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Abstract

We perform a detailed study of the production of isolated prompt photons in polarized
hadronic collisions, in the centre-of-mass energy range relevant to RHIC. We compare
the results obtained for a traditional cone-isolation prescription, with those obtained
by imposing an isolation condition that eliminates any contribution to the cross section
from the fragmentation mechanism. The latter prescription will allow us to present
the first fully consistent next-to-leading order calculation in polarized prompt-photon
production. We will discuss the theoretical uncertainties affecting the cross section,
addressing the issue of the reliability of the perturbative expansion, for both inclusive
isolated-photon and photon-plus-jet observables. Finally, we will study the dependence
of our predictions upon the polarized parton densities, and the implications for the
measurability of the gluon density.
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1 Introduction

A direct measurement of the gluon distribution in the proton is both very interesting and very
difficult. This is true, in particular, for the spin-dependent gluon density ∆g of a longitudinally
polarized proton. So far, the only information on the nucleon polarized parton distributions
comes from polarized deep-inelastic lepton–nucleon scattering (DIS). Here, in principle, ∆g
could be determined from scaling violations; however, in practice this procedure is afflicted
by very large uncertainties due to the limited accuracy of the data and, in particular, to the
fact that so far only fixed-target DIS experiments have been carried out in the polarized case,
which, consequently, have a rather limited lever arm in Q2. Thus, the proton spin-dependent
gluon density ∆g is experimentally constrained only very little so far.

In order to perform a direct determination of the gluon distribution, one needs to con-
sider physical processes, which are predominantly initiated by gluons at the parton level;
the contamination from quark-initiated subprocesses must be under good theoretical control;
and finally, the process must take place at a measurable rate, taking experimental efficiencies
into proper account. Only a few processes are known that meet all these requirements. One
example is the production of heavy flavours in photon-hadron collisions; the cross section for
this process in the case of polarized scattering has recently been computed [1] in QCD at
next-to-leading order (NLO). The COMPASS collaboration at CERN [2], and possibly even
HERA in the polarized configuration [3], will be able to exploit charm production in order
to constrain the polarized gluon density. Such measurements are on the other hand severely
limited by the low experimental efficiency of charmed-meson tagging.

A second possibility is given by jet hadro- and photoproduction; also in this case, QCD
cross sections for polarized collisions are now known to NLO [4, 5]. It will indeed be attempted
to determine ∆g, at the forthcoming polarized RHIC pp collider [6], by a measurement of the
spin asymmetry in jet production, and the recent study of ref. [4] has demonstrated that this
approach has very promising prospects.

In the unpolarized case, the classical tool for determining the gluon density at intermediate
and large x has been prompt-photon production, pp → γX and pN → γX, in fixed-target
experiments [7]. Indeed, data on prompt photons have been the backbone of the gluon
determination in many analyses of parton densities. The main reason for this is that, at
leading order, a photon in the final state is produced in the reactions qg → γq and qq̄ → γg,
with the contribution of the former subprocess being obviously sensitive to the gluon and
usually dominant over that of the latter. It is the ‘point-like’ coupling of the photon to the
quark in these subprocesses that is responsible for a much cleaner signal than, say, for the
inclusive production of a π0, which proceeds necessarily through a fragmentation process.

The cleanliness of the signal is of course an advantage that also counts at colliders. The
aim of this paper is to provide a detailed study, performed in perturbative QCD at NLO
accuracy, of the production mechanism for prompt photons at polarized hadronic colliders,
such as RHIC. In the rest of this introduction, we will briefly review the present theoretical
knowledge of prompt-photon production. In particular, we will explain why, in our opinion,
a theoretical reappraisal of this matter is needed, before the data-taking will start at RHIC.

Prompt-photon data obtained at hadronic colliders have been used as a constraint for
the unpolarized gluon density [7]. Thinking of the polarized case again, it is clear that the
production of photons with polarized beams at RHIC is likely to be a very promising source
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of information on ∆g. We note that having pp reactions (as opposed to pp̄ ones as hitherto in
the unpolarized case) is also an advantage, since the competing LO subprocess qq̄ → γg does
not receive any contributions from valence–valence scattering here. Compared to jets, the
prompt-photon reaction shows a larger spin asymmetry, even though of course the jet rate is
much higher at a given pT , resulting in smaller statistical errors. Eventually, both reactions,
plus also charm production and π0 production in polarized pp scattering, can be utilized to
constrain ∆g at RHIC, and it will be interesting to see how far the various channels will
provide compatible pieces of information, and/or whether they will complement one another.

Unfortunately, the cleanliness of the prompt-photon signal alleged above is limited. As is
well known, photons can also be produced through a fragmentation process, in which a parton,
scattered or produced in a QCD reaction, fragments into a photon plus a number of hadrons.
The problem with the fragmentation component in the prompt-photon reaction is twofold:
first, it brings us back to the dependence on non-perturbative fragmentation functions, similar
to the case of pion production addressed above, even though for prompt-photon production
of course only a certain part of the total signal depends on the fragmentation functions. So
far, the photon fragmentation functions are only insufficiently known; first information is
emerging from the LEP experiments [8]. Secondly, all QCD partonic reactions contribute
to the fragmentation component; thus the advantage of having a priori only one partonic
reaction (qq̄ → γg) competing with the signal (qg → γq) is lost, even though some of the
subprocesses relevant to the fragmentation part at the same time result from a gluon initial
state.

Numerical studies [9, 10, 11, 12] for photon production in unpolarized collisions, based on
predictions [9, 13, 14] for the photon fragmentation functions that turned out to be compatible
with the sparse LEP data, demonstrate that the fragmentation component is not messing up
things too much, even though it cannot be neglected in a careful study. In the fixed-target
regime, it amounts to an effect of about 20%. At collider energies, it would easily make
up for about half of the observed photons; however, here the situation is saved by the so-
called ‘isolation’ cut, which is imposed on the photon signal in experiment. Isolation is an
experimental necessity: in a hadronic environment the study of photons in the final state is
complicated by the abundance of π0’s, eventually decaying into pairs of γ’s. The isolation
cut simply serves to improve the signal-to-noise ratio: if a given neighbourhood of the photon
is free of energetic hadron tracks, the event is kept; it is rejected otherwise. In principle,
there is a large freedom in the choice of specific isolation cuts, the only requirement being
that they must strongly suppress the background π0 → γγ, while keeping the signal at a
measurable rate. Traditionally, isolation is realized by drawing a cone of fixed aperture in
azimuthal angle–pseudorapidity space around the photon, and by restricting the hadronic
transverse energy allowed in this cone to a certain fraction (of the order of less than 10%)
of the photon transverse energy. In this way, it is clear that the fragmentation contribution,
resulting from an essentially collinear process, will be diminished [15]. In actual numbers, it
is not expected [10, 11] that it will remain responsible for more than 15–20% of the photon
signal after isolation.

Studies of the backgrounds to prompt-photon production expected for RHIC have been
reported in refs. [16, 17, 18], based on parton-shower Monte-Carlo event generators. It is
anticipated [16, 17] that isolation cuts will also have to be applied in prompt-photon mea-
surements at polarized RHIC. When working out theory predictions for the (un)polarized
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cross sections and the resulting spin asymmetry, it is crucial that the calculation properly
treats all effects mentioned so far, in particular those related to fragmentation and isolation.

It is the objective of this paper to do just this. Of course, it must be pointed out that
several studies with a similar focus have been presented before. In particular, after the basic
idea of determining ∆g in ~p~p→ γX had been formulated and developed in ref. [19], the QCD
corrections to the ‘direct’ (i.e. non-fragmentation) component of polarized prompt-photon
production were first calculated in refs. [20, 21] and applied for phenomenological predictions
in refs. [22, 23]. There, the fragmentation component was neglected altogether, and no isola-
tion cut was imposed. The calculations presented in refs. [20, 21] are fully analytical and can
be used only for calculating the single-inclusive photon cross section, and not for looking at,
say, photon-plus-jet final states. Still, it was demonstrated [24] how the effects of the isolation
cut can be implemented into these calculations in the approximation that the isolation cone
be rather narrow. Much more complete phenomenological studies were presented for the case
of inclusive photons in ref. [25] and for ~p~p → γ + jet + X in ref. [26]. In these papers, a
Monte-Carlo code for the NLO corrections to the direct part of the cross section was devel-
oped and employed, which readily allows the isolation constraints to be taken into account.
The results presented in refs. [25, 26] suffer from the fact that the fragmentation component
to the polarized cross section could be treated at the LO level only, since the corresponding
NLO corrections had not yet been calculated. This is potentially hazardous, since beyond LO
the direct as well as the fragmentation part of the cross section depends on the factorization
convention chosen in subtracting the final-state collinear singularities. Only their sum is free
of scheme-dependence and is physical, which implies that a fully consistent NLO calculation
affords knowledge of both production mechanisms at NLO, even though using a LO fragmen-
tation contribution instead of the NLO one presumably introduces only a minor error from
a numerical point of view. We emphasize that this situation has not improved since then,
and it is not the purpose of this paper to do this. Still, this paper will present the first fully
consistent NLO calculation of polarized prompt-photon production.

We believe that we have several good reasons for presenting a further phenomenological
study on prompt photons at RHIC. First of all, our predictions will be based on the use
of a new type of photon isolation constraint, introduced recently by one of us [27], which
has the virtue of entirely eliminating the unwanted fragmentation component to the cross
section. The basic idea of ref. [27] is not only to restrict the total hadronic energy falling
into the isolation cone, but to allow less and less hadronic energy, the closer to the photon it
is deposited, until eventually no energy at all is allowed exactly collinear to the photon. In
this way, no collinear configuration is possible, and fragmentation does not contribute to the
cross section. This feature allows us to present complete and theoretically consistent NLO
predictions for polarized prompt-photon production. This will be done in terms of a dedi-
cated Monte-Carlo program, which implements the new type of isolation in both polarized
and unpolarized hadronic collisions. The isolation constraint we promote should be straight-
forwardly implementable in experiment. Here, we have in mind in particular the PHENIX
detector at RHIC, with the very fine granularity of its electromagnetic calorimeter [16]; also
the STAR detector [17], with its much larger angular coverage and its ability to see jets,
appears to offer promising prospects.

Another motivation for our study is to look in more detail at the main theoretical uncer-
tainties in the calculation, resulting from the scale dependence of the results. Furthermore,
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previous theoretical studies have not really sufficiently addressed the question of the experi-
mentally achievable statistical accuracy in the various conceivable measurements of the spin
asymmetries in prompt-photon production. This will also be done in this paper. Here, we
somewhat disagree with some previous conclusions concerning the usefulness of inclusive mea-
surements compared with photon-plus-jet ones.

Presenting a study on prompt photons, we cannot ignore a disagreeable development found
in the unpolarized case in the last few years concerning the comparison between theory predic-
tions and data. While things worked out very well in the first decade or so of prompt-photon
experiments, the agreement with the more recent, and the most precise, data sets [28] is rather
poor and sometimes so bad that the situation cannot possibly be saved even by ‘fine’-tuning
the unpolarized gluon density! Clearly, if this situation persists, we will have to worry about
whether one can really interpret, in the polarized case, future RHIC data straightforwardly in
terms of ∆g. A possible remedy for this trend has been brought forward in terms of a smearing
of the transverse momenta of the initial partons participating in the hard scattering [29, 30],
required to be substantially larger than what is already introduced by the NLO calculation.
This approach still remains to be set on a more solid foundation – eventually it should be
accounted for to some extent by a kT -resummation calculation [31] with perturbative as well
as non-perturbative components. Furthermore, threshold resummations [32], aiming at the
high-pT end, have been shown [33] to lead to a certain improvement in the fixed-target regime.
We also note that possible inconsistencies between the various data sets themselves have been
pointed out [12]. It remains to be seen whether or not the agreement between data and theory
will be in better shape by the time RHIC will perform the first measurements on ~p~p→ γX, as
a result of the present experimental and, in particular, theoretical efforts in this field. What-
ever the solution will eventually be, NLO theory, as employed in this work, will certainly be
an indispensable part of it; it should then be straightforward to implement the lessons from
the unpolarized case to the polarized one. It should not be forgotten either that RHIC itself
should be able to provide new and complementary information also in the unpolarized case
– never before have prompt-photon data been taken in pp collisions at energies as high as√

S =200–500 GeV.
The remainder of the paper is organized as follows. In section 2 we will provide the

framework for our calculations. The new isolation definition will be presented in more detail,
as well as the main ingredients for our Monte-Carlo code. The remaining sections are devoted
to numerical studies for RHIC. Section 3 deals with the single-inclusive cross section. In
subsection 3.1 we focus on issues related to perturbative stability, theoretical uncertainties
and the effects of isolation. Subsection 3.2 is devoted to studies of spin asymmetries for
the prompt-photon process at RHIC and of the sensitivity to ∆g. In section 4 we consider
more differential variables, such as photon-plus-jet ones. Here, subsection 4.1 discusses some
general features of photon-plus-jet observables and also addresses their perturbative stability,
while subsection 4.2 presents phenomenological results. Finally, we summarize our work in
section 5.
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2 Isolated photons in perturbative QCD

2.1 Isolation prescriptions

The production of isolated photons in hadronic collisions can be written in perturbative QCD
as follows

dσAB(KA, KB; Kγ) =∫
dx1dx2f

(A)
a (x1, µF )f

(B)
b (x2, µF )dσ̂isol

ab,γ(x1KA, x2KB; Kγ ; µR, µF , µγ)

+
∫

dx1dx2dzf (A)
a (x1, µ

′
F
)f

(B)
b (x2, µ

′
F
)dσ̂isol

ab,c(x1KA, x2KB; Kγ/z; µ′
R
, µ′

F
, µγ)D

(c)
γ (z, µγ), (1)

where A and B are the incoming hadrons, with momenta KA and KB respectively, and a sum
over the parton indices a, b and c is understood. In the first term on the RHS of eq. (1),
denoted as the direct component, the subtracted (factorized) partonic cross sections dσ̂isol

ab,γ

get contributions from all the diagrams with a photon leg. On the other hand, the subtracted
partonic cross sections dσ̂isol

ab,c appearing in the second term on the RHS of eq. (1) (denoted
as the fragmentation component), get contribution from the pure QCD diagrams, with one
of the partons eventually fragmenting in a photon, in a way described by the (perturbatively
uncalculable but universal) parton-to-photon fragmentation function D(c)

γ . Equation (1) is to
be regarded as a generic expression for the cross section: it will apply to unpolarized as well
as polarized cross sections; in the latter case one simply has to substitute the parton densities
f

(h)
i and the partonic cross sections dσ̂isol

ab,r with their spin-dependent counterparts, ∆f
(h)
i and

d∆σ̂isol
ab,r respectively. Note, however, that the parton-to-photon fragmentation functions D(c)

γ

are always the unpolarized ones since we are not measuring the polarization of the produced
photon.

As the notation in eq. (1) indicates, the isolation condition is embedded into the partonic
cross sections. As mentioned in the introduction, for all the isolation conditions known at
present, except that of ref. [27], as well as for the case of totally inclusive (non-isolated)
photon production, neither the direct nor the fragmentation components are separately well
defined at any fixed order in perturbation theory: only their sum is physically meaningful.
In fact, the direct component is affected by quark-to-photon collinear divergences, which are
subtracted by the bare fragmentation function that appears in the unsubtracted fragmentation
component. Of course, this subtraction is arbitrary as far as finite terms are concerned. This
is formally expressed in eq. (1) by the presence of the same scale µγ in both the direct and
fragmentation components: a finite piece may be either included in the former or in the
latter, without affecting the physical predictions. The need for introducing a fragmentation
contribution is physically better motivated from the fact that a QCD hard scattering process
may produce, again through a fragmentation process, a ρ meson that has the same quantum
numbers as the photon and can thus convert into a photon, leading to the same signal.

Owing to the presence of the fragmentation remnants, which surround the emitted photon,
the effect of the isolation cuts will be a stronger suppression of the fragmentation component
relative to the direct component, with respect to the case of totally inclusive photon produc-
tion. Since the parton-to-photon fragmentation functions are extremely poorly known, one
may adopt two opposite points of view.
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• Define the isolation cuts in order to suppress as much as possible the fragmentation
component. The resulting cross section will be useful to measure the incoming gluon
density or to test the predictions of the underlying theory. In this context, the un-
known fragmentation functions are regarded as uncertainties affecting the theoretical
predictions.

• Define the isolation cuts in order to keep a non-negligible contribution from the frag-
mentation component. The comparison between data and the resulting cross section
will eventually be used to extract the parton-to-photon fragmentation functions. This
strategy makes most sense if the initial state is as clean as possible, which is the case
for e+e− collisions.

The former criterion leads to the so-called cone approach [15, 24, 34]. After tagging the
photon, one draws a cone of half-angle R0 around it. The word ‘cone’ can be misleading,
being motivated by e+e− physics. Here, the cone is drawn in the pseudorapidity–azimuthal
angle plane, and corresponds to the set of points

CR0 =
{
(η, φ) |

√
(η − ηγ)2 + (φ− φγ)2 ≤ R0

}
, (2)

where ηγ and φγ are the pseudorapidity and azimuthal angle of the photon, respectively. The
quantity in eq. (2) is boost-invariant, and is therefore suited to be used in collider physics.
For the photon to be defined as isolated, the total amount of hadronic transverse energy
ET,had(R0) found in this cone must fulfil the following condition:

ET,had(R0) ≤ εcpTγ , (3)

where εc is a small number, and pTγ is the transverse momentum of the photon. This isolation
prescription was proven to be infrared safe at all orders of perturbation theory in ref. [35]. The
smaller εc, the tighter the isolation. Loosely speaking, for vanishing εc the direct component
behaves like log εc, while the fragmentation component behaves like εc log εc. Thus, for εc → 0
eq. (1) diverges. This is obvious since the limit εc → 0 corresponds to a fully-isolated cross
section, which cannot be a meaningful quantity, whether experimentally (because of limited
energy resolution) or theoretically (because there is no possibility for soft particles to be
emitted into the cone).

On the other hand, if one actually wants to measure the fragmentation functions, then
the so-called democratic approach should be adopted [36]. The basic idea here is to treat
the photon as a QCD parton in a jet-clustering algorithm, and then to impose a cut on the
hadronic energy contained in the ‘jet’, which also contains the photon. This approach has so
far been used only in e+e− physics, and we will not discuss it any further in this paper.

In the spirit of the cone approach, an alternative definition of the isolated photon has been
proposed [27]. After drawing a cone of half-angle R0 around the photon axis, all the cones of
half-angle R ≤ R0 are considered; their definition is identical to the one given in eq. (2), with
R0 replaced by R. Denoting by ET,had(R) the total amount of hadronic transverse energy
found in each of these cones, the photon is isolated if the following inequality is satisfied:

ET,had(R) ≤ εγpTγY(R), (4)
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for all R ≤ R0. A sensible choice for the function Y is the following

Y(R) =
(

1− cos R

1− cos R0

)n

, n = 1. (5)

It has been proved in ref. [27] that such a choice allows the definition of an isolated-photon-
plus-jet cross section, which is infrared-safe to all orders in QCD perturbation theory and still
does not receive any contribution from the fragmentation mechanism. In this case, therefore,
only the first term on the RHS of eq. (1) is different from zero, and it does not contain any µγ

dependence. The reader can find all the technical details concerning the isolation prescription
based on eq. (4) of ref. [27]. Here, we will just recall the main ideas. The fundamental property
of the function Y is

lim
R→0
Y(R) = 0, (6)

the function being different from zero everywhere except for R = 0. This implies that the
energy of a parton falling into the isolation cone CR0 is correlated to its distance (in the
η–φ plane) from the photon. In particular, a parton becoming collinear to the photon is
also becoming soft. When a quark is collinear to the photon, there is a collinear divergence;
however, if the quark is also soft, this divergence is damped by the quark vanishing energy
(provided that the energy vanishes fast enough; this condition is not very restrictive, and
the form in eq. (5) easily fulfils it). When a gluon is collinear to the photon, then either it
is emitted from a quark, which is itself collinear to the photon – in which case, what was
said previously applies – or the matrix element is finite. Finally, it is clear that the isolation
condition given above does not destroy the cancellation of soft singularities, since a gluon with
small enough energy can be emitted anywhere inside the isolation cone. The fact that this
prescription is free of final-state QED collinear singularities implies that the direct part of
the cross section is finite. As far as the fragmentation contribution is concerned, in QCD the
fragmentation mechanism is purely collinear. Therefore, by imposing eq. (4), one forces the
hadronic remnants collinear to the photon to have zero energy. This is equivalent to saying
that the fragmentation variable z is restricted to the range z = 1. Since the parton-to-photon
fragmentation functions do not contain any δ(1 − z), this means that the fragmentation
contribution to the cross section is zero, because an integration over a zero-measure set is
carried out.

We stress that the function given in eq. (5) is to a very large extent arbitrary. Any
sufficiently well-behaved function, fulfilling eq. (6), could do the job, the key point being the
correlation between the distance of a parton from the photon and the parton energy, which
must be strong enough to cancel the quark-to-photon collinear singularity. We also remark
that the traditional cone-isolation prescription, eq. (3), can be recovered from eq. (4) by
setting Y = 1 and εγ = εc. In the rest of this paper, as a short-hand notation, we will indicate
the ‘traditional’ isolation obtained by imposing eq. (3) as definition A, and that obtained
by imposing eq. (4) as definition B.

At first sight, the new isolation approach appears to be stricter than the traditional one.
On the other hand, the fact that for the new constraint one also considers the angle between
the photon and hadrons in the cone, is a real virtue here: for the traditional criterion, one
would reject a hadron of, say, 2 GeV wherever it is located in the cone, just because its
energy exceeds the limit. Of course, if the cone size is 0.7, and the hadron has a distance of
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0.6 with respect to the photon – why should one want to reject such an event? This situation
is improved with the new constraint: hadrons in the cone that are still quite far away from
the photon are allowed to have more energy than those close to the photon. In this way, one
can well allow a hadron to have 2 GeV, or even more, at a distance of 0.6. This little example
implies that a detailed comparison between the traditional and the new isolation methods
is certainly of some interest, and this will also be performed in this paper. One can then
eventually decide which isolation to use in actual experiment.

2.2 NLO computer codes

In order to give phenomenological predictions, we will use two different computer codes in the
cases of definitions A and B. As far as definition A is concerned, we use the NLO program of
refs. [21, 24] for the direct part of the cross section. This program is based on an inclusive
calculation of the contributing partonic subprocesses ab → γX to NLO, where X contains
a sum over the appropriate partonic final states, fully integrated over their phase spaces.
The advantage of this approach is that all contributions to a given partonic channel, such as
virtual and real-emission ones, and collinear counterterms, can be added before any numerical
implementation. In this way, not only all singularities that appear in the calculation cancel,
but there is no need to introduce any soft or collinear cut-off at intermediate stages of the
numerical calculation either. One therefore ends up with a rather fast and accurate code.
However, the drawback of this is the inclusiveness of the program: there is no handle on, say,
an extra jet since the partons in the final state have been integrated over. As it stands, it
would even seem impossible to implement isolation in such a code since this clearly affords to
have control over partons falling into the isolation cone. However, as was shown in ref. [24],
one can fairly straightforwardly make up for this latter deficit, provided the opening of the
isolation cone is not too big. The idea is as follows: at NLO, the isolated cross section can
also be viewed as the non-isolated one minus the cross section for a parton to be in the cone,
having more energy than that allowed by the isolation cut. This latter ‘subtraction’ cross
section can be approximated in a fairly simple calculation in the limit of a narrow isolation
cone, since it is dominated by almost collinear quark–photon configurations. As a result, the
‘subtraction’ piece turns out to behave like A lnR0 + B +O(R2

0); A,B are presented in [24]
for both the unpolarized and the polarized cases. Note that the ‘subtraction’ piece itself
inevitably depends on the final-state factorization scale µγ introduced in eq. (1).

As we discussed in the previous subsection, for definition A the fragmentation mechanism
contributes (cf. eq. (1)). We also stated in the introduction that in the polarized case we
presently cannot calculate this part at NLO and thus have to stick to a LO calculation for
it. In contrast to this, in the unpolarized case the NLO corrections to the relevant partonic
scatterings are known [37]. The calculation and computer code presented in ref. [37] were
also fully inclusive in the sense that the unobserved partons had been integrated over their
full phase spaces. However, as was shown in ref. [24], the above ‘narrow-cone’ approximation
can also be used to implement isolation in the NLO fragmentation component as calculated
with the program of ref. [37]. When calculating the unpolarized prompt-photon cross section
for definition A in this paper (for the purpose of computing asymmetries), we will always
include the fragmentation part at NLO, making use of the program of ref. [37], along with
the modifications for isolation developed in ref. [24].
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The code relevant to definition B works in a completely different way, being fully exclusive
in the variables of the photon and of the (one or two) final-state QCD partons. It is based on
the formalism presented in refs. [38, 39], which allows the computation of any infrared-safe
observables for any kind of scattering particles, without requiring algebraic manipulations on
the matrix elements. The formalism adopts the subtraction method in order to deal with
soft and collinear singularities, and therefore both the matrix elements and the phase space
are treated without any approximation. The code used in this paper is an extension of that
presented in ref. [40], which deals with the production of isolated photons in unpolarized
hadronic collisions. Notice that the formalism of refs. [38, 39], although originally designed
for the case of unpolarized collisions, extends – basically without any modifications – to the
case of polarized collisions. A detailed discussion on this topic can be found in ref. [4]. We
finally mention the fact that the code outputs the kinematical variables of the photon and
of the final-state partons, plus a suitable weight. Therefore, the isolation condition, the jet-
reconstruction algorithm, and any cuts matching the experimental setup can be implemented
as the final step of the computation algorithm. This allows us to plot as many observables as
we want in one single computer run.

It is easy to see that one can extend the ideas behind the ‘narrow-cone’ approximation,
used for the definition-A code, also to the isolation given by definition B. In this way, we have
been able to compare extensively the results of the two codes. We found excellent agreement
of the two programs over a wide range of kinematical variables, and also for cone openings of
even R0 = 0.7, if only central values of rapidity are considered. This suggests the correctness
of the two – entirely independent – codes. It also implies that the ‘narrow-cone’ approximation
has a rather large region of validity and can be well used for practical applications. We recall,
however, that the corresponding code is only suitable for fully-inclusive photon observables,
and not for photon-plus-jet ones.

3 Inclusive isolated-photon observables

In this section, we study the inclusive properties of isolated photons. More exclusive observ-
ables, such as correlations between the photon and the accompanying jets, will be discussed
in section 4. We will consider centre-of-mass energies spanning the range

√
S =200–500 GeV.

We will carefully investigate the differences induced by the different isolation prescriptions we
deal with in this paper. We will address the issue of the perturbative stability of our results,
and study the dependence of the cross sections upon the polarized parton densities.

3.1 Effects of isolation and discussion of theoretical uncertainties

Unless otherwise specified, we will use the following parameters, as a default for our calcula-
tions:

R0 = 0.4, εc =
1 GeV

pTγ

, definition A; (7)

R0 = 0.4, εγ = 1, n = 1, definition B. (8)

It is worth emphasizing at this point that we have chosen εγ � εc: for traditional isolation
A, εc has to be small – otherwise, isolation is totally ineffective. For isolation B, on the other
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hand, εγ may be chosen large, as we discussed previously. A large εγ only means that one still
allows considerable amounts of hadronic energy in the cone, provided it is deposited far away
from the photon. We add that it is actually desirable theoretically in any isolation to have a
‘large’ value of ε (= εγ or εc): soft-gluon emission into the cone generates logarithms [15, 24, 27]
of ε, with an extra power at each further order of perturbation theory, which for very small
ε eventually threaten to spoil the perturbative expansion. A study on the structure of the
logarithms appearing in the isolated-photon cross section in e+e− collisions has been given in
ref. [35]. Pending a more thorough investigation of these points in the case of isolation B, it
seems likely that being able to choose εγ = O(1) is clearly a virtue of this isolation method.

The default value for the factorization and renormalization scales will be indicated by
µ0, which will be taken equal to the transverse momentum of the photon in the case A, and
equal to half of the total transverse energy of the event in the case B. These two choices,
which slightly differ beyond LO, are due to the different structure of the codes computing the
isolated-photon cross section in cases A and B, as described in section 2. It would be possible
to set µ0 = pTγ in case B (however, this choice, although formally correct, is less appropriate
than the one adopted here: since the code is fully exclusive in the variables of the photon and
of the final-state partons, the reference scale, which is directly related to the hardness of the
process, should also depend upon the transverse momenta of the partons); this would result
in differences with our default choice that are completely negligible when compared to the
other sources of theoretical uncertainty affecting the cross section. We will adopt throughout
the two-loop expression for αS, the ΛQCD value being that associated with the parton densities
used. Our default parton density sets will be the NLO ‘standard’ set of ref. [41] (GRSV STD)
and MRST [30] for the polarized and unpolarized scattering respectively. In the case of the
definition A, we will use the NLO GRV [13] set of parton-to-photon fragmentation functions.

We have to note here that, while the value of ΛQCD associated with the MRST set
(ΛMS

5 = 220 MeV) is close to the central value of the latest PDG world average (at two
loops, ΛMS

5 = 237+26
−24 MeV [42]), all the available polarized density sets have a value which is

much lower, consistent with that extracted from DIS data some years ago. Thus, by adopting
the value of ΛQCD associated with a given set, we have the unpleasant situation in which,
in the computation of asymmetries, the numerator and the denominator have different Λ’s.
Still, we preferred not to violate the correlation between the parton densities and ΛQCD. This
correlation is expected to be particularly strong in the case of the gluon density, which is of
great importance here. Since a smaller ΛQCD entails a smaller strong coupling, our predictions
for asymmetries would have become somewhat larger than the ones we present below, had we
decided to adopt the same value of ΛQCD in the polarized and unpolarized cross sections. This
situation has already been encountered in ref. [4], for jet physics. There, it has been shown
that using the same ΛQCD in the polarized and unpolarized cross sections would increase the
asymmetry by 15% (relatively) at the most. In the case of photon production, the difference
is even smaller. As we will see, the effect is therefore completely negligible, with respect to
the differences in the predictions of the asymmetries induced by the choice of different parton
densities.

In what follows, in order to assess the importance of the radiative QCD corrections, we
will often compare the NLO and Born results. Throughout the paper, by ‘Born result’ we
will mean the prediction obtained by convoluting the lowest-order partonic cross sections
(O(αemαS) and O(α2

S) for the direct and the fragmentation contributions respectively) with
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Figure 1: Transverse-momentum spectrum of the isolated photon, in the case of
definition B, for polarized pp collisions at

√
S = 500 GeV. The polarized parton

densities used are GRSV STD. The scale dependences of the Born and NLO results
are also shown; see the text for details.

the NLO-evolved parton densities and, if needed, fragmentation functions. Also, the two-loop
expression of αS will be used. There is of course a lot of freedom in the definition of a Born-
level result. However, we believe that with this definition one has a better understanding
of some issues related to the stability of the perturbative series. This is especially true in
polarized physics, where the data are not sufficient to determine the parton densities with
a good accuracy, and where large (artificial) differences can arise between sets fitted at LO
or NLO to the available DIS data. For a detailed discussion on this point, see for example
ref. [4].

We start by considering the transverse momentum spectrum of isolated photons. In the
lower part of fig. 1 we plot the Born (histogram with symbols) and NLO (solid histogram)
results for the polarized cross section, obtained at

√
S = 500 GeV with the isolation definition

B. A cut |ηγ | < 0.35 has been imposed, which is suitable for the PHENIX experiment. As
can be seen from the figure, the inclusion of the radiative corrections gives a sizeable effect
as far as the normalization is concerned (in the first bin, the ratio of NLO over Born result
is about 1.8), while the shape is almost unaffected (the Born being only slightly harder than
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the NLO result). Since the radiative corrections are large, one may wonder whether the NLO
result is a sensible quantity to compare with data. A rigorous answer to this question can
only come from a complete NNLO calculation. Lacking that, we study the scale dependence
of our results, as customary in perturbative QCD, to see whether the inclusion of radiative
corrections leads to a milder dependence upon the scales, as compared to the one of the
Born result. Here, it is especially important to study the separate dependence upon the
renormalization and factorization scales, because cancellation effects between the two may
hide some problems. We present the scale dependence of the pTγ spectrum in the upper and
central parts of fig. 1. There, we show the ratio of the cross section obtained by setting
the scales equal to µ0/2 and 2µ0, over the cross section for the default values of the scales.
We stress that only one scale is varied at a time. The renormalization (factorization) scale
variation corresponds to the dotted (dashed) curves; the curves decreasing for increasing pTγ

correspond to µR = µ0/2 and µF = 2µ0, respectively. From the figure, it is apparent that
the inclusion of the radiative corrections reduces the scale dependence in the whole pTγ range
considered, with a possible exception in the case of the µF dependence, for pTγ equal to 16–
20 GeV, where there is basically no µF dependence. The reduction is stronger in the case of
µF dependence than in the case of µR dependence. The fact that there is a point in the pTγ

spectrum where there appears to be no factorization scale dependence is purely accidental; it
can be traced back to the behaviour of the parton densities with respect to the hard scale. In
fact, the gluon density increases with the scale in the x range corresponding to the low-pTγ

region, while it is decreasing when the scale is increasing for larger x values, probed when
a harder photon is produced. We can conclude from fig. 1 that the perturbative expansion
seems to be reliable in this case; in all cases, the radiative corrections reduce the size of the
dependence of the pTγ spectrum upon the scales. We must comment on the fact that this
conclusion is not specific to the kinematical configuration considered in fig. 1: we verified that
the same kind of behaviour can be seen in a larger ηγ range (we studied the case −1 < ηγ < 2),
and also at lower centre-of-mass energies (

√
S = 200 GeV). Furthermore, almost the same

results are obtained in the case of unpolarized collisions.
We now turn to the case when the photon is isolated according to definition A. The results

are presented in fig. 2. In the lower part, we display the ratio of the cross section over that
obtained with definition B. In this case, the scales are fixed to their default values. The result
at the Born level is again displayed as a histogram with symbols. The Born result in the case
of definition A is always higher than that relevant to definition B. This is easy to understand,
since at this order the result for the direct part is independent of the isolation condition,
and the photon isolated with definition A gets a contribution from the fragmentation part,
which is not present in the case of definition B. Things of course change at NLO: having an
additional parton around, the isolation condition is effective also in the direct part. We must
also remark that, in the case of isolation A, the fragmentation contribution is only included
at LO. A consistent computation at NLO would presumably produce a slightly larger cross
section (for example, in the case of unpolarized collisions, the inclusion of radiative corrections
in the fragmentation component enhances the full cross section at high pT by about 3%). The
effect is much larger in the case in which there is no isolation condition, and the photon is fully
inclusive. We will further comment on this fact below. As in the previous case, we also studied
the µR and µF dependence of the spectrum; in doing so, the factorization and renormalization
scales of the direct and of the fragmentation components have been set to the same value:
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Figure 2: Transverse-momentum spectrum of the isolated photon, in the case of
definition A. The ratio of the cross section over that obtained with definition B is
shown in the lower part. The rest of the figure displays the scale dependence, at the
Born and NLO levels.

µ′
F

= µF and µ′
R

= µR (see eq. (1)). The results are displayed in the upper parts of fig. 2.
Note that for definition A we have an additional pair of lines (dot-dashed), corresponding
to the results obtained by varying the final-state factorization scale µγ, which enters the
fragmentation functions. The µF and µR dependence is very similar to the one relevant to
definition B, displayed in fig. 1, and the same comments made previously apply here. On the
other hand, the µγ dependence is extremely small, and gives a negligible contribution to the
theoretical error affecting the cross section. The almost identical scale dependence in the case
of definitions A and B also implies that the ratio of cross sections plotted in the lower part
of fig. 1 is, to a good extent, independent of the scale choice.

For completeness, we present in fig. 3 the corresponding predictions for the fully inclusive
non-isolated prompt-photon cross section. We first discuss the scale dependence of the results,
displayed again in the upper two parts of the figure. At low pTγ, the µR dependence turns
out to be larger than that of the isolated-photon cross sections, while at large pTγ the two
appear to be pretty similar (the isolation condition is less and less restrictive as the transverse
momentum of the photon is increased, since it is more and more difficult to have a hard parton,
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Figure 3: Same as in fig. 2, for non-isolated photons.

in the surroundings of the photon, that does not pass the isolation cuts). The µγ dependence
of the fully inclusive cross section is much larger than that of the isolated-photon cross section
obtained with definition A. However, its effect is still smaller than that due to µR and µF .

The comparison of the non-isolated cross section with the one isolated according to defi-
nition B is shown in the lower part of fig. 3. One immediately notices a striking feature: at
NLO, the isolated cross section becomes larger than the unpolarized one at large pTγ. Clearly,
this finding is at odds with the physical expectation that any meaningful isolation cut should
reduce the number of events with respect to the number obtained for no isolation at all. The
origin of the problem we encounter resides in the fact that the fragmentation contribution to
the non-isolated cross section (and, obviously, also for the results for isolation A presented
in fig. 2) has only been calculated at the LO level since, as we pointed out earlier, the NLO
corrections to the fragmentation contribution have not been calculated so far in the polarized
case. We expect that once the proper NLO fragmentation component is included in the cal-
culation of the polarized cross section, the disagreeable feature of fig. 3 will disappear. This
view is corroborated by the observation that we find exactly the same pattern in the unpo-
larized case: there, everything can be calculated consistently at NLO, and the non-isolated
cross section turns out to be larger than the one obtained for both types of isolation we con-
sider. However, we checked that, if we compute the fragmentation contribution only at LO
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in the unpolarized case, we indeed obtain a non-isolated cross section that is smaller than
the isolated one for definition B, much as happens in fig. 3. The figure clearly points out the
importance of consistency in the NLO calculation. A NLO calculation of the fragmentation
component of the polarized prompt-photon cross section is highly desirable for the future.
On the basis of fig. 3 we would predict non-negligible positive corrections to the LO result.
For the time being, our present results for isolation A and the non-isolated case have only
limited reliability. Fortunately, fragmentation is really important only in the non-isolated
case, which is not the one relevant to experiment. For a (traditionally) isolated cross section,
it contributes a relatively small fraction of the full result, and this fraction decreases rapidly
towards larger pTγ . We are therefore fairly confident that our predictions for definition A are
numerically not too far off the true NLO answer.

For these reasons, we refrain from performing a detailed study of the uncertainty in the
cross section for isolation A. We only state that we have also calculated the unpolarized and
the polarized cross sections, using set I of the photon fragmentation functions of ref. [14].
We find that the fragmentation component to the cross section decreases by about 23%
at pTγ ≈ 10 GeV, and by about 50% at the high-pTγ end. For the full (i.e. direct plus
fragmentation) cross section, the effect is obviously much smaller, generally below 2%.

There is another striking property of the curve in the lower part of fig. 2: it is very close to
unity over the whole range of pTγ (in fact, from what we just discussed, we would expect it to
be even closer to unity at large pTγ, had we been able to include the fragmentation component
at NLO in case of definition A). In other words, the two types of isolation, albeit so different
from a physics point of view, lead to almost identical cross sections. To some extent, this is
certainly due to the choices we made for εc, εγ in eqs. (7),(8): had we chosen, say, εγ = εc

there1, then isolation B would have become stricter than isolation A, and the corresponding
curve in fig. 2 would have been above unity everywhere. Our choices in eqs. (7),(8) presumably
created a certain ‘balance’ between the two isolations. However, we found that there is more
to the similarity of the two isolated cross sections. When performing runs at larger values of
R0, we found that the cone-size dependence of the cross section is extremely mild for both
types of isolation. This indicates that isolation is most effective close to the photon and
does not affect the cross section too much at larger distances from the photon. To illustrate
this point, we plot in fig. 4, as a function of the distance R from the photon, the amount
of hadronic transverse energy deposited on average in a cone annulus between R − ∆R and
R + ∆R, where ∆R = 0.025. We do this for isolation of type B, considering two realistic
values of the isolation-cone size, R0 = 0.4 and R0 = 0.7, and one extreme value R0 = 0.005.
We have chosen

√
S = 500 GeV, and the photon variables have been integrated over pTγ >

10 GeV, −1 < ηγ < 2 (we used an extended rapidity coverage in order to reduce as much
as possible the statistical errors on our results; however, rapidity is not an issue here, and
our conclusions apply to any rapidity range). The reason for having a plot obtained with
R0 = 0.005 is the following: with such a narrow isolation cone, the distribution in hadronic
transverse energy around the photon is basically identical (for non-zero R) to what would be
obtained in the case of non-isolated photons. Thus, we can have a clear idea of the effect
of imposing an isolation condition with a realistic value for R0. By inspection of the solid

1This is simply an example; as discussed at the beginning of this subsection, this is actually not a desirable
choice.
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Figure 4: Average transverse energy in the cone annuli around the photon.

histogram in fig. 4, we see that a sizeable amount of energy is deposited only at small distances
from the photon, and – at least in the framework of a NLO calculation – not much energy
is delivered for R >0.2–0.3. This is the reason why there is no real difference between the
cross sections obtained with different, but physically sensible, values of R0. Notice that this
conclusion holds regardless of whether we use isolation A or B. To avoid misunderstandings
concerning fig. 4: of course at NLO we have only one extra particle at our disposal (the third
one balancing the other two in transverse momentum), so isolation only becomes effective if
this particle falls into the isolation cone. We are not saying in fig. 4 that this extra particle is
usually soft: the point is rather that, thanks to the collinear singularity of the corresponding
2→ 3 matrix elements at R = 0, the extra particle simply happens to be close to the photon
more often than far away from it, so that on average more energy is deposited close to the
photon. Incidentally, one can convince oneself that, for small R and ∆R � R, the quantity
shown in fig. 4 has to be proportional to ∆R/σ(R0) × (dσ(θ)/dθ)θ=R, where θ is the angle
between the momenta of the photon and the other particle in the cone, and σ(R0) is the total
cross section for a given isolation-cone size R0 and a given kinematical range for the photon
variables (here, pTγ > 10 GeV and −1 < ηγ < 2). For a quark parallel to the photon (which is
the only configuration producing a collinear singularity at θ = 0), one thus finds immediately
that the curves in fig. 4 should fall ∝ 1/R if R > R0, i.e. outside the isolation cone. This is
exactly the pattern observed in the figure. Inside the cone the isolation is effective, and for
the isolation of definition B employed here, one expects the curve to fall like some power of
R as R → 0. Finally, we also note that the normalization factor 1/σ(R0) is the reason why
the histograms for the three different R0 in fig. 4 do not exactly coincide even if R > 0.7. A
comparison of the histograms relevant to R0 = 0.4 and R0 = 0.7 at R = 1 nicely demonstrates
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how weak the dependence of the isolated-photon cross section on the cone size is.
We finally study the distribution of the photon in pseudorapidity ηγ. We impose here the

Figure 5: Pseudorapidity spectrum of isolated photons (definition B). The cross
sections obtained by varying the renormalization and factorization scales are also
shown.

transverse momentum cut pTγ > 10 GeV. Our results are summarized in fig. 5; they have
been obtained in the case of definition B. The upper histograms correspond to NLO, while
the lower ones represent the Born level results. The solid histograms have been obtained with
default scales. They are pretty similar in shape; the Born is only slightly broader, with a
deeper dip at ηγ = 0. The size of radiative corrections is as expected from what we previously
found for the pTγ spectrum: the NLO result is about a factor 1.6 higher than the Born one.
The pairs of dotted histograms are obtained by setting the renormalization scale equal to
µ0/2 and 2µ0. It is clear that also in this case the radiative corrections have the effect of
reducing the scale dependence; by varying µR, one obtains NLO cross sections that differ
from the default one by 10% at most. The effect of varying the factorization scale is much
smaller than that associated with changes in µR. This can be understood by looking at fig. 1:
the effects at low pTγ (µF = µ0/2 returns a cross section smaller than the default one) and at
large pTγ (µF = µ0/2 returns a cross section larger than the default one) tend to compensate
when integrating over pTγ , as done for fig. 5. The scale dependence of the densities is again
responsible for this behaviour. When plotting the ηγ distribution for an integration over, say,
just the region 10 < pTγ < 12 GeV, one would see a much larger µF dependence, of the order
of that shown in the low-pTγ region in fig. 1. We also considered the ηγ spectrum in the case
when the photon is isolated according to definition A. The scale dependence, as already in
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the case of the pTγ spectrum, is identical to that presented in fig. 5. The shape is almost the
same as the one relevant to definition B, for all scale choices.

3.2 Spin asymmetries and sensitivity to ∆g

In spin physics, experiments usually focus on spin asymmetries, since many systematic uncer-
tainties cancel out in this ratio of polarized and unpolarized cross sections. In what follows,
we will therefore study the quantity

ApTγ
=

d∆σ/dpTγ

dσ/dpTγ
, (9)

as a function of pTγ. We will also consider a similar asymmetry, with pTγ replaced by ηγ .
More studies on asymmetries will be presented in section 4. In eq. (9), it is understood that
the same kinematical cuts are applied to both the numerator and the denominator. The
measurability of a spin asymmetry for a given process, as far as statistics are concerned, is of
course determined by the counting rate. The quantity

(
ApTγ

)
min

=
1

P 2

1√
2σLε

(10)

can be regarded as the minimal asymmetry that can be detected experimentally or, equiva-
lently, as the expected statistical error of the measurement, for a given integrated luminosity
relevant to parallel or antiparallel spins of the incoming particles, L, beam polarizations P
and a detection efficiency ε ≤ 1; σ is the unpolarized cross section integrated over a certain
range in pTγ (this range is denoted as a pTγ bin). We assumed here that the luminosities
relevant to parallel and antiparallel spins of the incoming protons are equal, L→→ = L←→ ≡ L.
If this were not the case, the quantity 2σL in eq. (10) would have to be substituted with
4σL→→L←→/(L→→ + L←→).

At present, the largest source of uncertainty on the theoretical predictions for asymmetries
is clearly the choice of the polarized parton densities. We established in the previous subsec-
tion that the perturbative expansion of single-inclusive cross sections is under control. In the
remainder of this section, we will therefore concentrate on the dependence of the asymmetries
upon the densities. There are many NLO-evolved sets available, which mainly differ in the
gluon sector, which is rather poorly constrained by DIS data (apart, perhaps, from the first
moment). In a previous study relevant to jet physics [4], we saw that most of the sets give
almost identical results as far as the shape of the asymmetry is concerned, the main difference
being in the absolute normalization. For this reason, we will limit ourselves in this paper to
three sets: GRSV STD, our default set; GRSV MAXg [41], which has a much larger gluon
density and is thus expected to return the highest cross sections; and set C of ref. [43] (GS-C),
which has a rather small gluon density whose shape is dramatically different from that of all
the other sets, turning negative at high x for Q2 not too large.

In fig. 6 we present our results for the asymmetry as a function of pTγ . A cut |ηγ | < 0.35 has
been applied. In the left part of the figure we plot the asymmetries obtained at

√
S = 200 GeV,

while in the right part we present the results for
√

S = 500 GeV. The solid, dashed and dotted
histograms correspond to the NLO predictions obtained with GRSV STD, GRSV MAXg and

18



Figure 6: Asymmetry as a function of pTγ , for various polarized densities, at differ-
ent centre-of-mass energies. The minimally observable asymmetry (dot-dashed his-
togram) is also shown.

GS-C respectively. The corresponding symbols (see the labels on the figure) are the results
obtained at the Born level. Finally, the dot-dashed histogram is the minimally observable
asymmetry, as defined in eq. (10). We have chosen L = 100 pb−1, P = 1 and ε = 1. Of
course, the latter two choices are not realistic; however, in adopting this ‘ideal-world’ situation,
we can estimate the optimally achievable accuracy for a given integrated luminosity. Note
that the assumed value for L is conservative; one expects in the best case to eventually
obtain L = 160 pb−1/polarization at

√
S = 200 GeV and L = 400 pb−1/polarization at√

S = 500 GeV. In any case, it is straightforward to rescale our predicted minimally observable
asymmetry 2 if one prefers other values for L, P or ε. We also emphasize that we have chosen
rather small bins in pTγ, ∆pTγ = 2 GeV. It would certainly seem advantageous in the actual
data analysis to increase the bin size when going to larger pTγ, as is indeed a commonly
adopted procedure in the unpolarized prompt-photon experiments.

From fig. 6, we see that the shapes of the asymmetries obtained using the GRSV STD
and GRSV MAXg sets are quite similar, but the difference in normalization is sizeable; this is

2Our cuts used in fig. 6, in particular |ηγ | < 0.35, actually correspond to those of the PHENIX experiment.
Note, however, that all our results have been integrated over the full 2π of azimuthal angle, whereas the
PHENIX electromagnetic calorimeter only covers half the azimuth. This implies that for a correct comparison
our minimally observable asymmetry has to be multiplied by a factor of

√
2, in addition to introducing the

appropriate values for L, P , ε. Our results for
(ApT γ

)
min

are then found to be consistent with those reported
in [16].
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consistent with what we observed in our study of jet physics [4]. On the other hand, the result
obtained for GS-C looks completely different. At NLO, this asymmetry becomes negative in
the region 10 < pTγ < 30 GeV at

√
S = 200 GeV, and in the region 30 < pTγ < 45 GeV at√

S = 500 GeV. This is due in the first place to large cancellations between the contributions
of various partonic channels: while the GRSV STD and GRSV MAXg results are dominated
by the contribution of the qg-initiated subprocess, this is not true in the case of GS-C, where
the gluon is so small that quark–quark scatterings (of opposite sign) are in absolute value of
the same order or larger, in particular in the central pseudorapidity region, which is of interest
here. For the same reason, the asymmetries for set GS-C obtained at the Born level turn out
to be always substantially larger than those obtained at NLO. The issue of (non-)dominance
of the qg subprocess, which is obviously of key interest for the extraction of the polarized
gluon density from isolated-photon data, will be examined in more detail in the following.

It is instructive to compare the asymmetries at the two different centre-of-mass energies
considered in fig. 6. As is well known, at smaller centre-of-mass energies, the asymmetries
are generally larger; for example, when going from

√
S = 200 GeV to

√
S = 500 GeV the

asymmetry obtained with GRSV STD decreases by a factor of about 3.6 (1.8) at pTγ = 10 GeV
(pTγ = 50 GeV). This feature is readily explained by the fact that, for fixed pTγ , at larger√

S one probes smaller values of x in the parton distributions. Since the unpolarized parton
densities are steeper than the polarized ones towards small x’s, one therefore gives more
weight to the unpolarized cross section in the denominator of the asymmetry. However,
when comparing the predicted asymmetries with the minimum observable asymmetry, it is
clear that, at a fixed value of pTγ, and except for the first few pTγ bins, the situation at√

S = 500 GeV is more favourable than that at
√

S = 200 GeV. On the other hand, as far as
a measurement of ∆g at a given x is concerned, one should rather look at the asymmetries
at fixed xγ

T
= 2pTγ/

√
S, since this corresponds to the value at which the parton densities

are probed predominantly. As can be seen from fig. 6, the asymmetries corresponding to the
GRSV sets approximately scale with xγ

T
. Then, the quantity deciding about which energy is

more favourable, is the minimally observable asymmetry at a given xγ
T
. This quantity does

not scale with xγ
T , as can be inferred from the figure. For

√
S = 500 GeV, one finds a value

of
(
ApTγ

)
min

larger than for the lower energy, making the higher-energy option appear less

favourable. However, two points should be kept in mind here: firstly, in both plots in fig. 6
the same value for the integrated luminosity has been used, whereas in reality one anticipates
a higher (by a factor of 2 to 3) luminosity for

√
S = 500 GeV. Secondly, the lower cut-off

for pTγ will certainly be the same for both energies, which means that at
√

S = 500 GeV
one can explore a region of xγ

T
that is inaccessible at

√
S = 200 GeV. Also, even if one

considers the same xγ
T value for the two energies, the parton densities are still being probed at

rather different scales, of the order of xγ
T

√
S/2, the corresponding pTγ values. Thus, it will be

interesting to see whether measurements performed at different centre-of-mass energies will
yield information that is consistent, and compatible with QCD evolution.

The same asymmetries as presented in fig. 6 were also computed in a larger pseudorapidity
range, −1 < ηγ < 2, relevant to the STAR experiment. In the case of the GRSV sets, only
very minor differences were found, and the same conclusions as drawn above apply (we have
also to take into account the fact that the minimally observable asymmetry decreases by a
factor that can be as large as 2; therefore, in this larger pseudorapidity range the situation is
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Figure 7: As in fig. 6, but as a function of ηγ .

even more favourable). In the case of GS-C, the asymmetry increases significantly, becoming
larger than the minimally observable asymmetry for pTγ < 22 GeV at

√
S = 500 GeV, and

for pTγ < 14 GeV at
√

S = 200 GeV. Also, in this region of pTγ the Born and NLO results are
close to each other, displaying a behaviour similar to that of the GRSV sets. The reason is
again linked to the dominance of the qg-initiated partonic subprocess: in fact, at large ηγ’s,
this subprocess accounts for most of the full NLO cross section also in the case of GS-C, as
will be shown below. It thus follows that, if the true polarized gluon density is similar to the
one of the GS-C set, an extended pseudorapidity coverage is mandatory in order to be able to
see it experimentally. Finally, we mention that we computed the asymmetries also by varying
the isolation parameters R0 and n. When setting R0 = 0.7 and/or n = 2, we did not find any
noticeable difference with the results presented above.

In fig. 7 we present the asymmetry as a function of ηγ . A cut pTγ > 10 GeV has been
applied. We again show the results obtained at two different centre-of-mass energies, at
both the Born and the NLO level. As in the case of the pTγ distribution, the shapes of the
asymmetries obtained with the two GRSV sets are almost identical, while the one obtained
with GS-C behaves quite differently. The NLO result for GS-C becomes negative around
ηγ = 0 at

√
S = 200 GeV (the Born asymmetry remains positive), consistently with what

we observed before in the low-pTγ region at this energy. As remarked before, away from the
central-ηγ region the GS-C asymmetry is larger than the minimally observable one, and the
Born and the NLO results become similar. On the other hand, in this region the Born and
NLO results for the GRSV sets differ more than around ηγ = 0. This is simply related to
the fact that here the polarized cross sections fall more rapidly at the NLO level than at the
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Figure 8: pTγ and ηγ spectra of isolated photons in polarized and unpolarized col-
lisions. The results obtained by retaining only the contribution of the qg-initiated
partonic subprocess are also shown (symbols).

Born level (cf. fig. 5), contrary to the case of the unpolarized cross section.
We now return to the issue of the dominance of the qg-initiated subprocess in prompt-

photon production at RHIC. In fig. 8 we show the pTγ (left) and ηγ (right) dependences of
the polarized and unpolarized cross sections, using the three sets of polarized parton densities
employed in the previous figures. As before, the isolation of definition B and the default
choice of scales have been adopted. We have used

√
S = 200 GeV here (we checked that

at
√

S = 500 GeV we obtain results that lead us to the very same conclusions); cuts are as
before. The symbols show in each case the cross section that is obtained by keeping only the
qg-initiated subprocess. One can clearly see that in the polarized case, for the two GRSV
density sets, the qg subprocess alone produces a result that is almost identical to the full
answer. As we have checked, this comes about to some extent because the other subprocesses
all give small contributions, but also because they tend to cancel one another to a good
approximation. This explains why for set GS-C a different pattern is found: slightly different
quark densities and a vastly different gluon distribution make the cancellation of the non-qg
channels imperfect, and the gluon density is not large enough to render the signal from qg
scattering dominant, except for large |ηγ|. However, in view of fig. 6, this finding does not
really create a problem: if the gluon is indeed as small as embodied in the GS-C set, the
measurement at RHIC will anyway only give an asymmetry compatible with zero, and we
will not be in a position to actually unfold ∆g from the data. If, on the other hand, ∆g is
sizeable, it is an encouraging result that the polarized cross section provides a very direct
measure of it. Note that in the unpolarized case the qg channel is generally responsible for
only O(80%) of the cross section.

We finally mention that we have also computed the asymmetries by isolating the photon
according to definition A. In the case of the GRSV sets, the results are almost identical to those
shown here. In the case of GS-C, some difference can be seen in the central pseudorapidity
region, where the asymmetry tends to be smaller in the case of definition A. Part of this effect
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results from the different scale choices adopted for the two definitions, as discussed at the
beginning of this section.

4 Isolated-photon-plus-jet observables

In the production process, the transverse momentum of the prompt photon is balanced by
that of the high-pT outgoing hadrons. It may be decided to neglect the properties of these
hadrons, and to study the inclusive production of the photon, as we did in section 3. On
the other hand, the study of the correlations between the photon and the associated hadrons
gives a more thorough information on the underlying dynamics. Also, from the experimental
point of view, photon-plus-hadron events can be used as a means of calibrating the hadronic
calorimeter. In this section, we will consider photon-plus-jet observables. Our predictions
are relevant to the STAR experiment [17] at RHIC, where one of the main goals is indeed
to determine ∆g from prompt-photon-plus-jet events. As is customary in any fixed-order
computation in perturbative QCD, our predictions are given at the parton level (i.e. our
jet-finding algorithm deals with partons and not with hadrons). We will adopt here a kT -
algorithm, namely that proposed in ref. [44], with D = 1. We will only discuss the case when
the photon is isolated following the prescription B; unless otherwise specified, we will adopt
the isolation parameters given in eq. (8): R0 = 0.4, εγ = 1, n = 1. Since our computation
is based on five-leg amplitudes, we are able to predict the photon-plus-one-jet observables at
NLO, and the photon-plus-two-jet observables at LO.

4.1 General features and perturbative stability

The number of jets that accompany the photon does depend not only upon the dynamics,
but also upon the jet-finding algorithm and the kinematical cuts imposed on the jets. This
is documented in table 1, where the total rates are presented for events satisfying

pTγ ≥ 10 GeV, −1 ≤ ηγ ≤ 2, pT j ≥ 10, 12, 14 GeV, −1 ≤ ηj ≤ 2, (11)

in the case of polarized and unpolarized pp collisions at
√

S = 500 GeV (pT j and ηj are the
jet transverse momentum and pseudorapidity, respectively). The cuts on ηγ, ηj considered
here are relevant to the STAR detector. As one might expect, there is only a small fraction
of events where the photon is accompanied by two jets (in the case of two-jet events, the
transverse-momentum cut is applied to both jets; it is clear that the inclusion of radiative
corrections for photon-plus-two-jet observables will not change what was said before). On
the other hand3, a sizeable number of events falls in the class denoted by ‘0-jets’, which is
constituted by those events where the jet(s) do not pass the imposed transverse-momentum
or pseudorapidity cuts; at the lowest transverse-momentum cut, this is mainly due to the
fact that the pseudorapidity cut is not symmetric around η = 0. Since the number of jets
is directly related to the hardness of the event, large differences can be seen in the ratio of
two-jet over one-jet rates, when different parton densities are considered. In particular, this

3By definition, for a given row in table 1, the sum ‘0-jet’+‘1-jet’+‘2-jet’ is the same for each of the three
pTj cuts, and corresponds to the inclusive isolated-photon rate.
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pT j ≥ 10 GeV pTj ≥ 12 GeV pT j ≥ 14 GeV
0-jet 1-jet 2-jet 0-jet 1-jet 2-jet 0-jet 1-jet 2-jet

GRSV STD 115.1 168.0 15.87 136.7 151.4 10.92 178.0 113.3 7.692
GRSV MAXg 206.7 294.7 29.28 244.6 265.8 20.30 317.2 199.1 14.41
GS-C 27.73 41.57 1.121 37.30 32.52 0.604 49.61 20.50 0.312
MRST·10−3 11.61 13.27 0.730 14.37 10.77 0.471 18.45 6.854 0.310

Table 1: Total rates (in pb; the entries relevant to unpolarized scattering have been
multiplied by 10−3) for isolated-photon-plus-jet events, at

√
S = 500 GeV.

ratio is the larger the slower the gluon density approaches zero for x→ 1; while GRSV STD
and GRSV MAXg return almost the same ratio (the shape of their gluon being basically the
same), the result for GS-C is much smaller, since the gluon density in this case has a dip at
intermediate x values. It follows that a first rough piece of information on the behaviour of
the gluon density at large x can be obtained by simply looking at the total photon-plus-jet
rates. We also notice that the result for the ratio of one-jet over two-jet rates in the case of
unpolarized scattering (fourth row in table 1) lies in between that of the GRSV sets and that
of the GS-C set, consistently with the fact that the shape of the MRST gluon density is softer
than that of GRSV STD and harder than that of GS-C. This also implies that the ratio of
rates corresponding to different numbers of jets is not very sensitive to the polarization of the
beams.

We must stress that, in the case of pT j ≥ 10 GeV and pTγ ≥ 10 GeV, the zero-jet and
one-jet rates are rather pathological in perturbative QCD (on the other hand, their sum is
well-behaved). Indeed, when equal transverse-momentum cuts are imposed on the photon
and the hardest jet, large logarithms appear in the cross section, which in principle should
be resummed. Roughly speaking, at any fixed order in perturbation theory, for ‘symmetric
cuts’ the radiation of real gluons cannot compensate the large and negative contribution of
the virtual diagrams. The mechanism is identical to the one that can be observed in two-jet
correlations, in the case when the two jets have the same minimum transverse momentum
cut. This matter was discussed at length in ref. [45], to which we refer the reader for more
details. For illustration, we consider here the total rate (no η cuts have been applied; these
would just change the absolute normalization which is of no interest in what follows):

σγj(∆) = σ(pTγ ≥ 10 GeV, pTj ≥ 10 GeV + ∆) (12)

as a function of ∆, for both polarized and unpolarized collisions, at different centre-of-mass
energies. By definition, the jet is the hardest of the jets of the event. The results are displayed
in fig. 9. The plots in this figure are completely analogous to the ones in fig. 4 of ref. [45]. The
main point is that a negative slope is here visible at ∆ = 0, implying that the cross section
decreases here with the decreasing cut on pTγ , clearly signalling a failure of the perturbative
expansion. We remark, however, that, at variance with the case of jet–jet correlations, in
the case of isolated-photon-plus-jet production, a value of ∆ = 1 GeV already appears to
be perfectly safe. We also remind the reader that, even in the case of equal transverse-
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Figure 9: Total photon-plus-jet rates, in polarized and unpolarized collisions, at
different centre-of-mass energies.

momentum cuts, the perturbative expansion is reliable everywhere except in some corners
of the phase space (examples will be given below). Inspecting fig. 9, we finally note that,
when going from

√
S = 200 GeV to

√
S = 500 GeV, the cross section increases much more

in the unpolarized than in the polarized case. This implies that, as in the case of inclusive
observables discussed in the previous section, at fixed final-state kinematical variables the
asymmetries for photon-plus-jet observables are larger at the smaller centre-of-mass energies.

We now turn to the issue of the perturbative stability of our results for correlations between
photon and jets. Since we are interested in NLO predictions, we will only consider photon-
plus-one-jet quantities; in the case when two jets are present in the event, only the hardest jet
is retained. As in subsection 3.1, we will assume that we obtain a (relatively sound) indication
of the stability of the cross sections if the variations induced by changing the renormalization
and factorization scales with respect to their default values are small. In fig. 10 we present
the result for the invariant mass distribution of the photon-jet system, in the case of polarized
collisions at

√
S = 500 GeV. The pseudorapidities of both the photon and the jet are required

to be in the range −1 ≤ η ≤ 2, and we impose pTγ ≥ 10 GeV and pTj ≥ 10 GeV. The results
of both the NLO computation (upper curves) and Born computation (lower curves, which
have been rescaled in order to make them clearly distinguishable from the NLO ones) are
displayed. Similarly to the case of the inclusive transverse momentum distribution of isolated
photons (cf. fig. 1), in most of the range in Mγj the change of cross section induced by a
variation of the renormalization scale is of the order of 10% at NLO, and larger at the Born
level. However, a quite dramatic effect is seen at threshold, when radiative corrections are
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Figure 10: Renormalization-scale dependence of the invariant mass spectrum of
the photon–jet system, at the Born and NLO levels. The result for unequal lower
transverse-momentum cuts is also shown (inset).

included: the cross section in the first bin becomes negative, and the scale dependence displays
a pathological behaviour in this range, the cross section becoming smaller for decreasing
renormalization scales. This effect is exactly a consequence of the fact that the minimum
transverse-momentum cuts on the photon and the jet are equal. Indeed, in the inset of fig. 10
we show (in the threshold region) the invariant mass of the photon–jet system in the case
when pT j ≥ 12 GeV. It is obvious that here the scale dependence is as expected, and the
cross section in the first bin (although not visible in the figure) remains positive. However,
the first two bins show a scale sensitivity comparable to the one of the Born result. In fact,
close to the threshold the NLO result is effectively a LO one, since the threshold at the Born
level is in this case at Mγj = 24 GeV. In the invariant mass range not close to threshold, the
scale dependence in the case of unequal transverse-momentum cuts is practically identical
to the one displayed in the main body of fig. 10. We also studied the factorization scale
dependence of the invariant mass distribution. In the region not close to the threshold, there
is a clear improvement when going from LO to NLO; again, the results for equal and unequal
transverse-momentum cuts are very similar. At threshold, the same considerations as given
above apply. As in the case of the single-inclusive photon transverse-momentum spectrum
displayed in fig. 1, the cross section for larger (smaller) factorization scales is larger (smaller)
than the default one at small invariant masses, while it is smaller (larger) than the default
for large invariant masses. This behaviour is almost entirely due to scale dependence of the
parton densities, as already discussed in the single-inclusive case.

We performed a thorough study of the renormalization and factorization scale dependence
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of many photon-jet observables. In particular, we considered the photon (jet) transverse
momentum and pseudorapidity distributions, when cuts on the recoiling jet (photon) are
imposed, as suggested in ref. [26]. Among the photon-jet correlations, we considered the

transverse momentum of the pair p
(γj)
T , the azimuthal distance in the transverse plane ∆φγj ,

the distance in the η–φ plane ∆Rγj , and the variables

x1 =
pTγe

ηγ + pT je
ηj

√
S

, x2 =
pTγe

−ηγ + pT je
−ηj

√
S

, (13)

which, at the Born level, coincide with the Bjørken-x values of the incoming partons. In all
these cases, a reduction in the relative size of the scale dependence is seen at the NLO with
respect to the Born level, whenever such a comparison is meaningful (that is whenever the
Born contribution is already present at the level of a 2→ 2 scattering process): a change of
the scales within the limits as above induces a variation of the results of about 10% or less. In
the regions of the phase space where the partonic contributions start at the 2 → 3 level (for

example, p
(γj)
T > 0, ∆φγj < π, ∆Rγj < π), our NLO results have a scale dependence larger

than elsewhere, of the order of 15% to 20%, since they are effectively LO. Finally, as in the case
of the invariant-mass distribution, there are corners of the phase space where the perturbative
results are not reliable in the case of equal transverse-momentum cuts. Among those, the case
of ∆Rγj = π is particularly interesting, since here the Born threshold falls inside the range
available at NLO. This case has been described, on general grounds, in ref. [46].

4.2 Spin asymmetries

We now turn to the study of asymmetries for photon-plus-jet cross sections. We follow the
procedure of subsection 3.2, namely we study the dependence of the asymmetries on the
choice of polarized parton densities, at the Born and NLO levels. Here, we restrict ourselves
to
√

S = 200 GeV. We verified that the pattern when going to
√

S = 500 GeV is similar
to the one already described in the preceding section; namely, at fixed final-state kinematics
we get smaller asymmetries, with however also smaller minimally observable asymmetries.
In fig. 11 we show the asymmetries as functions of the invariant mass (left) and x1 (right).
The photon-plus-jet events have been selected by imposing equal transverse-momentum cuts
on the photon and on the hardest jet (pT > 10 GeV; pseudorapidities are restricted to the
range −1 < η < 2). As discussed previously, this choice only affects the threshold region of
the invariant mass, where our predictions should not be considered as reliable. As in the case
of single-inclusive quantities, the results for GRSV STD and GRSV MAXg are pretty similar
in shape, although sizeably different in normalization. On the other hand, GS-C has a clearly
distinguishable signature, showing a dip at intermediate values of the invariant mass and in
the region around x1 = 0.1. It is very easy to trace the origin of this behaviour back to the
shape of the GS-C gluon. The NLO results are smaller than those at LO, as they already
were in the case of inclusive observables. The difference between Born and NLO results is not
big at small invariant masses and in the whole x1 range, while it grows larger in the tail of
the invariant-mass distribution, since the K-factor of the unpolarized cross section is larger
in this region than that of the polarized cross section. Figure. 11 also presents the minimally
observable asymmetry (dot-dashed histograms), calculated according to eq. (10). A bin size
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Figure 11: Asymmetries at
√

S = 200 GeV , as functions of invariant mass (left)
and x1 (right). The NLO (histograms) and Born (symbols) results are both shown.
The minimum observable asymmetry is displayed by the dot-dashed histogram.

of 2 GeV has been chosen for Mγj , and of 0.05 for log x1; as before, L = 100 pb−1 and
ε = P = 1. It is apparent that, if the polarized densities are as predicted by the GS-C set, the
measurement of the asymmetry at RHIC will produce a result compatible with zero, even if
quite large integrated luminosities are attained. This result is consistent with what we already
found in section 3.2; however, in the case of single-inclusive variables the situation appeared
to be slightly better, when the enlarged pseudorapidity range −1 < η < 2 was considered.

In this context, we would like to comment on the findings of ref. [26], where it was observed
that, by looking at photon-plus-jet events, instead of considering only the inclusive variables
of the photon, one gets larger asymmetries. Also, photon-plus-jet observables enhance the
sensitivity to the shape of the parton densities and can be used for a more straightforward
deconvolution of ∆g from data [17]. Although we agree with these observations, we doubt
that photon-plus-jet correlations will give us a better chance of measuring the gluon density
than inclusive observables. In fact, there is in practice the problem that the (theoretical)
minimally observable asymmetry is larger in the case of photon-plus-jet quantities than in
the case of inclusive-photon quantities. The situation is summarized in fig. 12, for the case
of the ηγ spectrum with pTγ ≥ 10 GeV. In the case of the photon-plus-jet observable, the
following cuts have been imposed on the jet: pT j ≥ 10 GeV, |ηj | ≤ 0.5. From the figure,
it is apparent that, in spite of the fact that the asymmetry is increased when cutting on
the jet variables, the measurement would be more difficult, since the minimally observable
asymmetry is enhanced by a larger factor with respect to the asymmetry. Of course, this is
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Figure 12: Asymmetries at
√

S = 200 GeV , as functions of photon pseudorapid-
ity, with (dotted) and without (solid) a transverse-momentum cut on the recoiling
jet. The corresponding minimally observable asymmetries (dashed and dot-dashed,
respectively) have been rescaled in order to coincide with the respective asymmetries
at ηγ = 0.

a purely theoretical estimate, which assumes that the experimental efficiency is the same in
the case of inclusive-photon or photon-plus-jet events (here taken to be equal to 1). This is
probably unrealistic, but it seems unlikely that the photon-plus-jet efficiency will be higher
than that for photon-tagging only. Therefore, without any detailed study at the detector
level, it seems improbable that the photon-plus-jet asymmetries will be the preferred tool
for pinning down the polarized gluon density. We finally also have to add that in ref. [26]
the photon transverse momentum was constrained in a bin around pTj = 10 GeV of width
1 GeV, instead of having pTγ > 10 GeV as in fig. 12. In view of the discussion relative to
fig. 9, the kinematical constraints imposed in ref. [26] appear to be more problematic from
the perturbative point of view than those adopted in this paper for producing fig. 12.

5 Conclusions

We have performed a phenomenological study of prompt-photon production by polarized col-
liding proton beams at RHIC. Our main motivation has been to put in practice a recently
proposed alternative way of isolating the photon from the hadronic background, which elim-
inates the ill-understood fragmentation contribution from the cross section, so that only the
direct component is left. In this way, an optimally clean photon signal results. This has also
enabled us to perform the first fully consistent next-to-leading order calculation for polarized
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prompt-photon production.
We have compared the cross sections and asymmetries for the new isolation with those

obtained for a traditional cone-type isolation as used hitherto in unpolarized collider prompt-
photon experiments. We find only small differences, implying that using the new ‘clean’
isolation is not accompanied by a reduction in the number of events.

Performing a consistent next-to-leading order study, we were in a position to examine the
perturbative stability of the cross sections by studying their dependence on the factorization
and renormalization scales. We find that the scale dependence is significantly reduced when
going from the Born level to the next-to-leading order, and that the scale dependence is
moderate at next-to-leading order. This generally holds true for both inclusive isolated-
photon production and for isolated-photon-plus-jet production.

We have presented phenomenological results for the spin asymmetries and their expected
statistical errors in the RHIC experiments PHENIX and STAR. Consistently with previ-
ous studies, the results are highly sensitive to the size of the spin-dependent gluon density
∆g(x, Q2), and it turns out that, unless ∆g is very small, it should clearly be possible to
rather accurately determine it in the region 0.04 < x < 0.25, at scales of the order of the
transverse momentum of the photon, 10 GeV < pTγ < 30 GeV. In this context, we find that
as far as statistics is concerned, inclusive-photon measurements seem to be somewhat more
favourable than photon-plus-jet ones.
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