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Abstract

In the first lecture, the Standard Model is reviewed, with the aim of
seeing how its successes constrain possible extensions, the significance
of the apparently low Higgs mass indicated by precision electroweak ex-
periments is discussed, and defects of the Standard Model are examined.
The second lecture includes a general discussion of the electroweak vac-
uum and an introduction to supersymmetry, motivated by the gauge
hierarchy problem. In the third lecture, the phenomenology of super-
symmetric models is discussed in more detail, with emphasis on the in-
formation provided by LEP data. The fourth lecture introduces Grand
Unified Theories, with emphases on general principles and on neutrino
masses and mixing. Finally, the last lecture contains short discussions of
some further topics, including supersymmetry breaking, gauge-mediated
messenger models, supergravity, strings and M phenomenology.

1 GETTING MOTIVATED

There have been many reviews of different subjects in particle physics ‘for pedestrians’. At this
school many of us had the fun experience of walking in the Scottish hills, which is more strenuous
than a stroll across the Old Course at St Andrews, though less dangerous than mountain climbing
in the Alps. The spirit of these lectures is similar: an invigorating introduction to modern
phenomenological trends, but not too close to the theoretical precipices.

1.1 Recap of the Standard Model

The Standard Model continues to survive all experimental tests at accelerators. However,
despite its tremendous successes, no-one finds the Standard Model [1] satisfactory, and many
present and future experiments are being aimed at some of the Big Issues raised by the Standard
Model : is there a Higgs boson? is there supersymmetry? why are there only six quarks and six
leptons? what is the origin of flavour mixing and CP violation? can the different interactions
be unified? does the proton decay? are there neutrino masses? For the first time, clear evidence
for new physics beyond the Standard Model may be emerging from non-accelerator neutrino
physics [2]. Nevertheless the Standard Model remains the rock on which our quest for new
physics must be built, so let us start by reviewing its basic features and examine whether its
successes offer any hint of the direction in which to search for new physics.

We first review the electroweak gauge bosons and the Higgs mechanism of spontaneous
symmetry breaking by which we believe they acquire masses [3]. The gauge bosons are described
by the action

L = −1

4
GiµνG

iµν − 1

4
FµνF

µν (1)

where Giµν ≡ ∂µW
i
ν − ∂νW

i
µ + igǫijkW

j
µW

k
ν is the field strength for the SU(2) gauge boson

W i
µ, and Fµν ≡ ∂µW

i
ν − ∂νW

i
µ is the field strength for the U(1) gauge boson Bµ. The action
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(1) contains bilinear terms that yield the boson propagators, and also trilinear and quartic
gauge-boson interactions. The gauge bosons couple to quarks and leptons via

LF = −
∑

f

i
[

f̄Lγ
µDµfL + f̄Rγ

µDµfR
]

(2)

where the Dµ are covariant derivatives:

Dµ ≡ ∂µ − i g σi W
i
µ − i g′ Y Bµ (3)

The SU(2) piece appears only for the left-handed fermions fL, which are isospin doublets, while
the right-handed fermions fR are isospin singlets, and hence couple only to the U(1) gauge boson
Bµ, via hypercharges Y .

The origin of all the masses in the Standard Model is an isodoublet scalar Higgs field,
whose kinetic term in the action is

Lφ = −|Dµφ|2 (4)

and which has the magic potential:

LV = −V (φ) : V (φ) = −µ2φ†φ+
λ

2
(φ†φ)2 (5)

Because of the negative sign for the quadratic term in (5), the symmetric solution < 0|φ|0 >= 0
is unstable, and if λ > 0 the favoured solution has a non-zero vacuum expectation value which
we may write in the form:

< 0|φ|0 >=< 0|φ†|0 >= v

(

0
1√
2

)

: v2 =
µ2

2λ
(6)

corresponding to spontaneous breakdown of the electroweak gauge symmetry.

Expanding around the vacuum: φ =< 0|φ|0 > + φ̂, the kinetic term (4) for the Higgs field
yields mass terms for the gauge bosons:

Lφ ∋ −g
2v2

2
W+
µ W µ− − g′2

v2

2
Bµ B

µ + g g′v2 Bµ W
µ3 − g2 v2

2
W 3
µ W

µ3 (7)

There are also bilinear derivative couplings of the gauge bosons to the massless Goldstone bosons
η, e.g., in the charged-boson sector we have

− ∂µ η
+ ∂µ η

− +

(

igv

2
∂µ η

+ W µ− + h.c.

)

(8)

Combining these with the first term in (7), we see a quadratic mass term for the combination

W+
µ − 2i

∂µ η
+

gv
(9)

of charged bosons. This clearly gives a mass to the W± bosons:

mW± =
gv

2
(10)

whilst the neutral gauge bosons (W 3
µ , Bµ) have a 2×2 mass-squared matrix:





g2

2
−gg′

2

−gg′
2

g′2

2



 v2 (11)
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This is easily diagonalized to yield the mass eigenstates:

Zµ =
gW 3

µ − g′Bµ
√

g2 + g′2
: mZ =

1

2

√

g2 + g′2v ; Aµ =
g′W 3

µ + gBµ
√

g2 + g′2
: mA = 0 (12)

that we identify with the Z and γ, respectively. It is useful to introduce the electroweak mixing
angle θW defined by

sin θW =
g′

√

g2 + g′2
(13)

in terms of the SU(2) gauge coupling g and g′. Many other quantities can be expressed in terms
of sin θW (13): for example, m2

W/m
2
Z = cos2 θW . The charged-current interactions are of the

current-current form:
1

4
Lcc =

GF√
2

J+
µ J−µ :

GF√
2
≡ g2

8m2
W

(14)

as are the neutral-current interactions:

1

4
LNC =

GNCF√
2

J0
µ J

µ0 : J0
µ ≡ J3

µ − sin2 θW Jemµ , GNCF ≡ g2 + g′2

8m2
Z

(15)

The ratio of neutral- and charged-current interaction strengths is often expressed as

ρ =
GNCF
GF

=
m2
W

m2
Z cos2 θW

(16)

which takes the value unity in the Standard Model with only Higgs doublets [4], as assumed
here. However, this and the other tree-level relations given above are modified by quantum
corrections (loop effects), as we discuss later.

Figures 1 and 2 compile the most important precision electroweak measurements [5]. It is
striking thatmZ (Fig. 1) is now known more accurately than the muon decay constant. Precision
measurements of Z decays also restrict possible extensions of the Standard Model. For example,
the number of effective equivalent light-neutrino species is measured very accurately:

Nν = 2.994 ± 0.011 (17)

I had always hoped that Nν might turn out to be non-integer: Nν = π would have been good,
and Nν = e would have been even better, but this was not to be! The constraint (17) is also
important for possible physics beyond the Standard Model, such as supersymmetry as we discuss
later. The measurement (17) implies, by extension, that there can only be three charged leptons
and hence, in order to keep triangle anomalies cancelled, no more quarks [6]. Hence a fourth
conventional matter generation is not a possible extension of the Standard Model.

There are by now many precision meaaurements of sin2 θW (Fig. 2): this is a free pa-
rameter in the Standard Model, whose value [7] is a suggestive hint for grand unification [8]
and supersymmetry [9], as we discuss later. Notice also in Fig. 2 that consistency of the data
seems to prefer a relatively low value for the Higgs mass, which is another possible suggestion
of supersymmetry, as we also discuss later.

The previous field-theoretical discussion of the Higgs mechanism can be rephrased in more
physical language. It is well known that a massless vector boson such as the photon γ or gluon
g has just two polarization states: λ = ±1. However, a massive vector boson such as the ρ
has three polarization states: λ = 0,±1. This third polarization state is provided by a spin-
0 field as seen in (9). In order to make mW±,Z0 6= 0, this should have non-zero electroweak
isospin I 6= 0, and the simplest possibility is a complex isodoublet (φ+, φ0), as assumed above.
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Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1867 ±
 0.0021    .09

ΓZ [GeV]ΓZ [GeV] 2.4939 ±
 0.0024   -.80

σhadr [nb]σ0 41.491 ±
 0.058    .31

ReRe 20.765 ±
 0.026    .66

AfbA0,e 0.01683 ±
 0.00096    .73

AeAe 0.1479 ±
 0.0051    .25

AτAτ 0.1431 ±
 0.0045   -.79

sin2θeffsin2θlept 0.2321 ±
 0.0010    .53

mW [GeV]mW [GeV] 80.37 ±
 0.09   -.01

RbRb 0.21656 ±
 0.00074    .90

RcRc 0.1735 ±
 0.0044    .29

AfbA0,b 0.0990 ±
 0.0021  -1.81

AfbA0,c 0.0709 ±
 0.0044   -.58

AbAb 0.867 ±
 0.035  -1.93

AcAc 0.647 ±
 0.040   -.52

sin2θeffsin2θlept 0.23109 ±
 0.00029  -1.65

sin2θWsin2θW 0.2255 ±
 0.0021   1.06

mW [GeV]mW [GeV] 80.41 ±
 0.09    .43

mt [GeV]mt [GeV] 173.8 ±
 5.0    .54

1/α(5)(mZ)1/α(5)(mZ) 128.878 ±
 0.090    .00

Vancouver 1998

Fig. 1: Precision electroweak measurements and the pulls they exert in a global fit [5].

10 2

10 3

0.230 0.232 0.234

Preliminary

sin2θ
lept

eff

m
H
  [

G
eV

]

χ2/d.o.f.: 3.3 / 5

χ2/d.o.f.: 7.8 / 6

Afb
0,l 0.23117 ±
 0.00054

Aτ 0.23202 ±
 0.00057
Ae 0.23141 ±
 0.00065
Afb

0,b 0.23225 ±
 0.00038
Afb

0,c 0.2322 ±
 0.0010
<Qfb> 0.2321 ±
 0.0010

Average(LEP) 0.23189 ±
 0.00024

Alr(SLD) 0.23109 ±
 0.00029

Average(LEP+SLD) 0.23157 ±
 0.00018

1/α= 128.896 ±
 0.090
αs= 0.119 ±
 0.002
mt= 173.8 ±
 5.0 GeV

Fig. 2: Precision determinations of sin2 θW [5].
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This has four degrees of freedom, three of which are eaten by the W± amd Z0 as their third
polarization states, leaving us with one physical Higgs boson H. Once the vacuum expectation
value | < 0|φ|0 > | = v/

√
2 : v = µ/

√
2λ is fixed, the mass of the remaining physical Higgs

boson is given by
m2
H = 2µ2 = 4λv2 (18)

which is a free parameter in the Standard Model.

The necessity for such a physical Higgs boson may be further demonstrated by considering
the scattering amplitude for f̄f →W+W− [10]. By unitarity this contributes to elastic f̄f → f̄f
scttering at the one-loop level. This contribution would be divergent and unrenormalizable in
the absence of a direct-channel spin-0 contribution to cancel mass-dependent contributions from
the established ν, γ and Z0 exchanges. If these spin-0 contributions to f̄f → W+W− and
analogously W+W− → W+W− are due to a single Higgs boson, as in the Standard Model, its
couplings to fermions and gauge bosons are completely determined:

gHf̄f =
g

2

mf

mW
, gHW+W− = gmW , gHZ0Z0 = gmZ (19)

Thus the Higgs production and decay rates are completely fixed as functions of the unknown
mass MH (18) [11]. This unitarity argument actually requires that mH ≤ 1 TeV in order to
accomplish its one-loop cancellation mission [12, 13, 14].

The search for the Higgs boson is one of the main objectives of the LEP 2 experimental
programme. The dominant production mechanism is e+e− → Z0 + H [11, 15], which has the
tree-level cross section [15, 13]

σZM =
G2
Fm

4
Z

96πs
(1 + (1 − 4 sin2 θW )2) λ1/2 λ+ 12m2

Z/s

(1 −m2
Z/s)

2
(20)

the prefactor comes from the known HZ0Z0 vertex (19), and the phase-space factor

λ ≡
(

1 − (
m2
H

s
) − (

m2
Z

s
)

)2

− 4m2
Hm

2
Z

s2
(21)

which gives us sensitivity to mH
<∼ Ecm −MZ−. With the current LEP 2 running at 189 GeV,

each individual LEP experiment has established a lower limit mH
>∼ 96 GeV, and the four

experiments could probably be combined to yield mH >∼ 98 GeV [16]. The next two years of
LEP 2 running at energies ∼ 200 GeV should enable the Higgs to be discovered if mH <∼ 110
GeV, if as much luminosity is accumulated as in 1998. As we see shortly, this covers the range
of mH where the precision electroweak data [5] indicate the highest probability density. Hence,
the integrated probability that LEP 2 discovers the Higgs boson is not negligible, though we
must brace ourselves for the likelihood that it is too heavy to be discovered at LEP.

1.2 Interpretation of the Precision Electroweak Data

The precision of the electroweak data shown in Figure 1 is so high – of order 0.1 % in some
cases – that quantum corrections are crucial for their interpretation [17]. At the one-loop
level, these include vacuum-polarization, vector and box diagrams. The dominant contributions
from two- and higher-loop diagrams must also be taken into account. These loop diagrams
must be renormalized, and this is achieved by fixing three quantities at their physical values:
mZ = 91.1867 ± 0.0021 GeV, α−1

em = 137.03599959(38)13), Gµ = 1.166389(22) × 10−5 GeV−2.
In the case of experiments at the Z0 peak, one needs to calculate the renormalization of αem
over scales me

<∼ Q <∼ mZ due to vacuum polarization diagrams. The principal uncertainty in
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this renormalization is due to hadronic diagrams in the range of Q where perturbative QCD
calculations are not directly applicable. The renormalized value used by the LEP electroweak
working group is

α−1
em(mZ) = 128.878 ± 0.090 (22)

However, this may be refined to α−1
em(mZ) = 128.933±0.021 by more complete use of constraints

from perturbative QCD and data on τ decays [18]. Beyond the tree level, the parameter sin2 θW
may be defined in several different ways. One option is the “on-shell” definition sin2 θW ≡ 1 =
m2
W/m

2
Z [19]. The LEP experiments often use another physical definition more closely related

to their experimental observables, as in Fig. 2, but theorists often favour the MS definition [19],
which is more convenient for comparison with QCD and GUT calculations.

Consistency between the different measurements shown in Fig. 1 – e.g., the sin2 θW mea-
surements shown displayed in Fig. 2 – imposes constraints on the masses of heavy virtual
particles that appear in loop diagrams, such as the top quark and the Higgs boson [20, 21]. As
examples of this, consider their contributions to mW and mZ in the “on-shell” renormalization
scheme:

m2
W sin2 θW = m2

Z cos2 θW sin2 θW =
πα√
2Gµ

(1 + ∆r) (23)

In the absence of the top quark, the gauge symmetry of the Standard Model would be lost, since
the b quark would occupy an incomplete doublet of weak isospin, destroying the renormalizability
of the theory at the one-loop level. This is reflected in the contributions of the one-loop vacuum-
polarization diagrams [20]:

∆r ∋ 3Gµ

8π2
√

2
m2
t + . . . (24)

in the limit mt ≫ mb. Likewise, the Standard Model would be non-renormalizable in the
absence of a physical Higgs boson, so ∆r must also blow up as mH → ∞. As pointed out by
Veltman [21], a screening theorem restricts this to a logarithmic dependence at the one-loop
level

∆r ∋
√

2Gµ
16π2

m2
W

{

4

3
ln
m2
H

m2
W

+ . . .

}

(25)

for mH ≫ mW , though there is a quadratic dependence at the two-loop level.

Comparing (24) and (25), we see that the dependence on mt is much greater than that on
mH . A measurement of ∆r gives in principle an estimate of mt, though with some uncertainty
if mH is allowed to vary between 10 GeV and 1 TeV. Before the start-up of LEP, we gave the
upper bound mt

<∼ 170 GeV [22, 23, 26]. By combining several different types of precision
electroweak measurement, it is in principle possible to estimate independently both mt and mH .
The present world data set implies [5]

mt = 161+9
−8 GeV (26)

which is compatible with both the pre-LEP estimate and the direct measurements by CDF and
Dφ [24]:

mt = 173.8 ± 5.0 GeV (27)

Combining this with the precision electroweak data enables a more precise estimate of mH to
be made.

A key rôle in this estimate is being played by direct measurements of mW . Until now,
the most precise of these has been that from p̄p colliders, dominated by the Fermilab Tevatron
collider [24]:

mW = 80.41 ± 0.09 GeV (28)

6



√s


   [GeV]

 σ
(e

+ e− →
W

+ W
− (γ

))
   

[p
b]

LEP

νe exchange

no ZWW vertex

Standard Model

Data

Preliminary

0

10

20

160 170 180 190 200

Fig. 3: Measurements of σ(e+e− → W +W−) [5].

with an honourable mention for the indirect determinations from deep-inelastic ν scattering:

mW = 80.25 ± 0.11 GeV (29)

with some slight dependence on mt and mH . These values can be compared with the indirect
prediction based on other precision electroweak data [5], within the framework of the Standard
Model:

mW = 80.329 ± 0.029 GeV . (30)

Reducing the error in the direct measurement (28) would constrain further the estimate of mH

within the Standard Model, and could constrain significantly its possible extensions, such as
supersymmetry, with the error in (30) providing a relevant target for the experimental precision.
This is also demonstrated by the implications for the error in the estimate of mH corresponding
to a given error in mW :

∆mW = 25 50 MeV

mH = 100 + 86
− 54

+140
− 72 GeV

mH = 300 +196
−126

+323
−168 GeV

(31)

It is a major goal of the LEP 2 experimental programme to achieve such precision [25].

The measured cross-section for e+e− → W+W− is shown in Fig. 3 [5]. We see that ν
exchange alone does not fit the data: one also needs to include both the γW+W− and Z0W+W−

vertices present in the Standard Model1. The first LEP 2 measurement of mW was obtained by
measuring the cross section at Ecm = 161 GeV, close to the threshold, but this has now been
surpassed in accuracy by the direct reconstruction of W± decays at higher Ecm. The current
LEP 2 average is [5]

mW = 80.37 ± 0.90 GeV (32)

which now matches the p̄p measurement error (28).

1It is surely too soon to cry “new physics” on the basis of the cross-section measurement at Ecm = 189 GeV,
particularly since the more recent data shown at the LEPC [16] indicate a lesser discrepancy!
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80.2

80.3

80.4

80.5

80.6

130 150 170 190 210

mH [GeV]
90 300 1000

mt  [GeV]

m
W

  [
G

eV
]

Preliminary

68% CL

LEP1, SLD, νN Data

LEP2, pp
−
 Data

Fig. 4: Contours of mW and mt from direct measurements (dotted ellipse) compared with predictions based on

the precision electroweak data analyzed within the Standard Model (solid curve) [5]. Note the sensitivity to mH .

We see in Fig. 4 that the mW measurements favour qualitatively mH < 300 GeV, though
not at a high level of significance [5]. Stronger evidence for a light Higgs boson [26] is provided
by the lower energy LEP 1, SLD and νN data, as also seen in Fig. 4. Combining all the precision
electroweak data, one finds

mH = 76+85
−47 ± 10 GeV (33)

as seen in Fig. 5, corresponding to mH < 260 GeV at the 95% confidence level, if one uses a
conservative error in αem(mZ) and makes due allowance for unknown higher-loop uncertainties
in the analysis [5].

The range (33) may be compared with upper and lower bounds derived within the Standard
Model. The tree-level unitarity limit mH

<∼ 1 TeV [12, 13, 14] may be strengthened by including
loop effects via renormalization-group calculations [27]. We see in Fig. 6 the upper bound on
mH that is obtained by requiring the Standard Model couplings to remain finite at all energies
up to some cutoff Λ : mH <∼ 200 GeV if Λ ≃ mP and mH <∼ 700 GeV if Λ ≃ mH , corresponding
to upper limits from lattice calculations [28]. Also shown in Fig. 6 are lower limits on mH

obtained by requiring that the effective Higgs potential remain positive for |φ| <∼ Λ : mH >∼ 140
GeV if Λ ≃ mP [27].

It is depressing to note that the range (33) of mH estimated on the basis of the precision
electroweak data is compatible with the Standard Model remaining valid all the way up to the
Planck scale: Λ ≃ mP

2. Moreover, the range (33) also imposes strong constraints on possible
extensions of the Standard Model. For example, Fig. 7 shows that it effectively excludes a fourth
generation [27]. Note that this renormalization-group argument is independent of the neutrino-
counting argument (17) given earlier. In particular, this argument still holds if mν4 > mZ/2: in
fact, it even becomes slightly stronger!

2Nevertheless, the range (33) is even more compatible with supersymmetry, which is one possible example
physics of new physics at Λ <∼ 1 TeV.

8



0

2

4

6

10 10
2

10
3

mH [GeV]

∆χ
2

Excluded Preliminary

1/α(5)=128.878±0.090
1/α(5)=128.905±0.036

theory uncertainty

Fig. 5: The χ2 function for a global fit to the precision electroweak data prefers mH ∼ 100 GeV [5].

0

200

100

300

400

10 20 30 40

Ig(Λ/GeV)

MH, GeV

Fig. 6: The range of mH compatible with the Standard Model remaining valid up to a high scale Λ [27].
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Fig. 7: The regions of fourth-generation mass m4 and Higgs mass mH compatible with the Standard Model re-

maining valid up to a high scale Λ [27].

1.3 Defects of the Standard Model

It has been said repeatedly that there is no confirmed experimental evidence from accelerators
against the Standard Model, and several possible extensions have been ruled out. Nevertheless,
no thinking physicist could imagine that the Standard Model is the end of physics. Even if one
accepts the rather bizarre set of group representations and hypercharges that it requires, the
Standard Model contains at least 19 parameters: 3 gauge couplings g1,2,3 and 1 CP-violating
non-perturbative vacuum angle θ3, 6 quark and 3 charged-lepton masses with 3 charged weak
mixing angles and 1 CP-violating phase δ, and 2 parameters: (µ, λ) or (mH ,mW ) to characterize
the Higgs sector. Moreover, many more parameters are required if one wishes to accommodate
non-accelerator observations. For example, neutrino masses and mixing introduce at least 7
parameters: 3 masses, 3 mixing angles and 1 CP-violating phase, cosmological inflation intro-
duces at least 1 new mass scale of order 1016 GeV, the cosmological baryon asymmetry is not
explicable within the Standard Model, so one or more additional parameters are needed, and the
cosmological constant may be non-zero. The ultimate “Theory of Everything” should explain
all these as well as the parameters of the Standard Model.

It is convenient to organize the questions raised by the Standard Model into three broad
categories. One is the Problem of Mass: do particle masses really originate from a Higgs
boson, and, if so, why are these masses not much closer to the Planck mass mP ≃ 1019 GeV?
This is the main subject of the next two lectures. Another is the Problem of Unification:
can all the particle interactions be unified in a simple gauge group, and, if so, does it predict
observable new phenomena such as baryon decay and/or neutrino masses, and does it predict
relations between parameters of the Standard Model such as gauge couplings or fermion masses?
This is the main subject of the fourth lecture. Then there is the Problem of Flavour: what is
the origin of the six flavours each of quarks and leptons, and what explains their weak charged-
current mixing and CP violation? This is the main subject of Yossi Nir’s lectures [29]. Finally,
the quest for the Theory of Everything seems most promising in the context of string theory,
particularly in its most recent incarnation of M theory, as discussed in the fifth lecture, and by
Michael Green [30]. In addition to all the above problems, this should also reconcile quantum
mechanics with general relativity, explain the origin of space-time and the number of dimensions,
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make coffee, etc... .

2 INTRODUCTION TO SUPERSYMMETRY

2.1 The Electroweak Vacuum

We have discussed in Lecture 1 the fact that generating particle masses requires breaking the
electroweak gauge symmetry spontaneously:

mW,Z 6= 0 ⇔ < 0|XI,I3 |0 > 6= 0 (34)

for some spin-0 quantity X with non-zero isospin I and third component I3. The fact that
experimentally ρ ≡ m2

W/m
2
Z cos2 θW ≃ 1 is consistent with the Standard Model expectation

that X has mainly I = 1
2 [4]. This is also what is required to give non-zero fermion masses:

mf f̄LfR + h.c., since the fL,R have I = 1
2 , 0. The question then remains: what is the nature of

X? In particular, is it elementary or composite?

The former is the option chosen in the Standard Model: X = H :< 0|H0|0 > 6= 0. However,
as discussed in more detail later, quantum corrections to the squared mass of an elementary Higgs
boson diverge quadratically:

δm2
H = 0

(

α

π

)

Λ2 (35)

where Λ is some cutoff, corresponding physically to the scale up to which the Standard Model re-
mains valid. We discuss later the possibility that Λ can be identified with the energy threshold
for symmetry. This should occur at λ <∼ 1 TeV, in order that the quantum corrections (35) have
the same magnitude as the physical Higgs boson mass.

The alternative option is that X is composite, namely a fermion-antifermion condensate
< 0|F̄ F |0 > 6= 0. This idea is motivated by the existence of a quark-antiquark condensate
< 0|q̄q|0 > 6= 0 in QCD, and the rôle of Cooper pairs < 0|e−e−|0 > 6= 0 in conventional super-
conductivity. Two major possibilities for the condensate have been considered: a top-antitop
condensate < 0|t̄t|0 > 6= 0 held together by a large Yukawa coupling λHt̄t [31], and techni-
colour [32], in which new interactions that become strong at an energy scale Λ ∼ 1 TeV bind
new strongly-interacting technifermions: < 0|T̄ T |0 > 6= 0. The t̄t condensate idea is currently
disfavoured, since simple implementations require mt > 200 GeV in contradiction with experi-
ment, so we concentrate here on the technicolour alternative.

The technicolour idea [32] was initially modelled on the known dynamics of QCD:

< 0|q̄LqR + h.c.|0 > 6= 0 →< 0|F̄LFR + h.c.|0 > 6= 0 (36)

which breaks isospin with I = 1
2 , if the electroweak multiplet assignments of the FL and FR

are the same as those of the qL and qR. The scale of this breaking will be appropriate if
ΛQCD → ΛTC ∼ 1 TeV. Just as QCD contains (if mq = 0) massless pions with the axial-current
matrix element < 0|Aµ|π >= ipµfπ, one expects a similar coupling

< 0|Jµ|πTC >= ipµFπ (37)

for the technipion πTC , which does the same Goldstone-eating job as (8), (9) if Fπ = v ≃ 250
GeV. If there are two massless flavours of technifermions, one expects 3 massless technipions to
be eaten by the W± and Z0, and the physical Higgs boson is replaced by an effective massive
composite scalar, analogous to the scalar mesons of QCD and weighing 0(1) TeV. However, a
single technidoublet is not enough when one imposes the necessary cancellation of anomalies and
tries to give masses to conventional fermions [33]. For these reasons, the Standard Technicolour
Model used to include a full technigeneration: [(N,E), (U,D)1,2,3]1,...,NTC

, where the indices
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denote colour and technicolour indices. For generality, one can study models as functions of the
numbers of techniflavours and technicolours: (NTF , NTC).

Their effects via one-loop quantum corrections can be parametrized in terms of their
contributions to electroweak observables via three combinations of vacuum polarizations [34, 35].
One example is:

T ≡ ǫ1
α

≡ ∆ρ

α
: ∆ρ =

πZZ(0)

m2
Z

− πWW (0)

m2
W

− 2 tan θW
πγZ(0)

m2
Z

(38)

which describes deviations from the tree-level relation ρ ≡ m2
W/m

2
Z cos2 θ = 1 and measures

isospin-breaking effects. This is related to ∆r (23) and receives contributions from Standard-
Model particles:

T ∋ 3

16π

1

sin2 θW cos2 θW

(

m2
t

m2
W

)

− 3

16π cos2 θW
ln

(

m2
H

m2
Z

)

+ . . . (39)

The other relevant combinations of vacuum polarizations are [34, 35]

S ≡ 4 sin2 θW
α

ǫ3 ∋ 1

12π
ln

(

m2
H

m2
Z

)

+ . . . (40)

and [34, 35]

U ≡ −4 sin2 θW
α

ǫ2 (41)

The precision electroweak data may be used to constrain (S, T, U) (or ǫ1,2,3), and thereby possible
extensions of the Standard Model with the same SU(2)×U(1) gauge group and additional matter
particles, such as technicolour. Note, however, that this approach is not adequate for precision
analyses of theories with important vertex diagrams such as the Standard Model or its minimal
supersymmetric extension, to be discussed later. These have important vertex and box diagrams,
as well as the vacuum-polarization diagrams taken care of by S, T, U(ǫ1,2,3. Some of these be
treated by introducing further parameters such as ǫb for the Zb̄b vertex. Even so, two-loop and
other higher-order effects are not treated exactly in this approach.

Figure 8 compiles the constraints on sin2 θW and the overall Z weak coupling strength
coming from the precision electroweak data (top panel) and the resulting constraints on S and
T (bottom panel) [36]. We see that the lower-energy data are compatible with the high-energy
data at around the one-σ level, and that the high-energy data impose strong constraints on
S, T, U (equivalent to ǫ1,2,3). Figure 9 shows the available constraints in the (ǫ1, ǫ2) plane [37].
We see that the one-loop corrections are certainly needed, since the data lie many σ away from
the (improved) Born approximation. We also see that the data are quite consistent with the
Standard Model. A compilation of determinations of the ǫi are shown in Fig. 10 [37], where
we see a discrepancy only in ǫb, but even this is only slightly more than one σ. Finally, Fig.
11 compares the data constraint in the (S, T ) plane not only with the Standard Model but also
with various technicolour models [36]. The models chosen all have one technidoublet, and hence
NTF = 2, and varying values of NTC = 2,3,4. We see that even the least disfavoured model is
at least four σ away from the data, and models with larger NTC (shown) and NTF (not shown)
deviate even further from experiment.

This large discrepancy has almost been the death of technicolour models, but various
suggestions have been made that one could respect the experimental constraints if the techni-
colour dynamics is somewhat different from that of QCD. Specifically, it has been suggested that
the technicolour coupling may not run as rapidly as the strong coupling [38]. Unfortunately,
calculations in this framework of “walking technicolour” cannot be made as pecisely as in the
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conventional technicolour models discussed above, rendering it difficult to test or disprove. For
the moment, no calculable technicolour model is consistent with the precision electroweak data,
so we turn to supersymmetry.

2.2 Introduction to supersymmetry

Back in the 1960’s there were many (forgettable) attempts to combine internal symmetries such
as flavour isospin or SU(3) with relativistic external symmetries such as Lorentz invariance.
However, in 1967 Coleman and Mandula [39] proved that this could not be done using only
bosonic charges. The way to avoid this no-go theorem was found in 1971, when Gol’fand and
Likhtman [40] showed that one could extend the Poincaré algebra using fermionic charges. In the
same year, Neveu, Schwarz and Ramond [41] invented supersymmetry in two dimensions when
they discovered how to incorporate fermions in string models. Supersymmetric field theories in
four dimensions were discovered in 1973, by Volkov and Akulov [42] in a non-linear realization,
and by Wess and Zumino [43] in the linear realization now used in most model-building. Soon
afterwards, Wess, Zumino, Iliopoulos and Ferrara [44] realized that supersymmetric models were
free of many of the divergences found in other four-dimensional field theories. Then, in 1976,
Freedman, van Nieuwenhuizen and Ferrara [45] and independently Deser and Zumino [46] showed
how supersymmetry can be realized locally (by analogy with gauge theories) in the context of
supergravity.

Many of the ideas for using supersymmetry were motivated by the desire to unify known
bosons and fermions: for example, unifying mesons and baryons motivated the early string
work [41] and that of Wess and Zumino [43]. It was initially suggested that neutrino could be a
Goldstone fermion in a non-linear realization of supersymmetry [42], but it was soon pointed out
that experimental data on ν interaction cross sections conflicted with theorems on the low-energy
behaviour in such theories [47]. The fact that supersymmetric theories had fewer (in some cases,
no) divergences offered to some people who never liked infinite renormalizations hope that one
could construct a finite theory. Others were attracted by the idea that supersymmetry might
relate the odd-person-out Higgs boson to fermionic matter and perhaps gauge bosons. At a more
fundamental level, the fact that local supersymmetry involves gravity suggested to many the
idea of unifying all the particles and their interactions in some supergravity theory. However,
this motivation did not provide a clear clue as to the mass scale of supersymmetry breaking,
so there was no obvious reason why the sparticle masses should not be as heavy as mP ≃ 1019

GeV.

Such a reason was eventually provided by the mass hierarchy problem [48]: why is mW ≪
mP ? The latter is the only candidate we have for a fundamental mass scale in physics, where
gravity is expected to become as strong as other particle interactions, e.g., graviton exchange at
LEP 1019 would be comparable to γ and Z0 exchange. The hierarchy problem can be rephrased
as: “why is GF ≫ GN?”, since GF ∼ 1/m2

W and GN = 1/m2
P . Alternatively, for the benefit of

atomic, molecular and condensed-matter physicists, not to mention chemists and biologists, one
can ask: why is the Coulomb potential in an atom so much larger than the Newton potential?
The former is e2/r : e2 = 0(1), whereas the latter is GNmpme/r, so the Newton potential is
negligible just because conventional particle masses mp,e are much lighter than mP .

You might think that one could just set mW ≪ mP by hand, and ignore the problem.
However, there is a threat from radiative corrections [48]. Each of the one-loop diagrams in Fig.
12 is individually quadratically divergent, implying

δm2
H,W = O

(

g2

16π2

)

∫ Λ

d4k
1

k2
= O

(

α

π

)

Λ2 (42)

where the cutoff Λ in the integral represents the scale up to which the Standard Model remains
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Fig. 12: (a) One-loop quantum corrections to m2
H in the Standard Model. (b) Tree-level and (c) one-loop

corrections to m2
H in a GUT.

valid, and beyond which new physics sets in. If we think Λ ≃ mP or the grand unification scale,
the quantum correction (42) is much larger than the physical value of mH,W ∼ 100 GeV. This
is not a problem for renormalization theory: there could be a large bare contribution with the
opposite sign, and one could fine-tune its value to many significant figures so that the physical
value m2

H,W ≃ δm2
H,W (42). However, this seems unnatural, and would have to repeated order

by order in perturbation theory. In contrast, the one-loop corrections to a fundamental fermion
mass mf are proportional to mf itself, and only logarithmically divergent:

δmf = O
(

g2

16π2

)

mf

∫ Λ

d4k
1

k4
= O

(

α

π

)

mf ln
Λ

mf
(43)

This correction is no larger numerically than the physical value, for any Λ <∼ mP . This is because
there is a chiral symmetry reflected in the mf factor in (43) that keeps the quantum corrections
naturally (logarithmically) small. The hope is to find a corresponding symmetry principle to
make small boson masses natural: δm2

H,W
<∼ m2

H,W .

This is achieved by supersymmetry [49], exploiting the fact that the boson and fermion
loop diagrams in Fig. 12a have opposite signs. If there are equal numbers of fermions and bosons,
and if they have equal couplings as in a supersymmetric theory, the quadratic divergences (42)
cancel:

δm2
H,W = −

(

g2
F

16π2

)

(Λ2 +M2
F ) +

(

g2
B

16π2

)

(Λ2 +M2
B) = O

(

α

4π

)

|m2
B −m2

f | (44)

This is no larger than the physical value: δm2
H,W

<∼ m2
H,W , and hence naturally small3, if

|m2
B −m2

F | <∼ 1 TeV2 (45)

This naturalness argument [48] is the only available theoretical motivation for thinking that
supersymmetry may manifest itself at an accessible energy scale.

However, this argument is qualitative, and a matter of taste. It does not tell us whether
sparticles should appear at 900 GeV, 1 TeV or 2 TeV, and some theorists reject it altogether.
They say that, in a renormalizable theory such as the Standard Model, one need not worry
about the fine-tuning of a bare parameter, since it is not physical. However, I take naturalness
seriously as a physical argument: it is telling us that a large hierarchy is intrinsically unstable,

3There is a logarithmic multiplicative factor in the right-hand side of (44) that is reflected in the discussion
below of renormalization-group corrections to supersymmetric particle masses.
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and supersymmetry is the most plausible way of stabilizing it. Moreover, many logarithmic
divergences are absent in supersymmetry, which stabilizes the possible GUT Higgs corrections
to mH shown in Fig. 12b arising from the loops shown in Fig. 12c, which is also important for
stabilizing the hierarchy mW ≪ mGUT , as we see later.

2.3 What is supersymmetry?

After all this introduction and motivation, just what is supersymmetry [49]? It is a symmetry
that links bosons and fermions via spin-1

2 charges Qα (where α is a spinorial index). It seems
to be the last possible symmetry of the particle scattering matrix [50]. As such, many would
argue that it must inevitably play a rôle in physics, and it has in fact already appeared at a
phenomenological level in condensed-matter, atomic and nuclear physics. All previously-known
symmetries are generated by bosonic charges, which are, apart from the momentum operator Pµ
associated with Lorentz invariance, scalar charges Q that relate different particles of the same
spin J : Q|J >= |J ′ >, Q ∈ U(1), SU(2), SU(3), . . .. Indeed, as already mentioned, Coleman
and Mandula [39] showed that it was impossible to mix such internal symmetries with Lorentz
invariance using bosonic charges. The essence of their proof is easy to grasp.

Consider 2 → 2 scattering: 1 + 2 → 3 + 4, and consider the possibility that there is
a conserved tensor charge Σµν corresponding to some higher bosonic symmetry (there can be
no other charge with one vector index, besides Pµ, and higher tensor charges can be discussed
analogously to Σµν). Its diagonal matrix elements are required by Lorentz invariance to have
the following tensor decomposition:

< a|Σµν |a >= αpaµp
a
ν + βgµν (46)

where paµ is the four-momentum of the particle a and α, β are unkown reduced matrix elements.
For Σµν to be conserved in the scattering process, as long as α 6= 0 4 one must require

p1
µp

1
ν + p2

µp
2
ν = p3

µp
3
ν + p4

µp
4
ν (47)

as well as p1
µ + p2

µ = p3
µ + p4

µ. It is easy to convince oneself that the only possible simultaneous
solutions to these linear and quadratic conservation conditions correspond to purely forward
scattering. This conflicts [39] with the basic principles of quantum field theory as well as
experiment.

This argument is fine as far as it goes, but it does not apply to any spinorial charge Qα,
since the diagonal matrix elements vanish: < a|Qα|a >= 0.

Let us explore now what is the possible algebra of an algebra of such spinorial charges
Qiα : i = 1, 2, . . . , N [50]. If they are to be symmetry generators, they must commute with the
Hamiltonian:

[Qiα,H] = 0 (48)

Hence, their anticommutator (which is bosonic) must also commute with H:

[{Qiα, Qjβ},H] = 0 (49)

By the Coleman-Mandula theorem [39], this anticommutator must be a combination of the
conserved Lorentz vector charge Pµ and some scalar charge Zij . The only possible form is in
fact

{Qiα, Qjβ} = 2δij(γµC)αβPµ + Zij (50)

4The case α = 0 corresponds to a scalar charge Σµν = Σ̂gµν .
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where we use four-component spinors, C is the charge-conjugation matrix and Zij is antisym-
metric in the supersymmetry indices {i, j}. Thus, this so-called “central charge” vanishes for
the N = 1 case of phenomenological relevance.

The basic building blocks of N = 1 supersymmetric theories are supermultiplets containing
the following helicity states [49]:

chiral :

( 1
2
0

)

, gauge :

(

1
1
2

)

, graviton :

(

2
3
2

)

, (51)

which are used to describe matter and Higgses, gauge fields and gravity, respectively. You may
wonder why one does not use theories with extended supersymmetry: N ≥ 2. The building
blocks for N = 2 are:

matter :





1
2
0
−1

2



 , gauge :





1
1
2
0



 , gravity :





2
3
2
1



 , (52)

and it is apparent that left- and right-handed particles (helicities ∓ 1/2) must be in identical
representations of the gauge group. This is immediate for the matter supermultiplet in (52), and
must also be the case for fermions in the gauge supermultiplet, since the helicity ∓1 must be in
identical adjoint representations. Hence an N = 2 theory cannot accommodate parity violation,
and is not suitable for phenomenology 5.

The simplest N = 1 supersymmetric field theory contains a free fermion and a free bo-
son [49, 52]:

L = ∂µφ
∗ ∂µφ+ i ψ+σ̄ · ∂ψ (53)

where we work with two-component spinors and denote σµ = (1, σ), σ̄µ = (1,−σ), where the σ
are Pauli matrices. The simple supersymmetry transformation laws are

δξφ =
√

2ξTCψ , δξψ =
√

2iσ · ∂φCξ∗ (54)

where ξ is an infinitesimal spinor parameter and C is the conjugation matrix: C = −iσ2 = C∗,
C−1 = CT = −C. It is easy to check that under (54) the Lagrangian (53) changes by a
total derivative ∂µ(. . .), and hence the action A =

∫

d4xL(x) is invariant. We can also see in
(54) a reflection of the supersymmetry algebra (50): after two supersymmetry transformations,
the fields (φ,ψ) are transformed by derivatives (∂φ, ∂ψ), corresponding to the action of the
momentum operator Pµ = i∂µ.

The example (54) can easily be extended to include interactions [49, 52]:

L = ∂µφ
∗∂µφ+ iψ†σ̄ · ∂ψ + F †F +

(

F
∂W

∂φ
− 1

2
ψTCψ

∂2W

∂φ2
+ herm.conj.

)

(55)

with supersymmetry transformations:

δξφ =
√

2ξTCψ , δξψ =
√

2iσ · ∂φCξ∗ + ξF , δξF = −
√

2iξ†σ̄ · ∂ψ (56)

The field F is called an auxiliary field: notice that it has no kinetic term, and so may be
eliminated by using an equation of motion:

F † = −∂W
∂φ

(57)

5Moreover, there are severe lower limits, in the context of unified theories, on the possible renormalization
scale down to which N = 2 supersymmetry may remain valid [51].
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Thus all the matter interactions are characterized by the analytic function W (φ), which is called
the superpotential. Renormalizability of the field theory requires the superpotential to be a cubic
function: for W = λφ1φ2φ3, one obtains from (55) the following particle interactions:

λ
[

(ψT1 Cψ2)φ3 + (ψT2 Cψ3)φ1 + (ψT3 Cψ1)φ2

]

+ |λφ1φ2|2 + |λφ2φ3|2 + |λφ3φ1|2 (58)

where the last terms provide a quartic potential for the scalar fields φi and are called in the
jargon “F terms”.

We shall not discuss here in detail the construction of the interactions of a chiral super-
multiplet with a gauge supermultiplet [49], limiting ourselves to quoting the results. In addition
to the gauge interactions of the chiral fermions and their bosonic partners, there are gaugino
interactions √

2g
[

(ψTi C(T a)ijVa)φ
j∗ + herm.conj.

]

(59)

where (T a)ij is the gauge representation matrix for the chiral fields. There is also another quartic
potential term for the scalars:

V =
g2

2

∑

a

|φi∗ (T a)ji φj |2 (60)

which are called in the jargon “D terms”. Finally, we note for completeness that the conventional
gauge-boson kinetic term and the gauge interactions of fermions in the adjoint representation
of the gauge group, such as the gauginos Ṽa, are automatically supersymmetric.

2.4 Minimal Supersymmetric Extension of the Standard Model

Let us now return to phenomenology. If one is to construct a minimal supersymmetric model,
the first natural question is: can one construct it out of the Standard Model particles alone?
It is easy to see that this is impossible, because the known bosons and fermions have different
conserved quantum numbers [53]. For example, gluons are in an octet (8) representation of
colour, whereas quarks are in triplet (3) representation of colour. Similarly, there are no known
weak-isotriplet fermions, as would be needed to partner the electroweak gauge bosons. The
known leptons are isodoublets like the Higgs boson, but they carry lepton number, unlike the
Higgs. For these reasons, new particles must be postulated [53] as supersymmetric partners of
known particles, as seen in the Table.

The minimal supersymmetric extension of the Standard Model (MSSM) [54] has the
same gauge interactions as the Standard Model. In addition, there are couplings of the form
(58) derived from the following superpotential:

W = λd Q DC H + λℓ L EC H + λu Q UC H̄ + µH̄H (61)

Here, Q[L] denote isodoublets of supermultiplets containing (u, d)L[(ν, ℓ)L], DC [UC , EC ] are sin-
glets containing the left-handed conjugates dCL [uCL , e

C
L ] of the right-handed dR[uR, eR], and the su-

perpotential couplings λd[λu,ℓ] correspond to the Yukawa couplings of the Standard Model that
give masses to the d[u, ℓ−], respectively:

md = λd < H > , mu = λu < H̄ > , mℓ = λℓ < H > . (62)

Each of these should be understood as a 3 × 3 matrix in generation space, which is to be
diagonalized as in the Standard Model.

In addition to the Standard-Model-like superpotential interactions shown in (61), the fol-
lowing superpotential couplings [55] are also permitted by the gauge symmetries of the Standard
Model:

W ∋ λLLEC + λ′QDCL+ λ′′UCDCDC (63)
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Particle Spin Spartner Spin

quark: q 1
2 squak: q̃ 0

lepton: ℓ 1
2 slepton: ℓ̃ 0

photon: γ 1 photino: γ̃ 1
2

W 1 wino: W̃ 1
2

Z 1 zino: Z̃ 1
2

Higgs: H 0 higgsino: H̃ 1
2

Table 1: Particles in the Standard Model and their supersymmetric partners.

Each of these violate conservation of either lepton number L or baryon number B. The possible
presence of such interactions attracted some interest in 1997 [56, 57] with the discovery of
unexpectedly many events at HERA at large x and Q2 [58], but interest has now subsided.
Their potential significance is only discussed intermittently in these lectures.

Note that (61) requires two Higgs doublets H, H̄ with opposite hypercharges in order to
give masses to all the matter fermions. In the Standard Model, one doublet φ and its complex
conjugate φ† would have sufficed. This does not work in the MSSM, because the superpotential
W must be an analytic function of the fields. Moreover, Higgs supermultiplets include Higgsino
fermions that generate triangle anomalies which must cancel among themselves, requiring at
least two Higgs doublets. These couple via the µ term in (61). Note also that the ratio of Higgs
vacuum expectation values

tan β ≡ < H̄ >

< H >
(64)

is undetermined and should be treated as a free parameter. Finally, we comment that the
superpotential and gauge couplings determine the MSSM’s quartic scalar couplings, providing
important constraints on the Higgs masses, as we see later.

Before discussing in more detail the phenomenology of the MSSM, it is appropriate to
mention two important but indirect experimental indications that favour supersymmetry. One
is the relatively light mass of the Higgs boson inferred from the analysis of precision electroweak
data [5], as seen in Fig. 5. As discussed in more detail in the next Lecture, the lightest MSSM
Higgs boson must weigh <∼ 150 GeV [59], in good agreement with the range favoured by the data.
The other indication in favour of supersymmetry is the measured value of sin2 θW [5], as shown
in Fig. 2. As discussed in more detail in Lecture 4, Grand Unified Theories predict sin2 θW
as a function of αs(mZ). For the measured value of αs(mZ), GUTs without supersymmetry
predict sin2 θW ∼ 0.21 to 0.22 [7], whereas GUTs with supersymmetry at the TeV scale predict
sin2 θW ∼ 0.23 [9], in much better agreement with the data [60].

These two experimental arguments buttress the theoretical argument given earlier, which
was based on the hierarchy problem. Put together, these provide ample motivation for studying
the phenomenology of the MSSM in more detail, as we do in the next Lecture.
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3 PHENOMENOLOGY OF SUPERSYMMETRY

3.1 Soft Supersymmetry Breaking

The first issue that must be addressed in the phenomenology of supersymmetry is the sad fact
that no sparticles have ever been detected. This means that sparticles do not weigh the same
as their supersymmetric partners: mẽ 6= me, mγ̃ 6= mγ , etc., and hence that supersymmetry
must be broken. We return in Lecture 5 to review some theoretical ideas about the origin of
supersymmetry breaking, restricting ourselves here to a phenomenological parametrization [61].
Any such parametrization should retain the desirable features of supersymmetry, particularly the
absence of power-law divergences. This “softness” requirement means that any supersymmetry-
breaking interactions LsusyX should have quantum field dimension < 4 (recall that the quantum
field dimension of a boson (derivative) (fermion) is 1(1)(3

2 )), and hence a positive power of
some numerical mass parameters, so that

∫

d4xLsusyX is dimensionless. There are in fact further
restrictions on soft supersymmetry-breaking parameters [62], and a general parametrization
comprises scalar mass terms: m2

0i
|φi|2, gaugino masses: 1

2Ma Ṽ
T
a CṼa, and trilinear or bilinear

scalar interactions proportional to superpotential terms: Aλλφ
3, Bµµφ

2. Note some absences
from this list, including masses for fermions in chiral supermultiplets mψψ

TCψ and non-analytic
trilinear scalar couplings ∝ φ∗φ2.

We shall adopt for now the hypothesis (to be discussed in Lecture 5) that the soft
supersymmetry-breaking masses m2

0i
,Ma, Aλ, Bµ originate at some high GUT or gravity scale,

perhaps from some supergravity or superstring mechanism. The physical values of the soft
supersymmetry-breaking parameters are then subject to logarithmic renormalizations that may
be calculated and resummed using the renormalization-group techniques familiar from QCD [63],
which also figure in the GUT calculations of sin2 θW that are reviewed in Lecture 4. Renormal-
izations by gauge interactions have the general structure

m2
0i

→ m2
0i

+CaiM
2
a , Ma →

αa
αGUT

Ma (65)

at the one-loop level, and higher-loop renormalizations are also well understood [64].

It is often assumed that the soft supersymmetry-breaking masses are universal at the GUT
or supergravity scale:

m2
0i

≡ m2
0 , Ma ≡ m1/2 , Aλ ≡ A , Bµ ≡ B (66)

but this hypothesis is not very well motivated, since, in particular, general supergravity models
give no theoretical hint why they should be universal. Some superstring models give hints of
universality for the gaugino masses m1/2, but universality for the scalar masses m2

0i
is more ques-

tionable. Since a high degree of universality is suggested (at least for the first two generations) by
flavour-changing neutral-current (FCNC) constraints [65], this provides some impetus for mod-
els guaranteeing scalar-mass universality, such as the gauge-mediated or messenger models [66]
discussed briefly in Lecture 5. If one assumes universality, the parameters µ, tan β,m0,m1/2, A
suffice to characterize MSSM phenomenology.

Figure 13 shows the results of some typical renormalization-group calculations assuming
universal inputs [67]. We see that scalar masses are generally renormalized to larger values as the
scale is reduced, but this is not necessarily the case if there are large Yukawa interactions such as
those of the top quark, which may modify (65) in the case of Higgs masses. Such Yukawa effects
involving the top quark must certainly be taken into account, and could also be important for
the bottom quark and the τ lepton if tanβ is large. The potential significance of these Yukawa
interactions is that they tend to drive m2

H to smaller values at smaller renormalization scales
µ [68]

µ
d

lnµ
m2
h =

1

(4π)2

(

3λ2
t (m

2
h +m2

q̃ +m2
t ) + . . .

)

(67)
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Fig. 13: Renormalization-group evolution of soft supersymmetry-breaking mass parameters [67].

where mq̃ is a squark mass.

This makes it possible to generate electroweak symmetry breaking dynamically, even if
m2
H > 0 at the input scale along with the other scalar mass-squared parameters [68], as seen

in Fig. 13. The appropriate renormalization scale for discussing the effective Higgs potential of
the MSSM is Q <∼ 1 TeV, and the electroweak gauge symmetry will be broken if either or both
of m2

H1,2
(Q) < 0, as in the model potential (5). This is certainly possible for mt ∼ 175 GeV as

observed.

3.2 Supersymmetric Higgs Bosons

As was discussed in Lecture 2, one expects two complex Higgs doublets H2 ≡ (H+
2 ,H

0
2 ) , H1 ≡

(H+
1 ,H

0
1 ) in the MSSM, with a total of 8 real degrees of freedom. Of these, 3 are eaten via the

Higgs mechanism to become the longitudinal polarization states of the W± and Z0, leaving 5
physical Higgs bosons to be discovered by experiment. Three of these are neutral: the lighter
CP-even neutral h, the heavier CP-even neutral H, the CP-odd neutral A, and charged bosons
H±. The quartic potential is completely determined by the D terms (59)

V4 =
g2 + g′2

8

(

|H0
1 |2 − |H0

2 |2
)

(68)

for the neutral components, whilst the quadratic terms may be parametrized at the tree level
by

1

2
= m2

H1
|H1|2 +m2

H2
|H2|2 + (m2

3 H1H2 + herm.conj.) (69)

where m2
3 = Bµµ. One combination of the three parameters (m2

H1
,m2

H2
,m2

3) is fixed by the

Higgs vacuum expectation v =
√

v2
1 + v2

2 = 246 GeV, and the other two combinations may be

rephrased as (mA, tan β). These characterize all Higgs masses and couplings in the MSSM at
the tree level. Looking back at (18), we see that the gauge coupling strength of the quartic
interactions (68) suggests a relatively low mass for at least the lightest MSSM Higgs boson h,
and this is indeed the case, with mh ≤ mZ at the tree level:

m2
h = m2

Z cos2 2β (70)
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Fig. 14: The lightest Higgs boson mass in the MSSM, for different values of tan β and the CP-odd Higgs boson

mass MA [25].

This raised considerable hope that the lightest MSSM Higgs boson could be discovered at LEP,
with its prospective reach to mH ∼ 100 GeV.

However, radiative corrections to the Higgs masses are calculable in a supersymmetric
model (this was, in some sense, the whole point of introducing supersymmetry!), and they turn
out to be non-negligible for mt ∼ 175 GeV [59]. Indeed, the leading one-loop corrections to m2

h

depend quartically on mt:

∆m2
h =

3m4
t

4π2v2
ln

(

mt̃1
mt̃2

m2
t

)

+
3m4

t Â
2
t

8π2v2

[

2h(m2
t̃1
,m2

t̃2
) + Â2

t f(m2
t̃1
,m2

t̃2
)
]

+ . . . (71)

where mt̃1,2
are the physical masses of the two stop squarks t̃1,2 to be discussed in more detail

shortly, Ât ≡ At − µ cot β, and

h(a, b) ≡ 1

a− b
ln

(

a

b

)

, f(a, b) =
1

(a− b)2

[

2 − a+ b

a− b
ln

(

a

b

)]

(72)

Non-leading one-loop corrections to the MSSM Higgs masses are also known, as are corrections
to coupling vertices, two-loop corrections and renormalization-group resummations [69]. For
mt̃1m2

<∼ 1 TeV and a plausible range of At, one finds

mh
<∼ 130 GeV (73)

as seen in Fig. 14. There we see the sensitivity of mh to (mA, tan β), and we also see how
mA,mH and mH± approach each other for large mA.

The radiative corrections (71), (72) have major implications for experiments and acceler-
ators. They may push the MSSM Higgs sector beyond the reach of LEP 2 and into the lap of
the LHC [70]. They motivate the optimization of LHC detectors for the Higgs mass range (73).
They may motivate the orientation of future e+e− linear-collider construction so as to study
such an MSSM Higgs boson in more detail than is possible at the LHC [71].

The decay modes of the MSSM Higgs bosons have been carefully studied, as seen in Fig.
15 [71]. Like the single Higgs boson of the Standard Model, the lightest MSSM Higgs boson h
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Fig. 15: The expected decay modes of the lightest MSSM Higgs boson h [71].

prefers to decay into the heaviest particles available, typically h → b̄b, and this has been the
primary focus of searches at LEP 2. However, there are “blind spots” in MSSM parameter
space where this decay mode is suppressed by cancellations, complicating the search at LEP 2.
Ignoring this possible complication, Fig. 16 shows the regions of MSSM parameter that may
be explored at LEP 2 for different centre-of-mass energies and luminosities. After LEP 2, the
Fermilab Tevatron collider has a chance of observing h → b̄b and possibly other decays [72], if
it accumulates sufficient luminosity. The potential for LHC searches for MSSM Higgs bosons is
shown in Fig. 17 for one choice of the MSSM parameters [70]. We see that the entire parameter
space is covered at maximum luninosity, though with considerable reliance on the rare decay
mode h→ γγ.

3.3 Sparticle Masses and Mixing

We now progress to a more complete discussion of sparticle masses and mixing.

Sfermions : Each flavour of charged lepton or quark has both left- and right-handed components
fL,R, and these have separate spin-0 boson superpartners f̃L,R. These have different isospins
I = 1

2 , 0, but may mix as soon as the electroweak gauge symmetry is broken. Thus, for each

flavour we should consider a 2× 2 mixing matrix for the f̃L,R, which takes the following general
form [73]:

M2
f̃
≡







m2
f̃LL

m2
f̃LR

m2
f̃LR

m2
f̃RR






(74)

The diagonal terms may be written in the form

m2
f̃LL,RR

= m2
f̃L,R

+mD2

f̃L,R
+m2

f (75)

where mf is the mass of the corresponding fermion, m̃2
f̃L,R

is the soft supersymmetry-breaking

mass discussed in the previous section, and mD2

f̃L,R
is a contribution due to the quartic D terms

in the effective potential:

mD2

f̃L,R
= m2

Z cos 2β (I3 + sin2 θWQem) (76)
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where the term ∝ I3 is non-zero only for the f̃L. Finally, the off-diagonal mixing term takes the
general form

m2
f̃L,R

= mf

(

Af + µtanβ
cotβ

)

for f =e,µ,τ,d,s,b
u,c,t (77)

It is clear that f̃L,R mixing is likely to be important for the t̃, and it may also be important for
the b̃L,R and τ̃L,R if tan β is large. We also see from (75) that the diagonal entries for the t̃L,R
would be different from those of the ũL,R and c̃L,R, even if their soft supersymmetry-breaking
masses were universal, because of the m2

f contribution. In fact, we also expect non-universal

renormalization of m2
t̃LL,RR

(and also m2
b̃LL,RR

and m2
τ̃LL,RR

if tanβ is large), because of Yukawa

effects analogous to those discussed in the previous section for the renormalization of the soft
Higgs masses.

For these reasons, the t̃L,R are not usually assumed to be degenerate with the other squark
flavours. Indeed, one of the t̃ could well be the lightest squark, perhaps even lighter than the t
quark itself [73]. The mass limits [16] combined in Fig. 18 assume degenerate (ũ, d̃, s̃, c̃, b̃)L,R,
even though this degeneracy should also be broken by the flavour-universal D terms (76) and
by renormalization effects that are different for f̃L,R. The search for the stop mass eigenstates
t̃1,2 requires a separate analysis. Figure 19 shows the experimental lower limits on mt̃1

from
ALEPH and Dφ for different assumed values of the t̃ mixing angle θt̃ [16], and assuming that
t̃→ cχ decay dominates, where χ is the lightest neutralino.

Charginos: These are the supersymmetric partners of the W± and H±, which mix through a
2 × 2 matrix

− 1

2
(W̃−, H̃−) MC

(

W̃+

H̃+

)

+ herm.conj. (78)

where

MC ≡
(

M2

√
2mW sinβ√

2mW cos β µ

)

(79)

Here M2 is the unmixed SU(2) gaugino mass and µ is the Higgs mixing parameter introduced
in (61). Figure 20 displays (among other lines to be discussed later) the contour mχ± = 91 GeV
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for the lighter of the two chargino mass eigenstates [74]. Some recent experimental lower limits
on mχ± as functions of the other MSSM parameters are shown in Fig. 21 [16].

Neutralinos: These are characterized by a 4 × 4 mass mixing matrix [75], which takes the
following form in the (W̃ 3, B̃, H̃0

2 , H̃
0
1 ) basis :

mN =























M2 0 −g2v2√
2

g2v1√
2

0 M1
g′v2√

2

−g′v1√
2

−g2v2√
2

g′v2√
2

0 µ

g2v1√
2

−g′v1√
2

µ 0























(80)

Note that this has a structure similar to MC (79), but with its entries replaced by 2 × 2 sub-
matrices. As has already been mentioned, one conventionally assumes that the SU(2) and U(1)
gaugino masses M1,2 are universal at the GUT or supergravity scale, so that

M1 ≃M2
α1

α2
(81)

so the relevant parameters of (80) are generally taken to be M2 = (α2/αGUT )m1/2, µ and tanβ.

Figure 20 also displays contours of the mass of the lightest neutralino χ, as well as contours
of its gaugino and Higgsino contents [74]. In the limit M2 → 0, χ would be approximately a
photino and it would be approximately a Higgsino in the limit µ→ 0. Unfortunately, these ide-
alized limits are excluded by unsuccessful LEP and other searches for neutralinos and charginos,
as we now discuss in more detail.

3.4 The Lightest Supersymmetric Particle

This is expected to be stable in the MSSM, and hence should be present in the Universe to-
day as a cosmological relic from the Big Bang [76, 75]. Its stability arises because there is a
multiplicatively-conserved quantum number called R parity, that takes the values +1 for all
conventional particles and -1 for all sparticles [53]. The conservation of R parity can be related
to that of baryon number B and lepton number L, since

R = (−1)3B+L+2S (82)

where S is the spin. Note that R parity could be violated either spontaneously if < 0|ν̃|0 > 6= 0 or
explicitly if one of the supplementary couplings (63) is present. There could also be a coupling
HL, but this can be defined away be choosing a field basis such that H̄ is defined as the
superfield with a bilinear coupling to H. Note that R parity is not violated by the simplest
models for neutrino masses, which have ∆L = 0,±2, nor by the simple GUTs discussed in the
next Lecture, which violate combinations of B and L that leave R invariant. There are three
important consequences of R conservation:

1. sparticles are always produced in pairs, e.g., p̄p→ q̃g̃X, e+e− → µ̃+ µ̃−,

2. heavier sparticles decay to lighter ones, e.g., q̃ → qg̃, µ̃→ µγ̃, and

3. the lightest sparticles is stable,

because it has no legal decay mode.

This feature constrains strongly the possible nature of the lightest supersymmetric spar-
ticle. If it had either electric charge or strong interactions, it would surely have dissipated its
energy and condensed into galactic disks along with conventional matter. There it would surely
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have bound electromagnetically or via the strong interactions to conventional nuclei, forming
anomalous heavy isotopes that should have been detected. There are upper limits on the possible
abundances of such bound relics, as compared to conventional nucleons [77]:

n(relic)

n(p)
<∼ 10−15 to 10−29 (83)

for 1 GeV <∼ mrelic
<∼ 1 TeV. These are far below the calculated abundances of such stable relics:

n(relic)

n(p)
>∼ 10−6 (10−10) (84)

for relic particles with electromagnetic (strong) interactions. We may conclude [75] that any
supersymmetric relic is probably electromagnetically neutral with only weak interactions, and
could in particular not be a gluino. Whether the lightest hadron containing a gluino is charged or
neutral, it would surely bind to some nuclei. Even if one pleads for some level of fractionation,
it is difficult to see how such gluino nuclei could avoid the stringent bounds established for
anomalous isotopes of many species [77].

Plausible scandidates of different spins are the sneutrinos ν̃ of spin 0, the lightest neu-
tralino χ of spin 1/2, and the gravitino G̃ of spin 3/2. The sneutrinos have been ruled out
by the combination of LEP experiments and direct searches for cosmological relics. Neutrino
counting (17) requires mν̃ >∼ 43 GeV [78], in which case the direct relic searches in underground
low-background experiments require mν̃

>∼ 1 TeV [79]. The gravitino cannot be ruled out, and
its popularity has revived somewhat with the renaissance of gauge-mediated (messenger) mod-
els [66], as described in Lecture 5. For the rest of this Lecture, however, we condentrate on the
neutralino possibility.

A very attractive feature of the neutralino candidature for the lightest supersymmetric
particle is that it has a relic density of interest to astrophysicists and cosmologists: Ωχh

2 =
O(0.1) over generic domains of the MSSM parameter space [75]. This feature is seen clearly in
Fig. 22, where 0.1 < Ωχh

2 < 0.3 is possible in a large area of the (µ,M2) plane for suitable
choices of the other MSSM parameters [74]. In this domain, the lightest neutralino χ could
constitute the cold dark matter favoured by theories of cosmological structure formation [80].

We have already seen in Fig. 21 some of the experimental limits on chargino and neu-
tralino production, that may be used to set interesting limits on mχ. One example is shown in
Fig. 23, where one particular choice of m0 is assumed [16]. (This parameter is relevant because
ν̃ exchange contributes to σ(e+e− → χ+χ−), and the ν̃ and ẽ masses influence χ± decay pat-
terns [78].) It is interesting to note in Fig. 23 that LEP 1 data (e.g., neutrino counting in Z0

decays (17)) did not by themselves provide an absolute lower limit on mχ: this became possible
only by combining them with higher-energy LEP data [78].

The lower limit on mχ can be strengthened by combining the direct chargino/neutralino
searches with other experimental and theoretical constraints [78, 74], as illustrated in Fig. 24.
The dotted lines labelled LEP are the analogues of Fig. 23, but with m0 allowed to float
freely. The dotted lines marked H,C incorporate the experimental lower limit on mh and the
cosmological relic-density constraint Ωχh

2 ≤ 0.3, respectively. The solid lines marked UHM
further assume universal scalar masses for the Higgs multiplets. The lines marked cosmo, DM
combine this assumption with the relic-density assumptions Ωχh

2 < 0.3, >0.1, respectively.
Figure 24 documents a lower limit mχ > 40 GeV [81], which can be strengthened using more
recent LEP 2 data to about 45 GeV [74]. We expect that higher-energy runs of LEP will extend
this sensitivity to mχ ∼ 50 GeV. We also see in Fig. 24 that this type of combined analysis of
the MSSM parameter space imposes an absolute lower limit on tan β. Data from LEP that have
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been published so far indicate that tanβ >∼ 1.8 [74], and future LEP runs will be sensitive up to
tan β ∼ 3, principally via Higgs searches.

We close with a few comments on the prospects for sparticle searches at the LHC. These
should be able to extend the squark and gluino searches up to masses on 2.5 GeV, as seen in
Fig. 25 [82]. By looking in several different channels: missing energy EmissT with 0, 1, 2, etc.
leptons, it should be possible to explore several times over the domain of parameter space of
interest to cosmologists where Ωχh

2 <∼ 0.4, as also seen in Fig. 25 6. Moreover, it should be
possible to reconstruct several different sparticles via the cascade decays of squarks and gluinos,
and even make detailed mass measurements that could test supergravity mass relations [84].

3.5 The “Anomaly” that Went Away. . .

For some time, measurements of Rb = Γ(Z0 → b̄b)/Γ(Z → all hadrons) seemed to be in signifi-
cant disagreement with the Standard Model, generating considerable interest. It was suggested
that the discrepancy might be explicable by one-loop supersymmetric radiative corrections, due
either to Higgs exchange if mA were small and tan β large, or to chargino and stop exchange
if both mχ± and mt̃ were small, as well as tan β [85]. The Higgs former scenario was early
effectively excluded by early Higgs searches at LEP, but the χ±/t̃ scenario fitted well with the-
oretical prejudices and survived somewhat longer. It was particularly interesting, because it
suggested that either a chargino or a stop might be light enough to be produced at LEP 2 or at
the Fermilab Tevatron collider.

As time has progressed, the Rb anomaly has steadily decreased in significance, and is now
barely a one-σ discrepancy, as seen in Fig. 26 [5]. In parallel, both LEP 2 and the Tevatron have
explored considerable domains of MSSM parameter space, excluding significant domains of mχ±

and mt̃. Might there still be a significant supersymmetric contribution to Rb, comparable to
the experimental error ∆Rb ∼ 0.0010 ? Even before the latest exclusion domains from LEP et

6This statement may require some re-examination in the light of co-annihilation effects on the relic χ den-
sity [83].
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al., we [86] found that, of about 500,000 possible choices of the basic MSSM model parameters,
only 210 of those that respected the experimental constraints in early 1997 (including b → sγ
and the cosmological relic density) could yield ∆Rb ≥ 0.0010. This already made the case
for a significant supersymmetric contribution to Rb appear somewhat implausible. (Though
everybody would have been happy if one of these “unusual” models was close to reality!) Another
possible strike against these models was that they required a departure from the universality
assumptions favoured in supergravity models, as seen in Fig. 27, where the “globular cluster”
of “interesting” models with ∆Rb > 0.0010 is outside the zone of parameter space accessible in
such universal supergravity models, which can only yield [86]

∆Rb < 0.0003 (85)

Moreover, the “interesting” models all had mt̃1
< 100 GeV, and 90% of them have now

been excluded by the more sensitive LEP 2 searches shown in Fig. 19. The conclusion must be
that plausible parameter choices for the MSSM do not yield a significant contribution to Rb, and
hence that it is legitimate to use the measurements in a global fit to the precision electroweak
data in the Standard Model, as was assumed in Lecture 1.

4 GRAND UNIFICATION

4.1 Basic Strategy

The philosophy of grand unification [8, 87] is to seek a simple gauge group that includes the
untidy SU(3), SU(2) and U(1) gauge groups of QCD and the electroweak sector of the Standard
Model. The hope is that this grand unification can be achieved while neglecting gravity, at least
as a first approximation. If the grand unification scale turns out to be significantly less than the
Planck mass, this is not obviously a false hope. We discuss later in this Lecture and the next
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the extent to which this hope is indeed realistic: for the moment we just note that the grand
unification scale is indeed expected to be exponentially large:

mGUT

mW
= exp

(

O
(

1

αem

))

(86)

and typical estimates will be that mGUT = 0(1016 GeV). Such a calculation involves an extrap-
olation of known physics by many orders of magnitude further than, e.g., the extrapolation that
Newton made from the apple to the Solar System. However, it is not excluded by our current
knowledge of the Standard Model. For example, we see in Fig. 6 that the estimate (33) of the
Higgs mass is consistent with the Standard Model remaining valid all the way to the Planck
scale mP ≃ 1019 GeV, and even far beyond.

If the grand unification scale is indeed so large, most tests of it are likely to be indirect,
and we meet some later, such as relations between Standard Model gauge couplings and between
particle masses. Any new interactions, such as those that might cause protons to decay or give
masses to neutrinos, are likely to be very strongly suppressed.

The first apparent obstacle to the philosophy of grand unification is the fact that the strong
coupling α3 = g2

3/4π is indeed much stronger than the electroweak couplings at present-day
energies: α3 ≫ α2, α1. However, you have seen here in the lectures by Michelangelo Mangano [88]
that the strong coupling is asymptotically free:

α3(Q) ≃ 12π

(33 − 2Nq) ln(Q2/Λ2
3)

+ . . . (87)

where Nq is the number of quarks, Λ3 ≃ few hundred MeV is an intrinsic scale of the strong
interactions, and the dots in (87) represent higher-loop corrections to the leading one-loop
behaviour shown. The other Standard Model gauge couplings also exhibit logarithmic violations
analogous to (87). For example, the effective value of αem(mZ) ∼ 1/128, with estimated ranges
displayed in Fig. 5. The renormalization-group evolution for the SU(2) gauge coupling is

α2(Q) ≃ 12π

(22 − 2Nq −NH/2) ln(Q2/Λ2
2)

+ . . . (88)

where we have assumed equal numbers of quarks and leptons, and NH is the number of Higgs
doublets. Taking the inverses of (87) and (88), and then taking their difference, we find

1

α3(Q)
− 1

α2(Q)
=

(

11 +NH/2

12π

)

ln

(

Q2

m2
X

)

+ . . . (89)

We have absorbed the scales Λ3 and Λ2 into a single grand unification scale MX where α3 = α2.

Evaluating (89) when Q = O(MW ), where α3 ≫ α2 = 0(αem), we derive the characteristic
feature (86) that the grand unification scale is exponentially large. As we see in more detail later,
in most GUTs there are new interactions mediated by bosons weighing O(mX) that cause protons
to decay with a lifetime αm4

X . In order for the proton lifetime to exceed the experimental limit,
we need mX

>∼ 1014 GeV and hence αem <∼ 1/120 in (86) [89]. On the other hand, if the neglect
of gravity is to be consistent, we need mX

<∼ 1019 GeV and hence αem >∼ 1/170 in (86) [89]. The
fact that the measured value of the fine-structure constant αem ≃ 1/137.03599959(38)13) lies in
this allowed range may be another hint favouring the GUT philosophy.

Further empirical evidence for grand unification is provided by the previously-advertized
prediction it makes for the neutral electroweak mixing angle [7]. Calculating the renormalization
of the electroweak couplings, one finds:

sin2 θW =
αem(mW )

α2(mW )
≃ 3

8

[

1 − αem
4π

110

9
ln
m2
X

m2
W

]

(90)
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which can be evaluated to yield sin2 θW ∼ 0.210 to 0.220, if there are only Standard Model par-
ticles with masses <∼ mX [7]. This is to be compared with the experimental value sin2 θW =
0.23155 ± 0.00019 shown in Fig. 2. Considering that sin2 θW could a priori have had any value
between 0 and 1, this is an impressive qualitative success. The small discrepancy can be removed
by adding some extra particles, such as the supersymmetric particles in the MSSM.

Another qualitative success is the prediction of the b quark mass [90, 91]. In many GUTs,
such as the minimal SU(5) model discussed shortly, the b quark and the τ lepton have equal
Yukawa couplings when renormalized at the GUT sale. The renormalization group then tells us
that

mb

mτ
≃
[

ln

(

m2
b

m2
X

)] 12

33−2Nq

(91)

Using mτ = 1.78 GeV, we predict that mb ≃ 5 GeV, in agreement with experiment7. Happily,
this prediction remains successful if the effects of supersymmetric particles are included in the
renormalization-group calculations [92].

To examine the GUT predictions for sin2 θW , etc. in more detail, one needs to study the
renormalization-group equations beyond the leading one-loop order. Through two loops, one
finds that

Q
∂αi(Q)

∂Q
= − 1

2π

(

bi +
bij
4π

αj(Q)

)

[αi(Q)]2 (92)

where the bi receive the one-loop contributions

bi =


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(93)

from gauge bosons, Ng matter generations and NH Higgs doublets, respectively, and at two
loops

bij =




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(94)

These coefficients are all independent of any specific GUT model, depending only on the light
particles contributing to the renormalization. Including supersymmetric particles as in the
MSSM, one finds [9]

bi =
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and

bij =


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(96)

7This prediction was made [90] shortly before the b quark was discovered. When we received the proofs of this
article, I gleefully wrote by hand in the margin our then prediction, which was already in the text, as 2 to 5.
This was misread by the typesetter to become 2605: a spectacular disaster!
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Fig. 28: The measurements of the gauge coupling strengths at LEP (a) do not evolve to a unified value if there

is no supersymmetry but do (b) if supersymmetry is included [93].

again independent of any specific supersymmetric GUT.

One can use these two-loop equations to make detailed calculations of sin2 θW in different
GUTs. These confirm that non-supersymmetric models are not consistent with the determina-
tions of the gauge couplings from LEP and elsewhere [60]. Previously, we argued that these
models predicted a wrong value for sin2 θW , given the experimental value of α3. In Fig. 28a
we see the converse, namely that extrapolating the experimental determinations of the αi using
the non-supersymmetric renormalization-group equations (93), (94) does not lead to a common
value at any renormalization scale. In contrast, we see in Fig. 28b that extrapolation using the
supersymmetric renormalization-group equations (95), (96) does lead to possible unification at
mGUT ∼ 1016 GeV [93].

Turning this success around, and assuming α3 = α2 = α1 at mGUT with no threshold
corrections at this scale, one may estimate that [94]

sin2 θW (MZ)

∣

∣

∣

∣

MS
= 0.2029 +

7αem
15α3

+
αem
20π

[

−3 ln

(

mt

mZ

)

+
28

3
ln

(

mg̃

mZ

)

−32

3
ln

(

mW̃

mZ

)

− ln

(

mA

mZ

)

− 4 ln

(

µ

mZ

)

+ . . .

]

(97)

Setting all the sparticle masses to 1 TeV reproduces approximately the value of sin2 θW observed
experimentally. Can one invert this successful argument to estimate the supersymmetric particle
mass scale? One can show [95] that the sparticle mass thresholds in (97) can be lumped into
the parameter

Tsusy ≡ |µ|
(

m2
W

mg̃

)14/19 (

m2
A

µ2

)3/38 (

m2
W̃

µ2

)2/19 3
∏

i=1





m3
ℓ̃Li
m7
q̃i

m2
ℓ̃Ri

m5
ũi
m3
d̃i





1/19

(98)
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If one assumes sparticle mass universality at the GUT scale, then [95]

Tsusy ≃ |µ|
(

α2

α3

)3/2

≃ µ

7
(99)

approximately. The measured value of sin2 θW is consistent with Tsusy ∼ 100 GeV to 1 TeV,
roughly as expected from the hierarchy argument. However, the uncertainties are such that one
cannot use this consistency to constrain Tsusy very tightly [96]. In particular, even if one accepts
the universality hypothesis, there could be important model-dependent threshold corrections
around the GUT scale [94, 97]. We are at the limit of what one can say without studying
specific models, so let us now do so.

4.2 GUT Models

Before embarking on their study, however, we first clarify some necessary technical points. As
well as looking for a simple unifying group G ⊃ SU(3) × SU(2) × U(1), we shall be looking
for unifying representations R that contain both quarks and leptons. Since gauge interactions
conserve helicity, any particles with the same helicity are fair game to appear in any GUT
representation R, and it is convenient to work with states of just one helicity, say left-handed.
The left-handed particle content of the Standard Model is as follows. In each generation, there
is a quark doublet (u, d)L which transforms as (3,2) of SU(3)×SU(2)L. Instead of working with
the right-handed singlets uR, dR that have (3,1) representations, it is convenient to work with
their antiparticles, which are left-handed: the ucL and dcL transform as (3̄, 1) of SU(3)×SU(2)L.
Similarly each generation contains a lepton doublet (ν, ℓ−)L transforming as (1,2), and the
right-handed charged lepton ℓR is replaced by its conjugate ℓCL , which transforms as a (1,1) of
SU(3)× SU(2)L. We should also keep track of the hypercharges Y = Q− I3. One of the major
puzzles of the Standard Model is why

∑

q,ℓ

Qi = 3Qu + 3Qd +Qe = 0 (100)

In the Standard Model, the hypercharge assignments are a priori independent of the SU(3) ×
SU(2)L assignments, although constrained by the fact that quantum consistency requires the
resulting triangle anomalies to cancel. In a simple GUT, the relation (100) is automatic: when-
ever Q is a generator of a simple gauge group,

∑

RQ = 0 for particles in any representation R
(consider, e.g., the values of I3 in any representation of SU(2)).

The basic rules of GUT model-building are that one must look for (a) a gauge group of
rank 4 or more – to accommodate the Standard Model SU(3) × SU(2) × U(1) gauge group –
which (b) admits complex representations – to accommodate the known matter fermions. The
rank of a gauge group is the number of generators that can be diagonalized simultaneously, i.e.,
the number of quantum numbers that it admits. For example, SU(2) and U(1)em both have
rank 1 corresponding to I3 and Qem, respectively, and SU(3) has rank 2 corresponding to T3

and Y . Complex representations are required to allow the violation of charge conjugation C, as
required by the Standard Model, which has

(ν, e)L ∈ (1, 2) , (u, d)L ∈ (3, 2) , ecL ∈ (1, 1) , ucL , dcL ∈ (3̄, 1) (101)

as discussed above.

The following is the mathematical catalogue [8] of rank-4 gauge groups which are either
simple or the direct products of identical simple gauge groups:

Sp(8) , SO(8) , SO(9) , F4 , SU(3) × SU(3) , SU(5) (102)
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Among these, only SU(3) × SU(3) and SU(5) have complex representations. Moreover, if one
tried to use SU(3)×SU(3), one would need to embed the electroweak gauge group in the second
SU(3) factor. This would be possible only if

∑

qQq = 0 =
∑

ℓQℓ, which is not the case for the
known quarks and leptons. Therefore, attention has focussed on SU(5) [8] as the only possible
rank-4 GUT group.

The useful representations of SU(5) are the complex vector 5 representation denoted by Fα,
its conjugate 5̄ denoted by F̄α, the complex two-index antisymmetric tensor 10 representation
T[αβ], and the adjoint 24 representation Aαβ . The latter is used to accommodate the gauge bosons
of SU(5):
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

(103)

where the g1,...,8 are the gluons of SU(3), the W1,2,3 are the SU(2) weak bosons, the U(1)
hypercharge boson is proportional to the traceless diagonal generator (1, 1, 1,−3/2,−3/2), and
the (X,Y ) are (3,2) of new gauge bosons that we discuss in the next section.

The quarks and leptons of each generation are accommodated in 5̄ and 10 representations
of SU(5):

F̄ =



























dcR

dcY

dcB
. . . .
−e−
νe



























L

, T =



























0 ucB −ucY
... −uR −dR

−ucB 0 ucR
... −uY −dY

ucY −ucR 0
... −uB −dB

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uR uY uB
... 0 −ec

dR dY dB
... ec 0



























L

(104)

The particle assignments are unique up to the effects of mixing between generations, which we
do not discuss in detail here [98]. The uniqueness is because

5̄ = (3̄, 1) + (1, 2) , 10 = (3, 2) + (3̄, 1) + (1, 2) (105)

in terms of SU(3) × SU(2) representations. Therefore, the (ν, e)L doublet in (101) can only be
assigned to the 5̄, and since ΣQem = 0 in any GUT representation, the (3̄, 1) in the 5̄ must be
assigned to the dc in (101). The remaining (u, d)L ∈ (3, 2), uc ∈ (3̄, 1) and ec ∈ (1, 1) in (101) fit
elegantly into the 10, as seen in (104) and (105) 8.

The remaining steps in constructing an SU(5) GUT are the choices of representations for
Higgs bosons, first to break SU(5) → SU(3) × SU(2) × U(1) and subsequently to break the
electroweak SU(2) × U(1)Y → U(1)em. The simplest choice for the first stage is an adjoint 24

8Different particle assignments are possible in the flipped SU(5) model inspired and derived from string [99],
because it contains an external U(1) factor not icnluded in the simple SU(5) group.
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of Higgs bosons Φ:

< 0|Φ|0 >=
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×O(mGUT ) (106)

It is easy to see that this v.e.v. preserves colour SU(3) acting on the first three rows and
columns, weak SU(2) acting on the last two rows and columns, and the hypercharge U(1) along
the diagonal. The subsequent breaking of SU(2) × U(1)Y → U(1)em is most economically
accomplished by a 5 representation of Higgs bosons H:

< 0|φ|0 >= (0, 0, 0, 0, 1) × 0(mW ) (107)

It is clear that this has an SU(4) symmetry which yields [90] the relation mb = mτ that leads,
after renormalization (91), to a successful prediction for mb in terms of mτ . However, the same
trick does not work for the first two generations, indicating a need for epicycles in this simplest
GUT model [100].

Making the minimal SU(5) GUT supersymmetric, as motivated by the naturalness of the
gauge hierarchy, is not difficult [61]. One must replace the above GUT multiplets by super-
multiplets: 5̄F̄ and 10 T for the matter particles, 24 Φ for the GUT Higgs fields that break
SU(5) → SU(3) × SU(2) × U(1). The only complication is that one needs 5 and 5̄ Higgs rep-
resentations H and H̄ to break SU(2) × U(1)Y → U(1)em, just as two doublets were needed in
the MSSM. The Higgs potential is specified by the appropriate choice of superpotential [61]:

W = (µ+
3λ

2
M) + λH̄ΦH + f(Φ) (108)

where f(Φ) is chosen so that ∂f/∂Φ = 0 when

< 0|Φ|0 >= M
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(109)

Inserting this into the second term of (108), one finds terms λMH̄3H3, − 3/2λMH̄2H2 for
the colour-triplet and weak-doublet components of H̄ and H, respectively. Combined with the
bizarre coefficient of the first term, these lead to

W ∋ (µ+
5λ

2
M)H̄3H3 + µH̄2H2 (110)

Thus we have heavy Higgs triplets (as needed for baryon stability, see the next section) and light
Higgs doublets. This requires fine tuning the coefficient of the first term in W (108) to about
1 part in 1013! The advantage of supersymmetry is that its no-renormalization theorems [44]
guarantee that this fine tuning is “natural”, in the sense that quantum corrections like those
in Fig. 12c do not destroy it, unlike the situation without supersymmetry. On the other hand,
supersymmetry alone does not explain the origin of the hierarchy.
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Fig. 29: Diagrams contributing to baryon decay (a) in minimal SU(5) and (b) in minimal supersymmetric SU(5).

4.3 Baryon Decay

Baryon instability is to be expected on general grounds, since there is no exact gauge symmetry
to guarantee that baryon number B is conserved. Indeed, baryon decay is a generic prediction
of GUTs, which we illustrate with the simplest SU(5) model, that is anyway embedded in larger
and more complicated GUTs. We see in (103) that there are two species of gauge bosons in
SU(5) that couple the colour SU(3) indices (1,2,3) to the electroweak SU(2) indices (4,5), called
X and Y . As we can see from the matter representations (104), these may enable two quarks
or a quark and lepton to annihilate, as seen in Fig. 29a. Combining these possibilities leads to
interactions with ∆B = ∆L = 1. The forms of effective four-fermion interactions mediated by
the exchanges of massive Z and Y bosons, respectively, are [91]:

(

ǫijkuRk
γµuLj

) g2
X

8m2
X

(2eR γµ dLi + eL γ
µ dRi) ,

(

ǫijkuRk
γµdLj

) g2
Y

8m2
X

(νL γ
µ dRi) . (111)

up to generation mixing factors.

Since the gauge couplings gX = gY = g3,2,1 in an SU(5) GUT, and mX ≃ mY , we expect that

GX ≡ g2
X

8m2
X

≃ GY ≡ g2
Y

8m2
Y

(112)

It is clear from (111) that the baryon decay amplitude A ∝ GX , and hence the baryon B → ℓ+
meson decay rate

ΓB = cG2
Xm

5
p (113)

where the factor of m5
p comes from dimensional analysis, and c is a coefficient that depends on

the GUT model and the non-perturbative properties of the baryon and meson.

The decay rate (113) corresponds to a proton lifetime

τp =
1

c

m4
X

m5
p

(114)

It is clear from (114) that the proton lifetime is very sensitive to mX , which must therefore be
calculated very precisely. In minimal SU(5), the best estimate was [101]

mX ≃ (1 to 2) × 1015 × ΛQCD (115)

where ΛQCD is the characteristic QCD scale in the MS prescription with four active flavours.
Making an analysis of the generation mixing factors [98], one finds that the preferred proton
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(and bound neutron) decay modes in minimal SU(5) are

p→ e+π0 , e+ω , ν̄π+ , µ+K0 , . . .

n→ e+π− , e+ρ− , ν̄π0 , . . . (116)

and the best numerical estimate of the lifetime is [101]

τ(p→ e+π0) ≃ 2 × 1031±1 ×
(

ΛQCD
400 MeV

)4

y (117)

This is in prima facie conflict with the latest experimental lower limit

τ(p→ e+π0) > 1.6 × 1033 y (118)

from super-Kamiokande [102]. However, this failure of minimal SU(5) is not as conclusive as
the failure of its prediction for sin2 θW .

We saw earlier that supersymmetric GUTs, including SU(5), fare better with sin2 θW .
They also predict a larger GUT scale [9]:

mX ≃ 2 × 1016 GeV (119)

so that τ(p → e+π0) is considerably longer than the experimental lower limit. However, this is
not the dominant proton decay mode in supersymmetric SU(5) [103]. In this model, there are
important ∆B = ∆L = 1 interactions mediated by the exchange of colour-triplet Higgsinos H̃3,
dressed by gaugino exchange as seen in Fig. 29b [104]:

GX → O
(

λ2g2

16π2

)

1

mH̃3
m̃

(120)

where λ is a Yukawa coupling. Taking into account colour factors and the increase in λ for more
massive particles, it was found [103] that decays into neutrinos and strange particles should
dominate:

p→ ν̄K+ , n→ ν̄K0 , . . . (121)

Because there is only one factor of a heavy mass mH̃3
in the denominator of (120), these decay

modes are expected to dominate over p → e+π0, etc., in minimal supersymmetric SU(5). Cal-
culating carefully the other factors in (120) [105], it seems that the modes (121) may be close
to detectability in this model. The current experimental limit is τ(p → ν̄K+) > 1032y, and
super-Kamiokande may soon be able to improve this significantly.

There are non-minimal supersymmetric GUT models such as flipped SU(5) [99] in which
the H̃3- exchange mechanism (120) is suppressed. In such models, p → e+π− may again be
the preferred decay mode [106]. However, this is not necessarily the case, as colour-triplet
Higgs boson exchange may be important, in which case p→ µ+K0 could be dominant [107], or
there may be non-intuitive generation mixing in the couplings of the X and Y bosons, offering
the possibility p → µ+π0, etc. . Therefore, the continuing search for proton decay should be
open-minded about the possible decay modes.

4.4 Neutrino Masses and Oscillations

The experimental upper limits on neutrino masses are far below the corresponding lepton
masses [24]. From studies of the end-point of Tritium β decay, we have

mνe
<∼ 3.5 eV (122)
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to be compared with me = 0.511 MeV. From studies of π → µνµ decays, we have

mνµ < 160 keV (123)

to be compared with mµ = 105 MeV, and from studies [108] of τ → pions + ντ we have

mντ < 18 MeV (124)

to be compared with mτ = 1.78 GeV. On the other hand, there is no good symmetry reason to
expect the neutrino masses to vanish. We expect masses to vanish only if there is a corresponding
exact gauge symmetry, cf., mγ = 0 in QED with an unbroken U(1) gauge symmetry.

Although there is no candidate gauge symmetry to ensure mν = 0, this is a prediction of
the Standard Model. We recall that the neutrino couplings to charged leptons take the form

Jµ = ēγµ(1 − γ5)νe + µ̄γµ(1 − γ5)νµ + τ̄ γµ(1 − γ5)ντ (125)

and that only left-handed neutrinos have ever been detected. In the cases of charged leptons and
quarks, their masses arise in the Standard Model from couplings between left- and right-handed
components via a Higgs field:

gHf̄f H∆I= 1

2
,∆L=0 f̄RfL + h.c. → mf = gHf̄f < 0|H∆I= 1

2
,∆L=0|0 > (126)

Such a left-right coupling is conventionally called a Dirac mass. The following questions arise
for neutrinos: if there is no νR, can one have mν 6= 0? and if there is a νR why are the neutrino
masses so small?

The answer to the first question is positive, because it is possible to generate neutrino
masses via the Majorana mechanism that involves the νL alone. This is possible because an
(fR) field is in fact left-handed: (fR) = (f c)L = fTLC, where the superscript T denotes a
transpose, and C is a 2 × 2 conjugation matrix. We can therefore imagine replacing

(fR)fL → fTL C fL (127)

which we denote by fL · fL. In the cases of quarks and charged leptons, one cannot generate
masses in this way, because qL ·qL has ∆Qem, ∆(colour)6= 0 and ℓL ·ℓL has ∆Qem 6= 0. However,
the coupling νL · νL is not forbidden by such exact gauge symmetries from leading to a neutrino
mass:

mM νTL C νL = mM (νc)LνL = mM νL · νL (128)

Such a combination has non-zero net lepton number ∆L = 2 and weak isospin ∆I = 1. There is
no corresponding Higgs field in the Standard Model or in the minimal SU(5) GUT, but there
is no obvious reason to forbid one. If one were present, one could generate a Majorana neutrino
mass via the renormalizable coupling

g̃Hν̄ν H∆I=1,∆L=L νL · νL ⇒ mM = g̃Hν̄ν < 0|H∆I=1,∆L=2|0 > (129)

However, one could also generate a Majorana mass without such an additional Higgs field, via
a non-renormalizable coupling to the conventional ∆I = 1

2 Standard Model Higgs field [109]:

1

M

(

H∆I= 1

2

νL
)

·
(

H∆I= 1

2

νL
)

⇒ mM =
1

M
< 0|H∆I= 1

2

|0 >2 (130)

where M is some (presumably heavy: M ≫ mW ) mass scale. The simplest possibility of
generating a non-renormalizable interaction of the form (130) would be via the exchange of a
heavy field N that is a singlet of SU(3) × SU(2) × U(1) or SU(5):

1

M
→ λ2

M2
N

(131)
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where one postulates a renormalizable coupling λH∆I=1/2νL · N . Such a heavy singlet field
appears automatically in extensions of the SU(5) GUT, such as SO(10), but does not actually
require the existence of any new GUT gauge bosons.

We now have all the elements we need for the see-saw mass matrix [110] favoured by GUT
model-builders:

(νL, N) ·
(

mM mD

mD MM

) (

νL
N

)

(132)

where the νL ·νL Majorana mass mM might arise from a ∆I = 1 Higgs with coupling g̃Hν̄ν , (129),
the νL ·N Dirac massmD could arise from a conventional Yukawa coupling λ (131) and should be
of the same order as a conventional quark or lepton mass, and MM could a priori be O(MGUT ).
Diagonalizing (132) and assuming that mM = 0 or that < 0|H∆I=1|0 >= O(m2

W/mGUT ), as
generically expected in GUTs, it is easy to diagonalize (132) and obtain the mass eigenstates

νL + 0

(

mW

mX

)

N : m = O
(

m2
W

mGUT

)

N + 0

(

mW

mX

)

νL : M = O(MGUT ) (133)

So far, we have not touched on the generation structure of the neutrino masses. It is often
suggested that mM is negligible, MM is (approximately) generation-independent, and mD ∝
m2/3 (the u-quark mass matrix). If so, one sees that

mνi ∼
m2

2/3i

MGUT
(134)

and one might expect that
mνe ≪ mνµ ≪ mντ (135)

with mixing related to the Cabibbo-Kobayashi-Maskawa matrix.

As you know [111], evidence has recently been presented for atmospheric neutrino os-
cillations [2] between νµ and ντ with ∆m2

A ∼ (10−2 to 10−3) eV2 and a large mixing angle:
sin2 θµτ >∼ 0.8. This is in addition to the previous evidence [112] for solar neutrino oscillations
with ∆m2

S ≃ 10−5 eV2 and sin2 θ ∼ 10−3 or ∼ 1 (Mikheev-Smirnov-Wolfenstein or MSW [113]
oscillations) or ∆m2

S ∼ 10−10 eV2 and sin2 θ ∼ 1 (vacuum oscillations), as seen in Fig. 30.

Various theoretical groups [114] have restudied the previous see-saw prejudices in the light
of the new data. In a hierarchical pattern of neutrino masses, one would expect

mν3 ∼
√

∆m2
A > mν2 ∼

√

∆m2
S > mν3 (136)

but is this compatible with the large mixing indicated (at least) for atmospheric neutrinos?
Indeed it is [116], and theoretically it is difficult to see why any pair of neutrinos should be
almost degenerate. On the other hand, there are perfectly natural 2 × 2 light-neutrino mass
matrices that are compatible with large sin2 2θµτ and the first mass hierarchy in (136) if mν2 ∼
√

∆m2
S ∼ 10−21/2

eV, particularly when it is observed [117] that renormalization-group effects

below MGUT may enhance sin2 2θµτ , as seen in Fig. 31 [116]. However, it is very difficult to
understand the much larger hierarchy that would be needed for the vacuum solution to the

solar neutrino problem with mν2 ∼
√

∆m2
S ∼ 10−5 eV. It is a more model-dependent question

whether the large- or small-angle MSW solution is favoured. In one particular GUT model [116],
we found the large-angle MSW solution more plausible, but the small-angle MSW solution could
not be excluded. We still need more experimental information on neutrino masses and mixing,
and this will surely be an active experimental field for years to come.
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5 NONE OF THE ABOVE

Now is a good moment to review the progress made in addressing the defects of the Standard
Model that were reviewed in Lecture 1, and to count how many parameters are still free. Grand
unification reduces the three independent gauge couplings of the Standard Model to just one, so
that is certainly progress. As far as the Standard Model Higgs sector is concerned, supersymme-
try fixes the quartic Higgs coupling, which is progress, but the overall scale of electroweak gauge
symmetry breaking is related to the undetermined scale of supersymmetry breaking. Indeed,
in the absence of further theoretical input, the soft supersymmetry-breaking mass introduces
O(100) new parameters unless (why?) one knows how to impose flavour universality.

Moreover, a complete treatment of neutrino masses involves additional parameters to
describe the GUT Higgs potential [91, 61] and a see-saw mass matrix [110]. What is more, we
still need at least one parameter to generate the cosmological baryon asymmetry and another to
generate cosmological inflation. Finally, we should not forget gravity, whose parameters include
the cosmological constant (if it vanishes, we need to understand why) as well as Newton’s
constant.

Thus, although progress has been made, there remain big questions in the supersymmetry-
breaking sector and in quantum gravity, which are the main subjects addressed in this Lecture.

5.1 Supersymmetry Breaking

It is clear that supersymmetry must be broken: mẽ 6= me,mγ̃ 6= mγ = 0, etc. Could it be explicit
or must it be spontaneous? Explicit supersymmetry breaking is not only ugly and unlike what
occurs in gauge theories, it also induces inconsistencies at the quantum level when gravity is
introduced. Therefore, attention has focused on spontaneous symmetry breaking. Since the
supersymmetry charge Q is fermionic, this requires a non-zero matrix element for Q between
the vacuum and some fermion χ called a Goldstone fermion or Goldstino:

< 0|Q|χ >= f2
χ 6= 0 (137)

The non-zero matrix element (137) has the immediate consequence, within global supersymme-
try, that the vacuum energy is necessarily positive. This follows from the basic supersymmetry
algebra:

{Q,Q} ∝ γµP
µ (138)

Sandwiching (138) between vacuum states and inserting the intermediate state |χ >< χ|, we
find

| < 0|Q|χ > |2 = f4
χ > 0 (139)

and hence the vacuum energy
< 0|P0|0 >≡ E0 > 0 (140)

How may this spontaneous symmetry breaking be achieved? We recall the general form of the
effective scalar potential in a globally supersymmetric theory:

V =
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

+
1

2

∑

α

g2
α|φ∗Tαφ|2 (141)

where the former is called the F term and the latter theD term. In order to obtain (140), we need
either the first term to be non-zero “F -breaking” [118] - or the second term - “D-breaking” [119].
The latter would require an extra U(1) gauge group factor and many new matter fields, so we
illustrate global supersymmetry breaking with the simplest F -breaking model [118].

46



Consider the superpotential

W = αAB2 + βC(B2 −m2) (142)

where A,B,C denote gauge-singlet matter supermultiplets. It is easy to see that (142) yields

F †
A = αB2, F †

B = 2B(αA+ βC), F †
C = β(B2 −m2) (143)

and hence an effective scalar potential

V =
∑

i=A,B,C

|Fi|2 = |2B(αA + βC)|2 + |αB2|2 + β(B2 −m2)|2 (144)

It is apparent that the last two terms cannot vanish simultaneously, so that V > 0 and super-
symmetry is broken.

Recently there have been analyses of high-redshift supernovae [120] and other astrophysical
and cosmological data [121] that favour a non-zero cosmological constant, as would be suggested
by such positive vacuum energy. Unfortunately, the model (142) and others like it are too much
of a good thing. The “observed” cosmological constant, if it is real at all, would correspond to

Λ <∼ 10−123m4
P (145)

whereas such a global model of supersymmetry breaking would correspond to

Λ ∼ (1 TeV )4 ∼ 10−64 m4
P , (146)

a discrepancy by some 60 orders of magnitude! Even the QCD vacuum energy

EQCD ∼ (100MeV )4 ∼ 10−80 m4
P (147)

is much larger than the ”observed” value (145). This discrepancy may be the biggest problem
in theoretical physics, even bigger than the hierarchy problem. However, to address it requires
a true quantum theory of gravity, as is discussed later in this lecture.

However, before doing so, let us briefly review the latest incarnation of global supersymmetry-
breaking models, namely gauge-mediated or messenger models [66]. The basic idea is to hide
the ugly origin of supersymmetry breaking in a hidden sector of the theory that is coupled to
observable particles via an intermediate set of “messenger” particles that share some of the
gauge interactions of the Standard Model, as seen in Fig. 32. Gauge interactions then mediate
the supersymmetry breaking needed in the observable sector. These models were originally con-
ceived in the early 1980’s [122] because neither the F -breaking scenario (142) nor D-breaking
models fitted within the MSSM. They have recently been reincarnated [123] with the idea that
supersymmetry breaking in the hidden sector might originate from non-perturbative phenomena,
which are much better understood by now [66].

There have been two principal motivations for this reincarnation. One is that gauge
mediation naturally imposes flavour universality in the observable sector [123]. All quarks (or
leptons) with the same charge acquire universal soft supersymmetry-breaking scalar masses,
avoiding any problems with flavour-changing neutral interactions [65] and reducing the effective
number of parameters in the observable sector. A feature of gauge-mediated models is the
appearance of a massless Goldstone fermion λ, which would acquire a small mass when gravity
is taken into account, as discussed in the next section. This implies that the lightest neutralino
χ is unstable: χ→ λγ decay dominates.

This provides the second motivation for gauge-mediated models, which is the report by
the CDF collaboration [124] of an apparent p̄p → e+e−γγ+ missing pT event. It has been
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Fig. 32: Sketch of the principle of gauge-mediated (messenger) models: supersymmetry breaking in a hidden

sector is communicated to the observable sector via gauge interactions [66].
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region favoured in the p̄p → ẽ˜̄e + X interpretation [125] of the CDF p̄p → e+e−γγp/T + X event [124].

suggested [125] that this might be due to ẽ+ẽ− pair production followed by ẽ± → e±χ, χ→ λγ
decays, or due to χ+χ− pair production followed by χ± → e±νχ, χ→ λγ decays. However, no
other γγ+ missing pT events have been observed either at LEP [16] or at the FNAL Tevatron
collider [126], and most of the parameter spaces for these interpretations have now been excluded,
as seen in Fig. 33 [16]. Clearly, further experimental input from future collider runs is needed.

Some final comments on gauge-mediated models are in order. The first is that it has
proved to be quite difficult to construct a model that is consistent with all the phenomenological
constraints, has a desirable stable vacuum, etc. . The other is that, to the extent that the hidden
scale ΛH ≫ 1TeV, the apparent vacuum energy (cosmological constant) ∼ Λ4

H ≫ 10−64 m4
P ,

worsening the discrepancy with the astrophysical upper limit (or observation) (145). However,
in order to discuss this issue seriously, one needs a supersymmetric quantum theory of gravity,
to which we now turn.

5.2 Local Supersymmetry and Supergravity

Why make a local theory of supersymmetry? One motivation is the analogy with gauge theories,
in which bosonic symmetries are made local. Another is that local supersymmetry necessarily
involves the introduction of gravity. Since both gravity and (surely!) supersymmetry exist, this
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seems an inevitable step. It also leads to the possibility of unifying all the particle interactions
including gravity, which was one of our original motivations for supersymmetry. Moreover, in
the context of this Lecture, it is interesting that local supersymmetry (supergravity) admits
an elegant mechanism for supersymmetry breaking [127], analogous to the Higgs mechanism in
gauge theories, which allows us to address more seriously the possible existence of a cosmological
constant.

The basic building block in a supergravity theory [45, 46] is the graviton supermultiplet
of (51), which contains particles with helicities (2, 3/2), the latter being the gravitino of spin
3/2. Why is this required when one makes supersymmetry local?

We recall the basic global supersymmetry transformation laws (54) for bosons and fermions.
Consider now the combination of two such global supersymmetry transformations:

[δ1, δ2] (φ or ψ) = −(ξ̄2γµξ1) (i ∂µ) (φ or ψ) + . . . (148)

The operator (i ∂µ) corresponds to the momentum Pµ, and we see again that the combination of
two global supersymmetry transformations is a translation. Consider now what happens when
we consider local supersymmetry transformations characterized by a varying spinor ξ(x). It is
evident that the infinitesimal translation ξ̄2γ

µξ1 in (148) is now x-dependent, and the previous
global translation becomes a local coordinate transformation, as occurs in General Relativity.

How do we make the theory invariant under such local supersymmetry transformations?
Consider again the simplest globally supersymmetric model containing a free spin-1/2 fermion
and a free spin-0 boson (53), and make the local versions of the transformations (54). Following
the same steps as in Lecture 2, we find that

δL = ∂µ(· · ·) + 2ψ̄γµ ∂/S(∂µξ(x)) + herm. conj. (149)

In contrast to the global case, the action A =
∫

d4xL is not invariant, because of the second
term in (149). To cancel it out and restore invariance, we need more fields.

We proceed by analogy with gauge theories. In order to make the kinetic term (iψ̄∂/ψ)
invariant under gauge transformations ψ → eiǫ(x)ψ, we need to cancel a variation

− ψ̄∂µψ∂
µǫ(x) (150)

which is done by introducing a coupling to a gauge boson:

gψ̄γµψA
µ(x) (151)

and the corresponding transformation:

δAµ(x) =
1

g
∂µǫ(x) (152)

In the supersymmetric case, we cancel the second term in (149) by a coupling:

κψ̄γµ∂/Sψ
µ(x) (153)

to a spin-3/2 spinor ψµ(x), representing a gauge fermion or gravitino, with the corresponding
transformation:

δψµ = −2

κ
∂µξ(x) (154)

where κ ≡ 8π/m2
P .
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For completeness, let us at least write down the Lagrangian for the graviton-gravitino
supermultiplet:

L = − 1

2κ2

√−gR− 1

2
ǫµνρσψ̄µγ5γνDρψσ (155)

where g denotes the determinant of the metric tensor:

gµν = ǫmµ ηmnǫ
µ
ν (156)

where ǫmµ is the vierbein and ηmn the Minkowski metric tensor, and Dρ is a covariant derivative

Dρ ≡ ∂ρ +
1

4
ωmnρ [γm, γn] (157)

where ωmnρ is the spin connection. This is the simplest possible generally-covariant model of a
spin-3/2 field. It is remarkable that it is invariant under the local supersymmetry transforma-
tions:

δǫmµ =
x

2
ξ̄(x)γmψµ(x),

δωmnµ = 0, δψµ =
1

x
Dµξ(x) (158)

just as the simplest possible (1/2, 0) theory (53) was globally supersymmetric, and also the
action of an adjoint spin-1/2 field in a gauge theory.

It is also remarkable that supergravity admits an elegant analogue of the Higgs mechanism
of spontaneous symmetry breaking [127]. Just as one combines the two polarization states of
a massless gauge field with the single state of a massless Goldstone boson to obtain the three
polarization states of a massive gauge boson, one may combine the two polarization states of
a massless gravitino ψµ with the two polarization states of a massless Goldstone fermion λ to
obtain the four polarization states of a massive spin-3/2 particle G̃. This super-Higgs mechanism
corresponds to a spontaneous breakdown of local supersymmetry, since the massless graviton G
has a different mass from the gravitino G̃:

mG = 0 6= mG̃. (159)

This is the only known consistent way of breaking local symmetry, just as the Higgs mechanism
is the only way to generate mW 6= 0.

Moreover, this can be achieved while keeping zero vacuum energy (cosmological constant),
at least at the tree level. The reason for this is the appearance in local supersymmetry (super-
gravity) of a third term in the effective potential (141), which has a negative sign [127]. There
is no time in these lectures to discuss this exciting feature in detail: the interested reader is
referred to the original literature and the simplest example [128]. In this latter case, Λ = V = 0
for any value of the gravitino mass, for which reason it was named no-scale supergravity [129].

Again, there is no time to discuss here details of the coupling of supergravity to mat-
ter [127]. However, it is useful to have in mind the general features of the theory in the limit
where κ → 0, but the gravitino mass mG̃ ≡ m3/2 remains fixed. One generally has non-zero
gaugino masses m1/2 ∝ m3/2, and their universality is quite generic. One also has non-zero
scalar masses m0 ∝ m3/2, but their universality is much more problematic, and even violated
in generic string models. It was this failing that partly refuelled the renewed interest in the
gauge-mediated models mentioned in the previous section. A generic supergravity theory also
yields non-universal trilinear soft supersymmetry-breaking couplings Aλλφ

3 : Aλ ∝ m3/2 and
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bilinear scalar couplings Bµµφ
2 : Bµ ∝ m3/2. Therefore, supergravity may generate the full

menagerie of soft supersymmetry-breaking terms:

− 1

2

∑

a

m1/2a
ṼaṼa −

∑

i

m2
0i
|φi|2 − (

∑

λ

Aλλφ
3 + h.c.) − (

∑

µ

Bµµφ
2 + h.c.) (160)

Since these are generated at the supergravity scale nearmP ∼ 1019 GeV, the soft supersymmetry-
breaking parameters are renormalized as discussed in Lecture 2. The analogous parameters
in gauge-mediated models would also be renormalized, but to a different extent, because the
mediation scale ≪ mP . This difference may provide a signature of such models, as discussed
elsewhere [130].

Also renormalized is the vacuum energy (cosmological constant), which is a potential
embarassment. Loop corrections in a non-supersymmetric theory are quartically divergent,
whereas those in a generic supergravity theory are only quadratically divergent, suggesting a
contribution to the cosmological constant of order m2

3/2m
2
P , perhaps O(10−32)m4

P ! Particular

models may have a one-loop quantum correction of order m4
3/2 = O(10−64)m2

P , but more magic

(a new symmetry?) is needed to suppress the cosmological constant to the required level (145).
This is one of the motivations for tackling string theory, which is our only candidate for a
fundamental Theory of Everything including gravity.

5.3 Problems of Gravity

The greatest piece of unfinished business for twentieth-century physics is to reconcile general
relativity with quantum mechanics. There are aspects of this problem, one being that of the
cosmological constant, as discussed above. Another is that of perturbative quantum-gravity
effects. Tree-level graviton exchange in 2 → 2 scattering, such as e+e− → e+e− at LEP, has an
amplitude AG ∼ E2/m2

P , and hence a cross section

σG ∼ E2/m4
P (161)

This is very small (negligible!) at LEP energies, reaching the unitarity limit only when E ∼ mP .
However, when one calculates loop amplitudes involving gravitons, the rapid growth with energy
(161) leads to uncontrollable, non-renormalizable divergences. These are of power type, and
diverge faster and faster in higher orders of perturbation theory.

There are also non-perturbative problems in the quantization of gravity, that first arose
in connection with black holes. From the pioneering work of Bekenstein and Hawking [131] on
black-hole thermodynamics, we know that black holes have non-zero entropy S and temperature
T , related to the Schwarzschild horizon radius. This means that the quantum description of a
black hole should involve mixed states. The intuition underlying this feature is that information
can be lost through the event horizon. Consider, for example, a pure quantum-mechanical pair
state |A,B >≡ ∑

i ci|Ai > |Bi > prepared near the horizon, and what happens if one of the
particles, say A, falls through the horizon while B escapes, as seen in Fig. 34. In this case,

∑

i

ci|AiBi >→
∑

i

|ci|2|Bi >< Bi| (162)

and B emerges in a mixed state, as in Hawking’s original treatment of the black-hole radiation
that bears his name [131].

The problem is that conventional quantum mechanics does not permit the evolution of
a pure initial state into a mixed final state. This is an issue both for the quantum particles
discussed above and for the black hole itself. We could imagine having prepared the black hole
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Fig. 34: If a pair of particles |A > |B > is produced near the horizon of a black hole, and one of them (|A >,

say) falls in, the remaining particle |B > will appear to be in a mixed state.

by fusing massive or energetic particles in a pure initial state, e.g., by splitting a laser beam and
then firing the sub-beams at each other as in a laser device for inertial nuclear fusion.

These problems point to a fundamental conflict between the proudest achievements of
early twentieth-century physics, quantum mechanics and general relativity. One or the other
should be modified, and perhaps both. Since quantum mechanics is sacred to field theorists,
most particle physicists prefer to modify General Relativity by elevating it to string theory [30].9

5.4 Introduction to String Theory

At the level of perturbation theory, the divergence difficulties of quantum gravity can be related
to the absence in a point-particle theory of a cutoff at short distances: for example,

∫ Λ→∞
d4k

(

1

k2

)

↔
∫

1/Λ→0
d4x

(

1

x6

)

∼ Λ2 → ∞ (163)

Such divergences can be alleviated or removed if one replaces point particles by extended objects.
The simplest possibility is to extend in just one dimension, leading us to a theory of strings.
In such a theory, instead of point particles describing one-dimensional world lines, we have
strings describing two-dimensional world sheets. Most popular have been closed loops of string,
whose simplest world sheet is a tube. The “wiring diagrams” generated by the Feynman rules
of conventional point-like particle theories become the “plumbing circuits” generated by the
junctions and connections of these tubes of closed string. One could imagine generalizing this
idea to higher-dimensional extended objects such as membranes describing world volumes, etc.,
and we return later to this option.

On a historical note, string models first arose from old-fashioned strong-interaction theory,
before the advent of QCD. The lowest-lying hadronic states were joined by a very large number
of excited states with increasing masses m and spins J :

J = α′m2 (164)

where α′ was called the “Regge slope”. One interpretation of this spectrum was of q̄q bound
states in a linearly-rising potential, like an elastic string holding the constituents together, with
tension µ = 1/α′. It was pointed out that such an infinitely (?) large set of resonances in
the direct s-channel of a scattering process could be dual (equivalent) to the exchange of a
similar infinite set in the crossed channel. Mathematically, this idea was expressed by the
Veneziano [133] amplitude for 2 → 2 scattering, and its generalizations to 2 → n particle

9It may be that this will eventually also require a modification of the effective quantum-mechanical space-
time theory, even if the internal formulation of string theory is fully quantum-mechanical, but that is another
story [132].
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production processes. Then it was pointed out that these amplitudes could be derived formally
from an underlying quantum theory of string [134]. However, this first incarnation of string
theory was not able to accommodate the point-like partons seen inside hadrons at this time -
the converse of the quantum-gravity motivation for string theory mentioned at the beginning of
this section. Then along came QCD, which incorporated these point-like scaling properties and
provided a qualitative understanding of confinement, which has now become quantitative with
the advent of modern lattice calculations. Thus string theory languished as a candidate model
of the strong interactions.

It was realized early on that unitarity required the existence of closed strings, even in
an a priori open-string theory. Moreover, it was observed that the spectrum of a closed string
included a massless spin-2 particle, which was an embarrassment for a theory of the strong
interactions. However, this led to the idea [135] of reinterpreting string theory as a Theory of
Everything, with this massless spin-2 state interpreted as the graviton and the string tension
elevated to µ = O(m2

P ).

As already mentioned, one of the primary reasons for studying extended objects in con-
nection with quantum gravity is the softening of divergences associated with short-distance be-
haviour. Since the string propagates on a world sheet, the basic formalism is two-dimensional.
Accordingly, string vibrations may be described in terms of left- and right-moving waves:

φ(r, t) → φL(r − t), φR(r + t) (165)

If the string has no boundary, as for a closed string, the left- and right-movers are independent.
When quantized, they may be described by a two-dimensional field theory. Compared to a four-
dimensional theory, it is relatively easy to make a two-dimensional field theroy finite. In this case,
it has conformal symmetry, which has an infinite-dimensional symmetry group in two dimensions.
However, as you already know from gauge theories, one must be careful to ensure that this
classical symmetry is not broken at the quantum level by anomalies. If the quantum string theory
is to be consistent in a flat background space-time, the conformal anomaly fixes the number of
left- and right-movers each to be equivalent to 26 free bosons if the theory has no supersymmetry,
or 10 boson/fermion supermultiplets if the theory has N = 1 supersymmetry on the world sheet.
There are other important quantum consistency conditions, and it was the demonstration by
Green and Schwarz [136] that certain string theories are completely anomaly-free that opened
the floodgates of theoretical interest in string theory as a Theory of Everything [30].

Among consistent string theories, one may enumerate the following. The Bosonic String
exists in 26 dimensions, but this is not even its worst problem! It contains no fermionic matter
degrees of freedom, and the flat-space vacuum is intrinsically unstable. Superstrings exist in
10 dimensions, have fermionic matter and also a stable flat-space vacuum. On the other hand,
the ten-dimensional theory is left-right symmetric, and the incorporation of parity violation
in four dimensions is not trivial. The Heterotic String [137] was originally formulated in 10
dimensions, with parity violation already incorporated, since the left- and right movers were
treated differently. This theory also has a stable vacuum, but suffers from the disadvantage
of having too many dimensions. Four-Dimensional Heterotic Strings may be obtained either
by compactifying the six surplus dimensions: 10 = 4 + 6 compact dimensions with size R ∼
1/mP [138], or by direct construction in four dimensions, replacing the missing dimensions by
other internal degrees of freedom such as fermions [139] or group manifolds or ...? In this way
it was possible to incorporate a GUT-like gauge group [99] or even something resembling the
Standard Model [140].

What are the general features of such string models? First, they predict there are no
more than 10 dimensions, which agrees with the observed number of 4! Secondly, they suggest
that the rank of the four-dimensional gauge group should not be very large, in agreement with
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Fig. 35: The approximate infra-red fixed point of the renormalization-group equation for mt means that a wide
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the rank 4 of the Standard Model! Thirdly, the simplest four-dimensional string models do not
accommodate large matter representations [141], such as an 8 of SU(3) or a 3 of SU(2), again
in agreement with the known representation structure of the Standard Model! Fourthly, simple
string models predict fairly successfully the mass of the top quark. This is because the maximum
generic value of a Yukawa coupling λt is of the same order as the gauge coupling g. Applied to
the top quark, this suggests that

mt = λt < 0|H|0 >= O(g) × 250GeV (166)

Moreover, the renormalization-group equation for λt exhibits an approximate infra-red fixed
point, as seen in Fig. 35. This means that a large range of Yukawa coupling inputs at the
Planck scale yield very similar physical values of mt <∼ 190 GeV. Fifthly, string theory makes a
fairly successful prediction for the gauge unification scale in terms of mP . If the intrinsic string
coupling gs is weak, one predicts [142]

MGUT = O(g) × mP√
8π

≃ few × 1017GeV (167)

where g is the gauge coupling, which is O(20) higher than the value calculated from the bottom
up in Lecture 4 on the basis of LEP measurement of the gauge couplings. On the one hand,
it is impressive that the bottom-up extrapolation over 14 decades agrees to within 10 % (on a
logarithmic scale) with the top-down calculation (166). Nevertheless, it would be nice to obtain
closer agreement, and this provides the major motivation for considering strongly-coupled string
theory, which corresponds to a large internal dimension l > m−1

GUT , as we discuss next.

5.5 Beyond String

Current developments involve going beyond string to consider higher-dimensional extended ob-
jects, such as generalized membranes with various numbers of internal dimensions. These may
be obtained as solitons (non-perturbative classical solutions) of string theory, with masses

m ∝ 1

gs
(168)
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analogously to monopoles in gauge theory. It is evident from (168) that such membrane-solitons
become light in the limit of strong string coupling gs → ∞.

It was observed some time ago that there should be a strong-coupling/weak-coupling
duality [143] between elementary excitations and monopoles in supersymmetric gauge theories.
These ideas have recently been confirmed in a spectacular solution of N = 2 supersymmetric
gauge theory in four dimensions [144]. Similarly, it has recently been shown that there are
analogous dualities in string theory, whereby solitons in some strongly-coupled string theory are
equivalent to light string states in some other weakly-coupled string theory. Indeed, it appears
that all string theories are related by such dualities. A particularity of this discovery is that the
string coupling strength gs is related to an extra dimension, in such a way that its size R→ ∞
as gs → ∞. This then leads to the idea of an underlying 11-dimensional framework called M
theory [145] that reduces to the different string theories in different strong/weak-coupling linits,
and reduces to eleven-dimensional supergravity in the low-energy limit.

A particular class of string solitons called D-branes [146] offers a promising approach to the
black hole information paradox mentioned previously. According to this picture, black holes are
viewed as solitonic balls of string, and their entropy simply counts the number of internal string
states [132, 147]. These are in principle countable, so string theory may provide an accounting
system for the information contained in black holes. Within this framework, the previously
paradoxical process (162) becomes

|A,B > +|BH >→ |B′ > +|BH ′ > (169)

and the final state is pure if the initial state was. The apparent entropy of the final state in
(162) is now interpreted as entanglement. The “lost” information is in principle encoded in the
black-hole state, and this information could be extracted if we measured all properties of this
ball of string.

In practice, we do not know how to recover this information from macroscopic black holes,
so they appear to us as mixed states. What about microscopic black holes, namely fluctuations
in the space-time background with ∆E = O(mP ), that last for a period ∆t = O(1/mP ) and
have a size ∆x = O(1/mP )? Do these steal information from us [148], or do they give it back to
us when they decay? Most people think there is no microscopic leakage of information in this
way, but not all of us [132] are convinced. The neutral kaon system is among the most sensitive
experimental areas [149, 150, 151] for testing this speculative possibility.

A final experimental comment concerns the magnitude of the extra dimension inM theory:
LEP data suggest that it may be relatively large, with size L11 ≫ 1/mGUT ≃ 1/1016 GeV ≫
1/mP [152]. Remember that the näıve string unification scale (167) is about 20 times larger
than mGUT . This may be traced to the fact that the gravitational interaction strength, although
growing rapidly as a power of energy (161), is still much smaller than the gauge coupling strength
at E = mGUT . However, if an extra space-time dimension appears at an energy E < mGUT ,
the gravitational interaction strength grows fast, as indicated in Fig. 36. Unification with
gravity around 1016GeV then becomes possible, if the gauge couplings do not also acquire a
similar higher-dimensional kick. Thus we are led to the startling capacitor-plate framework for
fundamental physics shown in Fig. 37.

Each plate is a priori ten-dimensional, and the bulk space between then is a priori eleven-
dimensional. Six dimensions are compactified on a scale L6 ∼ 1/mGUT , leaving a theory which
is effectively five-dimensional in the bulk and four-dimensional on the walls. Conventional gauge
interactions and observable matter particles are hypothesized to live on one capacitor plate, and
there are other hidden gauge interactions and matter particles living on the other plate. The fifth
dimension has a characteristic size which is estimated to be O(1012 to 1013 GeV)−1, and physics
at large distances (smaller energies) looks effectively four-dimensional. Supersymmetry breaking
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is expected to originate on the hidden capacitor plate in this scenario, and to be transmitted to
the observable wall by gravitational strength interactions in the bulk [153].

The phenomenological richness of this speculative M -theory approach is only beginning to
be explored, and it remains to be seen whether it offers a realistic phenomenological description.
However, it does embody all the available theoretical wisdom as well as offering the prospect of
unifying all the observable gauge interactions with gravity at a single effective scale ∼ mGUT .
As such, it constitutes our best contemporary guess about the Theory of Everything within and
Beyond the Standard Model.
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[25] G. Altarelli, T. Sjöstrand and F. Zwirner, eds., Proceedings of the Workshop on Physics at
LEP 2, CERN Report 96-01 (1996).

[26] J. Ellis, G.L. Fogli and E. Lisi, Phys.Lett. B318 (1993) 148; Phys.Lett. B333 (1994) 118;
Zeit.Phys. C69 (1996) 627 and Phys.Lett. B389 (1996) 321.

[27] Y.F. Pirogov and O.V. Zenin, hep-ph/9808396.

[28] P. Hasenfratz and J. Nager, Zeit.Phys. C37 (1988) 477.

[29] Y. Nir, lectures at this school.

[30] M.B. Green, lectures at this school.

[31] Y. Nambu, in: Z. Ajduk, S. Pokorski and A. Trautman, eds., Proc. XI Int. Symp. on Ele-
mentary Particle Physics (World Scientific, Singapore, 1989);
A. Miranski, M. Tanabashi and K. Yamauraki, Mod.Phys.Lett A4 (1989) 1043 and
Phys.Lett. B221 (1989) 177.

[32] W.A. Bardeen, C.T. Hill and M. Lindner, Phys.Rev. D41 (1990) 1647;
For a review, see: E. Farhi and L. Susskind, Phys.Rep. 74C (1981) 277.

[33] S. Dimopoulos and L. Susskind, Nucl.Phys. B155 (1979) 237;
E. Eichten and K. Lane, Phys.Lett. B90 (1980) 125.

[34] M.E. Peskin and T. Takeuchi, Phys.Rev. D46 (1992) 381.

[35] G. Altarelli, R. Barbieri and S. Jadach, Nucl.Phys. B369 (1992) 3; 376 (1992) 444 (E);
G. Altarelli, R. Barbieri and F. Caravaglios, Nucl.Phys. B405 (1993) 3.

58

http://ichep.triumf.ca/main.asp
http://arxiv.org/abs/hep-ph/9808396


[36] S. Matsumoto, private communication.

[37] G. Altarelli, R. Barbieri and F. Caravaglios, Int.J.Mod.Phys. A13 (1998) 1031.

[38] B. Holdom, Phys.Lett. B105 (1985) 301;
T. Appelquist, D. Karabali and L.C.R. Wijewardhana, Phys.Rev.Lett. 57 (1986) 957;
M. Bando, T. Morozumi, H. So and K.Yamawaki, Phys.Rev.Lett. 59 (1987) 389;
T. Akiba and T. Yanagida, Phys.Lett. B169 (1986) 432.

[39] S. Coleman and J. Mandula, Phys.Rev. 159 (1967) 1251.

[40] Y.A. Gol’fand and E.P. Likhtman, Pis’ma Zh.Eksp.Teor.Fiz. 13 (1971) 323.

[41] P. Ramond, Phys.Rev. D3 (1971) 2415;
A. Neveu and J.H. Schwarz, Phys.Rev. D4 (1971) 1109.

[42] D.V. Volkov and V.P. Akulov, Phys.Lett. 46B (1973) 109.

[43] J. Wess and B. Zumino, Nucl.Phys. B70 (1974) 39.

[44] J. Iliopoulos and B. Zumino, Nucl.Phys. B76 (1974) 310;
S. Ferrara, J. Iliopoulos and B. Zumino, Nucl.Phys. 77 (1974) 413.

[45] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys.Rev. D13 (1976) 3214.

[46] S. Deser and B. Zumino, Phys.Lett. 62B (1976) 335.

[47] B. de Wit and H. Nicolai, Nucl.Phys. B188 (1981) 98.

[48] L. Maiani, Proc. Summer School on Particle Physics, Gif-sur-Yvette, 1979 (IN2P3, Paris,
1980) p. 3;
G’t Hooft, in: G’t Hooft et al., eds., Recent Developments in Field Theories (Plenum Press,
New York, 1980);
E. Witten, Nucl.Phys. B188 (1981) 513;
R.K. Kaul, Phys.Lett. 109B (1982) 19.

[49] P. Fayet and S. Ferrara, Phys.Rep. 32 (1977) 251.
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