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Abstract

The presence of an extra dimension of size R ≈ TeV−1 introduces a tower of Kaluza-
Klein gauge boson excitations that affects the standard model (SM) relations between
electroweak observables. The mixing of the W and Z bosons with their excitations changes
their masses and couplings to fermions. This effect depends on the Higgs field, which may
live in the bulk of the extra dimension, on its boundary, or may be a combination of both
types of fields. We use high-precision electroweak data to constrain 1/R. We find limits
from 1 to 3 TeV from different observables, with a model independent bound of 2.5 TeV.
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1 Introduction

It is widely believed that the standard model (SM) is the low-energy limit of a more fundamental
theory including gravity. It is also believed that one of the requirements for this fundamental
theory is the existence of more than three spatial dimensions, which would be compact and
with a radius R of Planckean size. Recently, however, it has been suggested that the extra
dimensions can appear at much lower energies. A first possibility was given in Refs. [1, 2]
in the context of string theory. It was shown that large extra dimensions do not necessarily
spoil the gauge coupling unification of the 4D theory. A more radical possibility, proposed
in Ref. [3], is to decrease the scale of unification of gravity with the gauge interactions down
to the TeV. This can be realized by means of two sub-millimeter extra dimensions in which
only gravity propagates. Although the gauge interactions would not feel these sub-millimeter
dimensions, a fundamental scale (string scale) in the TeV region suggests the possibility of
compact dimensions of this size where the SM fields do propagate.

Large (≈ TeV−1) extra dimensions find also an interesting motivation as a framework to
break supersymmetry. This has been studied in detail in Refs. [4, 5, 6], where it was predicted
a compactification scale around 3− 20 TeV. Also recently, it was discussed [7, 8] how an extra
dimension could lead to the unification of the gauge forces at the TeV-scale.

In this letter we study the effects of extra dimensions on electroweak observables. If the SM
gauge bosons can propagate in a compact dimension, their (quantized) momentum along this
dimension can be associated to the mass n/R (n = 1, ..,∞) of a tower of Kaluza-Klein (KK)
excitations. As a consequence the relations between electroweak observables will be modified
with respect to those of the 4D SM. There are two kinds of effects. The first one is due to the
presence of mixing between the zero and the n-modes of the W and Z bosons. This leads to
a modification of the W and Z masses and their couplings to the fermions. The second effect
arises from the exchange of KK-excitations of the W , Z and γ vector bosons, which induces
extra contributions to four-fermion interactions. We calculate these effects and show how to
put bounds on the size of an extra dimension from high-precision electroweak data. We find
limits on 1/R from 1 to 3 TeV from different observables, with a model independent bound of
≈ 2.5 TeV.

2 Framework

The model that we want to study is based on an extension of the SM to 5D [4]. The fifth
dimension x5 is compactified on the segment S1/Z2, a circle of radius R with the identification
x5 → −x5. This segment, of length πR, has two 4D boundaries at x5 = 0 and x5 = πR (the
two fixed points of the orbifold S1/Z2). The SM gauge fields live in the 5D bulk, while the
SM fermions are localized on the 4D boundaries. The Higgs fields can be either in the 5D
bulk or on the 4D boundaries. Models with the Higgs in the bulk have been considered in
Refs. [4, 8], while models with Higgs on the boundary have been considered in Refs. [7, 6]. The
most general case consists of a SM Higgs which is a combination of both types of fields. We
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will then assume the presence of two Higgs doublets, φ1 and φ2, living respectively in the bulk
and on the boundary.

To illustrate how to obtain the SM in such a framework (for more details see Refs. [9, 4, 6]),
let us consider a U(1) gauge theory in 5D with two scalars, φ1 in the bulk and φ2 localized on
the x5 = 0 boundary, together with a fermion q living on the same boundary. We assume that
all these fields have U(1) charges equal to 1. The 5D lagrangian is given by

L5 = − 1

4g2
5

F 2
MN + |DMφ1|2 +

[
iq̄σµDµq + |Dµφ2|2

]
δ(x5) , (1)

where DM = ∂M + iVM , M = (µ, 5) = (1, ..., 5), and g5 is the 5D gauge coupling. The
fields living in the bulk are defined to be even under the Z2-parity, i.e., Φ(x5) = Φ(−x5) for
Φ = VM , φ1. They can be Fourier-expanded as

Φ(xµ, x5) =
∞∑

n=0

cos
nx5

R
Φ(n)(xµ) . (2)

Using Eq. (2) and integrating over the fifth dimension, the resulting 4D theory (in the unitary
gauge [6]) is given by

L4 =
∞∑

n=0

[
− 1

4
F (n) 2

µν +
1

2

(
n2

R2
+ 2g2|φ1|2

)
V (n)

µ V (n) µ

]

+ g2|φ2|2
(
V (0)

µ +
√

2
∞∑

n=1

V (n)
µ

)2

+ iq̄σµ

[
∂µ + igV (0)

µ + ig
√

2
∞∑

n=1

V (n)
µ

]
q + . . . , (3)

where g is now the 4D gauge coupling, related to the 5D coupling by g = g5/
√

πR. We are
only writing the terms which are relevant to generate gauge boson masses via Higgs vacuum
expectation values (VEVs) and the couplings of the gauge KK-excitations V (n)

µ to the fermions
on the boundary. These are the only types of terms that will be needed in our analysis. Several
comments are in order. Due to the presence of the boundary φ2 field and its VEV, the zero
and n-mode of the gauge boson will mix. These mixing terms are allowed due to the breaking
of x5-translational invariance by the boundaries. Second, the coupling of the KK-excitations
to the fermion is enhanced by a factor of

√
2 due to the different normalization of the zero and

the n-modes in the KK-tower.

The generalization of the above lagrangian to the SM is straightforward. Following the
standard notation, we will parametrize the VEVs of the Higgs by 〈φ1〉 = v cos β ≡ vcβ and
〈φ2〉 = v sin β ≡ vsβ

1. For sβ = 0 the SM Higgs lives in the bulk and has KK-excitations,
whereas for sβ = 1 it is a boundary field. The W gauge boson mass matrix is given by

M2
W '


m2

W

√
2m2

Ws2
β

√
2m2

W s2
β . . .√

2m2
W s2

β M2
c√

2m2
W s2

β (2Mc)
2

...
. . .

 , (4)

1We do not specify the couplings of φ1 or φ2 to the fermions since it is not needed here. However, the fact
that the coupling of φ1 to the boundary is suppressed by a factor

√
πR suggests that φ1 (φ2) is the responsible

for giving a mass to the bottom (top).
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where Mc ≡ 1/R, m2
W = g2v2/2, and g is the SU(2)L gauge coupling. In Eq. (4) we have

neglected terms of O(m2
W ) for the KK-excitation masses, since they are subleading in the limit

Mc � mW considered here. From now on we will only consider the leading corrections, of
O(m2

W /M2
c ), to the masses and couplings of the lightest modes. The eigenvalues of the matrix

(4) can be obtained at this order by the rotation RM2
WR†, with

R '


1 θ1 θ2 . . .
−θ1 1
−θ2 1

...
. . .

 , and θn = −
√

2m2
W s2

β

n2M2
c

. (5)

The mass eigenvalues are

m
(ph) 2
W = m2

W

[
1− 2s4

β

∞∑
n=1

m2
W

n2M2
c

]
, (6)

M
(n) 2
KK = n2M2

c +O
(
m2

W

)
, n = 1, 2, ...,∞ . (7)

The lightest mode, of mass m
(ph) 2
W , is the one to be associated with the SM W boson. Its

coupling to the fermions is affected by the rotation (5). We obtain

g(ph) = g

[
1− 2s2

β

∞∑
n=1

m2
W

n2M2
c

]
. (8)

For the neutral SM gauge bosons, W3 and B, the situation is analogous. After the usual rotation
by the electroweak angle θW , the states are split into the massless γ plus its KK-excitations
(with masses nMc), and the KK-tower of Zs, whose mass matrix is identical to Eq. (4) with
the replacement mW → mZ . The lightest Z boson has a mass and a gauge coupling to the
fermions given by

m
(ph) 2
Z = m2

Z

[
1− 2s4

β

∞∑
n=1

m2
Z

n2M2
c

]
, (9)

g
(ph)
Z =

g

cos θW

[
1− 2s2

β

∞∑
n=1

m2
Z

n2M2
c

]
, (10)

where mZ and g/ cos θW would be the mass and the coupling in the case with no mixing of the
Z with its KK-excitations.

3 Electroweak observables and constraints on Mc

Let us start considering the effect of the KK-tower to the SM tree-level relation

GSM
F =

πα√
2m

(ph) 2
W [1−m

(ph) 2
W /m

(ph) 2
Z ]

, (11)
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where by GSM
F we refer to the SM prediction for the Fermi constant measured in the µ-decay,

and m
(ph)
W and m

(ph)
Z are the measured (physical) masses. In our model the µ-decay can be also

mediated by the W excitations. Therefore we have

GF√
2

=
g(ph) 2

8m
(ph) 2
W

+
∞∑

n=1

(
√

2g)2

8n2M2
c

, (12)

where now g(ph) and m
(ph) 2
W are given in Eqs. (8) and (6), respectively. On the other hand, since

α is experimentally obtained at zero momentum, the KK-contribution is negligible and we have

α =
g2

4π

(
1− m2

W

m2
Z

)
=

g(ph) 2

4π

1− m
(ph) 2
W

m
(ph) 2
Z

1 + (2s4
β + 4s2

β)
∞∑

n=1

m
(ph) 2
W

n2M2
c

 . (13)

From Eqs. (12), (13) and (11), we obtain

GF = GSM
F

1− 2(s4
β + 2s2

β − 1)
∞∑

n=1

m
(ph) 2
W

n2M2
c

 , (14)

that expresses the deviation versus the SM prediction due to the KK-excitations.

In order to compare with the high-precision electroweak data, we must include radiative
corrections. The loop effects of the KK-excitations can be neglected in the limit Mc � mW
2. In consequence we must only consider the ordinary SM radiative corrections. These can be
easily incorporated by replacing the tree-level relation (11) by the loop-corrected one, that can
be extracted from Ref. [10]. The excellent agreement between GSM

F and the observed value leads
to a severe constraint on the ratio GF /GSM

F −1. Actually, since the experimental determination

of GF is still more precise than m
(ph) 2
W , the analysis of electroweak observables uses GF , m

(ph) 2
Z

and α as input parameters, and takes the relation in (11), corrected by radiative corrections
(see Eq. (10.6a) of Ref. [10]), as a SM prediction for the W physical mass mSM

W . This must be

compared with the experimental value [11] m
(ph)
W = 80.39 ± 0.06 GeV. Using Eq. (14) and the

relation
∑∞

n=1 1/n2 = π2/6, we derive at the 2σ level

mSM 2
W [m

(ph) 2
Z −mSM 2

W ]

m
(ph) 2
W [m

(ph) 2
Z −m

(ph) 2
W ]

=

1− (s4
β + 2s2

β − 1)
π2m

(ph) 2
W

3M2
c

 = 1+0.0088
−0.0083 . (15)

This translates into the bound on Mc given in Fig. 1. For sβ = 0 we have Mc
>∼ 1.6 TeV. A

similar bound was derived (in this limit sβ = 0) in Ref. [12]. Notice that the bound depends
strongly on sβ and goes to zero for s2

β =
√

2 − 1. Therefore, we find that this is not a good
observable to constrain Mc in a model independent way.

We can proceed as above to obtain predictions for other electroweak observables. We
have considered three more quantities: (1) QW , obtained in atomic parity violating exper-
iments [10], (2) Γ(l+l−), the leptonic width of the Z, and (3) the ρ-parameter defined as

2These loop effects modify the gauge coupling of the KK-excitations. We estimate a <∼ 10% of variation on
the KK-contribution to GF .
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ρ = m
(ph) 2
W /(m

(ph) 2
Z cos2 θ̂W ) [10]. The SM prediction for these observables can be found in

Ref. [10]. In order to compare with the SM values of Ref. [10], our prediction for QW and

Γ(l+l−) must be expressed as a function of GF (instead of m
(ph)
W ) and m

(ph) 2
Z . We obtain 3

QW = QSM
W

1 + 2(s2
β − 1)2 sin2 θW

∞∑
n=1

m
(ph) 2
Z

n2M2
c

 , (16)

Γ(l+l−) = ΓSM(l+l−)

1 + 2
[
(s2

β − 1)2 sin2 θW − 1
] ∞∑

n=1

m
(ph) 2
Z

n2M2
c

 , (17)

ρ = ρSM

1− 2s4
β sin2 θW

∞∑
n=1

m
(ph) 2
Z

n2M2
c

 . (18)

Comparing the above with the experimental values we can place bounds on Mc . These are
shown in Fig. 1. The experimental values and SM predictions for QW and Γ(l+l−) have been
taken from the Table 10.3 of Ref. [10]. The experimental value of ρ has been taken from
Ref. [11], and for the SM prediction we have used [10] ρSM = 1.0109±0.0006. We find that the
strongest bound on Mc comes from the leptonic Z width, an observable that seems to be very
appropriate to constrain models with extra gauge bosons. This is because (a) it is measured at
the level of 0.1%, (b) the SM loop corrections are calculated with an even better precision 4,
and (c) its dependence on sβ is very mild. We find an absolute bound of Mc

>∼ 2.5 TeV. The
bound coming from QW is much weaker. This disagrees with Ref. [12], where a stronger bound
from QW was obtained in the limit sβ = 0. We think that the reason of this disagreement is
that in Ref. [12] QW was derived without taking into account the KK contribution to GF . The
bound from ρ is not very strong either. This is due to the fact that the gauge boson sector has
an approximate SU(2)-custodial symmetry only broken by the difference (m2

Z−m2
W )/m2

Z ' .23.

One can look for other observables that would lead to analogous bounds. For example, the
total width of the Z or sin2 θ̂W from the relation in Eq. (10.9a) of Ref. [10]. The later also gives
bounds around 2.5 TeV, but with a strong dependence on sβ.

KK-excitations also affect the differential cross-sections for e+e− → f+f− measured at high
energies, q2 > m2

Z . These experiments can be used to test four-fermion contact interactions,
and consequently to put bounds on the masses of the KK-excitations [2]. We find that the
largest bound comes from limits on the vector four-fermion interaction, εV [e+γµe−][f+γµf

−].
In our model these are mediated (predominantly) by the KK-tower of the photon and gives εV =
−2q2

fe
2∑∞

n=1 1/(n2M2
c ). The minus sign indicates that the contribution interferes destructively

with the SM one. The strongest constraint on εV is found in the LEP2 experiment, that gives
εV < 4π/(9.3)2 TeV−2 for leptons at the 95% CL [15]. This implies Mc

>∼ 1.5 TeV. Constraints
on Mc can also be obtained from direct searches for Z ′ at Tevatron [13]. The present limit for
a SM-like Z ′ is MZ′ > 690 GeV. In our model, however, we must consider that the coupling of
the KK-excitations to fermions is a factor

√
2 larger than that of the Z, and the cross-section

3We have neglected possible KK-contributions to the ratio g2
V /g2

A = (1− 4 sin2 θW )2 ≈ 0.006.
4We must stress that this is true if Γ(l+l−) is expressed as a function of GF and m

(ph) 2
Z . The reason is that

the dominant SM correction is suppressed by a factor tan2 θW with respect to that in GSM
F .
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production is enhanced by a factor of 4. From Ref. [13], we get the limit Mc
>∼ 820 GeV.

Similarly, from searches for W ′ [14] we obtain the bound Mc
>∼ 780 GeV.

Finally, we want to comment on models with more than one extra dimension. Our analysis
can be easily extended just by replacing the sum

∑∞
n=1 1/n2 appearing in the above equations by

the sum over all the KK-excitations of the theory. This sum, however, depends on the manifold
on which the theory is compactified [2]. In addition, for more than one extra dimension it is
not finite. For two extra dimensions, for example, the sum diverges logarithmically ∼ ln(Λ/Mc)
and therefore depends also on the cutoff of the theory Λ. Consequently, the bounds on Mc for
more than one extra dimension will be stronger but very model dependent.

4 Conclusions

There are well motivated theoretical arguments that imply the existence of more than three
spatial dimensions. In order to be consistent with all observations, of course, the extra dimen-
sions must be compactified at some high-energy scale. If this scale is around the TeV, their
presence must affect the SM electroweak predictions currently being tested at high precision
experiments.

In this letter we have analyzed these effects. We have shown how the associated tower of
KK-excitations of the SM fields modify the relations between different electroweak observables.
We have considered the most general case by taking the SM Higgs doublet as a combination of
a field living in the 5D bulk and another living on the 4D boundary of the manifold. We have
compared with the present electroweak data and have put constraints on the compactification
scale. We have shown that, if an extra dimension exists, it must be compactified at a scale larger
than ≈ 2.5 TeV. This bound will be improved with a better experimental determination of,
for example, the W mass. Also new LEP2 data on differential cross-sections for e+e− → f+f−

can, as discussed above, be very useful to establish the maximum length of an extra dimension.
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Figure 1: Bounds on the compactification scale Mc from electroweak observables.
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