An Object-Oriented Approach to Data Acquisition
System Simulation and Modeling

A.W. Booth, M. Botlo, J. Dorenbosch, R. Idate, E.C. Milner,
V.S. Kapoor, C.C. Wang & E. Wang
Superconducting Super Collider*

Dallas, TX, 75237

Abstract

This paper describes an object-oriented approach to the simulation and modeling
of data acquisition systems for high-energy physics experiments. Using the
MODSIM II object-oriented discrete-event simulation language, we have studied
the behavior of front-end circuits, data collection circuits, event-building networks
and multi-level triggers. Results include a comparison between different "pull" and
"push" schemes, in terms of deadtime, throughput, and efficiency as they are
influenced by data rates and system architecture.

Introduction

The Superconducting Super Collider Laboratory (SSC) is a new high energy physics
laboratory where we expect to be performing experiments by the year 2000. We will search for
new physics processes occurring in the collisions of two counter-rotating beams of 20-TeV
protons in the 87-km long accelerator ring. The expected data rates, volume, and complexity
will be unprecedented in the history of science. In this paper we discuss the design and results
of simulation studies of data acquisition (DAQ) systems for collecting these experimental data.

The typical experimental apparatus at the SSC will be a large, complex ensemble of five
to ten distinct sub-systems: central tracking (Si micro-strips, straw tubes, scintillating fibers,
etc.), calorimetry (electromagnetic and hadronic), muon tracking (wire chambers, timing
detectors), triggering (multiple levels), and data acquisition. Sub-system channel counts will
range from the small (about 1,000) to the large (about 5,000,000). There will be differences in
the data acquired from the sub-systems for each event. For example, it may be necessary to
record for each calorimeter channel multiple samples of digitized data, while for Silicon micro-
strips each channel gives only one bit of hit information.

The Collider will provide a beam crossing every 16 ns, with a mean of 1.6 collisions

per crossing (100 mb cross section) occurring at the design luminosity of 1033 cm™2 s’l,
giving a 100 MHz interaction rate. We can expect data for each event to be about 0.4 MByte,

giving a raw data rate of 40 TByte/s. Combined trigger rejection factors of 10 to 107 would
reduce the data recording rate to 4 to 40 MBytes/s. Because of these high rates from large
detectors, we anticipate the DAQ systems being more complex than those operating in present-
day experiments. The need for simulation and modeling of these complex systems is clear, but
the approach and the choice of abstraction level are open to the system designer.

Background

It is well known that object-oriented design is based on "information hiding", and differs from
the functional approach to design in that it views a software system as a set of interacting
objects, with their own private state, rather than a set of functions. "Information hiding" means
that as much information as possible is hidden within the objects themselves, and objects
interact with other objects by providing and requesting services.

* Operated by Universities Research Association under contract to the U.S. Department of Energy

547

It is important to be clear about what an object actually is because it governs one's
whole approach to dealing with objects and being disciplined about their use. The best
definition we have found is in Sommerville, 1992 {1]: -"An object is an entity which has a state
(whose representation is hidden) and a defined set of operations which operate on that state.
The state is represented as a set of objects attributes. The operations associated with the object
provide services to other objects which request these services when some computation is
required. In principle, objects communicate by passing messages to each other which initiate
operations. A message has two parts: (1) the name of the service requested by the calling
object, (2) copies of information from the calling object which are required to execute the
required service and, perhaps, the name of a holder for the results of the service execution”

DAQ Objects

In any object-oriented design, the classification of objects is a very important step.
Figure 1 shows a partial inheritance tree for some of the objects in our DAQ system model.
The objects "NamedObj", "TriggerSignalObj", "ParameterObj" and "ChipObj" are all general
purpose objects which define a structure and behavior common to various objects in the DAQ
system, and were actually designed with the idea that they would be "inherited" by other
objects. The object "DCCOb;j" inherits all these properties and adds some of its own behavior to
them. One very important part of the DCC's behavior is the "ProcessEvent” METHOD, which
is also needed by the front-end object ("FEObj") and the Segment Output Buffer Object
("SOBODbj"). Three of our objects are now listed in detail with their attributes and messages so
that the reader can get a flavor of the design. Comments are enclosed in {}.For a detailed
description of these objects and the DCC simulation see Booth et al. [2].

NamedObj = OBJECT;
{ NamedObj has the following attributes}

name : STRING; {name of this trigger}

index : INTEGER; {index}

namlInd : STRING; {name[index]}

idString : STRING:; {name[index] : (fixed length)}
{ NamedObj has the following messages}

ASK METHOD Objlnit;

ASK METHOD InitName(IN nam : STRING); {set name}
ASK METHOD AddIndex(IN ind : INTEGER);{name becomes name[index] }
ASK METHOD InitIndex(IN ind : INTEGER); {set index}
ASK METHOD TimNam() : STRING; {returns sim time and IdString}
ASK METHOD InitDebug(IN lev : INTEGER); {sets debug levels}
ASK METHOD SetReport(IN lev : INTEGER); {sets report levels}
ASK METHOD ObjTerminate;
END OBJECT {NamedObj};

ChipObj = OBJECT(TriggerSignalObj);
{ ChipObj has the following attributes}

myLayer : LayerObj; {where parameters for chips reside}
inbuf : ARRAY INTEGER OF TranspObj;

opport : TranspObj;

myerror : INTEGER;

notmyerror : INTEGER;

allerrors : INTEGER;

goodEventCount : INTEGER;

badEventCount : INTEGER;

eventsPerSecond : REAL;

instantaneousEventsPerSecond : REAL; {cm}
instantaneousGoodEventCount : INTEGER;
chipL2id : INTEGER;

548

NamedObj

l

TriggerSignalObj

ParameterQObj

ChipOb]

special "chip” object
with DCC behavior

special "DCC" object
with FE be havior

basic object which
provides identity
information

provides DAQ related
functionality such as
accepting events etc.

provides parame ters
for user interface and

reporting

generic "chip" object
with inputand output
buffers and processor

defines packet structure
and allows for producer
and consumer pointers

InputDataObj

DCCObj

FEOD]

Figure 1. Partial Inheritance Tree for DAQ Objects

549

special "DCC" object
with SOB behavior

SOBOb]

{ ChipObj has the following messages}
ASK METHOD SetMyLayer(IN 1 : LayerObj);
ASK METHOD Configure;
ASK METHOD InitBufferDebug(IN lev : INTEGER);
{ ChipObj also overrides the following messages it inherited from TriggerSignalObj}
OVERRIDE
ASK METHOD Objlnit;
ASK METHOD ObjTerminate;
ASK METHOD Report;
ASK METHOD EndWarmUp;
ASK METHOD Reset;
ASK METHOD Regulate;
ASK METHOD CheckToResume;
END OBIJECT; {ChipObj}

DCCOb;j = OBJECT(ChipObj, TranspObj);
{ DCCObj has the following attributes}

destination : TranspObyj;
dccOpbusy : BOOLEAN;
buildbusy : BOOLEAN;

{ DCCObj has the following messages }
ASK METHOD SetDestination(IN d:TranspObj);
ASK METHOD SetConsumerQMaxBytes(IN bytes : INTEGER);
TELL METHOD ProcessEventWithImaging(IN in : INTEGER);
END OBIJECT; { DCCObj}

DCC Simulation

The extensive simulation of the DCC has been reported elsewhere, [2] &[3] for
example. Results include plots of trigger rate against throughput for various "pull" and "push”
architectures.

References

[1] I Sommerville, Software Engineering, Addison -Wesley Publishers, 1992.
[2] A. Booth, M. Botlo, J. Dorenbosch, R. Idate, E. Milner, V. Kapoor, E. Wang & C.
Wang., “Simulation Studies of Data Acquisition Systems at the Superconducting Super
Collider”, SSCL-SR-1148, 1992.
[3] E. Milner, et al, “Data Acquisition Systems at the Superconducting Super Collider”,
Proceedings of the 7th Conference on Real-Time Applications in Nuclear, Particle and
Plasma Physics, Julich, Germany, 1991.

550

