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ABSTRACT

I show how an increasing use of parallel computing is inevitable in
experimental HEP, and in all other fields needing massive comput-
ing resources. I review vector, pipelined, SIMD and MIMD archi-
tectures, giving some detailed examples to illustrate the ideas. The
somewhat abstract examination of the most interesting machines is
balanced with a study of the less adventurous, but very practical,
system to be installed by the L3 collaboration. Software for parallel
architectures is an even greater challenge than the construction of
the hardware. I examine the problems both for individual programs,
and for overall resource management, and describe some particular

solutions which may be appropriate for experimental HEP.

1. INTRODUCTION

These lectures are an expanded and updated version of the lectures I gave under the
title ‘Computer Architectures for High Energy Physics’ at the 1986 CERN Computing
School. Although the wonders of modern text processing would have made it easy for
me to incorporate all of last year’s material into this write-up, I decided not to do this so
that I could have the freedom to describe the new topics in any necessary detail without
producing undue editorial distress. Wherever it is appropriate I refer the reader to the
write-up of my 1986 lectures.

In my introduction to last year’s lectures I described my own involvement in HEP
computing, and I compared the rapidly increasing computing needs of HEP experiments
with the somewhat less rapidly decreasing costs of mainframe computers. I also stressed
that ‘man does not live by MIPS alone’: in HEP computing most of the money goes
to support interaction, disk and tape I/O, printing etc. rather than simple number
crunching. All of the arguments and figures presented remain appropriate, and the
latest estimates of LEP computing needs are at the upper end of the estimates I gave

for the L3 experiment.
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2. THE FUNDAMENTAL PROBLEM

In all the many scientific and commercial fields where computing needs seem certain
to grow rapidly there is a fundamental problem. The way I like to express this is by
pointing out that the CDC 7600 is still a fast machine.

When CERN installed a CDC 7600 fifteen years ago it was the fastest computer in
existence. When it was switched off (and scrapped) in 1984 it was still one of the fastest
scalar CPU’s available. Today’s fastest scalar CPU’s beat the CDC 7600 by about a
factor of 2.

This story illustrates the fact that, while construction and maintenance costs fall
by a factor two every three or four years, the cycle times of the fastest CPU’s fall much
more slowly. Thus users of large amounts of CPU power cannot continue to work exactly
as they do now, using one or two powerful CPU’s to meet all their needs. As computing
requirements continue to rise, more and more applications will have to use hardware

working in parallel, regardless of financial constraints.

3. PARALLEL COMPUTING: THE CHALLENGE

The arguments above convince me that widespread use of parallel computing is

inevitable, provided we find adequate answers to these questions:
— how can we make it cheap?
— how can we make it effective?
— how can we stay sane?

Parallel computing will be cheapest if we use technology close to the peak of the
price-performance curve. If we manage to solve the logical problems associated with
doing many things in parallel, we can then step back from the expensive leading edge
of CPU technology and use a larger number of much cheaper building blocks.

Can we solve these logical problems? In other words, can we provide effective
parallel computing without serious damage to our sanity? In the course of these lectures
I will show that the answer is ‘yes’, provided that we use a parallel computer architecture

and software which are well matched to a particular task.

3.1 Parallel Architectures
Parallel architectures will be examined in some detail later. Here I introduce a very

simple classification scheme [1].

SISD systems

SISD, meaning ‘single instruction single data’, describes conventional computer ar-

chitectures. For later comparison with more complex cases, a conceptual diagram of
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an SISD machine is shown in Fig. 1. Note the significance of the bi-directional arrow
linking the Instruction Decoder and the Execution Unit. This shows that the results of
instruction execution can affect program flow, usually via conditional branch instruc-

tions.

Program Instruction Execution
Memory Decoder Unit

N\
\

Data
Memory

Figure 1 Architecture of an SISD Computer

In its simplest form an SISD machine involves no parallelism. It is now very common
to extend this architecture with multiple or more complex execution units to support
‘pipelining’. In a pipelined CPU, it is possible to initiate one instruction every machine
cycle, even though most instructions take several cycles to complete. Vector computers
are a particular example of this form of parallelism. More details of pipelined and vector

architectures are given in sections 3.1 and 3.2 of last year’s lectures.

SIMD Systems

SIMD means ‘single instruction multiple data’. A conceptual diagram of an SIMD

machine is shown in Fig. 2. An SIMD machine executes a single program and the
Instruction Decoder broadcasts instructions to many Execution Units. Note the unidi-
rectional arrow between the Instruction Decoder and the Execution Units; it is usually
impossible for the Execution Units to have any direct effect on program flow.

. SIMD systems can be very effective for a limited range of applications. Examples

of SIMD systems will be described later.
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Figure 2 Architecture of an SIMD Computer

MIMD Systems
The ‘Multiple Instruction Multiple Data’ classification includes all the rest of parallel

computing, and a single ‘conceptual diagram’ for this classification is beyond my skills.
In an MIMD system several CPU’s work together on a task. The speed and topology of
the interconnections between the CPU’s (and memories) determine the areas of effective
application. In an MIMD system, network and memory performance can be at least as
important as CPU cycle time, and the ‘Digression on Networks and Memories’ which

follows is a necessary preparation for a detailed discussion of some MIMD systems.

Not (quite) forgetting ........
SISD, SIMD, MIMD (and MISD if it takes your fancy) are not a complete set of all

possible computer architectures. More exotic ideas, such as Data Flow, Demand Flow,
and machines optimised for Artificial Intelligence can involve departure from ‘Control
Flow’ which is the central concept of all computers for which people currently pay
money. Many of these architectures are intrinsically parallel and are promising for the
long term future. Readers are encouraged to refer to Hertzberger’s lectures at the 1986

school for a good introductory review.
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4. DIGRESSION ON NETWORKS AND MEMORIES

A parallel computer is composed of a number of CPU’s and memories linked to-
gether. The cost of high bandwidth links can easily dominate the cost of a many CPU
system. In this section I show how network costs vary with size and topology, and

describe a generalised memory hierarchy for a parallel system.

4.1 Networks
Crossbar Network

A typical crossbar network is shown in Fig. 3. The crossbar network can provide
‘any-to-any’ routing with very small delay, but becomes increasingly costly for large
numbers of processors. The reason for the cost is that the switching elements, (the
open and filled circles in the figure), may have to be complex devices, and there are N?

of them.

Processor 1
Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 7

Processor 8

Figure 8  Example of a Crossbar Network

Routing through the network may be semi-static, (some supervising processor
changes the paths occasionally), or ‘packet-switched’, (data are preceded by the ad-
dress of their destination). The latter case is clearly far more flexible, but requires
more complex switching elements, particularly if support is provided for features like

queueing data bound for busy ports.
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Shuffle or 2 Network

The shuffle network, of which examples are shown in Fig. 4, is a solution supporting
any-to-any communication for large numbers of CPU’s at significantly lower cost than
the crossbar. The figure shows how shuffle networks are built up from elementary
crossbar units. In the example shown, the elementary units are 2 x 2, but the shuffle
network can move closer to crossbar performance and cost by incorporating elementary

crossbar units with 4 x 4, 16 x 16, etc. ports.

Processor 1 Memory 1 2 X 2
Processor 2 Memory 2

>< 4x4

16 x 16

X X

Figure 4 Examples of Shuffle or 1 Networks

The cost of the network is proportional to N log(N) and the transit delay to log(N).
As for a crossbar network, routing can be semi-static or packet-switched, with similar

trade-offs in versatility and cost.
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Locally Connected Network

To remove any non-linear effects in the relation between cost and number of processors
it is necessary to resort to a locally connected architecture such as that shown in Fig. 5.
Each processor-memory unit is connected to a fixed numbers of neighbours. The transit
delays across the local links are small. The any-to-any transit delay is highly dependent
on the topology of the interconnections, and on how easy it is for processors to relay

messages.

Processor Processor| Processor Processor
p— + + + + S—
Memory Memory Memory Memory
Processor| Processor| Processor Processor
] + + + + S—
Memory Memory Memory Memory
Processor Processor| Processor Processor
p— + + + + S
Memory Memory Memory Memory
Processor Processor| Processor Processor
S— + + + + S—
Memory Memory Memory Memory

I

Figure 5 Example of a Locally Connected Network

Such networks with limited connectivity are well matched to certain problems. For
example, a theoretical simulation using a lattice of space-time points maps well onto
a lattice of locally connected processors. The dominance of short range interactions
makes long range communication unimportant. Conversely, it is difficult to envisage
making general purpose parallel computers based on large arrays of locally connected

ProcCessors.

Bus System

The most common way to interconnect several CPU’s and memories is to plug them
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all into a backplane or ‘bus’ as shown in Fig. 6. At first sight, one might imagine that
this would be the ideal way to make a large parallel computer, since most busses are
fast, and we just have to buy a lot of connectors. However, although the topology of
a bus system might appear to be a radical departure from the networks I have just

described, its economics show it to be just another worthy competitor.

Memory
Processor
Memory
Processor
Memory
Processor
Memory
Processor

Figure 6 Example of a Bus System

Fast expensive bus systems rarely support more than 10 CPU’s and their memories.
The bus must be physically short to reduce propagation delays, and to plug into it you
need not just a connector, but also a complex and expensive ‘chip set’ to drive the bus
lines and handle the bus protocol at high speed.

Very large, loosely-coupled, parallel systems can be constructed using slow, often
serial, busses. The slow communications and potential for congestion mean that only a

few applications are suitable for such systems.

MIMD Coupling: Summary

Table 1 summarises what I have said about the cost and performance of interconnection
schemes for MIMD computers. I also give some examples of machines which use the
schemes. For each scheme I have assumed that the cost of a bare CPU and memory is
a. The cost of a switching element within a crossbar is #. The cost of a 2 x 2 switch
within a shuffle network is /2 if we assume my logarithms are taken to base two. For
a locally connected network, the bare CPU and memory price is augmented by é to pay
for the communications interfaces, and typical processor-processor path lengths in an
m dimensional hyper-cubic lattice rise like NV 1/m Finally for bus systems I offer the
choice between paying A for an expensive high-speed bus, or A for a cheap slow one,
while augmenting the cost of CPU’s by O for a high-speed bus interface or 6 for a slow

one.
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Table 1

Cost and Performance of MIMD Interconnection Schemes

Coupling System Any-any Examples
Cost Delay
Crossbar N(a+ BN) € component of shuffle networks
Shuffle N(a+~log(N)) | elog(N) [ NYU Ultra Computer
RP3
Local N(a+6) eN'/™ | Caltech/Intel Hypercube

FPS T-Series

ELXSI 6400
IBM 3090-600

Bus Systems| N(a+ ©)+ A €

N(a+68)+ A large | Apollo Domain

Ethernet VAX-Cluster

In all cases, the bus or network performance can be halved by halving the width of
the bus or communications paths. Although it might seem obvious that a 32-bit machine
should have 32-bit communication paths, 8-bit or even serial paths are common in large
machines to keep network costs down.

Turning my greek alphabet into dollars or Swiss francs is left as an excercise for
the reader.

Not all parallel computing systems fit neatly into one of these categories, although
all are subject to similar economic constraints. For example, the systems comprising a
‘host computer’ and attached processors which are currently popular in High Energy
Physics may be inelegantly categorised as bus systems, by declaring most host functions

to be those of an active communications bus.

4.2 MIMD Memory Hierarchy

An MIMD architecture allows ‘supercomputer’ performance to be built up from
cost-effective CPU’s, at the expense of some discomforts. Modern memory hierarchies
allow fast processors to work successfully with cheap, slow memories, again, at the
expense of some discomfort.

Figure 7 shows a typical memory hierarchy in an MIMD machine. If we ignore the
‘global memory’, this is also the memory hierarchy of most conventional SISD machines,
so I will first treat the SISD case before adding the complications of MIMD.

At the top of the pyramid is the CPU which normally performs operations on

quantities held in ‘registers’. The registers can exchange data with the ‘cache’ in one

159



Size Access Time

10? bytes Ons
10* bytes 50 ns
10° bytes Local Memory 100 ns
108 bytes Global Memory 1 us
10° bytes Virtual (disk) Memory 100 ms

Figure 7  Typical MIMD Memory Hierarchy

CPU cycle. In a simple-minded world we would stop there, and equip the CPU with
a gigabyte of water-cooled very fast memory. In the harder world where people who
do this go bankrupt, we make use of the observation that most memory references
are to locations close to a previous memory reference. A few kilobytes of expensive
‘cache’ memory is usually enough to keep the CPU busy most of the time, provided
that sufficiently intelligent algorithms are used to exchange data between the cache and
the much slower and cheaper ‘local memory’.

In almost all modern computers, some megabytes of ‘real’ memory pretend to be
gigabytes of ‘virtual’ memory by writing pages which are not currently in use to disk.

Moving back to MIMD, we re-insert the ‘global memory’ into the hierarchy. This
doesn’t appear to make things much more complicated, until we realise that there is
only one global memory, whereas there are many CPU’s and caches. If the algorithms
needed when we had a single cache were supposed to be ‘intelligent’, then it is clear
that ‘omniscient’ algorithms are needed to control multiple caches containing possibly
conflicting copies of the same global memory. The result of this is that, whereas most
users of SISD memory hierarchies can remain unaware that the hierarchy exists at all,
efficient use of memory in MIMD machines normally requires the programmer to take

some explicit control of the use of cache and local memory.
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5. ARCHITECTURAL REVIEW

In this section I start to go a little deeper into the architecture, strengths, and
weaknesses of various approaches. Where appropriate I discuss real examples, using
especially the RP3 as a (nearly) living example of a range of techniques which may
be important for future general purpose parallel computing. Even more down-to-earth

information about my own experiences is reserved for the next section.

In section 3 of last year’s lectures I gave outline reviews of vector, deep-pipeline,

tightly-coupled and loosely-coupled computers, to which the reader is invited to refer.

5.1 SIMD Computers
I will review SIMD by giving three examples. The first, the AMT DAP 510, is a

commercial product which attempts a wide, although by no means general, range of
applications. The remaining two were conceived and optimised for specific tasks. It
is my view that this is also typical of the future for SIMD machines: their range of
applicability will be large enough to make commercial production profitable, but they

are not the most effective parallel machines for most problems.

AMT DAP 510

Active Memory Technology is a new company which has taken over the production
and development of the ICL ‘Distributed Array Processor’. Figure 8 shows the struc-
ture of the DAP. An array of 32 x 32 single bit processors, each with 32 kilobits of
memory receives instructions broadcast by a master control unit. In its turn, the DAP
is controlled by a host computer, such as a VAX. For most applications, the potential
power of the DAP is made effective through use of its significant internal and external
communications possibilities. Each processor is linked to its four neighbours, and each
row and column has its own bus with the possibility of external connection. These
external busses can support a total of 70 megabytes/second of I/O. Although the hard-
ware provides only single bit arithmetic, compilers provide the necessary instructions
to perform 8, 16, 32 or 64-bit arithmetic (at decreasing speed of course).

Commercial success for this sort of machine may be assured by its applicability in
military image and signal processing. Seismic data processing (i.e. oil exploration) is
also likely to be efficiently performed by these machines. In large HEP experiments we
often find ourselves building specialised arrays of fast ‘trigger’ electronics, which have
certain superficial similarities to the DAP. The trigger for many current and future
experiments requires parallel processing of large numbers of similar signals to produce

results within a few or a few tens of microseconds. It seems likely that commercial
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Figure 8  Structure of the AMT DAP 510

SIMD machines could be used effectively in future triggers, and I know of at least one

serious study of this approach [2].
GF11

This machine, whose name derives from ‘gigaflops 11’, is under construction in IBM’s
Yorktown Heights research laboratory [3]. (A ‘flop’ is a ‘floating point instruction
per second’.) GF11 has been motivated by the computational needs of QCD lattice-
gauge calculations. Quantum Chromodynamics is the apparently correct theory which
describes the strong forces, which, for example, bind triplets of quarks together to make
protons and neutrons. Although QCD has had a total qualitative success in describing
strong interactions, it is exceedingly difficult to make quantitative calculations, except
in cases where the effects of QCD are relatively small and perturbative calculations can
be used.

A promising ‘brute-force’ approach to calculating non-perturbative quantities like
masses and magnetic moments of nucleons, is to simulate a lattice of space-time points

in which the value of a variable at one point depends directly only on its immediate
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neighbours. Existing lattice-gauge calculations, which have used a few hundred hours of
CRAY-1 time (approximately 100 megaflops), have indicated that results precise enough
to test QCD at the 1% level would require tens or hundreds of CRAY-years. Progress
in QCD ‘supercomputation’ is reviewed in reference [4].

GF11, which is now close to completion, will comprise 576 processors, each of 20
megaflops for 32-bit calculations. Each processor has 64 kilobytes of fast ‘static RAM’
memory and 0.25 to 2 megabytes of slower ‘dynamic RAM’ memory. Communications
between processors and memories is through a dynamically reconfigurable shuffle net-
work. A single controller broadcasts instructions to all the processors, and reconfigures
the network periodically.

The whole array is connected to an IBM 3084 host computer, which must oversee
the medium and long term progress of the calculation since GF11 itself can only execute
relatively short subroutines before returning control to the host.

Physically, GF11 has a striking resemblance to the ‘counting room’ of a large high
energy physics experiment. Its racks dissipate some 200,000 watts of heat. Even in its
design parameters, there is more of experimental physics than commercial computer
manufacuture. The number of 576 processors was chosen so as to have a resonable

chance that at least 512 would be working at any one time!

APE
The ‘Array Processor with Emulator’ [5] is another SIMD machine created with lattice-
gauge QCD in mind. APE is a collaborative effort between several INFN supported
groups in Italy, and a small group at CERN. Construction is now at an advanced stage.
APE occupies only two crates, but has an expected performance of 1 megaflop for
lattice-gauge calculations. In order to keep the processor-memory network simple and
cheap, APE has only 16 processors and 16 memories. Each processor, constructed from
32-bit Weitek chips, has a power of 64 megaflops, optimised for complex (i.e. real and
imaginary) arithmetic. Each memory has 8 megabytes. Instructions are broadcast to
the processors and the switching network by a 3081 /E emulator. The 3081/E is a general
purpose scalar CPU, and although it must be attached to some host for downloading
the program and recovering the results, it is quite capable of managing the progress of

the whole calculation.
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5.2 MIMD computers: RP3

I have chosen to look in detail at the IBM’s Research Parallel Processing Project,
RP3, rather than to skim over the whole range of commercial and research machines
which exist or are under development. This is not because I think that RP3 is the best
possible machine, but because it embodies a wide range of concepts, of which some may

be important in future massively parallel machines.

Like the GF11, RP3 is a research project and not a product. Unlike GF11, RP3
does not have a particular computational mission. RP3 is intended to be tool for a
study of general purpose parallel computing. Intentionally, RP3 contains all hardware
features which just might be important, so that studies of software techniques for parallel

computing can proceed in as real an environment as possible.

Outline of the RP3 Architecture
The structure of RP3 [6]is shown in Fig. 9. The final machine will have 512 processor-
memory-elements (PME’s). The PME’s contain 32-bit CPU’s, supplemented by a
vector/floating-point co-processor, a cache, and up to 4 megabytes of memory. The
memory in each PME can be arbitrarily partitioned into local memory and global mem-
ory, so that part of the address space seen by each CPU will be local, and part (up to
2 gigabytes) will be global.
Figure 9 does not show the monitoring and diagnostic hardware. Each PME has
seven monitoring busses which collect information about activity in all parts of the

processor and the memory hierarchy.

If all processors can be kept busy, the RP3 will achieve about 1300 MIPS, or about
800 megaflops. It can be connected to the outside world by 64 IBM channels, each
capable of 3 megabytes/second, and internally, its total processor to memory bandwidth

is about 13 gigabytes/second.

Memory Interleaving

A further intriguing sophistication is embodied in the memory interleaving system. The
memory interleaving hardware offers the possibility of treating some of the low order
bits of a memory address requested by a CPU, as high order bits when the request
is sent over the network. Thus, for example, sequential memory locations as seen by
a CPU, might be arranged to refer to sequential PME’s in the global memory. This
seemingly bizarre approach can be effective in reducing network contention for access to
very popular areas of global memory. Even more radical is the possibility to break up

sequential memory references according to a ‘hashing’ or pseudo-randomising algorithm.
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Figure 9 Outline of the RP3 Architecture

Networks

Having supported almost every conceivable combination of local and global memory, the
RP3 designers went on to include almost every conceivable capability in the networks
linking the PME’s and memories. This led quickly to a need for two networks, one of

which would be stupid and fast, and another which would be clever and slower.

The stupid and fast network is more correctly called the ‘low latency non-combining
network’. This network carries the main data flow. The term ‘low latency’ just means
that the traversal time has been minimised, and the term ‘non-combining’ means that
it does not do all the clever tricks performed by the other, ‘combining’ network. The
non-combining network is a shuffle network of 4 x 4 switches and 4 x 2 concentrators.
There are two 8-bit paths from each PME to each memory, and there are separate
networks for carrying requests (CPU to memory) and responses (memory to CPU). To

make it as fast as possible, the non-combining network is built from water-cooled TTL
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electronics, packaged in the same ‘thermal conduction modules’ used in IBM’s largest
mainframes. A one way trip through the network involves a concentrator, four switches,
and a de-concentrator, and takes about 500 nanoseconds.

The clever, slower ‘combining network’ is intended for synchronisation and control
rather than data-flow. The construction of a separate and complex network for synchro-
nisation information came after simulation studies had shown that this vital element of
any parallel computation could cause paralysing congestion at ‘hot-spots’ in the non-
combining network. The combining network avoids hot-spots by ihtelligently combining
requests as they pass through the switches.

The heart of the RP3 combining network are 2 x 2 combining switches, whose
behaviour is shown in Fig. 10. When the combining network starts to become congested,
due to many CPU’s addressing a few memory locations, queues begin to build up at
the input to the 2 x 2 switches. The combining switches are sufficiently intelligent to
recognise queued requests which refer to the same memory location and to combine
these requests before sending them onwards throught the network. The switches must
keep a record of combined requests, so that when the response comes back, it can be
de-combined to satisfy the multiple requests. Implicit in these ideas is the integration of
the request and response networks. ‘Fetch-and-op’ instructions are very valuable tools
in parallel computing, since they can be used where necessary to impose synchronisation
and sequencing on the work of many processors. It is logically possible to merge fetch-
and-op instructions in a combining network and Fig. 10 shows how the RP3 combines
two fetch-and-add instructions.

The RP3 combining network is composed of 2 x 2 switches and 4 x 2 concentrators.
. To keep the power consumption and cost of the switches at a reasonable level they are
constructed using NMOS rather than TTL technology. The slower switches, and longer
path, make the transit time of the combining network several times greater than that

of the non-combining network.

RP3 Memory Hierarchy

The sizes and access times of the components of the RP3 memory are shown in
Table 2. To me, the most striking feature of the access times is the almost negligible
extra overhead involved in accessing global instead of local memory. I would not be in
the least surprised to hear that an upgraded RP3 was planned, using the same network,

but much faster CPU’s and somewhat faster memories.

Status of the RP3 Project

The RP3 is intended to be adventurous in its possibilities as a research tool in parallel
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Figure 10  Principle of the RP3 Combining Network

Table 2

RP3 Memory Hierarchy

Memory SIZE ACCESS-TIME

CACHE | 32k bytes 1 cycle 200 nanoseconds

LOCAL | 4M bytes |10 cycles 2 microseconds

GLOBAL| 2000M bytes | 15 cycles 3 microseconds

computing, and a definite effort has been made to be unadventurous in constructing
the hardware. Wherever possible standard IBM packaging techniques, power supples,
cabinets etc. have been used. The use of a cabinet about 60 cm higher than the IBM
standard was only unwillingly accepted (it won’t fit into most elevators). The result of
this approach is that the RP3 is huge and expensive, although no precise cost figures
are available. The final machine will be composed of eight ‘octants’, each containing
64 processors, covering a total of about 100m?. The first octant has recently been
completed, and the IBM internal cost of replicating this octant is in the region of $2M
per copy.
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6. ARCHITECTURES IN THE REAL WORLD

This section is the place for relating real ‘hands on’ experience, and concrete plans
arising from the search for a solution to the computing needs of the L3 experiment.
Almost all of this section remains unchanged from last year where it appears as section
4, ‘Benchmarks and Anecdotes’, and I will not repeat it here. The new material this

year is a description of the L3 computing system LEPICS.

6.1 LEPICS

LEPICS is the L3 Parallel Integrated Computer System. The priority for LEPICS
is to produce physics results; achievements in computer science will be welcomed, but
must take second place. These priorities, together with the need to have the system
working as early as December 1987, dictated the choice of a host plus attached processor
system. The main functions of the host are to provide entirely conventional interactive,
disk, and tape support, and to offer sufficient high-speed communications channels to

the attached processors.
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Figure 11 shows LEPICS as it will be by the end of 1988. The system consists of
an IBM 3090-120E processor with peripherals and with an initial complement of six
3081/E emulators. During 1988 the 3090-120E will be upgraded to a 3090-180E with
additional memory.

In Figure 11 it seems that the importance of the peripherals overwhelms that of the
attached processors. To some extent this is true. LEPICS will have 22.5 gigabytes of
disk space, eight tape drives, two Ethernet interfaces, four printers, over 100 terminal
ports, and several network connections. Connectivity is also emphasised in Fig. 12
showing how LEPICS will be linked to terminals and computers at CERN and outside.
Thus LEPICS will be immediately capable of becoming the centre of all L3 computing.

The 3081/E emulators will be connected through a VICI (VME to channel) inter-
face already developed as a joint CERN-IBM project. During 1988, L3 will work on
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Figure 12 LEPICS Communications
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integrating the attached processors into the batch subsystem of LEPICS, so that by the
time LEP starts running, LEPICS will be able to add substantial parallel computing
resources to its already significant conventional computing facilities. It is important to
note that even on the machine initially installed, there are several free channels, each
capable of 3 megabytes/second communication with attached processors. Once the at-
tached processors have been successfully integrated, it will be relatively easy to expand
the parallel processing capability by adding more processors on the spare channels.
Bolting LEPICS together is a relatively trivial operation; the interesting and diffi-

cult part of the project will be developing software to support parallel processing. The

L3 plans will be outlined later in these lectures.

7. COMMENTS ON PRICE/PERFORMANCE

This is not an attempt to select a ‘best buy’ as in a report on video recorders or
washing machines. The aim of this section is to try to show what you get for your
money as a function of the computer architecture chosen. It is not easy to discuss
price/performance in abstract terms alone, so I have chosen to centre the discussion
on the systems I have reviewed. The performance of some systems has changed since
the L3 tests, and prices (after discount) can vary by amazing factors, particularly for
special customers like CERN and universities. No price I give is accurate to better than
30%.

Having absorbed these caveats, please turn to Table 3, which summarises my
price/performance comparisons. I have already commented on the variability of prices.

The performance of machines which depart from the classical scalar architecture de-

pends greatly on the code, and on the amount of re-writing we are prepared to do. For
most machines I have expressed this dependence as a range, and I have taken the middle
of the range when calculating ‘¢ per VAX’. For the CRAY, as for other vector comput-
ers, I cannot do this because I really have no idea what range of performance we will
finally get. I have therefore been a little unfair in taking the worst case of unmodified

HEP code.

It is not meaningful to compare systems without taking into account how complete
each system is (from a hardware point of view), and how easy each system is to program.
I give four blobs to systems which have all the disks, tapes, printers and terminal lines

needed to be considered complete, whereas I give three blobs to a CRAY which normally
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Table 3

Approximate Price/Performance Comparisons

Price HEP $k per How How
Computer M VAX VAX complete easy to
approx equiv (batch) | a system? | program?

Scalar and Vector
Mainframes
IBM 3090-200 6 40 150 XX XX
CRAY X-MP 14-17 | 100 — ? 155 cee coe
(4 CPU)
Pipelined Attached
Processors
FPS 164 0.25 3-6 56 oo xXx
3081 / E 0.033 5 7 . '
SISD
AMT DAP 510 0.2 5-200 6 ) °
MIMD
ELXSI 6400 2 40 50 XXX XX
(10 CPU, 1985 model)
RP3 10-20 500-1000 20 ° 'Y
Clementi Machine 6 40-70 109 XX X
(1984 version)
LEPICS 2 41 49 XXX XX
(Large host plus 6 emulators) '
3081/E Farm 0.7 32 22 ' 'Y
(small host plus 6 emulators)
Don’t Forget
Motorola 68020 0.0001 1 0.1 XX

expects most users to work on an addtional front-end computer and I give one blob to

a bare emulator or AMT DAP.

When assessing how easy each processor was to program, I gave four blobs to

anything which, when provided with any missing peripherals, would become as easy to

use as the large mainframes.

To emphasis the importance and logic of the ‘how complete’ and ‘how easy to
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program’ criteria, I have included an entry for a bare CPU chip, the Motorola 68020.
The bare chip is, of course, totaly incomplete and merits no ‘completeness’ blobs at all.
Conversely, when provided with the necessary memory and peripherals, it can form the
core of a very pleasant system (like the Apollo on which I am typing this text.)

Table 3 shows that by moving away from the conventional scalar mainframe solution
to HEP computing we may be able to get up to three times as much CPU power for our
money, while still having a complete system which is only moderately painful to use.
Futher savings or performance improvements by the use of highly specialised machines
would be counterbalanced by the need to buy a conventional mainframe to do the rest

of the work.

8. SOFTWARE
Success in a computing task is by no means assured simply by taking delivery of a
large quantity of hardware. This is especially true if the hardware departs in any way
from the conventional scalar processing systems which we are accustomed to use.
Before I review the software problems in more detail, let me air my prejudices.
Although both vector and parallel computing systems are tricky to use efficiently, I
believe that computing for experimental HEP can be implemented in a much more

natural fashion on parallel computers than on vector computers.

8.1 Software for Vector Computers
HEP can use two, almost distinct, approaches:

1. Totally re-think the algorithms so that ‘von Neumann’ (one thing at a time) code
becomes efficiently vectorisable. The work on the Fermilab E-711 experiment
track-finder is an example of this.

This approach is likely to result in clear, intelligible code which is efficient on a
specific vector architecture.

2. Parallelise the logic so that many unrelated but similar operations are performed
at the same time. For example, re-organise a Monte-Carlo tracking program so
that all the trivial co-ordinate transformations involved in tracking N particles
thr(;ugh one step can be performed simultaneously.

The likely result is tricky code, difficult to write and maintain, and still tied to a
specific vector architecture.

I have spent years preaching the necessity of writing clear, maintainable, portable

Fortran code, so both of these approaches worry me. However, if we ignore these

problems, what speed-ups are we likely to get as a result of a vector-specific software
effort?
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It has already been demonstrated that specific algorithms can be speeded-up by
around a factor of 10. How much can complete programs be speeded-up? My own

feeling is that a factor of 3 is the likely maximum.

8.2 Software for Parallel Computers

The general problem — how to apply N processors to a single task — is one of
computing science’s most important challenges. I think that this will still be considered
an important challenge well into the 21st century.

I will only concern myself with HEP specific solutions which are far from general.
However, the foundation of my approach is parallelisation by a minimal reorganisation
of the computing task. In other words, I advise stepping back and thinking about the
task for a few minutes, rather than rushing in with any existing automatic parallelisation
tools.

After a quick look into the long term future, I will concentrate on the practical
problems of implementing parallel processing on the range of systems currently acces-
sible to HEP, including, of course, the LEPICS system which will be used by the L3

collaboration.

The Long Term Future: Parallelising Compilers

Parallelising compilers recognise code that can run in parallel. The most obvious way to
do this is to examine Fortran DO loops to see whether one iteration could be calculated
at the same time as another. The compiler must find any ways in which one iteration
uses variables calculated by another. If such dependencies are found, it may still be
possible to allow parallel execution with the insertion of a synchronisation point where
one process waits until the variable it needs is ready. Hardware supporting fetch-and-op
instructions may also be valuable in removing possibilities of error due to simultaneous
attempts to update a memory location.

The parallelising compiler has to identify each variable as private to a particular
parallel process, or shared, and for shared variables it has to decide whether any process
can ever be allowed to use its cache memory. Many machines allow individual memory
pages, or even locations, to be declared cacheable or not cacheable.

Finally, a parallelising compiler inserts the necessary system service calls to create
and communicate with parallel processes.

The parallelising compilers which exist today can analyse only relatively small loops.
As a result, they produce code which can only run efficiently on tightly-coupled, low
overhead architectures. Many highly parallel applications, including HEP, require recog-

nition that blocks of 20,000 lines and 200 subroutines are parallelisable. There seems
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little doubt that parallelisation on this macroscopic scale will not be automated for some

decades.

The Structure of HEP Batch Jobs

Figure 13 shows the very simple structure of most HEP batch jobs. Almost invari-
ably such jobs involve processing events. Processing one event may take minutes (for
Monte-Carlo simulation) or milliseconds (for Data Summary Tape analysis) but the job

structure is the same.

Initialize
Job

Possible Process
Parallel Event 100
Processing to
1000000

- loops
Histograms
and
Statistics
Write
Event

Print
Histograms
and
Statistics

Figure 18  The Structure of HEP Batch Jobs

Since the events are independent, they may easily be processed in parallel. Man-
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power, organisation and sanity dictate that we should try to manage the parallel pro-
cessing within one job, rather than running many jobs at once.

Parallel processing becomes trickier when we want more than one process to access
a single peripheral or a single memory location. The simplest way to solve this is to
allow only one process to read and write events, and fill histograms. In most cases this
works perfectly, since the ‘process event’ kernel still dominates the CPU requirements.

On tightly-coupled machines, it is usually possible to let the parallel ‘child’ processes
fill the histograms and statistics in shared memory. Some machines even offer ‘fetch
and op’ instructions which require no memory locking. On loosely-coupled machines it

is usually better to let the host handle the histograms.

How to use an Emulator Farm

An emulator farm consists of a small host computer coupled to a number of attached
processors. The smallness of the host computer means that it must be given relatively
little work to do if the farm is to work efficiently. In the context of HEP batch jobs,
this means that the ‘process event’ kernels which are farmed out to the emulators must
involve seconds or minutes of computation.

L3 has had access to a farm cosisting of an IBM 4361 host, and five or more
3081/E emulators. This resource has encouraged the creation of a parallel version of
the L3 Monte-Carlo simulation program, and has made us aware of the potential and
the problems of systems using cheap attached processors.

These are the components of the software system which we have used:

e Source code pre-processor (PATCHY (7]).
It is highly desirable to maintain the parallel version of a program together with
the scalar version. The code which will run in parallel is flagged and extracted
automatically by a pre-processor for separate compilation and linking.

e Data-structure manager (ZEBRA [8]).
By using ZEBRA to manage data within a program it becomes simple to transport
any data to another processor at any time. ZEBRA knows all about the data types
(floating, integer, etc.) of the data it manages, so automatic format translations
are possible.

e Cross compiler.
This is provided by the combination of the IBM compiler and the ‘translator’.
(Note that the 370/E emulator, developed by the Weizmann Institute, Rutherford
Lab. etc., operates directly on IBM object code).

o Cross linker.
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e Debugging Tools.

The best place to debug the Fortran code is on the host system. It is also advisable
to debug the parallelised version, using a system like VM/EPEX (VM Environ-

ment for Parallel Execution [9]), to simulate a multi-processor system without

using real emulators.

After debugging on the host system, the code should run on the emulators without

problems. This will probably be almost true, eventually, but at present occasional

problems with the translator or with the emulator hardware are tricky to debug

and are best handed over to the few experts. From necessity, the experts have

created a limited set of hardware and software tools to help with this debugging.
e FORTRAN calls to:

download a program module
download data

start emulator

wait for emulator to finish
upload data

interrupt emulator

¢ Resource Management.

Phone number of the system manager.

When an emulator farm is used by one or two teams to run week long chains of

production jobs, this method of resource management is quite adequate. It is clearly

inadequate to support attempts to make an emulator farm a more general purpose

resource.

How to use a Shared Memory System

A shared memory system is suitable for almost ‘mindless’ parallel processing of HEP

events. The overheads are sufficiently small that few users need be concerned about

whether they are doing enough computation on each event to make parallel processing

worthwhile. Computational kernels of a few tens of milliseconds can already make

efficient use of parallel processing.

Although L3 has never used such a machine as a serious resource, we did sufficient

work on the ELXSI 6400 to understand quite well how we would use such a machine.

As for the emulator farm, I list the necessary elements of the software system:

¢ Source code pre-processor (as for an emulator farm).

o FORTRAN calls to:
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— start children

— share memory with children

— control cache memory

— control synchronisation (semaphores and locks)
e Programmer discipline

— access to shared memory

— cacheing: what and when?
e Resource management

— multiprocessing CPU’s

— load balancing by process migration

— otherwise anarchy???

These limited resource management tools are effective in making sure that all the
CPU’s are busy, provided that the users create at least as many processes as there are
CPU’s in the system. They do not solve all the problems of providing efficient and
prioritised parallel processing for a large anonymous user community.

To make it clearer what we really have to do, I list below the Fortran ‘intrinsics’
available to support parallel processing on the ELXSI system. Figure 14 shows how
these intrinsics can be used to set up a simple parent-child system, which may be

readily generalised to an arbitrary number of children.

ELXSI Parallel Processing Intrinsics

Most applications need only the following calls:
STATUS =MT$ShareMemory (Address, Length, Cacheable?)
MT$SetupSemaphore (Name_of Semaphore, QueueLength)

MT$SetupTasks (Number_of_Tasks)
creates identical copies of the parent at this instant.

MT$StartTask (Task-no., Subroutine Name, Subroutine_Arguments)
calls a subroutine within a child process.

MT$SignalSemaphore (Semaphore Name)
increment the named counting semaphore.

MT$WaitOnSemaphore (Semaphore Name)
if the named semaphore is greater than zero, continue, otherwise
sleep until the semaphore reaches zero. (Sleeping processes
consume no CPU cycles.)

MT$WaitOnTask (Task no.)
sleep until the child task RETURN’s (or STOP’s) from the
subroutine called by MT$StartTask.

MT$Destroy Tasks ()
kill the children.
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MT$WhatTaskAmlI ()
returns its task number to a child.

Enthusiasts can also play with:
MT$SetupLock (Lock_Name)

MT$Lock (Lock-Name)
if the named lock is open, lock it and continue,
if the named lock is locked, spin in a NOP loop
until the lock is opened, then lock it and continue.

MT$Unlock (Lock_Name)
open the named lock.

MT$FlushMemory (Address, Length)
flush the cache-memory belonging to the calling process to ensure
that the main memory contents are updated.

MT$FlushMemoryAllSharers (Address, Length)
as above, but for all processes sharing this memory.

How to use LEPICS: Parallel Processing in a Computer Center Environment

In the longer term, all the greediest users of computer power will be forced into parallel
computing, and all those who, like HEP, also use peripherals heavily will be best served
by computer centres.

For the next few years, serious parallel processing is avoidable by spending money
on a few of the fastest available CPU’s. Like most HEP experiments, L3 never has
remotely enough money. This together will a need for massive expandability, and a
clearly parallelisable computing load, makes a parallel processing computer center our
best choice now.

While discussing emulator farms, and simple shared memory systems, I have begun
to point out what is special about a computer center. With a large, possibly competing,
user community, resources can no longer be scheduled by manual intervention or verbal
agreements. As I have indicated above, the existing support for parallel processing
largely ignores this resource management problem.

LEPICS will be a multi-CPU computer system, and will immediately have all the
basic hardware and software tools for communication between the processors. The L3
software which will run on LEPICS is fundamentally parallelisable, and we believe that
writing and maintaining software in a form immediately ready for parallel or scalar
processing will have almost no negative impact on the intelligibility or efficiency of the
code.

However, it will have escaped nobody that LEPICS is simply an emulator farm with

a large host computer, and the initial resource management tool for LEPICS parallel
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Figure 14 A Parent-child System using ELXSI Intrinsics

processing will be just the phone number of the system manager. In the one to two
years which remain before LEP data begin to flow freely, we have to turn LEPICS into
a parallel computer center. The core of the LEPICS Parallel Processing Project will be
to make enhancements to the batch system which will:
1. Schedule batch jobs taking into account declared intentions to use attached pro-
Cessors.
1. During execution, allocate processors dynamically based on relative task priority
and throughput considerations.......
— offer executing tasks more processors if they become available.
— request the release of processors by lower priority tasks.
— force release of processors by un-cooperative tasks, for example by total or

partial swap-out to disk.
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2. Encourage throughput, for example by penalties for letting attached processors
lie idle.

An outline of the way in which LEPICS parallel processing will be managed is
shown in Fig. 15. LEPICS will run the IBM VM/CMS operating system, which is
notable for its use of ‘virtual machines’ which were once so robustly separated from
each other that they could only communicate by real I/O. Recent developments allow
virtual machines to communicate through shared memory, but the operating system
architecture still encourages a clear separation of functions between virtual machines.
In the existing batch system (developed at SLAC), each batch job runs in its own virtual
machine under control of the batch monitor machine. To support parallel processing on
attached processors we must create a Parallel Processing Manager VM, and Interface

VM’s to control the VICI interfaces.

Task Task Task
VM VM VM

x Manager VM

Interface| |Interface| [Interface
VM VM VM

VICI VICI VICI

o000 000

o0 0000

Hao0s1/E| H 68040 | 22777

-|3081/E] -[6804o| -L?????]

Haos1/E|  Hesoso| H 27922

H3o0s1/E | H 68040 | P

-[3081/5] -[ 68040 | -|?????|

Figure 15 LEPICS: Attached Processor Management

The Manager VM will receive requests for attached processors, and send out offers

or demands. It will also communicate with the interface VM’s to monitor levels of traffic
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and CPU utilisation in the attached processor system. The use of Interface VM'’s brings
several advantages. Firstly, the current version of the VICI does not allow more than one
host VM to communicate with the devices attached to the VICI. Indirect communication
through the Interface VM’s can work around this problem. Secondly, the interface VM
can present a standardised software interface to the task VM'’s without the need to
freeze all developments of the interface and the attached processors. Finally, leading
on from the last point, it should be possible to connect new, cost effective, VME based
processors to LEPICS, without the need to modify user jobs. For example, if Motorola
produces a ‘68040’ with the power of a 3090 and costing $500, one of the Interface VM’s
could be modified to provide automatic translation of ZEBRA data from IBM to IEEE
format, and the Manager VM could be modified to bear in mind the extra overheads of

format translation when deciding which tasks should use the new processors.

9. CONCLUSIONS

I have satisfied myself, and I hope the reader, that increasingly parallel computing
is inevitable in the long term future. Parallel computing is itself rather ill-defined
given the amazing diversity of parallel architectures which it is technically possible to
construct. I predict that the dominant forces will be economic, and to find which parallel
architectures will succeed by the end of the century, we must ask which systems could
be most effectively used in banking and insurance, as well as in HEP.

Most tasks run serially on computers are either unrelated, or naturally parallelis-
able. However, software, both for automatic parallelisation of large tasks, and for man-
agement of large scale parallel computing, will remain a major challenge for decades to

come.
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