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In the two lectures I will attempt to review some of the work done by the experimental
HEP group at SCRI/FSU. The first lecture will be on pattern recognition, the second on
simulation techniques. It is first necessary to describe how a vector machine works briefly
and particularly what constructs are used in building algorithms which run effectively
on modern supercomputers. The machines which are used at FSU are a CYBER 205
and a four processor ETA-10, which is just coming on-line now. These machines run an
extended FORTRAN which contains most of the constructs of FORTRAN 8. The syntax
is unfortunately not the same. We have found that to write effective code on a vector
machine the algorithms must be constructed from explicitly vector constructs. This is
completely at odds to the view expressed by many colleagues insisting on transportability
down to the smallest PC. The codes we have worked on do not rely on a vector optimizing
compiler. In fact we disable it completely. This is not the technique normally used on Cray
and Fujitsu machines but code conversion from the CDC V200 FORTRAN to something
that the compilers can handle is straightforward.

Vector Fortran

The IVERSON operators are a set of logical vector operations and are the basic tools
for constructing algorithms. It is these functions which in my mind distinguish vector
supercomputers from array processors. They are listed in figure 1 with the associated
FORTRAN which an optimizer would convert. The GATHER and SCATTER operations
work on central memory organizing data so it can be fed to the vector pipeline hardware.
Vector machines operate on sequentially stored numbers so indirectly addressed variables
must be reorganized to be useful. GATHER and SCATTER operations are comparatively
slow on a CDC machine and in fact timing depends on the instantaneous machine load
taking between 2 and 5 machine cycles/word. I'm told on the XMP series they run a one
cycle/word. Depending on the fraction of an array which is desired the COMPRESS and
MERGE functions can serve the same purpose running at one result per clock cycle per
vector pipe , so between 4 and twenty times faster than the GATHER and SCATTER,but
must look at every array element.

The pipeline units on a 205 execute addition, subtraction, multiplication, square root
and logical or boolean instructions at one 64 bit word per clock cycle per pipeline. Thus
in 32 bit mode (half precision) arithmetic can produce 4 results per cycle on our 205 and
128 boolean results per cycle.

Essentially all of the standard FORTRAN functions (sin, cos, exp ...) have vector
versions. There is a vector random number generator but M. Hodous of ETA wrote a
couple of new ones including RNDM32 of CERNLIB which produce a number/clockcycle.

The FORTRAN supports two interesting data types that are not standard. BIT
vectors use every bit in a word and are used to drive the COMPRESS, MERGE, and
BOOLEAN instructions. They are also used for masked arithmetic function, ie. only
execute the function if the associated bit is true. A very elegant data type is the DE-
SCRIPTOR. This is a data type which has two components, a starting location and a
length. I'll illustrate it. Say you have a DO LOOP of the following:

DO 10 I=1, LENGTH '
A(ISTRT1 + I-1) = B(ISTRT2 + I-1) + C(ISTRT3 + I-1)

10 CONTINUE
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you could declare 3 DESCRIPTORS AD, BD and CD with a declaration statement

DESCRIPTOR AD, BD, CD
and define them with a DATA statement at compilation time.

DATA AD/A(ISTRT1; LENGTH)/

DATA BD/B(ISTRT2; LENGTH)/

DATA CD/C(ISTRT3; LENGTH)/
with ISTRT1, ISTRT2, ISTRT3, and LENGTH being PARAMETERS, or instead of using
data statements and parameters assign their definitions dynamically at run time with an
ASSIGN statement.

ASSIGN AD, A(ISTRT1; LENGTH)

ASSIGN BD, B(ISTRT2; LENGTH)

ASSIGN CD, C(ISTRT3; LENGTH)
with ISTRT1, ISTRT2,ISTRT3 and LENGTH being variables. Then the DO LOOP can
be written.

AD =BD + CD
Thus a DESCRIPTOR can be viewed as an implied loop over a single array. This is a
particularly useful trick for converting scaler code to vector code and leaves a much more
readable source code when you’re done.

There is also a vector IF-THEN-ELSE structure which uses the form

WHERE (DESCRIPTOR1.LOGICALOPERATION.DESCRIPTOR2)
DESCRIPTOR3 = DESCRIPTOR4*DESCRIPTORb5
OTHERWISE
DESCRIPTOR3=DESCRIPTOR6
END WHERE
the lengths of all of the DESCRIPTORS must be the same. This structure can easily be
constructed from the MERGE operation.

One of the unique features on a 205 is that all of the assembler instructions can
be executed from FORTRAN through the use of callable “Q8” functions. Many of the
Q8 functions are packaged as simpler FORTRAN functions (fewer arguments and not
so many modes of use) but for optimum speed the Q8 functions are more versatile and
typically faster. This is clearly only interesting for the vector instructions of which there
are approximately 100.

One of the critical features of vector machines is the start up time for vector instruc-
tions. This particular aspect forces you to maximize the vector lengths, with asymptoric
speeds being reached at vector lengths greater than 1000 on a 205 or ETA machine. CRAY
machines are register to register machines so the performance is maximized when all of
the registers (64) are used. Consequently vector lengths which are multiples of 64 are the
optimum. As a scaler machine a CYBER 205 performs at a level between 8 and 12 VAX
11/780’s.

Algorithms

So we use a factor of 10 for this conversion for timing numbers. So with that intro-
duction we’ll start discussing pattern recognition algorithms. Much of the discussion will
center on the FERMILAB experiment 711 which is a double arm open geometry mag-
netic spectrometer with two calorimeters for triggering (see figure 2). The experiment is
measuring the massive dihadron continuum to determine the energy angle and flavor de-
pendence of parton-parton scattering. It is run at an intensity of 5 x 10% interactions/sec
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on an assortment Nuclear targets corresponding to luminosities of up to ~ 5 x 1032 cm
—2 sec L.

The most time consuming part of the bulk reconstruction code is the track finding
and fitting. To explain the three vector algorithms that have been developed to date a
description of the wire chamber system is necessary. The magnetic spectrometer consists
of a point target alleviating the need for tracking upstream of the magnets. The target is
followed by two large magnets producing a total magnetic deflection of 1.35 GeV/c. The
downstream tracking system consists of five stations of finely spaced wire chambers (four
stations in the 1985 run). Each station has four views measuring X,Y and £ 10° to X,
the bend view. In X and Y all of the stations have the same number of wires (256 and
544 for X and Y respectively) producing a projective system. In the two angled views the
number of wires is 320 in the first two stations and 356 in the downstream three stations,
thus not being purely projective. l

The tracking is done in each view separately and the two dimensional projections
are the coupled into three dimensional tracks and fit. While this technique is fast it
suffers from being very sensitive to the hit multiplicity /plane. This is due to the low
rejection of false tracks at the two dimensional level. The chamber inefficiency (85%
in 1985 90% in 1987) further requires accepting two dimensional tracks with only three
hits. On the 1985 data the two scaler algorithms used in the on-line system required 2
and 12 sec/event with the slower algorithm having a significantly higher track finding
ability. The data taken in 1985 had an average of 2.25 found 3D tracks/event ~ 10-15
hits/plane and ~40 2D tracks/view found each event. In the 1987 data the fifth station
was added the electronics modified and the intensity raised by a factor of 5. This resulted
in the chamber multiplicity increasing by 30% to 15 to 20 hits/plane and the CPU time
of the second algorithm increasing to 50 sec/event. (Scaler algorithm times are on a VAX
11/780). Scaler algorithms of this type connecting hits pairwise and searching consume
CPU time in proportion to the number of hits/plane raised to some large power due to
the redundancy needed for efficiency.

Vector Algorithms

We have developed three algorithms for doing the pattern recognition on the CYBER
205 we can access. All of the algorithms work by looking for every possible track in
the spectrometer defined from a Monte Carlo generated list. The first takes explicit
advantage of projective geometry and is described in reference 1 in detail. I’ll give only
a brief description of how the algorithm works here. Figure 3 illustrates the principle
involved. In a projective geometry manifested as a projective grid there exist families of
valid tracks which have the property that the members of the family can be generated
successively by incrementing all of the cell numbers by one from the previous member.
The technique then is to define a list of seed tracks on the grid and for each seed track
to do a vector loop of one cell displacements and checking if a sufficient number of those
cells are occupied to declare a track found. In X for example the hit wires are projected
onto a perfectly projective software grid. To ensure finding efficiency the cells of each grid
are in fact overlapping, mapping onto an integer number of wire spacings. Thus a single
hit wire will “light” several cells. This is handled with predefined mappings and inverse
mappings. This was necessary because the small angle views were not projective having
varying numbers of wires. In a grid structure with 180 cells and 4 planes, you start with
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plane 1 cell 1 and plane 4 cell 1 and have a family of 180 tracks like.
(1,1,1,1) (2,2,2,2) (3,3,3,3) .... (180,180,180,180) a second family of 179 tracks.
(1,1,2,2) (2,2,3,3) (3,3,4,4) ... (179,179,180,180) and a related family of 179 tracks
(1,2,2,2) (2,3,3,3) (3,4,4,4) .... (179,180,180,180)

and so on.

Each of these families can be checked in a vector loop because the data of on/off for
each successive track on a fixed plane is by construction adjacent.

Consider a single view with 180 cells and 4 planes with the data stored in a 2 dimen-
sional array PLANE (180,4). What is stored is a bit pattern for which wires actually lit
each cell. There are NTRK families of tracks with starting cell numbers stored in the 2
dimensional array ISTRT(NTRK,4). Further, there is a single array LENGTH(NTRK)
defining the number of tracks in each family, a status array NSTATUS(NTOT), where
NTOT is the total number of tracks in all families i.e., the sum of LENGTH, and a BIT
array IGOOD to define whether a track is found or not. NSTATUS is used to count how
many lit cells are on each track.

Thus NSTATUS (1;NTOT) =0

ITRK =1
DO 100 JFAM = 1, NTRK
LEN = LENGTH (JFAM)
DO 50 IPLN =14
ASSIGN DESC, PLANE (ISTRT(JFAM,IPLN),IPLN;LEN)
C.... now the vector loop.... '
WHERE (DESC.NE.0)
NSTATUS(ITRK;LEN) = NSTATUS(ITRK;LEN) + 1
END WHERE
C....
50 CONTINUE
ITRK = ITRK + LEN
100 CONTINUE
IGOOD(1;NTOT) = NSTATUS(};NTOT) .GE.3

While the 2 dimensional finding was simple and very fast (~ msec/event) it operated
at the level of 3 wire wide roads and required a sorting algorithm which was not brought
to a high enough efficiency to satisfy us, particularly as a second algorithm was developed.

The second algorithm is extremely general and is based on the use of the GATHER
and SCATTER operations. It is possible, in fact quite easy, to generate a list of all
possible tracks at the wire level. This list consists of the wire numbers for each plane for
every track. Assume there are NTOT unique tracks (for example) in a four plane system
in a single view. A track list can be constructed ITRKLST (NTOT, 4) where the value
of ITRKLST(ITRK,IPLN) is the wire number on plane IPLN for track number ITRK.
Starting with a compressed list of NHIT lit wires in IWIRE(NHIT) a UNIT vector ONE
is expanded into array HITS(NWIRE,4) where NWIRE is the total number of wires in a
plane in that view (assumed here to be the same for all planes but not essential). The
SCATTER function is used on an array which is initially zeroed. This array can now be
used as the source of a GATHER . function to assemble the data in the format of ITRKLST
in an array ITRKDAT. The valves on a given row are the zeroes or ones corresponding
to the wires associated with that track, being off or on respectively. The algorithm now
looks something like this: ' '
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Note: The first and third descriptors (first and third arguments ) are only used for a
starting location in GATHER and SCATTER operations, the lengths are ignored.
C.... initialize HITS and ONE....
HITS(1,1;4*NWIRE) = 0.
ONE(1;NWIRE) = 1.
NSTATUS(1;NTOT) = 0.
DO 100 IPLN = 1,4
C.... define some DESCRIPTORS for neatness....
NHT = NHIT(IPLN)
IFRST = IFIRST(IPLN)
ASSIGN DHITS, HITS(1,JPLN;NWIRE)
ASSIGN DIWIRE, IWIRE(IFRST;NHT)
ASSIGN DONE, ONE(1;NWIRE)
C.... SCATTER Unit Vector....
DHITS = Q8VSCATR(DONE,DIWIRE;DHITS)
C.... Some more DESCRIPTORS to assemble TRKDAT
ASSIGN DTRKDAT, TRKDAT(1,JPLN;NTOT)
ASSIGN DTRKLST,JTRKLST(1,IPLN;NTOT)
DTRKDAT = QSVGATHR(DHITS,DITRKLST;DTRKDAT)
C.... fill NSTATUS....
WHERE (DTRKDAT.NE.0) NSTATUS(1;NTOT) = NSTATUS(1I;NTOT) + 1
100 CONTINUE
IGOOD(1;NTOT) = NSTATUS(};NTOT).GE.3

One should note there are 13 vector instructions used in the algorithm beyond the
3 initialization loops, making timing in fact calculable! The resulting timing on this
algorithm including tape unpacking, finding, fitting and DST writing was 27.5 msec/event
on the CYBER. 205 as opposed to ~10 sec/event on a VAX 11/780 for the scaler code of
comparable efficiency.

This brings us to algorithm number 3.

The GATHER and SCATTER operations are fairly slow and a three hit track will
show up in several places in the list and must be sorted out. It is possible to construct
the core of the algorithm completely out of boolean operations which could run up to
700 times faster per individual result. This was investigated and in fact became the final
technique. '

The basic trick here is to reconstruct the track list in an expanded form using bit
vectors. To store the track number vs wire number information, consider again the view
with 180 cells, 4 planes, and NTOT possible tracks. Make a 3-dimensional BIT array,
BITX,(NTOT, 180,4), the last index referring to each of the four X planes. Say for exam-
ple track 3251 has cell 57 on it in plane one, then the value of BITX (3251,57,1) will be one
and all other value on the row BITX (3251,J,1) will be zero. This defines the construction
of the track list. More space is used but far less CPU time. The construction of the list of
possible tracks with a hit in a given plane can now be constructed by simply executing an
OR function (Q80RV) on those columns whose cells are on. Assume IWIRE (NWIRE,4)
and NHIT(4) (the lit wire identities and number of lit wires), and define a 2 dimensional
BIT vector for all tracks that have hits in each given plane TRKLST(NTOT,4) initialized
to all zero. '

The boolean vector instructions execute on the whole number of words used. So the
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lists are increased in length from NTOT by the integer calculation.
NWORDS = NTOT/64 + 1
NTOTP = 64 * NWORDS

The additional dummy tracks (NTOTP-NTOT) have zeros for all the cell numbers
and can therefore never be found.

So algorithm 3 starts with the construction of the BIT vector defining Whl(‘h tracks
could exist with a hit in a given chamber.

C....Initialize TRKLST to zero.... use intrinsic function
CALL Q8MKZ(4* NWORDS,0,TRKLST(1,1;4*NWORDS))
C....Construct TRKLST for each plane.
DO 100 IPLN = 1,4
NHT = NHIT(IPLN)
ASSIGN DTRKLST,TRKLST(1,IPLN;NWORDS)
DO 50 IHT = 1, NHT
IW = IWIRE(IHT,IPLN)
ASSIGN DBITX, BITX(1,IW,IPLN;NWORDS)
C .... Use assembler version for speed hence extra commas
C .... Hex code defines OR function
CALL Q8ORV (X‘02’,,DTRKLST,,DBITX,, DTRKLST)
50 CONTINUE
100 CONTINUE
This block of code is equivalent to the GATHER loop of algorithm 2 but TRKLST is
" now a vector of BIT type. The Q8ORYV function is equivalent logically to something like
DTRKLST = OR (DTRKLST,DBITX)
of a FORTRAN 8X type of syntax. Each column of TRKLST is now a list of true/false
values indicating whether a particular predefined tracks’ wire in that plane is on. A four
hit track would appear as a row of four TRUE values.

Explicitly then one constructs the four fold (1111) ANDs of the four columns (one per
plane) and the four three fold AND corresponding to a missing plane (1110,1101,1011,
0111) producing five track list bit vectors. These can all be constructed with a total of 7
uses of the Q8ANDYV instruction. The original loop takes one OR instruction per lit wire.
An event with a multiplicity of ten hits on each plane would require 40 OR instructions to
assemble the list and 7 AND instructions to determine which tracks existed. This would
then be done four times, once for each projection.

The elimination of 3/4 tracks which are superseded by 4/4 tracks and duplicate ver-
sions of the 3/4’s is the next problem (a single 3/4 corresponds to several 4/4). An encoded
array is precalculated , defining the wires used on each plane for each track (thus NTOT
long). We compress this array 5 times using the 5 bit vectors (1111,1110,1101,1011,0111),
creating 5 encoded lists. For the first three (1110,1101,1011) which lack one plane, the
tracklist was constructed in a way which the duplicate 3/4’s would be adjacent. Thus
by comparing the compressed encoded vector with itself, shifted by plus and minus one
location and tagging, the duplicate 3/4 can be eliminated.

The remaining missing chamber case (0111) has to be handle differently due to the
numbering sequence. In the end we found that at most all of the duplicates were within
30 locations of each other so a search over the limited range was done comparing the
encoded track numbers. Prior to this realization a system based on the binary ra.dlx sort
was used which will now be illustrated.
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If the encoded numberrs can be put in numerically increasing or decreasing order the
duplicate track candidates will automatically be adjacent. On a vector machine this is a
surprisingly easy operation. Consider a list of integer numbers INUM(LEN) which require
NBITS to represent the largest value. (I don’t usually need 48 bits)

Do a bit compress using the lowest order bit, saving first all the words with 1 bits,
then all the words with zero bits into a new array. Copy to the original (not nescessary)
and repeat the process from lowest order bit to highest used (NBITS). The final result is
in numerically decreasing order.

This can be coded as follows.
Assume an array MASK(LEN,64) which is just a 1 bit in the appropriate column,
MASK(1,;LEN) = 2**(I-1)
a dummy array for working DUMMY(LEN), a bit vector IBIT(LEN), and a place to store
the masked data DMASK(LEN).
DESCRIPTOR DLEN
DO 10 IBT = 1, NBITS
CALL QSANDV(X‘OO’,,INUM(l;LEN),,MASK(1,I;LEN),,DMASK(1;LEN))
IBIT(1;LEN) = DMASK(1;LEN).GT.0
C .... This is a trick to get the stopping point of the compress
» ASSIGN DLEN, DUMMY(1;0)
C .... Compress on 1 bit; ..., use assembler called version hence the extra commas ...
! .... hex code defines compress on 1
CALL Q8CPSV(X00’, INUM(L;LEN),,IBIT(1;LEN),DLEN)
C .... Execute length to register instruction

NTRUE = QSLTOR(DLEN)

C .... Assign output to start at the next location
ASSIGN DLEN, DUMMY(NTRUE+150)
C .... Compreson 0 bit hence different hex code

CALL Q8CPSV(X‘40’,INUM(1;LEN),,IBIT(1;LEN),DLEN)
INUM(1;LEN) = DUMMY(1;LEN)
10 CONTINUE
at the end of such loop INUM will be in decreasing order

Calorimeter pattern recognition.

As an exercise we studied pattern recognition techniques for fly’s eye calorimeter.
There are some very straight forward algorithms based on gathers and scatters with
predefined lists much alone the lines of the tracking codes which prove to be very effective.
They again illustrate the point that a vectorizing optimizer (compiler) cannot tell you
when to use a look up table.

The algorithm is based on building a chain, where all cells of the calorimeter are
associated with their largest pulse height neighbor. A reduction on the chain will point
at the root, which is the largest pulse height cell. The algorithm thus has two parts,
assembling the chain and reducing the chain to a cluster with a root cell.

To assemble the chain you need to establish the largest pulse height cell in the imme-
diate vicinity of each cell with a read out pulse height (this could be the cell itself). In the
rectangular geometry we chose, each cell has 9 neighbors (including itself). A predefined
list NEIGHBOR(NCELLS,9) is made specifying the identities of 9 neighbors for every
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one of the NCELLS in the array. Edge cells have null cells created around them to make
the sides of the array look like the interior. Assume the data comes in two ordered lists
PULSEHEIGHT(*), ICELLID(*) and there are NHIT cells with pulse height. The first
thing done is to scatter the PULSEHEIGHT array into a full array DATA(NCELLS)
DATA(1;NCELLS) =0
DATA(1;NCELLS) = Q8VSCATR(PULSEHEIGHT(1;NHIT),
* ICELLID(1;NHIT);DATA(1;NCELL))
For each element of ICELLID we want the corresponding row of NEIGHBOR. This
is done with 9 gather instructions.
DO10I=1)9
NEARLIST(1;I;NHIT) = Q8VGATHR(NEIGHBOR(1,I;NHIT),
* ICELLID(1;NHIT);NEARLIST(1,I;NHIT))
10 CONTINUE
followed by gathering the data for each of these neighbors.( accomplishing a sort of nested
gather)
DO 20 I=1,9
NEARPH(1,I;NHIT)=Q8VGATHR(DATA(1;NCELLS),NEARLIST(1,I;NHIT);
* NEARPH(1,I;NHIT))
20 CONTINUE
You then find the largest pulse height neighbor.
PHMAX(1;NHIT) =0
DO 30 I=1,9
WHERE(NEARPH(1,;NHIT).GE.PHMAX(1;NHIT))
PHMAX(1;NHIT) = NEARPH(1,I;NHIT)
MAXNEIGHBOR(1;NHIT) = NEARLIST(1,I;NHIT)
END WHERE
30 CONTINUE
We now have four ordered lists
PULSEHEIGHT(1;NHIT)
IDCELL(1;NHIT)
MAXNEIGHBOR(1;NHIT)
PHMAX(1;NHIT)
where MAXNEIGHBOR(I) is the identifying address of the largest pule height neighbor
of IDCELL(I) and so on. These lists make a set of chaining pointers which define the
clusters. There are several ways to reduce the chains to clusters perhaps the easiest to
understand is as follows
Pack PULSEHEIGHT, IDCELL and MAXNEIGHBOR into a single array (called
PACKDAT) with one word containing all three numbers after converting PULSEHEIGHT
to integers first (note: if it is an ADC output, it already is), and with Pulseheight in the
low order n bits :

[ IDCELL | MAXNEIGHBOR | IPULSEHEIGHT |
| | | «—— n bits — |

This array (PACKDAT) can then be sorted with a binary radix sort such that it is in
decreasing order of pulse height. After unpacking, the neighbor pointers will always point
to an entry higher in the list. As we progress down the list if a cell points to itself (or to
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one further down, which can occur if two blocks have equal pulse height and are adjacent)
we know we are at the root of a new cluster. This reduction is aided by the scatter
instruction and the list of integers I1Z(I)=I and can be as follows (including construction
of data banks).
IPOSITION(I;NHIT):QSVSCATR(IZ(l;NHIT),IDCELL(l;NHIT);
* IPOSITION(1;NHIT))
NCLUST=0
DO 50 I=1,NHIT
IF (IPOSITION(MAXNEIGHBOR(I)).GE.I) THEN
C.... NEW CLUSTER ....
NCLUST = NCLUST + 1
C.... CORRECT THE UNUSUAL CASE ....
MAXNEIGHBOR(I) = IDCELL(I)
IPOSITION(I) =1
C.... INITIALIZE CLUSTER DATA BANK AND INVERTED TABLES ....
ICLUSTER(IDCELL(I)) = NCLUST
etc.
ELSE
C.... SET THE NEIGHBOR TO THE NEIGHBORS’ NEIGHBOR
MAXNEIGHBOR(I) = MAXNEIGHBOR(IPOSITION(MAXNEIGHBOR(I)))
IROOT = MAXNEIGHBOR(I)
ICLUST = ICLUSTER(IROOT)
C.... ADD TO DATA BANK ....
ENDIF
50 CONTINUE
At this point the pattern recognition is finished as the cluster data banks have been
assembled.
E711 Acceptance Monte Carlo
The acceptance tables for E711 are made in 3 dimensions, mass, rapidity and the
scattering angle cos 6*. With a typical acceptance of 17% in each good bin and approx-
imately 240 bins (Y vs cos 8*) for each mass bin, the required number of general events
per charge state is 2 x 107. The typical way in which this kind of table is made is to
generate the events randomly over the 6 dimensional phase space (M,Y,cos 8%, ¢, P;) and
integrate over the last 3. The acceptances then are calculated by taking the bin by bin
ratios of the accepted/generated numbers of events. The tables are made by histogram
packages. In the course of developing this code, 3 “packages” were used, HBOOK with
the HFILL routines, HBOOK with the fast fill routines (HF1, HF2), and a homemade
package QBOOK which is very fast but has no protections. The flow of the calculation
is shown in figure XXX with the evolution of the timing shown below.
On the vector machine the only loop available was the main program loop over events.
With all the subroutine calls and event cuts
IF (bad event) GO TO End of Loop
no vector optimizer would be able to get anything from this program. The basic technique
for vectorizing this code was to process more than one event at a time, and if a given event
was bad simply set a logical flag (Bit vector) to false, protect the calculations and continue
processing even though the event has been rejected. This conversion was particularly easy
if one simply declared all variables in a subroutine to be descriptors and added a large
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number of declaration and data statements (for the descriptors) at the beginning of each
subroutine. Further instead of sampling phase space randomly and histograming, one
steps through the 3 dimensional binning of the acceptance table, randomly populating a
bin with a vector of events. The acceptance of a bin is just the number of validly flagged
events at the end of the tracking code. This removes the need for any histograming ie
there are no cumulative random accesses

H(I(J)) = H(I(J)) + WEIGHT(J)
for which pipelining is impossible. The code is entirely vectorized and a speed up factor
of ~ 40 was achieved over the fastest of the scaler codes. (Fig 4)

Vectorized Technique for Calorimeter Simulation

Calorimeter Simulation

The simulation of electromagnetic and hadronic showers in calorimeters is usually one
of the most time consuming parts of event simultion in HEP detectors. In order to avoid
the enormous amounts of time required for detailed particle tracking shower codes (EGS,
Geant, Gheisha, etc.) parameterized showers are frequently used. The parameterizations
contain some number of randomly generated parameters to generate shower length and
width fluctuations. In the example discussed here the Bock parameterization (ref 2) as
implemented by CDF (ref 3) was used for simulating the response of the calorimeter in
FNAL experiment 711.

The calorimeter

The ET711 calorimeter generates the experimental trigger. The goal is to identify
interactions producing massive dihadron systems to study high P; interactions. The
device consists of two calorimeters positioned symmetrically above and below the primary
proton beam. Each nominally covers the regions between 22 mr to 100 mr in polar angle
and +22.5% in azimuth. There are four segments in depth, a Pb- scintillator EM section
and 3 Fe-scintillator hadronic sections. Each segment is read out by ganging horizontal
scintillator pieces and placing a PMT at each end. The EM segment has 15 such elements
of varying lengths (to approximate constant azimuthal acceptance) made of 14 pieces
of scintillator and 31.7 R.L. of Pb. The 3 hadronic segments are constructed similarly
but have 16 elements. The front hadronic segment has 14 scintillaors in each element
separated by 1.25 inch thick Fe plates. The back two have 7 scintillators in each element
separated by 2.5 inch Fe plates. The calorimeter system was designed by M. Crisler of
FNAL, constructed and brought into operation by M. Crisler (FNAL) and K. Turner
(from FSU). The 80 ton system is illustrated in Figures 5 and 6.

Shower Simulation parameterization (hadronic)

The parameterized hadronic shower function used was of the form

dE/dz = wS(2)%e ) 4 (1 — w)T(z) e 4T(2)

where w represents the fraction of the shower which is in EM form from the primary
interaction, S(z) the number of radiation lengths since the primary interaction and T(z)
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the number of interaction lengths, a, b, ¢, and d all are fluctuated in accordance with ref.
3. The overall length is also fluctuated with a scaling factor but for simplicity S(z) and
T(z) are scaled rather than dE/dz. The electromagnetic and hadronic components each
have gaussian radial dependences with the widths of the gaussian depending on shower
depth. The parameters used were seeded from ref. 3 and then optimized to agree with
test beam data taken with E711 calorimeter.

Shower Generation

The shower generation is done by using two predefined 3D grids (one for the elec-
tromagnetic component, one for the hadronic component) of unequal spacing in the hor-
izontal and vertical directions. This is to match the detector segmentation and can be
tuned. The third dimension of the grid is constructed such that each layer is positioned
at the scintillator planes (i.e. gaps between the absorber). All of the necessary constants
describing the material in the grid are predefined (critical-energy(1Z), density(1Z), depth-
in- interaction-lengths(IZ), etc...where IZ is the index of the grid defining the position in
depth) so for example T(z) becomes ,

T(1Z) = depth-in-interaction-lengths(IZ) - T(zstart)

where T(zstart) is the interpolated depth in interaction lengths on the grid. The
full grids are centered on the particle. Advantage is taken of the explicit azimuthal
symmetry of a gaussian by generating only a quarter of the grid and then copying it 3
times. In the vectorized version, two arrays of the gaussian widths are calculated for
every point in the generated 3-D grid. In both versions predefined arrays for RZ(IX, 1Y,
1Z) are used. In the vector version the half precision (32 bits) Exp function is used. The
copying of the quarter grid is done by the GATHER function as the pointer map can be
precalculated. Normalization is done by explicit summation. This entire procedure takes
~ 150 ms/shower in scalar mode and 6.4 ms/shower in vector mode for a speed up of
24. In fact an eighth of the full grid could be used and a faster vector exponential (ref
4) but as will be apparent the procedure is sufficiently fast that the estimated 20 - 40
% speed increase overall was not gone after. The time taken per shower depends on the
number of grid points with the granularity being determined by the detector granularity.
Consequently this procedure is independent of shower energy.

Digitization

The preceeding procedure turned the shower generation from the dominant calcula-
tion to an insignificant portion (i.e. Amdahl’s law came into effect). The digitization
dominates the calculation. The digitization is accomplished by simply looping through
points, figuring out which detection element a point is in and adding the points’ energy
to the energy of that detection element. To simplify this, four summations are made over
depth at quarter grid level (during shower generation before copying) corresponding to
the 4 calorimeter segments. This is done twice (for the two grids) and is part of the reason
for rescaling S(z) and T(z) rather than the total shower.

The vertical segmentation of the calorimeter means that the element number depends
only on the vertical spatial position of a point. As the widths of the scintillator elements
are all multiples of one inch, the element is determined by calculating an integer and
then using a table to find the element number. The points’ horizontal coordinate is then
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compared to the length of its element. If the point is within the active length of its
elements’ scintillator, the points’ energy is added to the element energy.

In scalar mode this calculation is done in a triplely nested loop.

DolZ =1,4

Do IY = 1, nygrid
Calculate element number for that grid row

Do IX = 1, nxgrid

if (abs(X(IX)).LT.length(IELEM,IZ))

PH(IELEM,IZ) = PH(IELEM,IZ) + Energy(I1X,IY,IZ)

endif

end do

In vector mode every point is treated individually independent of which row, column,
or layer it is in. Using some precalculated arrays for distances, pointers, etc., the element
number for each pointer is calculated with half a dozen vector instructions. A GATHER
operation is performed collecting the element length for each point and the comparison
on the length performed.

It should be noted that this calculation is essentially histogramming, and the final
cumulative random access is extremely time consuming and does not vectorize unless a
structure exits on the list of bins. The cumulative random access

PH(IBIN(IPOINT)) = PH(IBIN(IPOINT)) + E(IPOINT)
if executed in scalar mode will take more time than the showering and element (IBIN)
calculation combined (12.5 ms/shower vs 5 ms/shower).

As the points form a grid of regular structure this difficulty can be avoided. All of the
points whose energies will be accumlated into a given element are adjacently positioned
in memory separated only by points which lie outside of the active area. Operationally
what is done is a bit vector (logical) is created for all the points, with the value being true
if the horizontal position of the point is within the active region of that points’ element.
A bit compress function is executed on the element list and the energy list, the resulting
compressed vectors can be directly summmed in vector mode. The limits of the summations
being found by where the element list values change. When the digitization is done in
this manner the 12.5 ms/shower taken by the cumulative random access becomes 0.6
ms/shower. At this point the vectorization was declared complete with an overall speed
up of 18. Even when the chamber simulation and output routines are added, the Monte
Carlo globally takes ~ 22 ms/event.

Event Generation and Particle Tracking

The event generation and the particle tracking through the spectrometer consume
a negligible amount of time in this calculation. This is accomplished using the same
technique used for the acceptance Monte Carlo (ref 5). Rather than track a single event
at a time a vector of 3000 events is tracked through with a Bit vector keeping track of
whether a particle should be eliminated (ex. hitting a magnet pole face). The bad tracks
are compressed out and a scalar loop goes through the good events and calls the detector
simulation for each event in succession. This multi-event technique could easily have been
used on the wire chamber simulation but this only takes 1 ms/event in scalar mode and
was left alone.
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"IVERSON OPERATORS'

CYBER-205 Data-Handling Vector Operations.
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Fig. 1

> 
n

A = Q8VGATHR (B , | ; A)

Q8VSCATR( B, | ; A)

(@)
]

Q8VCMPRS( A, BIT ; C)

Call Q8MRGV (x'01,,A,,C, BIT,C)

>
]

Q8VXPND ( C, BIT ; A)

o
]

Q8VMASK ( A1,A2,BIT;C )

C = Q8VMERG ( A1, A2,BIT;C)

C = Q8VCTRL ( A, BIT; C )
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The logic flow is as follows:

loop
over
events

CALL GENERATOR

histogram generated variables

Lorentz transform
drift from histogram targe to magnet
CALL MAGNET1
loop drift to second magnet
over CALL MAGNET2
the 2 drift through chambers checking fiducial volumes
particles drift to calorimeter
cut on fiducial volume

histogram accepted events

TIMING

ORIGINAL (HBOOK/VAX 11/780) 997.9 SEC/100K EVENTS

MC

5 5 & §

5§ 5§ 858 8§

(QBOOK/VAX 11/780) 383.3 SEC/100K EVENTS
(QBOOK/CYB 205) 49.7 SEC/100K EVENTS
(SCALER NO HISTOS/CYB 205) 26.3 SEC/100K EVENTS
(VECTOR WITH SCALER HISTOS CALLED IN DO LOOP)

23.4 SEC/1@00K EVENTS
(VECTOR WITH SCALER HISTO CODE IN LINE IN LOOP)

11.0 SEC/100K EVENTS
(VECTOR WITH VECTOR HISTO) 5.4 SEC/100K EVENTS
(VECTOR WITH NO HISTO) 2.2 SEC/100K EVENTS
(VECTOR,NO HISTOS HALF PRECISION) 1.3 SEC/100K EVENTS
(VECTOR,NO HISTO,HALF PRECISION UP LOOP TO 5K EVENTS)

1.2 SEC/100K EVENTS

Fig. 4
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A beam particles view of the detector. Transverse momentum is measured in the vertical

plane, magnetic deflection is in the horizontal.

Fig. 6 Calorimeter construction detail.
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