions fro
SM-gluino interferences are possible in one case, but no
the other. The second lesson stems from the observation
different operators contributing to BR(B̄→Xsg) have very
different numerical relevance. Because of this, it is not n
essarily true that the strongest constraint on a chiral-flav
violating sfermion mass term can be derived from the ope
tor that is generated by it in the most straightforward wa
Therefore, one cannot but end this section by stressing a
the importance of analyses as complete as possible, w
attempting to use theb→sg decay as a model-building too
constraining the soft supersymmetry-breaking terms.

VIII. SUMMARY

Gluino-mediated contributions to FCNC processes
useful probes of chiral-flavor-violating soft breaking term
They are in general cleaner than chargino contributio
which are sensitive also to the CKM matrix, responsible
flavor violation in the SM and in two Higgs doublet mode
~2HDMs!. Since they come with a couplingas , they are
usually rather large. Whether they are indeed much lar
than chargino contributions is a model-dependent issue.

The presence of the couplingas makes these contribu
tions also particularly interesting for FCNC processes
which QCD corrections play as important a role as the pur
electroweak contributions. Exemplary among these p
cesses is the decayb→sg. A specific analysis of the imple
mentation of QCD corrections for the gluino contribution
this decay is required. This paper is devoted to precisely
issue: it shows how to QCD-correct the gluino contributi
to the decayb→sg, using the formalism of the effective
Hamiltonian.

It is shown here that, contrary to the common beli
gluino contributions require an enlargement of the stand
basis of operators needed to describeb-s transitions in the
SM and 2HDM’s. In the SM, the calculation at the LO
QCD includes all terms of the type@aslog(MW/mb)#

N,
whereas the calculation at the NLO resums all ter
as@aslog(MW

2 /mb
2)#N. The program of implementation o

QCD corrections in the SM requires that at each order
5-16
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QCD, e.g. LO or NLO, the anomalous-dimension matrix
the SM operators is calculated at a higher order inas than
the matching conditions and the matrix elements. This
because in the SM, at a certain order in QCD, no other
erator can mix into the magnetic operat

@e/(16p2)# ( s̄smnPRb) Fmn without the exchange of a vir
tual gluon. The situation is different in the case of glui
contributions. Gluino-induced magnetic operators acqu
corrections as in the SM, when an additional virtual gluon
exchanged. Moreover, as in the SM, also gluino-induc
chromomagnetic operators mix into the gluino-induced m
netic ones after the on-shell gluon is connected to a qu
line and an additional photon is radiated. Both operators
first non-vanishing contributions at the matching scale at
der as , and give QCD-corrected contributions of typ
as

2 log(MW
2 /mb

2). Gluino-induced four-quark operators wit
first non-vanishing contributions at the matching scale
O(as

2), however, can mix into the magnetic operato
through the connection of two of the external quark lines a
the emission of an on-shell photon, giving therefore also c
rections of typeas

2 log(MW
2 /mb

2). As not all logarithms are due
to gluon exchange, their systematic resummation is more
volved as in the SM.

A solution to this problem has been proposed in this
per. The couplingsas and as

2 intrinsically connected with
the gluino exchange are respectively factorized out in
definition of magnetic and chromomagnetic operators and
operators originating from box diagrams. With this defin
tion, all gluino-induced operators are distinguished from
standard set of operators in the effective Hamiltonian
duced by SM and 2HDMs. In particular, the magnetic ope
tor O75@(e/(16p2)# m̄b ( s̄smnPRb) Fmn is now distinct
from the gluino-induced one O7b,g̃

5e gs
2 m̄b ( s̄smnPRb) Fmn . This in turn has to be distin

guished from the lower dimensionality operatorO7g̃,g̃

5e gs
2 ( s̄smnPRb) Fmn , induced at the matching scale by

loop diagram in which chiral-flavor violation is provided, fo
example, by the insertion of a left-right mass term in t
squark propagator and the insertion of a gluino mass in
gluino propagator. Completely new are the four-quark ope
tors, such asO15,g̃

q
5gs

4(m)( s̄PLb) (q̄PLq), with an explicit
factor gs

4 . In total, the inclusion of gluino contributions re
quires 56 new operators and another additional 56 with
posite chirality.

With the above definition of gluino-induced operators,
important goal is achieved. The first non-vanishing contrib
tion to the gluino-induced Wilson coefficients is ofO(as

0).
Moreover, the anomalous dimension matrix starts atO(as).
Consequently, the integration of the renormalization gro
equation yields, at first non-vanishing order, terms all of
type @aslog(MW/mb)#

N. The analogy with the LO SM contri
butions is now clear. It is this first non-vanishing order tha
classified as LO gluino contributions. Thus, gluino e
changes induce terms of the typeas@aslog(MW/mb)#

N at the
LO in QCD, to be compared to the LO SM contributions
the type GF@aslog(MW/mb)#

N. The generalization to the
NLO is obvious: it will yield contributions
07500
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as
2@aslog(MW/mb)#

N for the gluino-induced operators, versu
the contributionsGFas@aslog(MW/mb)#

N coming from the
SM set of operators.

A complete LO analysis for the branching ratio of th
inclusive decayB̄→Xsg coming from SM and gluino-
induced contributions is presented in this paper. The
anomalous-dimension matrix for gluino-induced operators
calculated and a simple expression for the branching rati
given. The gluino-induced Wilson coefficients are also list
They are obtained from the evaluation of one-loop diagra
mediated by the exchange of gluino and squarks. The m
eigenstate formalism is adopted as the most suitable for
persymmetric models with different sources of flavor vio
tion and witha priori large flavor-violating mass terms.

A numerical analysis for the inclusive branching rat
BR(B̄→Xsg) due to SM and gluino-induced contributions
presented. The QCD corrections to the gluino-induced c
tributions are found to be even more crucial than in the S
case. The non-corrected contributions to the inclusive de
B̄→Xsg, in fact, suffer from a severe source of uncertain
that has no counterpart in the SM. At the zeroth order
QCD, there is no prescription to fix the scale of the over
factor as

2 in the final expression of the branching ratio, i
trinsically due to gluino exchanges: it can range from t
matching scale;MW to the low-scale;mb . Once QCD
corrections are added, the bulk of this ambiguity is remov
this factor ofas

2 has to be evaluated at a low scale ofO(mb),
although the exact value of this scale remains unknown
similar uncertainty is due to the fact that the matching sc
is only known to be ofO(MW). Thus, the LO branching ratio
still suffers from matching- and low-scale uncertainties sim
lar in size to those in the SM results.

Finally, we conclude by recalling that this analysis
valid in particular directions of the supersymmetric para
eter space, in which charged Higgs, chargino and neutra
contributions can be neglected. In spite of the still large t
oretical error, it provides bounds on the different sources
flavor violation that are present in these directions of para
eter space. Further studies are called for to include N
contributions as well as all the remaining supersymme
contributions.
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APPENDIX A: FUNCTIONS

Listed below are the loop functions appearing in the c
efficients~29! and ~30!:
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F1~x!5
1

12~x21!4
~x326x213x1216x logx!,

F2~x!5
1

12~x21!4
~2x313x226x1126x2logx!,

F3~x!5
1

2 ~x21!3
~x224x1312 logx!,

F4~x!5
1

2 ~x21!3
~x22122x logx!; ~A1!

those originated by the calculation of penguin diagrams@see
coefficients~31!#:

F5~x!5
1

36~x21!4
@7x3236x2145x216

1~18x212!logx#,
07500
F6~x!5
1

36~x21!4
~211x3118x229x12

16x3logx!; ~A2!

and finally, the box-diagram functions:

F~x,y!52
1

x2y F x logx

~x21!2
2

1

x21
2~x→y!G ,

G~x,y!5
1

x2y F x2logx

~x21!2
2

1

x21
2~x→y!G . ~A3!

APPENDIX B: WILSON COEFFICIENT REMAINDERS

The effect of the four-quark operators~15! on the evolu-
tion of the Wilson coefficient relative to the magnetic a
chromomagnetic operators~11!–~13! is encoded in the re-
mainder functionsR7q,g̃(mb) andR8q,g̃(mb) (q5b,c) listed
below:
R7b,g̃~mb!5S 2
2353

33276
~d11d2!1

34105A241

8019516
~d12d2!1

100

141
d32

67

118
d6D C15,g̃

b
~mW!

1S 2
595

33276
~d11d2!2

27749A241

8019516
~d12d2!2

32

141
d31

31

118
d6D C16,g̃

b
~mW!

1S 1
1181

2773
~d11d2! 1

7131A241

668293
~d12d2! 2

48

47
d3 1

10

59
d6D C19,g̃

b
~mW!

1S 1
1767

2773
~d11d2! 2

13487A241

668293
~d12d2! 2

224

47
d31

206

59
d6D C20,g̃

b
~mW!, ~B1!

R8b,g̃~mb!5S 1
391A241

45308
~d12d2!2

25

188
~d11d222d3! D C15,g̃

b
~mW!

1S 2
20A241

11327
~d12d2! 1

2

47
~d11d222d3! D C16,g̃

b
~mW!

1S 2
231A241

11327
~d12d2!1

9

47
~d11d222d3! D C19,g̃

b
~mW!

1S 2
702A241

11327
~d12d2!1

42

47
~d11d222d3! D C20,g̃

b
~mW!, ~B2!

R7c,g̃~mb!5S 2
2375

33276
~d11d2!1

39119A241

8019516
~d12d2!1

576

2773
d3

2
1273

33276
~d41d5!2

25937A241

8019516
~d42d5!1

32

2773
d6DC15,g̃

c
~mW!

1S 1
1747

33276
~d11d2!1

7205A241

8019516
~d12d2! 2

2824

8319
d32

5267

33276
~d41d5!
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2
85147A241

8019516
~d42d5!1

1528

2773
d6DC16,g̃

c
~mW!

1S 2
373

2773
~d11d2! 2

17843A241

668293
~d12d2!2

4800

2773
d32

3087

2773
~d41d5! 2

48119A241

668293
~d42d5!

1
11720

2773
d6DC19,g̃

c
~mW!1S 1

1001

2773
~d11d2! 2

28481A241

668293
~d12d2!

2
7360

2773
d31

907

2773
~d41d5! 1

11091A241

668293
~d42d5!1

3544

2773
d6DC20,g̃

c
~mW!, ~B3!

R8c,g̃~mb!5S 2
25

376
~d11d2!1

391A241

90616
~d12d2!1

216

2773
d31

13

472
~d41d5!2

73A241

113752
~d42d5! DC15,g̃

c
~mW!

1S 1
1

47
~d11d2! 2

10A241

11327
~d12d2! 2

353

2773
d31

5

118
~d41d5! 1

20A241

14219
~d42d5! DC16,g̃

c
~mW!

1S 1
9

94
~d11d2! 2

231A241

22654
~d12d2!2

1800

2773
d31

27

118
~d41d5! 1

393A241

28438
~d42d5! DC19,g̃

c
~mW!

1S 1
21

47
~d11d2! 2

351A241

11327
~d12d2!2

2760

2773
d31

3

59
~d41d5! 2

153A241

14219
~d42d5! DC20,g̃

c
~mW!, ~B4!

where the factorsd1–d6 are given by

d15h (471A241)/23, d25h (472A241)/23, d35h37/23,

d45h (291A241)/23, d55h (292A241)/23, d65h39/23. ~B5!

Notice that in Eqs.~B1!,~B2! there is no dependence onC17,g̃
b (mW) andC18,g̃

b (mW), as there is no dependence onC17,g̃
c (mW)

andC18,g̃
c (mW) in Eqs.~B3!,~B4!. By inspecting the two anomalous-dimension matrices in Eqs.~38! and~39!, it is easy to see

that the two operatorsO17,g̃
q , O18,g̃

q , do not mix with the remaining onesO15,g̃
q , O16,g̃

q , O19,g̃
q , O20,g̃

q , O7q,g̃ , O8q,g̃ in either of
the two cases,q5b andq5c.
et
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