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Abstract

Two-photon formation of the charmonium resonance Y., has been studied with
the L3 detector at LEP. The x is identified through its decay x.o — 7J, with a
subsequent decay J — eTe” or J — puTp~. With an integrated luminosity of 140
pb~lat /s ~91 GeV and 52 pb™! at /s ~ 183 GeV, we measure the two-photon
width of the .o to be

T (xe2) = 1.02 £ 0.40 (stat.) £ 0.15 (sys.) = 0.09(BR.) keV.
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Introduction

Several theoretical calculations of the partial decay widths of the charmonium J¢ = 27+ meson
Xc2 have been published [1-4]. In these models it is assumed that the two heavy quarks in the
meson are bound together by a QCD potential. However, there are considerable differences
in the treatment of the non-perturbative QCD effects and relativistic corrections. The models
are also sensitive to input parameters such as the charm quark mass m., the value of the
strong coupling constant ag(m.) and the shape of the quark potential. The predictions for the
two-photon decay width of the y. lie in the interval 0.3 keV < 'y, (xc2) < 0.6 keV.

More accurate predictions exist for the ratios between decay rates, such as I, (xco) /Ty (Xe2)
5] or the ratio of the two-gluon width to the two-photon width T'gy(xc2)/T1+(Xc2) [6-8], since
the relativistic corrections and the dependence on the quark potential cancel. In next-to-leading
order one obtains for the latter ratio [6]

Tyo(Xe2)  90*(me) <1— 2.2as/7r> ‘

= 1
L (Xe2) 8a? 1 — 16as/3m (1)

For I, (xc2) one can take either I'(x.2 — hadrons), or, according to reference [7], the difference
['(xe2 — hadrons) — I'(xc1 — hadrons). Here, the term I'(x.; — hadrons) is assumed to be
equal to the three-gluon width of the Y., since the y.; can only decay to hadrons through
a three-gluon decay, and the x.; and the y. are close in mass. Equation (1) can be used to
determine as(m.) from a measurement of I, (xc2) [9].

At eTe™ colliders, two-photon interactions are studied via the process ete™ — ete vy —
ete” X. The scattered electron and positron carry almost the full beam energy and usually
escape undetected (untagged events). If the scattering angle is sufficiently large, they can be
detected in the forward electromagnetic calorimeters (tagged events). If the final state X is a
resonance R, it must have positive charge conjugation and the total production cross section is
given by

olete” —ete™R) = /d5LW o(yy — R). (2)
Here, L., is the two-photon luminosity function described by QED [10], and o(yy — R) is, for
quasi-real photons, given by the Breit-Wigner formula
FW(R)FR
(W2~ mi)? + iy

o(yy — R) =8r(2Jgp + 1) (3)
where W, is the two-photon invariant mass, and mpg, Jg, I';,(R) and I'g are the mass, spin,
two-photon decay width and total decay width of the resonance R, respectively. Equations (2)
and (3) show that there is a linear relationship between the total cross section o(ete™ — ete™R)
and the two-photon decay width I, (R).

We identify the Yo through its decay into vJ, with J — e*e™ or utu~. The total branching
ratio for ye. — ete vy or uT 7y is BR=0.01624+0.0014 [11]. In this decay mode, the sensitivity
to xe1 and Yo formation is small, because the branching ratio x.g — vJ — ete ™y or utu=—v
is (84:2)-107* [11], and x.; production by two real photons is forbidden by the Landau-Yang
theorem [12].

L3 detector

A detailed description of the L3 detector can be found elsewhere [13]. This analysis uses the
Silicon Microvertex Detector and the Time Expansion Chamber (TEC) for the tracking of
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charged particles, and the Electromagnetic Calorimeter (ECAL), consisting of BGO crystals,
to detect photons and identify electrons and muons. The scattered beam electrons may be
detected in the forward Luminosity Monitor (LUMI), also consisting of BGO crystals. Until
1995, the tagging acceptance of the LUMI was 26 mrad< 6 < 65 mrad, where 0 is the polar angle
with respect to the incident beams. From 1996 onwards, it is decreased to 30 mrad< 6 <65
mrad due to the installation of a radiation shield. Since 1996, the scattered beam electrons
can also be detected in a Very Small Angle Tagger (VSAT) [14]. This detector consists of
four units each containing 24 BGO crystals, positioned in the horizontal plane behind the first
LEP quadrupole magnets at 8.2 m from the interaction point. The VSAT acceptance is 5
mrad< 6 < 8 mrad for -0.8 rad< ¢ < 0.8 rad and 7-0.8 rad< ¢ < 7w + 0.8 rad, where ¢ is the
azimuthal angle and ¢=0 corresponds to the plane of the LEP ring.

Data analysis

We analyse data taken in the years 1991 to 1995 at centre-of-mass energies around 91 GeV
corresponding to an integrated luminosity of 140.2 pb~! (LEP1 data), and data taken in 1997
at /s ~ 183 GeV corresponding to 52.4 pb~! (LEP2 data).

In order to select xeo — 7J, J — ete™ or u*pu~ events, the following selection criteria are
applied:

e The event must have two tracks of opposite charge and with transverse momenta 0.05
GeV< py < 15 GeV. A track must have at least 12 out of a maximum of 62 hits in the
TEC, and the distance between the first and last hit should be at least 15 wires. The
distance of closest approach to the beam line in the transverse plane is required to be
smaller than 2 mm.

e Electrons and muons are identified using their signatures in the ECAL. Since the electrons
leave all their energy in the calorimeter, the energy E measured in the ECAL must be close
to the track momentum p. To identify the electron pair, we require for one track 0.9 <
E/p < 1.1 and for the other track 0.7 < E/p < 1.3. Muons with momenta smaller than
2 GeV do not reach the muon chambers. They are identified by their minimum ionising
signature in the ECAL, corresponding to an energy deposition of less than 0.45 GeV.

e The event should have one photon. A photon candidate is defined as an electromagnetic
cluster in the ECAL, separated from both tracks by at least 100 mrad in ¢ and 140 mrad
in #. Since the x. decay photon typically has an energy around 0.46 GeV, a cut requiring
E, >0.3 GeV is very efficient in reducing the background, as shown in Figure 1.

e To reject radiative events of the type ete™ — eTe eTe v, the photon should not be
close to either one of the tracks in the centre-of-mass system of the y.o; therefore, if
cosO(¢,~) > 0.96, the event is rejected.

o If a cluster with energy E > 0.7 Fpeam is found in the LUMI calorimeter, or a cluster of
E > 0.5 Eyeam is detected in the VSAT calorimeter, the event is classified as tagged.

e To select exclusive final states, the squared vectorial sum of the transverse momentum
P of all measured particles, (Xp;)?, is required to be small. If a tag is found it is also
included in the sum. However, if (Xp;)? excluding the p; of the tag is smaller than the
(¥p;)? with the tag included, the event is regarded as untagged. For untagged events and
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events with a LUMI tag, we require (Xp;)? < 0.08 GeV?, while for events with a VSAT
tag, we cut at (Xp;)% < 0.1 GeV?.

e Finally, a cut is made on the invariant mass of the lepton pair M (¢*¢~). For LEP1 data,
we cut at |[M(¢T¢7) — M(J)| < 0.25 GeV. For LEP2 data the resolution is slightly worse
because the tracks are on average at smaller polar angles; therefore the cut is loosened to
0.30 GeV.

Figure 2 shows the mass difference AM = M (¢T0~~) — M(¢*¢7) for the events passing all
cuts described above. The hatched areas represent single-tagged events. A peak is observed at
the position expected for the yeo: AM = M(xe2) — M(J) = 0.459 GeV.

Selection efficiency

The selection efficiency is determined with a Monte Carlo program [15] which generates the
efe™ — ete xe, X2 — 7J events according to the luminosity function of Reference [10]. We
include only the contribution of two transversely polarised photons. The explicit Q*-dependence
of the cross section, where —@Q? is the invariant mass squared of the virtual photon, is taken into
account by multiplying the cross section with a Vector Meson Dominance (VMD) transition
form factor with a J pole:

o <1 T @%1/M<J>2>2 (1 n Q%l/M(J)2>2 (4)

We assume that only the helicity state [A\| = 2 contributes to vy — Y2 formation [1,5]. The o
decay products are generated according to a phase space distribution, 7.e. uniform in cos 6,
¢*, cost', and ¢. Here, 0* and ¢* are the polar and azimuthal angles of the photon relative to
the photon-photon collision axis in the Y., centre-of-mass frame, and 6" and ¢ define the et or
ut direction in the J rest frame. 6 is the angle between the positive lepton and the direction
of flight of the J, while ¢ is the angle between the production and decay planes of the J. In
order to correct for the dependence of the angular distribution on the helicity of the spin-two
resonance, each Monte Carlo event is weighted with a function f\(6*,6',¢') [16,17]:

1 /
—A3(1 4 cos®0)(1+ 6cos® 0% + cos 6%)

ho0.6) = g

4+ A%(1—cos? ') (1 — cos 6)

3 ,
+ ZAg(l + cos? 6 )(1 — 2 cos® 0% + cos* 6%)

1 I ro. * 3 n* *
+ Z\/§A2A1 cos ¢ sin 26 sin 0" (cos” 0" + 3 cos 0*)

1 ! !
+ Z\/@AQAO cos 2¢ sin? 6 (1 — cos* 6%)
]_ ! ’
— 5\/§A1A0 cos ¢ sin 26 sin® §* cos 0*. (5)

The decay amplitudes Ay, A;, and A have been measured [18] to be 0.21+0.03, 0.4940.07, and
0.85+0.05, respectively. Using a pure electric dipole transition would result in coefficients Ag=
0.316, A; =0.549, and A5, =0.775. This alternative is taken into account in the determination
of the systematic error.



All generated events are passed through a full detector simulation and are reconstructed
following the same procedure as used for the data [19]. A trigger simulation is also included.
Most events are triggered by the charged track trigger, which requires two acoplanar tracks, but
some are also triggered by the calorimeter trigger. In addition, there is a trigger for electron
tags in the LUMI calorimeter. The trigger efficiency for untagged events for LEP1 data is
88+4%, while for LEP2 data it is 894+5%.

The total efficiency, including the detector acceptance, for untagged data is 10.440.5% at
LEP1, while at LEP2 it is 8.64+0.5%. At LEP2, the acceptance is somewhat lower due to the
larger average boost of the y o system.

Results

Only the untagged events are used for the measurement of I',,(xc2). They are plotted in
Figure 3a. In Figure 3b the AM spectrum for the J sidebands (2.45 GeV < M(¢T¢7) < 2.75
GeV and 3.45 GeV < M (¢T¢7) < 3.75 GeV) is shown. The sideband events for LEP1 data and
LEP2 data have been added together. This spectrum describes the shape of the background
under the y.p signal. It is parametrised by a threshold function

. exp(—x/asy)
bz) = 1+ exp((az — x)/ay)’ ©)

where a; is chosen such that b(z) is normalised to one. The J sideband spectrum, the LEP1
spectrum and the LEP2 spectrum are fitted simultaneously in an unbinned likelihood fit. In
this way the statistical uncertainty of the background is automatically included in the fit. The
J sideband spectrum is fitted with the threshold function b(z). The LEP1 and LEP2 data

spectra are each fitted with a sum of the threshold function and a Gaussian distribution g(x):

filz) = (1= pi) b(x) + pi g(x) (7)

Here, p; is the ratio of the number of signal events S; over the number of total events N; in data
spectrum 7. The parameters of the threshold function as, as, and a4, and the position and the
width of the Gaussian distribution are required to be the same for all spectra. The number of
signal events in the LEP1 and LEP2 samples, S; and S5, are both related to the two-photon
width by the relation

Si = € Lz BR K; P’Y’Y' (8)

Here, ¢; is the total efficiency for data sample ¢, L; the integrated luminosity, and BR the
branching ratio xe. — vyete™ or yuTu~. The factor k;, relating the cross section to the two-
photon width, is obtained from Monte Carlo.

The curves in Figure 3 show the fitted signal and background functions. The fit gives for the
position of the . signal AM=0.4454+0.010 GeV, in agreement with the expected position. Also
the width, o(AM)=0.023+0.007 GeV, due entirely to to the experimental resolution, agrees
with the Monte Carlo expectations. The 13.6 signal events obtained from the fit correspond to
a two-photon width of I',, (xc2) = 1.02 £ 0.40 (stat.) keV.

The systematic error due to a variation of the cut on the photon energy from 0.275 to
0.325 GeV is 7%. If the cut on M (¢1¢7) is varied by 0.05 GeV in both directions, the two-photon
width changes by 11%. Variations of the other selection cuts give much smaller contributions
to the systematic error, and are neglected. The uncertainties in the trigger efficiency result in
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a 4% uncertainty on the value of I',,(xc2). Changing the VMD J pole form factor to a VMD
p pole form factor increases the two-photon width by 4%. A 5% helicity-zero contribution to
vy — X2 formation would decrease the two-photon width by 1%. Varying the decay amplitudes
in equation (5) within their errors results in a 2% error. Taking an electric dipole transition for
these amplitudes also gives a 2% contribution to the error. We assume that the error due to
taking into account only the transverse-transverse two-photon cross section can be neglected.
The different contributions to the systematic error are summarised in Table 1. They result
in a total systematic error of 15%. The systematic error due to the uncertainty on the branching
ratio xeo — eTe "y or ut =y is 8% [11]. The final value for the two-photon width of the .o is
therefore
[ (Xe2) = 1.02 £ 0.40 (stat.) £ 0.15 (sys.) £ 0.09(BR.) keV. 9)

In Figure 2, the tagged events are also shown. At /s ~ 91 GeV, we observe one Y2
candidate with a tag in the Luminosity Monitor (1 GeV? < Q% < 9 GeV?), with an estimated
background of 0.8 events. For a VMD form factor with a J pole, we would expect 0.95 signal
events, while for a VMD form factor with a p pole, we would expect 0.05. At /s ~ 183 GeV we
find one candidate event with a tag in the VSAT (0.1 GeV? < Q? < 0.9 GeV?), with negligible
background. Here we expect 0.14 events in case of a J pole and 0.06 events in case of a p pole.
This is the first indication of tagged x.o events. The confidence levels for a J pole and a p
pole form factor are 27% and 16%, respectively. Due to the low statistics and the unknown
contribution of the y.; background in these (Q? intervals, it is not yet possible to measure the
X2 transition form factor.

Using equation (1) the I',,(xc2) measurement can be converted into a measurement of
as(me). With T'yg(xe2) = I'(xc2 — hadrons) = 1.73 £ 0.21 MeV [11], and a=1/137, we obtain
as(me) = 0.25 £ 0.06. If we use I'yg(xc2) = I'(xc2 — hadrons) — I'(xe1 — hadrons), with
['(xex — hadrons) = 0.64 + 0.11 MeV [11], we obtain ag(m.) = 0.21 £ 0.05. These values
are lower than the measurements obtained at the 7 mass, as(m,) = 0.334 £ 0.022 [20]. The
latter is consistent with oy values measured in Z-decays evolved to the charm mass (m, ~ m.).
Similar discrepancies have been observed in other oy determinations from the decays of c¢¢ and
bb states [8,9].

In Table 2, our value of ', (xc2) is compared to previous measurements [21-25]. Within
errors, the agreement is good. However, the combined value of all two-photon measurements,
I (Xe2) = 1.23 £ 0.23(stat. + sys.) = 0.11(BR.) keV, is three standard deviations higher than
the pp measurement of E760. The theoretical predictions [1-4] are also listed in Table 2. Our
measurement is somewhat higher than these predictions, but it agrees within errors.
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Table 1: Summary of the contributions to the relative systematic error on the two-

Error source

(AT /T

Cut on E,

Cut on M(¢+e)
Trigger simulation
Form factor

Only |A| = 2 formation
Decay amplitudes

%
11%
4%
4%
1%
3%

Total systematic error

15%

photon width.

Experiment | Production mechanism | [y (Xe2) (keV)
R704 [21] PP — Xe2 — V7 2.07074+ 0.3
TPC/27y [22] Y = Xez — ) 34+ 17409
E760 [23] DD — Yes — 77 0.32 + 0.08 + 0.05
CLEO [24] VY — Xe2 — VI 1.08 = 0.30 £ 0.26
OPAL [25] VY — Xe2 — I 1.76 £ 0.47 £ 0.37 £ 0.15
L3 (this analysis) VY = Xe2 — VI 1.02 £+ 0.40+ 0.15 £+ 0.09
‘ Prediction |
Barnes [1] 0.34 - 0.56
Miinz [2] 0.44 £ 0.14
Huang et al. [3] 0.39 - 0.50
Schuler et al. [4] 0.28

Table 2: Summary of the published measurements and theoretical predictions of
I, (Xc2). The R704 measurement has been updated using the current values [11]

for Iy, and BR(xc2 — pp).
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Figure 1: The photon energy E., for data (points with error bars) and Monte Carlo xc — 7J,
J — eTe” or ptp~ (histogram), after all other cuts have been applied. The normalisation of
the Monte Carlo is arbitrary. The arrow indicates the cut on E..

12



20

L3

> -
= ! ] [ ] Untagged Data
0 _ 0.1<Q°<0.9 GeVf
P _ 1<Q%<9 GeV*
c
2
S 1o
5 ! i
O
Q !
-
S5 |
Z
A 1 E”_HLIH IR
0.8 1.2 1.6
AM [GeV]

Figure 2: The mass difference AM = M(¢{T¢~~) — M(¢*T¢7) for the total sample of selected
LEP1 and LEP2 events. The hatched entries are single-tagged events for two different regions
of Q?, where —()? is the invariant mass squared of the most virtual photon.
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Figure 3: The distribution of the mass difference AM = M((*¢~~) — M(¢*¢7), (a) for the
selected data sample and (b) for the J sidebands. The curves show the signal and background
functions, which have been determined in a simultaneous fit (see text).
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