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1. INTRODUCTION

As we have pointed out in previous papers [1], the recent evolution of the mathematical
models for describing the gravitational interaction on the classical level shows a tendency
to generalizations [2], [3] using spaces with an affine connection and a metric {the s.c.
{Ln, g)-spaces]. It has been shown [4] - [6] that every differentiable manifold with affine
connection and metric can be used as a model for space-time in which the equivalence
principle holds. In (L,, g)-spaces the connection for cotangent vector fields (as being dual
to the tangent vector fields) differs from the connection for the tangent vector fields only
by sign. This fact is due to the definition of dual bases of vector spaces over points of
a manifold, which is a trivial generalization of the notion of dual bases of algebraic dual
vector spaces from the multilinear algebra. The (L., g)-spaces can also be generalized
using the freedom of the differential-geometric preconditious and especially by means of a
generalization of the definition of dual vector spaces. In the last case, if the manifold has
two different (not only by sign) connections for tangent and cotangent vector fields [the
s.c. (Ln, g)-spaces] (1], the situation changes and is worth being investigated. On the other
side, the gauge theories of gravity in (pseudo) Riemannian spaces with torsion (Einstein-
Cartan’s spaces) Uy show some peculiarities related to the existence of the torsion tensor
field [7] - [9]. If one uses manifolds with contravariant and covariant affine connections
and Riemannian covariant metric related to the covariant affine connection as a Levi-
Civita (Christoffel, symmetric) connection [the s.c. V,-spaces as a special case of (L., 9)-
spaces], then a model of the gravitational interaction [in analogy to Einstein's theory of
gravitation (ETG)] can be considered. It has been shown that in V 4-spaces the notion of
spherical symmetry can be introduced and spherically symmetrical metrics of the type of
the Schwarzschild metric can exist {10]. In contrast to the general relativity and to the
gravitational theories in Us-spaces some new results induced by the existing torsion field
for the contravariant affine connection could be expected.

In the present paper the Einstein theory of gravitailon is considered over {pseudo)
Riemannian spaces Vs, where the contravariant affine connection [ is induced by the
symmetric covariant connection P # —I' and an invanant function ¢ - [, = P/ +
',o‘;(Ag;. The invariant function p = »(z*) is introduced by the action of the contraction
operator S on the contravariant and covariant basic vector fields {J:} ({ea}) and {dz’}
({e*}). In contrast to the action of the commen (canonical) contraction operator C
on & and dz/ as C(&,dz') = C{dz?,0;) = dz’(8;) = y! used in Vi-spaces and in
ETG. the action of the new contraction operator S (S instead of C) in Va-spaces is
determined as S{d; dz?) = S{dz?.8;) = f1, = ¢ql. 5 € C{M), r > 2 iln the
common case, where § = C, the relation [' = — P is fulfilled and the change of I' in the
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form 1_3,\ = I‘jk +iok ._(1;- induces automatically a covariant affine connection P = -T with
components F;k ::FSk = P]?k - nprkg;‘».)

The notion of V,-space is introduced. The method of Lagrangians with partial
derivative (MLPD) and the method of Lagrangians with covariant derivatives (MLCD)
are sketched for the case of V,-spaces. The MLCD leads directly to covariant Euler-
Lagrange’s equations and to the energy-momentum tensors for a Lagrangian theory of
tensor fields. The Buler-Lagrange equations as a generalization of Einstein’s field equa-
tions for a V4-space and their corresponding energy-momentum tensors are obtained. The
geodesic equation is found by means of the variational principle (in the standard manner).
By the use of the representation of the contravariant affine connection in terms of gener-
alized Christoffel symbols and an additional tensor field (generalized contorsion tensor),
the geodesic equation is compared with the equation of the corresponding auto-parallel
veetor field. The Einstein field equations and the geodesic and auto-parallel equations in
V 1-spaces are compared with these in Vj-spaces.

2. (PsEuDo) RIEMANNIAN SPACES WITH DIFFERENT (NOT ONLY BY SIGN)
CONTRAVARIANT AND COVARIANT AFFINE CONNECTIONS (V,-SPACES)

The (pseudo) Riemannian spaces with different (not only by sign) contravariant and
covariant affine connections are considered as a special case of (Ln, g)-spaces.

Definition 1. (Pseudo) Riemannian space with contravariant and covariant affine con-
nections (Vn-space).

A (L, g)-space with S(dz*,8;) = fly= e“’.g;», @ € C"(M), r > 2 and a covariant
affine connection V = P, connected with the covariant metric g [by means of the relation
Veg = 0 for V€ € T(M) (or gijue = gijx + Pl .gi; + P;k.g,-l = 0)] and defined as a
Levi-Civita (symmetric) connection, is called a V .-space.

Remark 1. The definition of ¥, -space could be made for the general case, where S(dz*, 0;
fiy, fi;€CT(M), r>2, and without the explicit form of f* ;. Since in the present pa-
per we will consider only the special case, where f'; = e¥.g}, ¢ € C™(M), r > 2, the
(pseudo) Riernannian space is indicated here as V .-space.

2.1. General characteristics of a V,-space. On the grounds of its definition and
the properties of the (L., g)-spaces, a V ,-space has the characteristics:

(a) Contraction operator S obeying the relations

S(det 9= f1; = eng, S0V =V¢o0S, Soky==E£085 VEeT(M).

(b) Contravariant affine connection I'. T will have in a co-ordinale basis the com-
ponents l‘}k Vo 0; = I‘;-k.(?,-, chj - I‘}k = Tjki #0 (Tjk‘ are the components of the
contravariant torsion tensor T7).

{c) Covariant affinc connection P. P will have in a co-ordinate basis the components
P Vy,dat = Py da?, P — Py = Uy'=0 (U;)! are the components of the covariant
torsion tensor [/}, (I/ = 0 follows from the definition of a V n-space).

(d) Covariant metric tensor g. g has in a co-ordinate basis the components g;; obeying
the conditions gij:0 = gij6 + Pi'k 915 + P;k.g” =0, and ¢(&%,9;) = 95 = f* l,flj,_qkl =
7 g5
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(e) Contravariant metric tensor field g. g fulfils the relations gldet d2?) = (/ =
"5 F 19" = € g% and has in a co-ordinate basis the components g7 related to 4i; by

means of the conditions g” ik = Froflmg'm ik = ¥ g g5y = = gi. It can be proved
that the conditions for 9ij © 9ij% = 0 induce the conditions for ¢*7 : g%/ & =0.
From (aj, (c), (d) and (e) there follows that

-
e = —i-gll»(glj.k + Gkt = Gika) {n

From (a), (b) and (c) the relations follow

;k = _F;'k + %’,k-Q; , [ = ‘PJik +erg;, (2)
Ty =Tk = Die = o9} — 0504 . (3)
Rk =P,

Rbyp =T =T +TL 1t 1 ()

. ; mk " 1j
m 214 m
P’Jk*sz,] Pz]k+1m Pijilm]'Pik‘

From the last relations follow that, despite of the difference between the contravariant
and covariant affine connections I' and P, the corresponding contravariant and covariant
curvature tensors are different only by sign as in the case of V,-spaces.

2.2. Properties of the Riemann (curvature) tensor R' ;.. The Riemann (Ric-
manman) (curvature) tensor f' ;i in a V n-space fulfils the relations

(a) R ji: = =R jug.

(b} Rijki = —Rjir. This property can be proved by means of the relations

9(Om, R ju1.0;) = —g(0;, R it 84) + ([VdquJ )5, 0m)

g(dm, R Jki- d1) R ki l](()m, ) = Jkl-m7 = Rm;kl ) (r)

9005, R jnp .05) = R it g 6]1)) mklﬂ] =R 7
Vag=0 fz = .‘]j .

(c) Bianchi identity of the 1. type

R <ijk> = I<:g k> + 1<17m Imk > = 0, (6)
Rlz]k+R kij + R =0 ’

The proof follows immediately after direct computation of 7
the use of ().
From the last identity follows the symmetry of the Ricci tensor ;= gi_.lfk ijt

m ,
<z; k> T [<z1 /mk > by

Ry = Ry (7

(d) Bianchi identity of the 2. type
]{ z<]k P> = “1{11m<1 Ikp "= =2 H i<jk-Pp> . (H)
i 17A1)+R ipj ik + It zk;]jzz(lf/ 1k7$911 + 1 iip-P .k 4““[1;*-‘75"_/) - 4



By the use of the both types of Bianchi identities and the characteristics of the V.-
space one can prove the relations:

9F (€7 R gi)ip = (€20 Rishp + €20 pp- Tl
9F (€% Rl ipj)e = (2 Ripj)u s

9f (62 R ikp) = (€% Rip);j — ¥, Rip
g+ -(622'Ri1);p = [91]-(€2¢-RU)LP = (e*.R)p ,
97.(e% R ipj)a = (% 97 Rlips)a ®

gij'(e_zw'Rip);j = (ew‘gij_'_Rip);j — e .p ;g7 Hip
(e2 gl RE i)k — (ezw;g‘J.Ri,?_);j = —2(e® . R* )k,
where ' , = g7 Rip ,

leading to the identity

ST =
% (R — 5.Rgp)ly =0, R=g LRu (10)
which can also be written in the form
- 1 - = 1=
(Ry = 5-Ral)y = —20;5. (R = e (11)

2.3. Length of a contravariant or a covariant vector field and the cosine
between two vector fields of the same type. The (pseudo) Riemannian spaces
with different (not only by sign) contravariant and covariant affine connections are spaces
with metric transport of the vector fields. The scalar product of two contravariant vector
fields is independent of the transport of the covariant metric tensor field g

Vf[g(u)v)] = g(vEU,U) +9(u,Vev), u,v€ T(M) .

The rate of change of the length I, of a contravariant vector field u under metric
transport is determined (see the chapter about the length of a vector field and cosine of
the angle between two vector fields) by the relation

Ely = :tll.g(veu,u) forl, #0 .

In the special case ol parallel transport of u along § (Veu = 0) the length of the vector
u does not change

€l =0 (12)
The length of the vector u does not change under auto-parallel transport Vyu = 0
uly, = 9l =0 (13)

The rate of change of a cosine between two contravariant vector fields depends only on
their transport, atong a contravariant vector field and not on the transport ol the metric
tensor g In “he spacial case of a parallel transport of two vector fields u and v along a
contravariant veetor field £ (Vew = 00 Vee = )y the cosine {and respectively the angle)
between w and v does not change

Eleosia )] = 0. it

The same statements are valid for the length ol a covariant vecto fiend wad for the

cosine of the angle botween two covarant vector fields.



3. [LAGRANGIAN THEORY OF TENSOR FIELDS OVER V,ySI’ACES

A Lagrangian theory of tensor ficlds has three essential structures: the Lagrangian density,
the Euler-Lagrange equations and their corresponding energy-momentum fensors

The Lagrangian density can be considered in two different ways as a tensor density of
rank 0 with the weight ¢ = % depending on tensor fields’ components and their first and
second covariant derivatives:

(a) as a tensor density L, depending on tensor fields’ components and their first (and
second) partial derivatives (and the components of a contravariant and a covariant affine
connections), i. e.

L= \/~dg.Ligij, 9isr, gisb0. VA0, Vs Vi),

where L(xk) = L'(;ckl) 1s a Lagrangian invariant, g;; are the components of the co-
variant metric tensor field g, V4 5 are components of tensor fields V or components Iy
(or P;k) of an affine connection [ (or P), dy = det(g;;) < 0,

VA g 4 a*v4 g
Bl ha

V’A —, Bij = .
' ot " dxJ O’

(b) as a tensor density L, depending on tensor fields’ components and their first (and
second) covariant derivatives, 1. e,

L= /d, L{gij. VA5, VA 5, VA i)

where L(zF) = L/(z*') is a Lagrangian invariant, gi; arc the components of the co-
variant metric tensor field g, VA g are components of tensor fields V = VA peq 0ol =
VA p.0a®dz® with finite rank. A, B. .. are multi-indices: A = iy..ix. B = j,..j, k1l &
N.

The Euler-Lagrange equations can be obtained by means of the functional variation of
a Lagrangian density and of these of its field variables considered as dynamuare ficld variables
(in contrast to the non-varied ficld variables considered as fixed and non-dynamac field
variables).

The corresponding encrgy-momentum tensors can be found by means of the Lie vari
ations (Lic derivatives) of a Lagrangian density and all of its ficld variables (dynamic and
non-dynarnic field variables). By means of Lie variations (change of the field variables
by draggings-along of the tensor fields and their covariant derivatives) the corresponding
epergy-maermentum tensors can be found.

There are two possible methods for the application of a Lagrangian formalism in find-
ing out the Euler-Lagrange’s equations as field equations and the corresponding energy-
momenturn tensors in a field theory over differentiable manifolds with contravariant and
covariant, affine connection and metric: method of Lagrangians with partial derivatroe
(MLPD) and method of Lagrangtans with covariant derivatives (MLCD). These two meth-
ods ~orresponds to the two different ways (a) and (b) of considering the dependence of
the Lagrangan density on different field variables.

lu the lirst method (MEPD) a tensor density of rank 0 and weight § = 1
o Lagrangian density L depending on tensor fields’ components and their first {and second)

15 considered as

partial docietiees along co-ordinate basic vector ficlds. By means of the corresponding,



functional varation of L and the field variables (the components of tensor fields with finite
rank. their partial derivatives and the components of the affine connections (if they are

considered as independent of the metric)

. al al .
oL = \/ L ogiy L+ /—d [ f’ gi; + o 8gije) + 3 0(g 6 )+
3945 09i;.x A5 ki
al. al. o1
: e At o9 V" DA s SV )]
tova, YoV, Vo) + g7 B (0]
al. oL oL oL
AV g f)( Api) ANAp T 0V ;)

the Euler-Lagrange equations follow after using the Stokes theorem on a common diver-
geney term (separated from 4L} and imiposing boundary conditions on the variations of
the dynamic field variables. This is the canonical (classical, conventional) approach for
considering a field theory by means of a Lagrangian formalism. One of the tain assutp-
tions here is the commufation of the functional variation with the partial dervivatives. v
o
(Vg = (VA E)s  8lgnn) = (6gi) ko

In differentiable manifolds without affine connections (or in functional spaces). this
assumption is a priory fulfilled on the grounds of the independence of the functional
change of the form of a function from the change of the maps (or the co-ordinates)
over the manifolds. But in the case of differentiable manifolds with afline connections
this assumption leads to relations between the covariant derivatives and the functional
variation. In this case as necessary and sufficient conditions (for example) for

(VA= 0V e,
appear the conditions
(VA ) = BV )+ V© 8L + VA PPy,

where . . A - b
VA, = VA + 18, Vi g+ P V7

A o Al D l)l

Uei = *5<'k lh ) IB« = —Spk ]h '
N B _ The1 Tk M
Sam - ~Zk:1 f]“ ’Im q]’l (]“ {/““ . _(].“ )

A=ji.g . B=d..1.

The quantities (imulti-contraction symbols) Sam B ohey the following relations

(a) Spi M Sax ' = —gt S o dimM =0, L=1, N,
(b) Sy Pl = —~NaN-! .g{,

(¢) Spi M= = Ngih,

where

A im=1 Jm Trid i gt
ap = !1,‘ RN PO F N

is defined as multi-Kronecker symbol of rank {

gy = 1 e = ji (for all k simultanconsly).
=0 #F e k=1 ]



The proof o the above statement follows immediately from the equality

VA ) - (JV‘" =8V ) - BV ) 15
+ [gé]‘#»\‘nrsl)m t)

A sufficient condition for the application of the method of Lagrangians with partial
derivatives 1s the conumutation relation between the variation operator ¢ and the Lie
differential operator along a contravariant basic vector field

Goly =Ly od, (16)

or the cornmutation relation between the variational operator 6 and the Lie differential
operator along an arbitrary given contravariant vector field £

§olg— Leob = L for VE € T(M) . (17)

[n the second method (MLCD) a tensor density of rank 0 and weight ¢ = 1, 15 constd-
ered as a Lagrangian density depending on tensor fields’ components and their first (and
second) conariant derwatives along basic vector fields. By means of a functional variation
(change of the functional structure of the field functions without changing their tenso-

rial character) of the field variables (the components of tensor fields and their covariant
derivatives)

. a/~d, (')L 31 ol
L = V y Ogij L+~ Ogi + ‘ 7 0{gij k) + 7——8{gi; ku) +
; 8f/i];k (}glj‘k‘l
01, - 01, oL
TOA = S(VA 4 — VA )],
VA, RV y (V2 pa)+ Iz (V% s,
oL oL oL ol
VA, AVAG,) " VA VAR,

the covariant or canonical Euler-Lagrange equations follow. Since in V,-spaces g, 4 =
yand gi; 0 = 0. 8L will have the form

= by Lo \/ (l'ql)vv baij +

il }/ . a1L .
e (SL - —.0 "”“ )+ ) Vj i )]
H1U A 3 n+ )l A { 2] ) PIvE By ¢ ( Bl

hi the case. when additional conditions are imposcd on the afline connections. the
type of the Fuler-Lagrange equations and their corresponding (L, ¢)-spaces depend on
the separated by the variation term and the conditions on the affine connections for
transforming this teom in a common divergency term necessary for the application of the
boundary conditions for the variations after the use of the Stokes theorem. One of the
main assumptions here is the commudation of the functionad variatron wdh the covarant

dertsalives 1 e

SOV )= 6V, Ogiy ) = (dg,;) o



In this case as necessary and sufficient conditions for
(VA 1) = (6V* )

appear the conditions

(5(‘."”1 H,i) = (OVA H),l — VC 13451‘2%1 — VA D.JPD B8i -

The proof of the statement follows immediately from (15).

A sufficient condition for the application of the method of Lagrangians with covariant
derivatives is the commutation relation between the variation operator § and the covariant
differential operator along a contravariant basic vector field

§oVs =Vy 06, (18)

or the commmutation relation between the variation operator § and the covariant dif-
ferential operator along an arbitrary given contravariant vector field £

oV —Veod =V for VEeT(M) . (19)

In the case of the MLCD the affine connections appear as non-dynamic fields variables
(J["k =0,6P k= = 0) and the variation commutes simultaneously with the partial and the
covariant dorl vatives of the tensor field components. At the same time SR} ki = 0 and
61)‘jk1 =0.

The use of the MLCD requires the use of covariant (and form-invariant) methods only,
related to the applications of the covariant differential operators and the Lie differential
operators to tensor fields and their covariant derivatives.

4. IMINSTEIN'S FIELD EQUATIONS AND ENERGY-MOMENTUM TENSORS OVER
V 1-SPACES
4.1. PFinstein’s field equations. The Lagrangian density for obtaining the Fuler-
Lugrange cquaiions and their corresponding EMT-s for a material distribution and 1ts
gravitational Held to V', spaces 1s given inan analogy with the Lagrangian density for the

e bbb e v ronrees e by




by means of the relations:

o/ =4, 1 = R0 g g™
Y = g7 = (g R k) = o R, (23
dgi; 2 ’ Oyi; 3gij( ) dgij (3]
AgHt 5 7 =
— i gl k]. i )
B0 59797 +4%.4")
The Einstein equations in V 4-spaces follow in the form
- 1 — . 1 s,L o.Ky 2 6,L
R'; — (R - A).g; = a.ky. AT k) = — (=~ A gik) (2
J 2( )g] QKU(\/_—dg Sgin ng) 9 ( \/:Tq Sqix !]]k) ( )
After introducing the abbreviations
: - | ; 2 4,Ln ox
G i= R‘j —_ —2~R.gj s mgsth = —\/__dgA(‘;]gﬁ.gjk s (Zi))

where G;j 1s the Einstein tensor and mg,th‘ is the symmetric EMT' of Hilbert for
L., in V4-spaces, the equations (24) will have the forms

T Ay @.Kg i 7 @.Kg : i .

Gt 5.95= =5 men D'y G5 = === (mgen ;" + a_Ko-gj) - (26)
Taking into account the identity in the forms
- 1 —

(6 (R~ 5 Rgl)l; =0, (27)

7o lgg i _ 1w .
(R —5-Ryl)y = =20, (K- 5.Rgl) , (28)
the covariant divergency of the Einstein tensor will have the forms
Gy =-2p,60;, (2°.G7,); =0 (29)

From the first form of the identity follows the covariant divergency of ,ugsn 1} |

(most 7o 4 2y = =205 (g T + gl (30)

x.Kq
and from the second form of the identity follows the covariant conservation law for
mgsth !
) A .
2 i .
[ (mgsnTi? + m'gi N =0. (31
In the case, where A = 0, the last expressions will have the simple forms
(ezv-mgsh,nj),j =0 s (mg.sthj),j = —2~90,]-7ngsh’1;j - (32)

The Euler-Lagrange equations for the non-metric fields VA 5 can be found in an
analogous way as the Einstein equations.

From the relations in the MLCD Jl‘;k =0 and 61’;k = 0, there follows that (dp); = 0.
Therefore, 6y could be only arbitrary constants: d¢ =const. € R (or () and the variation
of ¢ allows only translation: = ¢ +a, a = d¢.
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4.2.  Euler-Lagrange’s equations for the non-metric tensor fields VA e After
variation of the Lagrangian density L with respect to the components of the non-metric
tensor field VA g the Euler-Lagrange equations for V A 5 can be found. Since V4 are
oniy clements of Ly, the variation is restricted on Ly, By the use of the standard variation
in the MLOD one would find the relations

o, L=46,L,, = \/*dgv{m.(i\"" B+ 0. (33)
8, Ly, AL, 0L, L, o
S Sl el S el S Sl ey Yoa (3

Al It avA g, Jl B v Bay
o f.')Lm (‘)Lm 0Lm Y . HLm e R -
)= ; - (= — — y.i]oVe e 17 {30)
J [(‘)1 Ty, CarA Mg IV A o ?,J] 5+ vA o ¢ Bl (39)

The introduction of the boundary conditions for the variations SV o= 0. and
their first covariant {or partial) derivatives (VA p). or (VA 5) ;. because of S, =0
and 417, = 01 3V ). diey= 0. on the shell of the volume Vi, (n = 4) in which the
action S = [ L.dw is determined, requires the application of the Stokes theorem [11].
This is connected with the transformation of the term . j* 5 1n a common divergeney term
Gd e Smee

o . T A SO
R LT SN (36)
as the necessary and suflicient condition for ' 5 = oj' i for coery j' (regardless 1o its

explicit form) appears the condition for (L, g)-spaces
ek !k . RN
(N "+ aegii) o3 =0 {(37)

For V., -spaces (n = 1) it will have the form

‘P.t‘b.i‘ =0, (;5\,

and for ¥ ji. it follows that @, = 0, . e. ¢ =const. This case leads to the common
Vi, -spaces.

I wo vake use of the expheit form of j', then 8, Ly, can be written i the form

. e Ol ‘
G Ly = g (e SV g ) =
hga 3
= \/-d (i’-""“ + P VA (dy 1) (30
- ‘i - J\"’A " A . n vV (LRI AR At
where
3. arL al al
I B . Ybm o Um0 _ b B I O T
el s G he, L OUA ,,,‘,,;‘f} T
dr [‘rn . [i//nn f)],,,[ f ( (')l':u
Sy Tova n VA T tgra 3. o
o Bl o
S e

11



2. ILm G
ava VAgs,  IVAg,

y Ao L,
), )6V HW‘T'M ) (10)
gt

=

The covariant Fuler-Lagrange equations for V4 g follow in the form

(su l/m

i =P forvévA (1)
"B

4.3. Energy-momentum tensors. By means of the Lie variation of the Lagrangian
density L and the covartant Noether identities valid in V' -spaces the energy-momentum
tensors (EMT-s) for all tensor fields which components appear in the structure of the
[Lagrangian density can be found. The covariant Noether identities can be written in the
form

Fi4 09 ,=20,00 - 17 =Q,7 . (12)

Fy are the coimponents of the volume force density, 0,7 are the components of the
generalized canonical EMT (GC-EMT), (1,7 are the comnponents of the symmietric EMP
of Belinfante (S-EMT-B) and Q;7 are the components of the variational EMT of Euler-
Lagrange (V-EMT-EL). In the case of the ETG Ly and L,, lead to different quantities for
all (dynamic and non-dynamic) variables. Ly = e (7t — A) is considered as a Lagrangian
invariant responsible for the existence of the gravitational field induced by a material
distribution described by L, = Lu(gi;. VA . VA g VA B::5). On the other side. Ly,
as a function of g; take part in the determination of the EMT-s for g;;. In this way, every

EMT decomnposes in terms constructed by means of L, and L,,. (The first subscript at
the feft side of a quantity shows the Lagrangian invariant of its composition (; = L, or
m o Lm); the second subscript at the left shows the field variables to which a quantity

corresponds (5 010 g5, ¢ © to v lo V4 5); The third subscript (if any) at the left
shows the type of the quantity itself {5 : symmetric):

01‘ J = ggﬁi J + gcoi J + m,goi ! + anrﬁi ! : (4‘;)
,c/[;' I = ggs’[; I + gcs,/'i J + mgs’“ I + mu.v’“ J B (44)
ax J = {1{]@1 7 + gc(_)1 J + mg@, ! + mua1 i ) (15)
Fz = !Iﬂrl + ch1 + mgfz + ﬂl('Fl . (4())

Using the decompositions of 6.9, 9, Qi T and I, the covariant Noether identities
can be written in the form
(gl 7= ggsTi 7) + (geli 7 — gesli 7))+
(gl 7 = g T ) + (a7 = s 1) = (17)
= y]_q(21 7+ gc() 1 7+ 771(1(21 7+ YHL‘Qz ! y
gglxi + gc]"i + mg]"i + mi'__lniﬁ’ (48)
+(g70i 7 + _quz J + vn{]ol 7 + mu01 j),] =0.

The explicis form of the different energy-momentum tensors connected with the La-
grangian density L can be found for the components g;, of the metric tensor, for the
componcnts [t ikt of the curvature tensor and for the components VA 5 of the non-metric
tensor fields V.
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4.4. Energy-momentum tensors for the metric field g,; and the curvature
1t 1y~ The energy-momentum tensors for g;; and R, can be determined on the basis
of the structure of L, and Ly,. The general structure of the different EMT-s for g;; and
I ki 1s the same as for the components V4 g of the non-metric tensor fields V. One has
only to substitute V4 5 with gi; (B =1j, A to be omitted) or Rijkl (A =1, B=jki) (s.
the next subsection).

_ 1 - 1 —

Wl = T = (RNl ol = ol = = (R= gl (49)
mgli 7 = mgsTid = — L.g! (50)
o= o Fi= (Lygl)y = = (Readls  mo s = (gl (52)

akK,

4.5. Energy-momentum tensors for the non-metric tensor fields V4. 1.
Symmetric energy-momentum tensor of Belinfante ,,,,7; 7 for V4 g

mus i 7 = o Ty i_ gg-Lm » (53)
T =y T = gima T 0, T =g T 7% (54)
v Tx Ik I = g,"m~(usvr kj l-grm + usvr km l-grj - vsvr gm l-grk) ) (55)
— . — 1 — . —
u‘svr le:vsvr Jkl:'i(vvr k']l+vvr ]kl) 3 (56)
vvr ki 1= U.(V‘r ki t+ uavr ki [ (57)
— 1 —
1/(1V1‘ ki - i(u‘/r 7 [ LVT' g% l) ) (58)
1Vr ki I = 1;6? kl [ vPr k) [ (59)
— . oL
u‘pr ky = S r AJ4 ——**—-‘*“4‘/(;
! C [(91/" o B+
oL aL aL .
VE gm = (m—e———VE B)m]i +
+(8VA Bik;m GVA B;m,k) Bim (aVA B.k;m B)’ ]J
L,
+ #”'V i (60)
((’\’ A Bk Bir )i
I oL aL oL
k) — g Di_YE 4 VA m—
205 "Ly BF [81/" o p+ (QVA e + VA H;m;k) D,
aL .
—(M"/A D);m];l ) (61)
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7 i i Tk—1  dk41 H e
_-z‘qjk 'g;"gjl U 1gjk+1' '-{]jt : (()2)

A _ A C D yA | _
VA pi=eVA g+ T4 VY g+ PEVA p =

. . : , (6
:VAB,2+Féi.VC H+PI§)1'.VA]) s k)g)
I‘C = —Sem Ad I‘;rll , P(z;ll = —Sem A]A[)]Tl’l ) (64)

2. Generalized canonical energy-momentum tensor ,,,0; 7 for VA 5o w4 i the
canonical energy-momentum tensor for VAp

mvoi J = mvzi 7 — v["1 L uwi ik k (()r))
- aL oL oL
ti J = — ) A\/A ;
mu [(3VA o VA pas + BVA pon )ik] ni+
aL o
+(m_JVA H,1),k - g;J'-Lm B (h())
. gL alL
K. 7 S - An'LrC B SN DEAVA " R™ iy ‘VA r ‘1
oK (Sc B — Spm D) VA 5ay R T — e na T
(67)
'I,J T k= Ik — lk - Cij k¥ (in a non-co-ordinate basis), (68)
11 k= Fk — I"c (in a co-ordinate basis), n)
—_ —_ —5mjk .
Wik =gl W R = g g W " (69)
Uijk = usvn im l'!]nk _ vs‘—/n km pg"j . vavn ik [}gnm _ 71/H/mk7 (7[))

3. Variational energy-momentum tensor of Fuler-Lagrange 1, Q; 7 for VA 5

. . - &y 1
u D A v Ay O vis -
me@Q; 7 = (5;3; LVE p—Se: MV n)'dVA P (71}

4. Volume force density mo i for VA 5

. o, L
mulli = (SVL" VA pi+ Wi, : (72)
B
UVVi - vSi - 1;Sk j-lek + .‘]{;j-[lm ) (7'”
S =W A VR i = Q0 e — 0 e ) (T
- : )1 oL ial
ki . Dj Uh A oy A
Q) = Spr .[m e D ((A)‘/,A o T avA )RS
al .
arra T " A sm . 7 :
(()\ A ko »)m) (7]
Jl. ol al )
. [ e L LG “/,'11 L 77777'17”’\/.4 1k (76
& VA ((‘,Lm P )l TR e Ik (76)
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5. GEODESIC AND AUTO-PARALLEL EQUATIONS IN V,I—SPA(‘ES
The geodesic and auto-parallel equations for the general case of (L, g)-spaces are consid-
ered in [12]. In this section the main results will be specialized for the case of 17 n-Spaces.
By means of the hine-element ds the length s of a curve in a manifold M can be
found between point py and point py in M with the corresponding co-ordinates ¥ and

Kfke=1..n)
P2
s = / ds + sq . s = const. (77)
Py
The extremum of the length s is to be determined using the standard variational
method with variation of the co-ordinates. From the variation of ds? — g dz dr’ . where
det = d' e drt are considered as components of the ordinary differe lllldl
§(ds?) = 2ds.6({ds) —( )k 9xF dr'da? + 2g75.dr' 8(da?) (T8)
. d d
28(ds) = (ga)‘k_écr d:rJ+2q— : S{dr’) |
from where {under the commutation condition §{dz') = d(éx')) the variation of s

follows [13] in the form

- ds

ik P2
) ds:/ 6(ds) = 95 —(51 be 4
P

+l 4 () drt drl ) dvd dz? ) (/31"] S2% ds = 0
2/, (gij ke ds * ds How)s- ds ds Yk ds? o Tar=0

Under the boundary conditions 2 [,;= 0 and &+ lp.= 0 and for arbitrary dr* the
equation follows

d®zt | det drd
= —— — = l(g= — g —{g- _— e = T¢
9w g~ glleg)e = (o) — (o5p)a)- oo =0 (79)
After multiplication with ¢¥ and summation over k the last cquation will have the
form

dza" ik dod dat
dh"“ o ‘/ [( ) qlk) ( ﬁ)'k]r(/_s =0. (80)
If the abbreviation
— 1,
=5 “llosm) e+ (aw) 5 — (a37) 4] (81)

is introduced, where {;,} are called generalized Chrastoffel symbols of sccond kind
V,rspaco, then the equation takes the form

d?z !
- P
“ds? {ﬂ ds 0 \#2)

and s called equation of geodesic {geodesic equation) i a U, -space. I we use the
abbreviation

dal da®

ar , 83)
ds ds (84)

P= T
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the geodesic equation will take the form

d'll.r

— + G =0 84
ds? + (81)

On the other side, the equation of auto-parallel transport. of the contravariant vector
field uw = d/ds = (dz'/ds)0; = «*O; along the curve with parameter {length) s 1s equation
of the type ¥V,u = 0 and in a co-ordinate basis will have the form

P i da* da? -0 .
g =Y )
or the form )
dpi
— =0, {86)
ds?
where
da* dzJ
' =1} . . 87
k1 7ds T ds (87)

The components '} . of the contravariant affine connection I' can be represented by
means of the gf*n()rah/(‘d Christoffel symbols of second kind for I' and other additional
terms 1n the form

I‘L] - {LJ ETT (88)
where

5 i 1 7) g n oM 2
Skj :2} oz T "t 9wy T A i Do) (89)

are the components of the generalized contorsion tensor S. By the use of the explicit
formof T;0 1 T30 = gk w5 — 959k they take the form

Syt =g5pa—d" g (90)

By means of the representation of '}, the equation of auto parallel transport ¢an be

writien i the forin

A ) ;
j2 - LTS drt oyt

BN . ' i

Pl
i o v Sl ot
, dard e
T n LY i

! £ JE Y ;

N s s

16



and the auto-parallel equation will have on its right side a term describing a force
induced by the gradient of the scalar field .

Therefore, the action of the contraction operator S induces an additional force, related
to the contravartant torsion tensor 7" and different from zero for the parallel transport of
contravariant vector fields.

In the special case, when the contravariant connection U is chosen to be zero on the
curve 2%(s). e l;k(x’(a)) =0, (I'(z'(s)) = 0), then the geodesic equation will have the
form

d*z? —
Sl B (99)
and the auto-parallel equation will take the form
d’z'
e 0. (96)

The last equation can be interpreted as an equation for the trajectory of a free moving
particle in contrast to the geodesic equation.

If the relation between the contravariant affine connection I' and the covariant affine
connection £ is used in the form i+ P = 95k then the geodesic equation can be
written in the form

dz . dz? dx* ; dad dzF
—_— =P — — 4+ TP =0 . 97
e P O N 97)
For the auto-parallel equation it follows
d*et i dz? dz* i dz? dz*
&z Py Yk g =0 (98)

Now, if one chooses in analogy to the case of I['(z¥(s)) = 0 the vanishing of P on the
curve (s}, ie [’]’k(r’(s)) = 0, then the geodesic equation and the auto-parallel equation
will have a different form from that in the case of I'(s) = 0, which will depend on the
explicit form of gt |, = &gk

SaN drd dz*  — ) )

("7;*, + ‘lzki‘ T +T' = 0 (geodesic equation), (99)
4t . drt dz* .
LIT + g k.i.g— = 0 (auto-parallel equation). {100)
ds? TP dy T ds

When [’;A_(.r!(s)) = 0 (and therefore J’J}k =0}, then g5, = fi Y,k and the geodesic

equation and the auto-parallel equation can be written in the form

dat dp det
- . IR e 7/[Yl
ds? " ds ds t

d*z dyp dat

—— + 5.—— = 0 (auto-parallel equation). (102)
ds? ds ds

1

0 {geodesic equation), (ton

The structure of the generalized Christoffel symbols of second kind {’Ik} for the case

- "L d 3 o K N
ol Vo, -spaces shows that the functions f’](x;") = ¥ g% have to be taken inte account
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in the consideration and applications of the geodesic equation. The same 1s also valid
for the auto-parallel equation. It is obvious that in the case where P} (x z!(s)) = 0 the
auto-parallel equation can not be interpreted as an equation of the erJC( tory of a frec
movmg particle (if the affine parameter s is not changed) in contrast to the case, when

k(z I{s}) = 0. Therefore, in V,-spaces [as in the general case of (Ln,g)- Spd(,(‘s] the
equwalcncc principle will be valid only for the case of vanishing the contravarwant affinc
connection in the auto-parallel equation and it will be not valid in all other cascs without
changing the parameter s of the considered trajectory.

6. EINSTEIN’S AND GEODESIC EQUATIONS IN V4~ AND V,-SPACES

6.1. Einstein’s equations. The relations between the Einstein equations in V- and
these in V,-spaces (n = 4) can be found on the ground of the relations between the
main structure of both types of spaces. In V,-spaces the contravaraint affine connection
I is connected to the covariant affine connection £ on the basis of the action of the
contraction operator C : C(dz', 8;) = dz*(8;) = g% and considered as a symmetric (Levi-
Civita, Christoffe!) connection

i Bi i i L oim .
5k — —ij = {jk} = {kj} = §'g -(ka,] + 9imk — y_jk,m) ) (103)

where {;k} are the Christoffel symbols of second kind in V,-spaces. From (1) and {2)
there follows that

P;k = 62“:?’},‘ = _empf;k = —62“’.{;-k} , (104)
I‘;k = 62“".1‘;,c + cp,k.g;- = 62“’.{;,‘} + «pyk.g; .
The Riemann (curvature) tensor R ijk 10 Vy-spaces is determined by means of {3k}
in the form _ N _ o
Rbje=T4 =T+, Th~ N

= (b = e+ L - A = =Pl

The Riemann (curvature) tensor R ijk In V,rspaccs can be expressed by means of the
Riemann (curvature) tensor in Vj;,-spaces through the relation

(105)

R ijk = 62%(&[ ijk + QI ijk) s Ql ijk = e~ R ik R! ik (106)
where
Qi = (2 = D.({bi AR = Cae b 0D + 200,m (a7 {l) — g8 5)) - (107)

Q' ;5% are components of a tensor field. They can vanish at a point or on a trajectory
in V,,, where the affine connection T(z*(s)) is chosen to be zero. In this case R =
2 R ijk- On the other side, Vv, and V, could not simultancously be flat spaces (Rl ik =
0, Rk = 0) if Q' ik £ 0.

If we introduce the abbreviations for the case of V),-spaces:

R*j = g% Ry kg R R=g"gf i . (108)
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Q=g Quy = 0™ 0 QM Q=g" g8 Q k. (109)

o 1 - . . . . S
Gli=R; - 5 gy (Finstein’s tensor i 1y -spaces). {1

then the Einstemn tensor G in V) wspaces can be expressed by means of the Finstemn

tensor i b, -spaces

. (.
G TG 4G WG = QN = 5 (1

Therefore, the Finstein equations in V', -spaces (n = 4} can be written in teris of the
Einstein equations in Vi, -spaces as
-4

Fel R
R e

2

Cmash 1y g G (112)

g 7 .

2

A comparison with the Einstein equations in Vy,-spaces (n = 1)

i A i @ Ky Ly o
& i + jz"r.l]‘y — —'_".')__'nlgxh [_1 (1 1”
shows that the consideration of the last equations in Vg-spaces induces an additional term
lar

L0 on the right side of the equations and an additional factor [depending on thie s
ticld ;(.z"“;} to the fundamental constants kg and A depending on the scalar field 2k
IF we now itroduce the functions

-~ . ks

ARy = A7t Fo(aky = wpem W {4
then (112) will take the form
~i \\ Ko oy -
G+ E.gj p ~—7am_qs/, =00 (115}
and we will have Einstein's equations in V,-spaces (n = 1) with cosmological and

gravitational functions A and &y instead of the cosmological aud gravitational constants A
and s and with an additional gravitational source induced by an invariant functoion [the
sealar field (%))

6.2. Geodesic equation,  The geodesic and auto-parallel equations are identical i a
co-ordinate basis in Vi-spaces. The geodesic equation can be written n the form

k det da*

da! dr _ .
=0 (1)

In V', -spaces the square ds? = ”ﬁ‘{[‘r‘dﬂ of the line clement ds 1s conformal to 8" -

gidatdad in W -spaces . ) )
ds = 77 ds” (LT
Both tvpes of cquations (geodesic and auto-parvallel) i U -spaces are differen

e 0 ded ot
[ L o 0 (peodesie cquatontd, [RERY
s ils )
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d?z - de* dr? | d2* da2l .

i P (19)
or TE g A2 Ao paralel equat .

e e paralell equation). (120)

By means of the relation between the affine connections in V- and V,-spaces the
geodesic and the autoparallel equations in V,-spaces can be written in terms of the alfine
connection in Vi, -spaces and the scalar field ¢ [s. (82) — (94)]

d*zt vo =i drd dr* ; dp da?
—— e — — 2. ¢ W — 121
P LR T CPmeT PERPE tzl)
(geodesic equation),
dz? dz* ( ) 20 dz? dr*
e=g7 — —=glu,u) = e’ gjk.— . — = g;
9% ds ds gt ik ds ds 9.

do dz’
_dyp dz’ 122
ds  ds (122)
(auto-parallel equation).

The geodesic and auto-parallel equations differ from the geodesic equation in V-
spaces. The additional terms are induced by the scalar field ¢. If we chose f‘;k {zF(s)) = 0,
then both equations described the motion of a particle under different forces caused by
the scalar field ¢

12 1 . d drt

(71?1;— = cpmePgm — ‘Zdii% (geodesic equation), (123)
A dyp dz' .

(lj; = - Eﬁ . Eﬁ: (auto-parallel equation), (124)
d3 5 ds

and arc not equations of a free moving particle in a Vj, -space.

7. (CONCLUSIONS
I the present paper the main structures of Binstein’s theory of gravitation are considered
over {pseudo) Riemannian spaces with different (not only by sign) contravariant and co-
variant affine connections. The covariant affine connection is determined as the common
syvinmetrie {(Levi-Civita) connection and the metric s the common Riemannian metric
The contravar ant afline connection induced by the covariant affine connection and the ac-
tion of the contraction operator S appears i a co-ordinate basis as a non-synuneinic affine
conncetion with torsion tensor induced by the existing scalar field (invariant function) o
Thix sealar feld changes the whole structure of the Einstein field equations adthovgh

their o they are analagous to these wn the commmon (pseudo} Riemannan spaces warh

caie o connection and Ricmannian metric. The differen: o berween Fierem s qun

1ot et

afling

Vo he spaces with one and the spaces with two affine connections is show

forin by expressing both types of equations in a (pseudo) Riemannian space

conaection. fnosuch a space the geodesie and auto-paraliel equations froni a space with

two connections do not appear as equations of free moving particles. Additional terms
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induced by the sealar field cause the existence of forces due to the tarsion tensor feld
of the contravariant afline connection in the space with two connections. Fhe presented
model for deseribing the gravitational interaction appears as a model lving between the

models i Finstein-Cartan spaces and these in Riemannian spaces. Further considerations
are necessary for finding out the range of vitality of the considered in this chapter model
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Manos C., Konapos A., Dumutpos B. E5-98-184
(L, g )-npocrpauncraa.

O61as TeOpHs OTHOCHTENEHOCTH Ha V,-npocTpancTsax

Pesynbrarhl HccnenoBaHuii NpOCTPaHCTB ¢ KOHTPaBAPHAHTHOH H KOBapHaHTHOMN
a(pPMHHBIMU  CBA3HOCTAMHM CNELMANH3UPOBAHBl LTA Ciydas TaKHX NPOCTPaHCTB
€ MCTPHYECKHM MEPEHOCOM W C TEH30pOM KOHTpakLHH f= ¢ (x) - Kr (T.e. (ncee-
I0)PHM@HOBbI MPOCTPAHCTBA C KOHTPaBapHaHTHOI (HECUMMETPHYECKOH) H KO-
BAPUAHTHOH (CHMMETPHYECKOH) CBA3HOCTAMH JleBu—Yusura). Teopus rpaBuTaumu
DifHluTeiHa paccMOTpeHa Ha 9THX npocTtpaHcTBax. [TonydenHsie YpaBHEHHs Diine-
pa-Ilarpanka W TeH3OpEl SHEPrUH-MMIYILCA CPABHHBAKTCS C YPaBHEHHAMU
DHHIITEHHA H TEH30PAMH YHEPIHH M UMIYIbCA B (nceBaO)pHMAHOBBIX T1POCTPAHCT-
Bax Ge3 kpyuerus. [eonesuueckue u aBTOmapanienshble ypaBHeHHUS B [POCTPaHCT-
BaX HOBOTO THUIMA PA3NHYHBI B.OTJIMYME OT Cilyyast (IICEBI0)PUMAHOBBIX POCTPAHCTB
Ge3 KpydyeHHs (C ODHOH CUMMETPHYECKOH CBA3HOCTHIO).

PaGota Bmnonnena B JlaGopatopun Teoperuueckoit ¢rsuku uM. H.H.Boromo-
6osa OHSH.

Coobuienne OGbeIHHEHHOTO HHCTHTYTA SUepHBIX HcoienoBaHui. [yGua, 1998

Manoff S., Kolarov A., Dimitrov B. _ E5-98-184
(L, .8 )-Spaces. General Relativity over V,-Spaces

The results from the considerations of differentiable manifolds
with contravariant and covariant affine connections and metrics are specialized
for the case of (L, ,g)-spaces with metric transport (Vég =0 for V&e T (M),
8;4=0 and f/.'ze‘p-gj' (the s.c. (pseudo)Riemannian spaces with contravariant

and covariant symmetric affine connections). Einstein’s theory of gravitation
is considered in (pseudo)Riemannian spaces with different (not only by sign)
contravariant and covariant affine connections (( V'I )-spaces, n=4). The Euler-

Lagrange equations and the corresponding energy-momentum tensors (EMT-s) are
obtained and compared with the Einstein equations and the EMT-s in V,-spaces.

The geodesic and autoparallel equations in —l_/“-spaccs are found as different

equations in contrast to the case of V,-spaces.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics. JINR.
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