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Abstract
The relation between the gauge-invariant local BRST cohomology involving the

antifields and the gauge-fixed BRST cohomology is clarified. It is shown in particular
that the cocycle conditions become equivalent once it is imposed, on the gauge-fixed
side, that the BRST cocycles should yield deformations that preserve the nilpotency
of the (gauge-fixed) BRST differential. This shows that the restrictions imposed
on local counterterms by the Quantum Noether condition in the Epstein–Glaser
construction of gauge theories are equivalent to the restrictions imposed by BRST
invariance on local counterterms in the standard Lagrangian approach.
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1 Introduction

In the BRST approach to perturbative gauge theories [1, 2], the possible counterterms
are restricted by Ward–Slavnov–Taylor identities [3, 4, 5], which have a cohomological
interpretation. If one follows the path-integral approach and takes into account the renor-
malization of the BRST symmetry à la Zinn-Justin [6] by introducing sources coupled to
the BRST variation of the fields and the ghosts, it may be shown [6, 1, 7, 8, 9] that the
counterterms must fulfil the BRST invariance condition

sA = 0, (1.1)

where s is the BRST differential acting in the space of fields, ghosts and associated sources
(“antifields” [10]). The counterterms are local, so A in (1.1) is given by the integral of a
local n-form a, in terms of which the BRST invariance condition becomes

sa + db = 0, (1.2)

for some (n − 1)-form b. Following an initial investigation by Joglekar and Lee [11], the
general solution of (1.2) for Yang–Mills gauge models has been determined in [12], where
it was shown that up to trivial terms of the form sc + de, the counterterm a in (1.2) is
equal to a strictly gauge-invariant operator, plus Chern–Simons terms in odd space-time
dimensions (in the absence of U(1) factors for which there are further solutions [13], also
dealt with in [12]). This guarantees renormalizability of the theory in the “modern sense”
[14] in any number of spacetime dimensions, and in the standard power-counting sense in
4 dimensions.

If one follows instead the operator formalism and the Quantum Noether method based
on the gauge-fixed BRST formulation [15, 16], one finds that the counterterms are con-
strained by the condition

γga + db ≈ 0, (1.3)

where γg is the “gauge-fixed” BRST differential acting on the fields and where both a and
b involve only the fields (no antifield). The symbol ≈ means “equal when the (gauge-fixed)
equations of motion hold”.

The question then arises as to whether (1.2) and (1.3) are equivalent. It may be
shown that the antifield and gauge-fixed local cohomologies are equivalent [17], so that
any solution a of sa = 0 defines a solution a′ of γga′ ≈ 0 and vice versa. This is not true,
however, for the cohomologies modulo d [18]. In particular, there are solutions of (1.3)
that have no analogue in the antifield cohomology and which, therefore, do not correspond
to an integrated, gauge-invariant operator. An example is given by the Curci–Ferrari mass
term [19]

−1

2
Aa

µAµ
a + C̄aC

a, (1.4)

which is a solution of (1.3) in the gauge where the equation of motion for the auxiliary b-
field is ba +∂µAµ

a− 1
2
C̄bf

b
acC

c = 0, but which does not define an integrated gauge-invariant
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operator. The properties of (1.4) have been studied in [20, 21, 22, 23, 24, 25]. Thus, (1.2)
and (1.3) are in general not equivalent1.

If, however, the cocycle condition (1.3) is supplemented by the requirement of nilpo-
tency of the deformed BRST differential (which is required if we want the theory to
be unitary) the Curci–Ferrari mass term is excluded. It is the purpose of this letter to
show that, quite generally, the gauged-fixed cocycle condition (1.3), supplemented by the
requirement that the deformation generated by the permissible counterterms should pre-
serve (on-shell) nilpotency of the BRST symmetry, is equivalent to the antifield cocycle
condition (1.2), which controls the counterterms in the Zinn-Justin approach.

This letter is organized as follows. In the next section, we recall some salient properties
of the gauge-fixed action. The equivalence of the two cocycle conditions is shown in section
3, while a discussion of trivial solutions is presented in section 4. In section 5, we review
the analysis of counterterms in the Quantum Noether method and show how nilpotency of
the deformed BRST differential arises in that context. Finally, in an appendix we present
an analysis of the relation between the antifield and the weak gauged-fixed cohomology
using methods of homological algebra.

2 Gauge-fixed action

The starting point is the solution S[φ, φ∗] of the master equation

(S, S) ≡ 2
δRS

δφA

δLS

δφ∗A
≡ −2

δRS

δφ∗A

δLS

δφA
= 0. (2.1)

We use DeWitt’s condensed notations. The solution S is a local functional, as are all func-
tionals without free indices occurring below. The “fields” φA include the original fields,
the ghosts, as well as the auxiliary fields and the antighosts of the non-minimal sector.
We assume that the canonical transformation necessary for gauge-fixing has already been
performed, so that the gauge-fixed action is simply obtained by setting the antifields equal
to zero, Sg[φ] = S[φ, φ∗ = 0]. The gauge-fixed BRST differential γg is defined by

γgφA = −δRS

δφ∗A
|φ∗=0, (2.2)

where right and left derivatives are defined by δF = (δRF/δzα)δzα = δzα(δLF/δzα).
We use the conventions of [17], but the derivations are taken to act from the left (so
sF = (S, F ) etc.). The transformation generated by γg leaves the gauge-fixed action
invariant because of the master equation. As a result, the functional derivatives of Sg

transform into themselves:

γg δRSg

δφA
= −δRSg

δφB

δR

δφA
(
δLS

δφ∗B
); (2.3)

1We keep here the auxiliary b-field, but similar considerations can be made if one eliminates the
auxiliary fields, since the gauge-fixed BRST cohomological groups are invariant under such an elimination.
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here and below, it is understood that φ∗ is set equal to zero after the second derivatives
have been computed. The gauge-fixed BRST differential is weakly nilpotent,

(γg)2φA =
δRSg

δφB

δL

δφ∗B
(
δRS

δφ∗A
). (2.4)

Both (2.3) and (2.4) are direct consequences of the definition (2.2) and the master equa-
tion.

The BRST differential in the space of the fields and the antifields is defined by

sF = (S, F ) (2.5)

for any F (φ, φ∗). It is related to γg as sφA = γgφA + antifield-dependent terms or, which
is the same, γgφA = sφA |φ∗=0. It is strictly nilpotent, s2 = 0. It will be useful in the
sequel to give a special name to the terms linear in φ∗ in the expansion of sφA,

sφA = γgφA + λgφA + O((φ∗)2), (2.6)

with

λgφA = (S, φA) |linear in φ∗

= −φ∗B
δL

δφ∗B
(
δRS

δφ∗A
). (2.7)

The action of s on the antifields can also be expanded in powers of the antifields. One
has sφ∗A = δgφ∗A + γgφ∗A + O((φ∗)2) where δg is the Koszul differential associated with the
gauge-fixed stationary surface [17],

δgφ∗A = (S, φ∗A) |φ∗=0=
δRSg

δφA
(2.8)

and where

γgφ∗A = (S, φ∗A) |linear in φ∗= φ∗B
δR

δφA
(
δLS

δφ∗B
). (2.9)

One easily verifies the relations (δg)2 = 0, δgγg + γgδg = 0, (δgλg +λgδg)φA +(γg)2φA = 0
from the definitions of the derivations δg, γg and λg. These relations are actually the first
ones to arise in the expansion of s2 = 0 in powers of the antifields.

The canonical transformation appropriate to gauge-fixing does not modify the coho-
mology of s neither in the space of local functions nor in the space of local functionals,
because it is just a change of variables. So, in the case of Yang–Mills theory, the coho-
mology group H0(s,F) of the BRST differential in the space F of local functionals is still
given by the analysis of [12]. In H0(s,F), the superscript 0 is the total ghost number.
Note, however, that the expansion s = δg + γg + λg + · · · is not the standard expansion
arising prior to gauge-fixing, since the degree involved here is the total antifield number
that gives equal weight to each antifield, irrespective of its “antighost” number. This is
why it is the Koszul resolution associated with the gauge-fixed stationary surface that
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arises in the present analysis, and not the Koszul–Tate resolution associated with the
gauge-invariant equations of motion.

Since the equations of motion following from the gauge-fixed action have no gauge
invariance (by assumption), one may invoke the general results of [26, 27, 28] to assert
that

Hk(δ
g,F) = 0, k ≥ 2 (2.10)

where k is the total antifield number used in the above expansions. In words: any local
functional A ∈ F (A =

∫
a) that solves δgA = 0 (δga + db = 0) and is at least quadratic

in the antifields has the form A = δgC (a = δgc + dm).
We have of course Hk(δ

g,L) = 0 for k ≥ 1 in the space L of local functions [17], but
we shall need the version valid for local functionals below. This is a direct consequence
of Theorem 8.3 or 10.1 of [26], which states that there can be no non-trivial higher-
order conservation laws for an action having no gauge symmetries. This theorem is
also known as the “Vinogradov two-line theorem”. Because higher-order conservation
laws and elements of Hk(δ

g,F) (also denoted Hk(δ
g|d)) are in bijection, the property

(2.10) follows. In general, however, the homological group H1(δ
g,F) does not vanish

(even though H1(δ
g,L) = 0 in the space of local functions) and is related to the global

symmetries of the gauge-fixed action [26].

3 Reconstruction Theorem

We now have all the required tools to show that a local counterterm of the gauge-fixed
formalism that preserves nilpotency defines a local counterterm of the antifield Zinn-Justin
approach. That is, the condition

γgA0 ≈ 0 (3.1)

for the local functional A0[φ] =
∫

a0 (which implies (1.3) for the integrand a0), together
with the fact that the associated deformed BRST symmetry γg +e∆ should remain weakly
nilpotent (for the new equations of motion) to O(e2) in the deformation parameter e,

(γg + e∆)2 ≈′ O(e2), (3.2)

determines a local functional cocycle A[φ, φ∗] of the antifield cohomology

sA = 0. (3.3)

In (3.2), the symbol ≈′ means “equal when the deformed equations of motion δR(S +
eA0)/δφ

A = 0 hold”. The relationship between A and A0 is

A = A0 + A1 + A2 + O((φ∗)3), (3.4)

where A1 (respectively, A2) is linear (respectively, quadratic) in the antifields.
The above derivation ∆ is the deformation of the BRST-symmetry and is related to

the deformation A0 of the action as follows. When one adds eA0 to the gauge-fixed action,
Sg[φ] → Sg[φ] + eA0[φ], one modifies the gauge-fixed BRST symmetry as γg → γg + e∆
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in such a way that (γg + e∆)(Sg + eA0) = O(e2). The existence of ∆ is guaranteed by
the cocycle condition (3.1), which we can rewrite as

γgA0 + δgA1 = 0 (3.5)

for some local functional A1 linear in the antifields. We have ∆φA = ∆A, A1 = φ∗A∆A(−1)gA,
where gA is the Grassman parity of φA.

As (3.4) shows, the relationship between A[φ, φ∗] and A0[φ] is that A[φ, φ∗] starts like
A0[φ] to zeroth order in the antifields. Thus, the question is whether any local functional
A0 that fulfils both (3.1) and (3.2) can be completed by terms of higher orders in the
antifields to yield a (local functional) solution of (3.3).

The converse statement, namely, that any local functional A[φ, φ∗] solution of (3.3)
defines, when setting the antifields equal to zero, a cocycle of the weak cohomology (3.1)
fulfilling (3.2), is rather obvious. Indeed, if sA = 0, then γgA0 ≈ 0 (term independent of
the antifields in sA = 0). Furthermore, at the next order,

λgA0 + γgA1 + δgA2 = 0, (3.6)

a relation that is seen to be equivalent to (3.2) by rephrasing the condition (3.2) in terms
of A0 and A1. On the one hand, direct calculations yield

γgA1 = φ∗A∆B δL

δφB
(
δRS

δφ∗A
)− φ∗A(γg∆A)

λgA0 = φ∗A
δRA0

δφB

δL

δφ∗B
(
δRS

δφ∗A
). (3.7)

On the other hand, if one replaces the weak equality by a strong equality in (γg+e∆)2φA ≈′

O(e2), one gets, in view of (2.4),

(γg + e∆)2φA = (
δRSg

δφB
+ e

δRA0

δφB
)(

δL

δφ∗B
(
δRS

δφ∗A
) + eµAB) + O(e2) (3.8)

for some µAB. Thus, (3.2) becomes to order e,

γg∆A −∆B δL

δφB
(
δRS

δφ∗A
) ≈ δRA0

δφB

δL

δφ∗B
(
δRS

δφ∗A
), (3.9)

which shows that (3.2) is indeed equivalent to the statement that γgA1 + λgA0 vanishes
weakly, or which is the same, (3.6).

Accordingly, to each counterterm of the antifield Zinn-Justin approach corresponds a
counterterm of the BRST-Noether method.

Conversely, given a solution of (3.1) – or (3.5) – which also fulfils (3.2), the question
is whether one can construct a local functional A that starts like A0 + A1 and is BRST-
invariant. That (3.1) (or (3.5)) by itself does not guarantee the existence of A is illustrated
by the Curci-Ferrari mass term and has been explained in [18].

The problem arises because the perturbative construction, yielding successively A2,
A3, etc., given the “initial data” A0 and A1 along the lines of homological perturbation
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theory applied to the antifield formalism [29, 30, 17] can be obstructed in the space of
local functionals. The obstructions are in the homological groups Hk(δ

g,F) (also denoted
by Hk(δ

g|d)) The point is that the equations defining the higher-order terms A2, A3 etc.
take the form

δgAk = Bk−1, (3.10)

where the local functional Bk−1 involves only the lower-order terms Ai (i < k) and can be
shown to be δg-closed. To infer that Bk−1 is exact, one needs either Hk−1(δ

g,F) = 0 or,
if Hk−1(δ

g,F) does not vanish, additional information guaranteeing that Bk−1 is in the
zero class.

As we recalled above, Hj(δ
g,F) = 0 for j > 1. Thus the only obstructions may arise

for k − 1 = 1, i.e. for A2. If it can be proven that A2 exists, there cannot be any further
obstruction at the next orders, and A also exists. The strategy of the construction of A
from A0 and A1 consists, then, in showing that one avoids the obstruction for A2. It is
here that the condition (3.2) is necessary.

The equation (3.10) for A2 is actually (3.6) with

B1 = −λgA0 − γgA1. (3.11)

We must show that B1 is δg-exact, i.e. that it vanishes weakly. But this is guaranteed
because (3.6) and (3.2) have been shown to be equivalent, so that (3.2) implies (3.6) or
(3.11). Therefore, the obstruction for A2 is avoided, as announced.

One may understand the equivalence between (3.2) and (3.6) more directly, in terms
of the master equation itself. As is known [31], the elements of H0(s,F) can be viewed
as consistent, first-order deformations of the master equation, S → S ′ = S + eA, (S, S) =
0 → (S ′, S ′) = O(e2). As we have indicated, given A0, the obstruction to the construction
of A can only occur for A2, i.e. we must verify that the term (3.6) is zero. But this term is
the term linear in the antifields in the master equation. So, the absence of obstruction is
equivalent to the statement that (S ′, S ′) |linear in φ∗ vanishes, or ((S ′, S ′), φA) |φ∗=0= 0.

This is precisely the statement that the deformed BRST symmetry remains nilpotent, as
the Jacobi identity for the antibrackets easily shows.

4 Trivial Solutions

The map between the antifield cohomology and the gauged-fixed cohomology fails to be
surjective, since only classes with representatives fulfilling the extra condition (3.6) are
in the image of the map. The map fails also to be injective, because there are non-trivial
cocycles of the antifield cohomology that are mapped on trivial cocycles of the gauged-
fixed cohomology. This is best seen on a simple example. Consider electromagnetism
with a neutral scalar field φ and impose the gauge condition ∂µAµ = µφ through the
equation of motion for the auxiliary b-field, where µ is a constant with dimension L−1.
With that gauge choice, the nontrivial cocycle

∫
d4x φ of the gauge-invariant cohomology

becomes trivial in the weak gauge-fixed cohomology since one has φ ≈ sC̄ +∂µAµ. Similar
considerations would apply to any function f(φ) in the gauge ∂µAµ = f(φ). Although
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we will not provide a precise argument, we note that these mod-d coboundaries of the
gauge-fixed cohomology, which are present in peculiar gauges, are not expected to be
physically trivial. The reason is that correlation functions of gauge-invariant operators
do not change in different gauges (for a proof within the EG framework, see [36]).

Note that the gauge-fixed action has a nontrivial global symmetry acting on the un-
physical variables, namely the shift C̄ → C̄ + θ, where θ is a constant Grassmann odd
parameter, corresponding to the cohomology class

∫
d4x C̄∗. This phenomenon is precisely

related in the appendix to the non-injectivity of the above map.

5 Counterterms in the Quantum Noether method

We show in this section how the nilpotency condition arises in the Quantum Noether
method. This method [15, 16] is a general method for constructing theories with global
symmetries using the Epstein-Glaser (EG) approach to quantum field theory. In this
approach, which was introduced by Bogoliubov and Shirkov [32] and developed by Epstein
and Glaser [33, 34], the (perturbative) S-matrix is directly constructed in the Fock space
of asymptotic fields by imposing causality and Poincaré invariance. The method can be
regarded as an “inverse” of the cutting rules: one builds n-point functions by appropriately
“gluing” together m-point functions (m < n). Moreover, this method directly yields a
finite perturbation theory; one avoids UV infinities altogether by proper treatment of
n-point functions as operator-valued distributions. The coupling constants of the theory,
e, are replaced by tempered test functions g(x) (i.e. smooth functions rapidly decreasing
at infinity), which switch on the interactions. The iterative construction of the S-matrix
starts by giving a number of free fields satisfying (gauged-fixed) fields equation (so that
there are propagators) and the first term, T1, in the perturbative expansion of the S-
matrix. Ultimately, one is interested in the theory in which g(x) becomes again constant,
g(x) → e. This is the so-called adiabatic limit. We use the convention to still keep e
explicit, in which case the adiabatic limit is g(x) → 1. We work before the adiabatic limit
is taken, as the latter does not always exist because of physical infrared singularities.

Causality and Poincaré invariance completely fix the S-matrix up to local terms. The
remaining local ambiguity is further constrained by symmetries. It is the purpose of
our analysis to determine the precise restrictions imposed on these local terms by Ward
identities. At tree level the local terms are equal to the Lagrangian of the conventional
approach [15], but new local terms may be introduced at each order in perturbation theory.
The local terms at loop level correspond to the counterterms in the Lagrangian approach,
although their role is not to subtract infinities, as the perturbative expansion is already
finite. If the form of these local terms remains the same to all orders in perturbation
theory then the theory is renormalizable.

The Quantum Noether method consists of adding a coupling to the Noether current
jµ
0 that generates the asymptotic (and hence linear) symmetry in the theory and then

requiring that this current be conserved inside correlation functions. There are a number
of equivalent ways to present this condition [15, 16]. Here we follow [16], where the
condition was formulated in terms of the interacting Noether current. The Ward identity,
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formula (3.1) in [16], contains terms that vanish in the (naive) adiabatic limit, g(x) → 1.
Their explicit form, which can be found in [16], is not important for the present analysis.
Here we will schematically denote them by ∂µgj̃µ. Due to these terms the interacting
BRST charge is not conserved before the adiabatic limit is taken. For a discussion of
the implications of this fact (and also of other difficulties encountered when attempting
to construct the interacting BRST charge) we refer to [35]. We note, however, that
considerations involving only currents are sufficient in order to derive all consequences of
nonlinear symmetries for time-ordered products. The Quantum Noether condition reads

∂x
µT [jµ

0 (x)T1(x1) · · · · · ·T1(xn)] = ∂µgj̃µ. (5.1)

Working out the consequences of this condition to all orders, one recovers the non-linear
structure in a manner similar to the way the Noether method works in classical field
theory [15, 16]. Further consistency requirements on the theory follow by considering
multi-current correlation functions. In particular, the two-current equation is

∂x
µT [jµ

0 (x)jν
0 (y)T1(x1) · · ·T1(xn)] = ∂µgj̃µν , (5.2)

where again we have only schematically included terms that vanish in the naive adiabatic
limit. The explicit form of these terms, as well as an all-order analysis of (5.2), will be
presented in [36].

We are interested in gauge theories. In this case the relevant symmetry is BRST
symmetry. We now present the analysis of (5.1), (5.2) for this case to first non-trivial
order. This is sufficient in order to connect with the analysis of the preceding sections.
Equation (5.1) at first order yields the following condition on L1 = (h̄/i)T1 :

γgL1 = ∂µLµ
1 + e∆φAK(0)

ABφB, (5.3)

where φA denotes collectively all the fields; γg = [
∫

j0, ·] generates the asymptotic trans-
formation rules; ∆φA is defined by eq. (5.3). It was shown in [15, 16] that ∆φA is the
next-order symmetry transformation rule; Lµ

1 is some local function of φA and its first

derivative ∂µφA, and K(0)
ABφB are the free-field equations.

To work out the consequences of condition (5.2), we first note that since jµ
0 is the

gauged-fixed BRST current it satisfies

γgjµ
0 = ∂νT

µν
0 + JµA

0 K(0)
ABφA, (5.4)

where T µν
0 is antisymmetric in µ, ν, and JµA

0 may contain derivatives acting on the free-
field equations. Equation (5.4) guarantees that (5.2) is satisfied at n = 0 (i.e. no T1

involved). At n = 1 one finds the following condition:

JµA
0

δL1

δφA
+ γgjµ

1 + ∆jµ
0 = ∂µT µν

1 + JµA
1 K(0)

ABφB, (5.5)

for some T µν
1 and JµA

1 (also possibly containing derivatives acting on K(0)
ABφB); δL1/δφ

A

is the Euler derivative of L1, and if JµA
0 contained derivatives in (5.4) they now act on
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δL1/δφ
A; jµ

1 arises as a local normalization term of the correlation function T [jµ
0 (x1)T1(x2)].

It was shown in [16] that it is the Noether current that generates the symmetry transfor-
mation rules ∆φA. Combining with (5.4) we obtain

(γg + e∆)(jµ
0 + ejµ

1 ) = ∂µ(T µν
0 + eT µν

1 ) + (JµA
0 + eJµA

1 )K(1)
ABφA + O(e2), (5.6)

where K(1)
ABφA are the field equations that follow from the Lagrangian L0 + eL1, where L0

generates the free field equations.
Conditions (5.3) and (5.6) are equivalent to conditions (3.1) and (3.2) we analysed in

section 3.

6 Conclusions

In this letter, we have shown that the restrictions imposed on counterterms by the Quan-
tum Noether condition in the Epstein–Glaser construction of gauge theories are equivalent
to those imposed in the Zinn-Justin (“antifield”) approach to the renormalization of gauge
theories. The crucial requirement that guarantees the equivalence of the restrictions on
the counterterms (“cocycle conditions”) is the nilpotency of the deformed BRST gener-
ator. We have also analysed how this requirement arises in the EG approach. Similar
considerations apply to anomalies. This will be discussed elsewhere [36].
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Appendix: Antifield (“canonical”) versus weak gauge-

fixed BRST cohomology

In this appendix, the general relation in the space of local functionals F between the an-
tifield BRST cohomology computed before gauge-fixing and the weak gauge-fixed version
is analysed by using standard tools from homological algebra.

As mentioned in section 2, the canonical transformation used for gauge-fixing does
not modify the antifield BRST cohomology and we assume that this transformation has
been done. The complete BRST differential s in canonical form then differs from that

9



in gauge-fixed form only in the grading used for the expansion, called generically “reso-
lution degree” below. The grading associated to the canonical form consists in assigning
antighost number 1 to the antifelds of the original fields, 2 to the antifields of the ghosts,
3 to the antifields of the ghosts for ghosts, etc., while in the gauge-fixed case the grading
consists in assigning antifield number 1 to all the antifields.

In both cases, we have an expansion of the form s = δ′ + γ′ +
∑

k≥1 s′k, in the bigraded
space V = ⊕k,gV

g
k , with g ∈ Z the ghost number and k ∈ N the resolution degree. The

ghost number of s is 1, the resolution degree of δ′, γ′, s′k are respectively −1, 0, k.
Let Vk≥n be the space containing only terms of resolution degree larger than n: A ∈

Vk≥n if the expansion of A according to the resolution degree is A = An + An+1 + . . .. In
particular V = Vk≥0.

For n ≥ 0, consider the spaces Hg(s, Vk≥n) defined by the cocycle condition s(An +
An+1 + . . .) = 0 and the coboundary condition An + An+1 + . . . = s(Bn + Bn+1 + . . .).
In particular, δ′Bn = 0. Consider the maps in : Hg(s, Vk≥n+1) −→ Hg(s, Vk≥n) defined
by in[An+1 + An+2 + . . .] = [An+1 + An+2 + . . .]. They are well defined because they map
cocycles to cocycles and coboundaries to coboundaries. Note that the difference between
Hg(s, Vk≥n+1) and im in is the coboundary condition: an element A = An+1 + An+2 + . . .,
with sA = 0, is trivial in im in ⊂ Hg(s, Vk≥n), if A = sB with B = Bn + Bn+1 + . . ..

For n ≥ 0, consider the spaces Hg
n(γ′, H(δ′, V )). The cocycle condition for an element

[An] ∈ Hg
n(γ′, H(δ′, V )) is δ′An = 0, γ′An+δ′An+1 = 0 for some An+1, and the coboundary

condition is An = γ′Bn + δ′Bn+1, with δ′Bn = 0. Consider the maps πn : Hg(s, Vk≥n) −→
Hg

n(γ′, H(δ′, V )) defined by πn[An + An+1 + . . .] = [An].
Consider finally the maps mn : Hg

n(γ′, H(δ′, V )) −→ Hg+1(s, Vk≥n+1) defined by
mn[An] = [s(An + An+1)]. It is straightforward to check that the maps mn are well
defined.

We are now in a position to prove the decomposition:

Hg(s, Vk≥n) ' ker mn ⊕ im in. (A.1)

The proof follows from the isomorphism (as real vector spaces) Hg(s, Vk≥n) ' im πn ⊕
ker πn and by showing that ker πn = im in and im πn = ker mn. From (A.1), it then
follows that

Hg(s, V ) ' ker m0 ⊕ i0[H
g(s, Vk≥1)]

' ker m0 ⊕ i0[ker m1 ⊕ i1[H
g(s, Vk≥2)]] ' . . .

' ker m0

⊕
n≥1

i0 ◦ . . . ◦ in−1[ker mn]. (A.2)

Note that the isomorphism Hg(s, Vk≥n) ' im πn⊕ker πn used in the proof is non-canonical
in the sense that it involves a choice of supplementary subspace to ker πn.

Discussion: If V is the space of local functions or of horizontal forms, we have
Hn(δ′, V ) = 0 for n ≥ 1, and this both in the canonical and the gauge-fixed form. It follows
that Hg

n(γ′, H(δ′, V )) = 0 and thus ker mn = 0 for n ≥ 1. Since Hg+1(s, Vk≥1) = 0 it also
follows that m0 = 0 and ker m0 = Hg

0 (γ′, H(δ′, V )), so that Hg(s, V ) ' Hg
0 (γ′, H(δ′, V )).

This result has been deduced in [29, 17].
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If V is the space of local functionals F , for the canonical form of the BRST differential
(with the cohomologically trivial pairs of the non-minimal sector eliminated), there are
no fields with negative pure ghost numbers. This implies that the antifield number must
be larger than or equal to max(0,−g) = K. Furthermore, if k > K, the presence of
the ghosts implies [37] that Hg

k(δ,F) = 0. This implies, for g ≥ 0, that Hg
k(δ,F) = 0 for

k ≥ 1, hence ker mn = 0, for n ≥ 1 and m0 = 0. Again we get Hg(s,F) ' Hg
0 (γ, H(δ,F)).

For g < 0, the only non-vanishing cohomology group is Hg
−g(δ,F). This implies

Hg
n(γ, H(δ,F)) = 0, for n 6= −g, so that ker mn = 0 for n 6= −g. Furthermore,

Hg+1(s,Fk≥−g+1) = 0, so that m−g = 0. Hence Hg(s,F) ' i0◦. . .◦i−g−1[H
g
−g(γ, H(δ,F))].

Finally, Hg
−g(γ, H(δ|d)) ' Hg

−g(δ|d), which follows from Hg+1
−g (δ,F) = 0, and i−g−1 =

. . . = i0 = 1 at ghost number −g, since there are no terms with antifield number less than
−g, so that Hg(s,F) ' Hg

−g(δ,F), which is the result obtained in [12].
As already stated in section 2, in the space of local functionals for the gauge-fixed form,

Hg
k(δg,F) = 0 for k ≥ 2, with Hg

1 (δg,F) characterizing the non-trivial global symmetries
of the gauge-fixed action (and their associated Noether currents) for the classical fields,
the ghost fields and the fields of the gauge-fixing sector. We thus have ker m2 = ker m3 =
. . . = 0 and m1 = 0, implying that

Hg(s,F) ' [ker m0 ⊂ Hg
0 (γg, H(δg,F))]⊕ i0[H

g
1 (γg, H(δg,F))]. (A.3)

It follows that the canonical antifield BRST cohomology Hg(s,F) is isomorphic to the
direct sum of a subset of the weak gauge-fixed BRST cohomology Hg

0 (γg, H(δg,F))
and of a subset of the nontrivial global symmetries of the gauge-fixed action. Since
Hg+1(s,Fk≥1) ' Hg+1

1 (γ, H(δ,F)), the condition that [a0] ∈ ker m0 becomes s1A0+γA1 =
γB1 + δB2, with δB1 = 0. This is precisely condition (3.6) and thus equivalent to (3.2).
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[34] H. Epstein and V. Glaser, “Adiabatic limit in perturbation theory”, in G. Velo, A.S.
Wightman (eds.), Renormalization Theory (D. Reidel Publishing Company, Dor-
drecht 1976), p. 193; O. Piguet and A. Rouet, “Symmetries in Perturbative Quan-
tum Field Theory”, Phys. Rep. 76 (1981) 1; H. Epstein, V. Glaser and R. Stora,
“General properties of the n-point functions in local quantum field theory”, in J.
Bros, D. Jagolnitzer (eds.), Les Houches Proceedings 1975; G. Popineau and R.
Stora, “A pedagogical remark on the main theorem of perturbative renormalization
theory”, unpublished; R. Stora, “Differential Algebras”, ETH-lectures (1993) un-
published; G. Scharf, “Finite Quantum Electrodynamics”, Text and Monographs in
Physics (Springer, Berlin, 1995); T. Hurth, “NonAbelian gauge theories: the causal
approach,” Ann. Phys. 244 (1995) 340, hep-th/9411080.
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