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1 Introduction

The notion of distribution amplitudes refers to momentum fraction distributions of partons
in a meson, in a particular Fock state, with a fixed number of constituents. For the minimal
number of constituents, the distribution amplitude φ is related to the meson’s Bethe-Salpeter
wave function φBS by

φ(x) ∼
∫ |k⊥|<µ

d2k⊥ φBS(x, k⊥). (1.1)

The standard approach to distribution amplitudes, which is due to Brodsky and Lepage [1],
considers the hadron’s parton decomposition in the infinite momentum frame. A conceptually
different, but mathematically equivalent formalism is the light-cone quantization [2]. Either
way, power suppressed contributions to exclusive processes in QCD, which are commonly
referred to as higher twist corrections, are thought to originate from three different sources:

• contributions of “bad” components in the wave function and in particular of components
with “wrong” spin projection;

• contributions of transverse motion of quarks (antiquarks) in the leading twist compo-
nents, given for instance by integrals as above with additional factors of k2

⊥;

• contributions of higher Fock states with additional gluons and/or quark-antiquark pairs.

In this paper we continue the systematic study of higher twist light-cone distribution
amplitudes started in Ref. [3]. In particular, we extend the analysis of [3] to include twist-
4 distribution amplitudes and, most significantly, meson mass corrections. A preliminary
account of some of our results has been reported in [4].

Following [3], we define light-cone distribution amplitudes as meson-to-vacuum transition
matrix elements of nonlocal gauge invariant light-cone operators. This formalism is perhaps
less intuitive than the infinite momentum frame formulation, but it is more convenient for the
study of higher twist distributions as it is Lorentz and gauge invariant. It allows all equations
of motion to be solved explicitly, relating different higher twist distributions to one another.
We will find that, much like in the twist-3 case [3], all dynamical degrees of freedom are those
describing contributions of higher Fock states, while all other higher twist effects are given in
terms of the latter without any free parameters.

A systematic study of meson mass corrections presents the principal new contribution of
this work. By counting dimensions, for any exclusive observable involving a large momentum
transfer Q, power suppressed higher twist corrections have the generic structure

1

Q2

[
m2 · 〈〈O(2)〉〉+m · 〈〈O(3)〉〉+ 〈〈O(4)〉〉

]
.

Here m is the meson mass, 〈〈O(2)〉〉 and 〈〈O(3)〉〉 and 〈〈O(4)〉〉 are reduced matrix elements of
twist-2, twist-3 and twist-4 operators, which have dimension 0, 1 and 2, respectively. The
terms ∼ m2 do not involve any new dynamical information about the meson structure as com-
pared to the leading twist terms, and are usually referred to as “kinematic” power corrections.
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The structure of such kinematic corrections is well known for deep-inelastic lepton-hadron
scattering, in which case they can be absorbed into a redefinition of the scaling variable [5].
The crucial observation leading to this “Nachtmann scaling” is that hadron mass corrections
(“target mass corrections” in this context) arise exclusively from the definition of the relevant
leading twist matrix elements and do not involve new (higher twist) operators. This sim-
plification does not hold in exclusive processes because there are additional contributions of
operators containing total derivatives. Specifically, to twist-4 accuracy, in addition to Nacht-
mann’s corrections, there are also contributions of operators of type

∂2O(2)
µ1µ2...µn

and
∂µ1O

(2)
µ1µ2...µn

,

where O(2) is a leading twist operator. We find that contributions of the first type can be
taken into account consistently for all moments, while contributions of the second type are
more complicated and can be unravelled only order by order in the conformal expansion.

The outline of this paper is as follows: definitions of and notations for distribution ampli-
tudes are presented in Sec. 2 together with general remarks about specific features of the oper-
ator product expansion (OPE) for exclusive processes and about conformal expansion. Section
3 gives a general discussion of meson mass corrections for a simple example. The subsequent
Secs. 4 and 5 contain a detailed derivation of chiral-even and chiral-odd distribution ampli-
tudes, respectively. We take into account contributions of the leading and next-to-leading
conformal spin and derive a self-consistent approximation for the distribution amplitudes,
which respects the exact QCD equations of motion. The chiral-even and chiral-odd asymp-
totic distribution amplitudes involve three nonperturbative parameters, and four additional
parameters are required for the description of the leading corrections. The corresponding esti-
mates are worked out using the QCD sum rule approach [6]. On the basis of these estimates,
we suggest that higher twist effects in exclusive processes are in many cases dominated by me-
son mass corrections alone. The final Sec. 6 contains a summary and conclusions. The paper
also contains three appendices in which we derive equations of motion for nonlocal operators,
and derive and estimate the independent nonperturbative parameters that enter the twist-4
distributions discussed here.

Throughout this paper we denote the meson momentum by Pµ and introduce light-like
vectors p and z such that

pµ = Pµ −
1

2
zµ

m2
ρ

pz
. (1.2)

The meson polarization vector e
(λ)
µ is decomposed into projections onto the two light-like

vectors and the orthogonal plane as

e(λ)
µ =

(e(λ)z)

pz

(
pµ −

m2
ρ

2pz
zµ

)
+ e

(λ)
⊥µ. (1.3)
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Some useful scalar products are

z · P = z · p =
√

(x · P )2 − x2m2
ρ,

p · e(λ) = −
m2

ρ

2pz
z · e(λ),

e(λ) · z = e(λ) · x. (1.4)

We also need the projector onto the directions orthogonal to p and z:

g⊥µν = gµν −
1

pz
(pµzν + pνzµ), (1.5)

and will use the notations
a. ≡ aµz

µ, a∗ ≡ aµp
µ/(pz), (1.6)

for an arbitrary Lorentz vector aµ.
We use the standard Bjorken–Drell convention [7] for the metric and the Dirac matrices;

in particular γ5 = iγ0γ1γ2γ3, and the Levi–Civita tensor ǫµνλσ is defined as the totally anti-

symmetric tensor with ǫ0123 = 1. The covariant derivative is defined as Dµ ≡
−→
Dµ = ∂µ− igAµ,

and we also use the notation
←−
Dµ =

←−
∂ µ + igAµ in later sections. The dual gluon field strength

tensor is defined as G̃µν = 1
2
ǫµνρσG

ρσ.

2 General Framework

Amplitudes of light-cone-dominated processes involving vector mesons can be expressed in
terms of matrix elements of gauge invariant nonlocal operators sandwiched between the vac-
uum and the vector meson state, e.g. a matrix element over a two-particle operator,

〈0|ū(x)Γ[x,−x]d(−x)|ρ−(P, λ)〉, (2.1)

where Γ is a generic Dirac matrix structure and we use the notation [x, y] for the path-ordered
gauge factor along the straight line connecting the points x and y:

[x, y] = P exp

[
ig

∫ 1

0

dt (x− y)µA
µ(tx+ (1− t)y)

]
. (2.2)

To simplify the notation, we will explicitly consider charged ρ mesons; the distribution ampli-
tudes of ρ0 can be obtained by choosing appropriate isospin currents.

The asymptotic expansion of exclusive amplitudes in powers of large momentum transfer
corresponds to the expansion of amplitudes like (2.1) in powers of the deviation from the light-
cone x2 = 0. As always in a quantum field theory, such an expansion generates divergences
and has to be understood as an OPE in terms of renormalized light-cone nonlocal operators
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whose matrix elements define meson distribution amplitudes of increasing twist. To leading
logarithmic accuracy, the coefficient functions are just taken at tree-level, and the distributions
have to be evaluated at the scale µ2 ∼ x−2. In this section we present the necessary expansions
and introduce a complete set of meson distribution amplitudes to twist-4 accuracy. This set
is, in fact, overcomplete, and different distributions are related to one another via the QCD
equations of motion, as detailed in later sections.

2.1 Chiral-Even Distribution Amplitudes

We start with the matrix elements involving an odd number of γ matrices, which we refer to as
chiral-even in what follows. For the vector and axial vector operators the light-cone expansion
to twist-4 accuracy reads:

〈0|ū(x)γµd(−x)|ρ−(P, λ)〉 = fρmρ

{
e(λ)x

Px
Pµ

∫ 1

0

du eiξPx
[
φ‖(u) +

m2
ρx

2

4
A(u)

]

+

(
e(λ)

µ − Pµ
e(λ)x

Px

) ∫ 1

0

du eiξPx
B(u)

− 1

2
xµ

e(λ)x

(Px)2
m2

ρ

∫ 1

0

du eiξPx
C(u)

}
, (2.3)

〈0|ū(x)γµγ5d(−x)|ρ−(P, λ)〉 =
1

2

(
fρ − fT

ρ

mu +md

mρ

)
mρǫ

ναβ
µ e(λ)

ν Pαxβ

∫ 1

0

du eiξPx
D(u).

(2.4)

Notice that in order to calculate exclusive amplitudes to O(1/Q2) accuracy, terms of O(x2)
have to be kept in the vector matrix element, but can be neglected in the axial vector one. For
brevity, here and below we do not show gauge factors between the quark and the antiquark
fields; we also use the short-hand notation

ξ = 2u− 1.

The vector and tensor decay constants fρ and fT
ρ are defined, as usual, as

〈0|ū(0)γµd(0)|ρ−(P, λ)〉 = fρmρe
(λ)
µ , (2.5)

〈0|ū(0)σµνd(0)|ρ−(P, λ)〉 = ifT
ρ (e(λ)

µ Pν − e(λ)
ν Pµ). (2.6)

The coupling fT
ρ is scale-dependent, with

fT
ρ (Q2) = fT

ρ (µ2)

(
αs(Q

2)

αs(µ2)

)CF /b

, (2.7)

with the standard notation CF = (N2
c − 1)/(2Nc) and b = (11Nc − 2nf )/3.
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The expansions in (2.3), (2.4) involve several Lorentz invariant amplitudes, which we have
to interpret in terms of meson parton distributions. Definitions of the latter involve nonlocal
operators at strictly light-like separations and can most conveniently be written using the
light-cone variables (1.2), and for longitudinal and transverse meson polarizations separately.

Following [3], we define chiral-even two-particle distribution amplitudes of the ρ meson as

〈0|ū(z)γµd(−z)|ρ−(P, λ)〉 = fρmρ

[
pµ
e(λ)z

pz

∫ 1

0

du eiξpzφ‖(u, µ
2)

+ e
(λ)
⊥µ

∫ 1

0

du eiξpzg
(v)
⊥ (u, µ2)− 1

2
zµ
e(λ)z

(pz)2
m2

ρ

∫ 1

0

du eiξpzg3(u, µ
2)

]
, (2.8)

〈0|ū(z)γµγ5d(−z)|ρ−(P, λ)〉 =

=
1

2

(
fρ − fT

ρ

mu +md

mρ

)
mρǫ

ναβ
µ e

(λ)
⊥νpαzβ

∫ 1

0

du eiξpzg
(a)
⊥ (u, µ2). (2.9)

The distribution amplitude φ‖ is of twist-2, g
(v)
⊥ and g

(a)
⊥ of twist-3 and g3 of twist-4. All four

functions φ = {φ‖, g(v)
⊥ , g

(a)
⊥ , g3} are normalized as

∫ 1

0

du φ(u) = 1, (2.10)

which can be checked by comparing the two sides of the defining equations in the limit zµ → 0
and using the equations of motion.

Comparing (2.8), (2.9) with the light-cone expansions in (2.3), (2.4), we easily find

B(u) = g
(v)
⊥ (u),

C(u) = g3(u) + φ‖(u)− 2g
(v)
⊥ (u),

D(u) = g
(a)
⊥ (u), (2.11)

which is nothing but the tree-level OPE of the invariant amplitudes B,C,D in terms of meson
distribution amplitudes. We will find (see also [3]) that all higher twist two-particle distribu-
tion amplitudes do not present genuine independent degrees of freedom, but can be expressed
in terms of three-particle distribution amplitudes. The same analysis will allow us to cal-
culate the remaining invariant amplitude A, which accounts for the transverse momentum
distribution in the valence component of the wave function.

Three-particle chiral-even distributions are rather numerous and can be defined by the
following matrix elements:

〈0|ū(z)gG̃µν(vz)γαγ5d(−z)|ρ−(P, λ)〉 = fρmρpα[pνe
(λ)
⊥µ − pµe

(λ)
⊥ν ]A(v, pz)
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Twist (µνα) ψ̄G̃µνγαγ5ψ ψ̄Gµνγαψ (µναβ) ψ̄Gµνσαβψ (µν) ψ̄Gµνψ ψ̄G̃µνγ5ψ

3 · ⊥ · A V · ⊥ · ⊥ T
4 · ⊥⊥ Φ̃ Φ ⊥⊥ ·⊥ T

(4)
1 · ⊥ S S̃

· ∗ · Ψ̃ Ψ · ⊥⊥⊥ T
(4)
2

· ∗ · ⊥ T
(4)
3

· ⊥· ∗ T
(4)
4

Table 1: Identification of three-particle distribution amplitudes with projections onto different
light-cone components of the nonlocal operators. For example, · ⊥⊥ refers to ψ̄G̃·⊥γ⊥γ5ψ.

+ fρm
3
ρ

e(λ)z

pz
[pµg

⊥
αν − pνg

⊥
αµ]Φ̃(v, pz)

+ fρm
3
ρ

e(λ)z

(pz)2
pα[pµzν − pνzµ]Ψ̃(v, pz), (2.12)

〈0|ū(z)gGµν(vz)iγαd(−z)|ρ−(P )〉 = fρmρpα[pνe
(λ)
⊥µ − pµe

(λ)
⊥ν ]V(v, pz)

+ fρm
3
ρ

e(λ)z

pz
[pµg

⊥
αν − pνg

⊥
αµ]Φ(v, pz)

+ fρm
3
ρ

e(λ)z

(pz)2
pα[pµzν − pνzµ]Ψ(v, pz), (2.13)

where

A(v, pz) =

∫
Dαe−ipz(αu−αd+vαg)A(α), (2.14)

etc., and α is the set of three momentum fractions α = {αd, αu, αg}. The integration measure
is defined as ∫

Dα ≡
∫ 1

0

dαd

∫ 1

0

dαu

∫ 1

0

dαg δ
(
1−

∑
αi

)
. (2.15)

The distribution amplitudes V and A are of twist-3, while the rest is of twist-4; we have not
shown further Lorentz structures corresponding to twist-5 contributions1. Different distri-
bution amplitudes can be separated by projecting onto particular light-cone components, as
summarized in Table 1.

For completeness, let us mention that also four-particle twist-4 distribution amplitudes
exist, corresponding to contributions of Fock states with two gluons or an additional qq̄ pair,

1Note that we use a different normalization of three-particle twist-3 distributions compared to [3].
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of type
ψ̄γ.(γ5)ψ ψ̄γ.(γ5)ψ, ψ̄ G.⊥G.⊥γ.ψ.

Such distributions will not be considered in this paper for two reasons: first, it is well known [8]
that four-particle twist-4 operators do not allow the factorization of vacuum condensates such
as 〈ψ̄ψ〉, 〈G2〉. Because of this, their matrix elements cannot be estimated reliably by existing
methods (e.g. QCD sum rules), although they are generally expected to be small. Second, and
more importantly, the four-particle distributions decouple from the QCD equations of motion
in the two lowest conformal partial waves. To this accuracy, therefore, it is consistent to put
them to zero. Vice versa, nonvanishing four-particle distributions necessitate the inclusion of
higher conformal spin corrections to distributions with less particles, which are beyond the
approximation adopted in this paper.

2.2 Chiral-Odd Distribution Amplitudes

For chiral-odd operators involving σµν and 1, the light-cone expansion to twist-4 accuracy
reads:

〈0|ū(x)σµνd(−x)|ρ−(P, λ)〉 = ifT
ρ

[
(e(λ)

µ Pν − e(λ)
ν Pµ)

∫ 1

0

du eiξPx

[
φ⊥(u) +

m2
ρx

2

4
AT (u)

]

+ (Pµxν − Pνxµ)
e(λ)x

(Px)2
m2

ρ

∫ 1

0

du eiξPx
BT (u)

+
1

2
(e(λ)

µ xν − e(λ)
ν xµ)

m2
ρ

Px

∫ 1

0

du eiξPx
CT (u)

]
, (2.16)

〈0|ū(x)d(−x)|ρ−(P, λ)〉 = −i
(
fT

ρ − fρ
mu +md

mρ

) (
e(λ)x

)
m2

ρ

∫ 1

0

du eiξPx
DT (u). (2.17)

The couplings fρ and fT
ρ are defined in (2.5) and (2.6).

The corresponding distribution amplitudes on the light-cone are defined as

〈0|ū(z)σµνd(−z)|ρ−(P, λ)〉 = ifT
ρ

[
(e

(λ)
⊥µpν − e(λ)

⊥νpµ)

∫ 1

0

du eiξpzφ⊥(u, µ2)

+ (pµzν − pνzµ)
e(λ)z

(pz)2
m2

ρ

∫ 1

0

du eiξpzh
(t)
‖ (u, µ2)

+
1

2
(e

(λ)
⊥µzν − e(λ)

⊥νzµ)
m2

ρ

pz

∫ 1

0

du eiξpzh3(u, µ
2)

]
, (2.18)

〈0|ū(z)d(−z)|ρ−(P, λ)〉 = − i
(
fT

ρ − fρ
mu +md

mρ

)
(e(λ)z)m2

ρ

∫ 1

0

du eiξpzh
(s)
‖ (u, µ2).

(2.19)
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The distribution amplitude φ⊥ is of twist-2, h
(s,t)
‖ are of twist-3 and h3 is of twist-4. All four

functions φ = {φ⊥, h(s,t)
‖ , h3} are normalized as

∫ 1

0

du φ(u) = 1.

Comparing (2.18) and (2.19) with the light-cone expansion (2.16) and (2.17), we easily find

BT (u) = h
(t)
‖ (u)− 1

2
φ⊥(u)− 1

2
h3(u),

CT (u) = h3(u)− φ⊥(u). (2.20)

As for chiral-even distribution amplitudes, only the twist-2 distribution φ⊥ represents gen-
uinely independent degrees of freedom, the others can be expressed in terms of three-particle
distribution amplitudes.

The three-particle distribution amplitudes are even more numerous than in the chiral-even
case and can be defined as:

〈0|ū(z)σαβgGµν(vz)d(−z)|ρ−(P, λ)〉 =

= fT
ρ m

2
ρ

e(λ)z

2(pz)
[pαpµg

⊥
βν − pβpµg

⊥
αν − pαpνg

⊥
βµ + pβpνg

⊥
αµ]T (v, pz)

+ fT
ρ m

2
ρ[pαe

(λ)
⊥µg

⊥
βν − pβe

(λ)
⊥µg

⊥
αν − pαe

(λ)
⊥νg

⊥
βµ + pβe

(λ)
⊥νg

⊥
αµ]T

(4)
1 (v, pz)

+ fT
ρ m

2
ρ[pµe

(λ)
⊥αg

⊥
βν − pµe

(λ)
⊥βg

⊥
αν − pνe

(λ)
⊥αg

⊥
βµ + pνe

(λ)
⊥βg

⊥
αµ]T

(4)
2 (v, pz)

+
fT

ρ m
2
ρ

pz
[pαpµe

(λ)
⊥βzν − pβpµe

(λ)
⊥αzν − pαpνe

(λ)
⊥βzµ + pβpνe

(λ)
⊥αzµ]T

(4)
3 (v, pz)

+
fT

ρ m
2
ρ

pz
[pαpµe

(λ)
⊥νzβ − pβpµe

(λ)
⊥νzα − pαpνe

(λ)
⊥µzβ + pβpνe

(λ)
⊥µzα]T

(4)
4 (v, pz), (2.21)

〈0|ū(z)gGµν(vz)d(−z)|ρ−(P, λ)〉 = ifT
ρ m

2
ρ[e

(λ)
⊥µpν − e(λ)

⊥νpµ]S(v, pz),

〈0|ū(z)igG̃µν(vz)γ5d(−z)|ρ−(P, λ)〉 = ifT
ρ m

2
ρ[e

(λ)
⊥µpν − e(λ)

⊥νpµ]S̃(v, pz). (2.22)

Of these seven amplitudes, T is of twist-3 and the other six of twist-4; higher twist terms are
suppressed. The relation of these distribution amplitudes to specific light-cone projections of
the matrix elements was made explicit in Table 1.

Also in this case there exist four-particle twist-4 distribution amplitudes which we do not
consider for the reasons mentioned at the end of Sec. 2.1.
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2.3 Conformal Partial Wave Expansion

Conformal partial wave expansion in QCD [9, 10, 11, 12, 13] parallels the partial wave ex-
pansion of wave functions in standard quantum mechanics, which allows the separation of
the dependence on angular coordinates from that on radial ones. The basic idea is to write
distribution amplitudes as a sum of contributions from different conformal spins. For a given
spin, the dependence on the momentum fractions is fixed by the symmetry. To specify the
function, one has to fix the coefficients in this expansion at some scale; conformal invariance
of the QCD Lagrangian then guarantees that there is no mixing between contributions of dif-
ferent spin to leading logarithmic accuracy. For leading twist distributions the mixing matrix
becomes diagonal in the conformal basis and the anomalous dimensions are ordered with spin.
Thus, only the first few “harmonics” contribute at sufficiently large scales (for sufficiently hard
processes).

For higher twist distributions, the use of the conformal basis offers the crucial advantage
of “diagonalizing” the equations of motion: since conformal transformations commute with
the QCD equations of motion, the corresponding constraints can be solved order by order in
the conformal expansion. Note that relations between different distributions obtained in this
way are exact: despite the fact that conformal symmetry is broken by quantum corrections,
equations of motion are not renormalized and remain the same as in free theory.

The general procedure to construct the conformal expansion for arbitrary multi-particle
distributions was developed in [11, 12]. To this end, each constituent field has to be decom-
posed (using projection operators, if necessary) into components with fixed (Lorentz) spin
projection onto the light-cone.

Each such component corresponds to a so-called quasi-primary field in the language of
conformal field theories, and has conformal spin

j =
1

2
(l + s), (2.23)

where l is the canonical dimension and s the (Lorentz) spin projection. In particular, l = 3/2
for quarks and l = 2 for gluons. The quark field is decomposed as ψ+ ≡ (1/2)/z/pψ and
ψ− = (1/2)/p/zψ with spin projections s = +1/2 and s = −1/2, respectively. For the gluon
field strength there are three possibilities: G.⊥ corresponds to s = +1, G∗⊥ to s = −1 and
both G⊥⊥ and G.∗ correspond to s = 0.

Multi-particle states built of quasi-primary fields can be expanded in irreducible unitary
representations with increasing conformal spin. An explicit expression for the distribution
amplitude of a multi-particle state with the lowest conformal spin j = j1 + . . .+ jm built of m
primary fields with spins jk is

φas(α1, α2, . . . , αm) =
Γ[2j1 + . . .+ 2jm]

Γ[2j1] . . .Γ[2jm]
α2j1−1

1 α2j2−1
2 . . . α2jm−1

m . (2.24)

Here αk are the corresponding momentum fractions. This state is nondegenerate and cannot
mix with other states because of conformal symmetry. Multi-particle irreducible representa-
tions with higher spin j + n, n = 1, 2, . . ., are given by polynomials of m variables (with the
constraint

∑m
k=1 αk = 1 ), which are orthogonal over the weight-function (2.24).
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3 Meson Mass Corrections

The structure of meson mass corrections in exclusive processes is in general more complicated
than that of target mass corrections in deep inelastic scattering where they can be resummed
using the Nachtmann variable [5]. For illustration, consider the simplest matrix element

〈0|ū(x)/xd(−x)|ρ−(P, λ)〉 =

= fρmρ(e
(λ)x)

∫ 1

0

du ei(2u−1)Px
[
φ‖(u) +

x2

4
Φ(u) +O(x4)

]
. (3.1)

We assume that x2 ≪ Λ−2
QCD, but nonzero, φ‖(u) is the twist-2 chiral-even distribution am-

plitude and Φ(u) = m2
ρ[A(u) + (1/2)

∫ u

0
dv

∫ v

0
dwC(w)] (c.f. (2.3)) describes higher twist cor-

rections, the “kinematic” contributions to which, due to the massive ρ meson, we want to
calculate.

Experience with inclusive distributions tells us that meson mass corrections are related to
contributions of leading twist operators. Indeed, the conditions of symmetry and zero traces
for twist-2 local operators imply

〈0|
[
ū/x(i

↔

D x)nd
]
tw.2
|ρ−(P, λ)〉 =

= fρmρ(e
(λ)x)

[
(Px)n −

x2m2
ρ

4

n(n− 1)

n+ 1
(Px)n−2

]
〈〈On〉〉, (3.2)

where [. . .]tw.2 denotes taking the leading twist part (subtraction of traces, in this case) and
〈〈On〉〉 is the reduced matrix element related to the n-th moment of the leading twist distribu-
tion

M (‖)
n ≡

∫ 1

0

du (2u− 1)nφ‖(u) = 〈〈On〉〉. (3.3)

Expanding (3.1) at short distances x→ 0 and comparing it with (3.2), we find that the same
reduced matrix element gives a contribution to the twist-4 distribution amplitude:

M (Φ)
n ≡

∫ 1

0

du (2u− 1)nΦ(u) =
1

n + 3
m2

ρ〈〈On+2〉〉, (3.4)

which is the direct analogue of Nachtmann’s correction in deep inelastic scattering.
As pointed out in [14], there exists an alternative possibility to describe the mass corrections

by modification of the exponential factor in (3.1) rather than a contribution to the twist-4
distribution amplitude. To this end, we write

〈0|
[
ū(x)/xd(−x)

]

tw.2
|ρ−(P, λ)〉 = fρmρ

∫ 1

0

du
[
(e(λ)x)eiξPx

]

tw.2
φ‖(u), (3.5)

where [. . .]tw.2 on the left-hand side correspond by definition to a subtraction of traces in all
local operators in the Taylor expansion of the nonlocal operator at short distances. As shown
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in [15], this definition implies that the nonlocal operator satisfies the homogeneous Laplace
equation

∂2

∂xη∂xη

[
ū(x)/xd(−x)

]

tw.2
= 0, (3.6)

and the same condition has to be fulfilled by the function
[
(e(λ)x)eiξPx

]

tw.2
in order that

Eq. (3.5) be satisfied. The solution can easily be constructed order by order in the (m2x2)k

expansion [14]. To twist-4 accuracy, we obtain

[
(e(λ)x)eiξPx

]

tw.2
= (e(λ)x)

[
eiξPx +

m2x2ξ2

4

∫ 1

0

dt t2 eitξPx +O(x4)
]
. (3.7)

By taking moments, it is easy to check that Eq. (3.1), with the higher twist distribution
function Φ(u) given in (3.4), is equivalent to Eq. (3.5) with the substitution (3.7).

The result in (3.4) is, however, incomplete. The reason is that in exclusive processes one
has to take into account higher twist operators containing total derivatives, and vacuum-to-
meson matrix elements of such operators reduce, in certain cases, to powers of the meson mass
times reduced matrix elements of leading twist operators. In the present case, write [15]

ū(x)/xd(−x) =
[
ū(x)/xd(−x)

]
tw.2

+
x2

4

∫ 1

0

dt
∂2

∂xα∂xα
ū(tx)/xd(−tx) +O(x4)

=
[
ū(x)/xd(−x)

]

tw.2
− x2

4

∫ 1

0

dt t2 ∂2[ū(tx)/xd(−tx)]

+ contributions of operators with gluons +O(x4), (3.8)

where we used Eq. (A.9) to obtain the last line. In the matrix element we can make the
substitution ∂2 → −m2

ρ. Expanding, again, at short distances, and comparing with the short-

distance expansion of (3.1), we get an additional contribution to M
(Φ)
n , so that the corrected

version of (3.4) becomes

M (Φ)
n =

1

n + 3
m2

ρ [〈〈On+2〉〉+ 〈〈On〉〉] + gluons. (3.9)

Assuming the asymptotic form of the leading twist distribution amplitude φ, φ(u) = 6u(1−u),
so that 〈〈On〉〉 = 3/[2(n+ 1)(n+ 3)], this equation for moments is easily solved and gives

Φ(u) = 30u2(1− u)2

[
2

5
m2

ρ +
4

3
m2

ρζ4

]
, (3.10)

where we have included the “genuine” twist-4 correction (term in ζ4) due to the twist-4 quark–
gluon operator, see definition in Eq. (4.6). The QCD sum rule estimate is ζ4 ∼ 0.15 [16], so
that the meson mass effect on the twist-4 distribution function is by a factor 2 larger than
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the “genuine” twist-4 correction. This is an important difference to deep inelastic scattering,
where the target mass corrections are small.

The above discussion is still oversimplified and does not provide us with a complete sep-
aration of meson mass effects. The major complication arises because of contributions of
operators of the type

∂µ1

[
ūγµ1(i

↔

Dµ2) . . . (i
↔

Dµn
)d

]
tw.2

. (3.11)

Such operators can be expressed in terms of operators with extra gluon fields, which means,
conversely, that certain combinations of q̄Gq operators reduce to divergences of leading twist
operators and give rise to extra meson mass correction terms. The corresponding corrections to
twist-4 distributions involve, however, higher order contributions in the conformal expansion
of the distribution amplitudes of leading twist and do not affect the result in (3.10), which
only includes leading conformal spin2. A calculation of the next-to-leading corrections will be
presented below.

4 Chiral-Even Distribution Amplitudes

In this section we derive explicit expressions for chiral-even distribution amplitudes of twist-4
including the leading and next-to-leading contributions in the conformal expansion. We first
give a short summary of the relevant results of [3] to twist-3 accuracy. We then discuss the
conformal expansion of twist-4 three-particle distribution amplitudes and relate the coefficients
to matrix elements of local operators. Only a few operators turn out to be independent, so
that the number of nonperturbative parameters is reduced considerably. Finally, we calculate
the twist-4 two-particle distribution amplitudes from the equations of motion (EOM). The
quark mass corrections will be neglected throughout this section.

4.1 Twist-3 Distributions

A comprehensive study of ρ meson distribution amplitudes to twist-3 accuracy was carried out
in [17, 18, 3], and we begin this section by quoting the results relevant to the present paper.

The leading twist-2 distribution amplitude for the longitudinally polarized ρ mesons, φ‖,
is expanded as [17, 18]

φ‖(u) = 6uū

[
1 + a

‖
2

3

2
(5ξ2 − 1)

]
. (4.1)

The parameter a
‖
2 is defined by the matrix element of a twist-2 conformal operator with

conformal spin 3:

〈0|ū/z(i
↔

D z)2d− 1

5
(i∂z)2ū/zd|ρ−(P, λ)〉 =

12

35
(e(λ)z)(pz)2fρmρ a

‖
2, (4.2)

2 The reason why leading conformal spin is not affected is that the divergence of a conformal operator
vanishes in free theory.
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and is scale-dependent:

a
‖
2(Q

2) = Lγ
‖
2/ba

‖
2(µ

2), γ
‖
2 =

25

6
CF , (4.3)

where L ≡ αs(Q
2)/αs(µ

2) and CF = (N2
c − 1)/(2Nc), b = (11Nc − 2nf)/3. The parameter a

‖
2

has been estimated from QCD sum rules; its value at the reference scale µ = 1 GeV is given
in Table 2.

The three-particle distributions of twist-3 read [17, 3]3:

V(α) = 540 ζ3ω
V
3 (αd − αu)αdαuα

2
g, (4.4)

A(α) = 360 ζ3αdαuα
2
g

[
1 + ωA

3

1

2
(7αg − 3)

]
. (4.5)

The dimensionless coupling ζ3 is defined by the matrix element

〈0|ūgG̃µνγαγ5d|ρ−(P, λ)〉 = fρmρζ3

[
e(λ)

µ

(
PαPν −

1

3
m2

ρ gαν

)
− e(λ)

ν

(
PαPµ −

1

3
m2

ρ gαµ

)]

+
1

3
fρm

3
ρζ4

[
e(λ)

µ gαν − e(λ)
ν gαµ

]
, (4.6)

where ζ4 is a matrix element of twist-4, which we will need below, while ωV
3 and ωA

3 are defined
as

〈0|ū/z(gGανz
α(i

→

D z)− (i
←

D z)gGανz
α)d|ρ−(P, λ)〉 = i(pz)3e

(λ)
⊥νmρfρ

3

28
ζ3 ω

V
3 +O(zν) (4.7)

and

〈0|ū/zγ5

[
iDz, gG̃µνz

µ
]
d− 3

7
(i∂z)ū/zγ5gG̃µνz

µd|ρ−(P, λ)〉 = −(pz)3e
(λ)
⊥νmρfρ

3

28
ζ3 ω

A
3 +O(zν),

(4.8)
respectively, where [ , ] stands for the commutator.

The scale-dependence of the twist-3 parameters is given by [3] (with CA = Nc):

ζ3(Q
2) = Lγζ

3/bζ3(µ
2), γζ

3 = −1

3
CF + 3CA, (4.9)

and

(
ωV

3 − ωA
3

ωV
3 + ωA

3

)Q2

= LΓω
3 /b

(
ωV

3 − ωA
3

ωV
3 + ωA

3

)µ2

,

Γω
3 =

(
3CF − 2

3
CA

2
3
CF − 2

3
CA

5
3
CF − 4

3
CA

1
2
CF + CA

)
. (4.10)

3 Note that we use a normalization of distribution amplitudes different from that in [17, 3]. In the notation
of Ref. [3], ωA

1,0 ≡ ωA
3

, ζA
3
≡ ζ3, and ζV

3
≡ (3/28)ζ3ω

V
3

.
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Numerical estimates are given in Table 2.
Finally, the two-particle distributions of twist-3 are determined from the EOM [3]:

g
(a)
⊥ (u) = 6uū

[
1 +

{
1

4
a
‖
2 +

5

3
ζ3

(
1− 3

16
ωA

3 +
9

16
ωV

3

)}
(5ξ2 − 1)

]
,

g
(v)
⊥ (u) =

3

4
(1 + ξ2) +

(
3

7
a
‖
2 + 5ζ3

) (
3ξ2 − 1

)

+

[
9

112
a
‖
2 +

15

64
ζ3

(
3ωV

3 − ωA
3

)] (
3− 30ξ2 + 35ξ4

)
. (4.11)

4.2 Twist-4 Distributions

Due to the odd G-parity of the operator in (2.13), the distribution amplitudes Φ and Ψ

are antisymmetric under the exchange of αd and αu, whereas Φ̃ and Ψ̃ are symmetric. The
distributions Ψ̃, Ψ correspond to the light-cone projection γ·G·∗ (see Table 1) and have the
conformal expansion

Ψ̃(α) = 120αuαdαg

[
ψ̃00 + ψ̃10(3αg − 1) + . . .

]
,

Ψ(α) = 120αuαdαg

[
0 + ψ10(αd − αu) + . . .

]
, (4.12)

respectively. Note that the leading spin contribution to Ψ vanishes because of G-parity (for
massless quarks).

In turn, the distribution amplitudes Φ̃, Φ correspond to the γ⊥G·⊥ light-cone component,
and before a conformal expansion can be performed, we first have to separate the different
quark spin projections. To this end, we define auxiliary amplitudes:

〈0|ū(z)gG̃µν(vz)γ·γαγ5γ∗d(−z)|ρ〉 = fρm
3
ρ

ez

pz

(
pµg

⊥
αν − pνg

⊥
αµ

)
Φ↑↓(v, pz),

〈0|ū(z)gG̃µν(vz)γ∗γαγ5γ·d(−z)|ρ〉 = fρm
3
ρ

ez

pz

(
pµg

⊥
αν − pνg

⊥
αµ

)
Φ↓↑(v, pz). (4.13)

The relation of Φ↑↓,Φ↓↑ to the original amplitudes is given by:

Φ̃(α) =
1

2

[
Φ↑↓ + Φ↓↑

]
(α),

Φ(α) =
1

2

[
Φ↑↓ − Φ↓↑

]
(α), (4.14)

and their conformal expansion goes in terms of Appell polynomials:

Φ↑↓(α) = 60αuα
2
g

[
φ00 + φ01(αg − 3αd) + φ10

(
αg −

3

2
αu

)]
,
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Φ↓↑(α) = 60αdα
2
g

[
φ00 + φ01(αg − 3αu) + φ10

(
αg −

3

2
αd

)]
, (4.15)

where we have taken into account the symmetry properties, i.e. φ↑↓00 = φ↓↑00, etc. Combining
everything, we obtain

Φ̃(α) = 30α2
g

[
φ00(1− αg) + φ01

[
αg(1− αg)− 6αuαd

]
+ φ10

[
αg(1− αg)−

3

2
(α2

u + α2
d)

]]
,

Φ(α) = 30α2
g(αu − αd)

[
φ00 + φ01αg +

1

2
φ10(5αg − 3)

]
. (4.16)

At this point, the expansion involves two parameters, φ00 and ψ̃00, to leading conformal
twist accuracy, and four more (φ10, φ01, ψ10, ψ̃10) for the corrections. Our next task will be
to relate them to matrix elements of local operators and find out how many coefficients are
independent.

For leading spin the answer is easily obtained by taking the relevant light-cone projections
of the matrix element in (4.6):

ψ̃00 =
2

3
ζ3 +

1

3
ζ4,

φ00 = −1

3
ζ3 +

1

3
ζ4. (4.17)

Note that the “twist-4” distribution amplitudes receive contributions of both twist-3 and twist-
4 operators. This is due to the fact that the standard counting of twist in terms of “good”
and “bad” components as introduced in [20] is at variance with the definition of twist as spin
minus dimension of an operator. See also the discussion in Sec. 2.2. of Ref. [3]. The parameter
ζ4 in (4.6) can be explicitly defined as the matrix element of a pure twist-4 operator:

〈0|ūgG̃µνγνγ5d|ρ−(P, λ)〉 = fρm
3
ρe

(λ)
µ ζ4. (4.18)

Its scale-dependence is given by [8]

ζ4(Q
2) = Lγζ

4/bζ4(µ
2), γζ

4 =
8

3
CF , (4.19)

and the numerical value was estimated in [16] from QCD sum rules, see Table 2 and App. C.
The calculation of the next-to-leading order spin corrections is more involved and is pre-

sented in detail in App. B. The main observation is that the four coefficients φ10, φ01, ψ10, ψ̃10

in fact involve only one new nonperturbative parameter, in addition to the ones defined above.
We find:

φ01 =
1

12
a
‖
2 −

5

12
ζ3 +

3

16
ζ3(ω

A
3 + ωV

3 ) +
7

2
ζ4 ω

A
4 ,
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fρ [MeV] a
‖
2 ζ3 ωA

3 ωV
3 ζ4 ωA

4

198± 7 0.18± 0.10 0.032± 0.010 −2.1± 1.0 3.8± 1.8 0.15± 0.10 0.8± 0.8

Table 2: Parameters of chiral-even distribution amplitudes. Renormalization scale is µ =
1 GeV.

φ10 = − 1

12
a
‖
2 +

3

4
ζ3 +

3

16
ζ3(ω

A
3 − ωV

3 ) + 7ζ4 ω
A
4 ,

ψ10 = −1

4
a
‖
2 −

7

12
ζ3 +

9

16
ζ3 ω

V
3 −

21

4
ζ4 ω

A
4 ,

ψ̃10 =
2

3
ζ3 −

9

16
ζ3 ω

A
3 +

21

4
ζ4 ω

A
4 , (4.20)

where the new parameter ωA
4 is defined as

〈0|ū
[
iDµ, gG̃νξ

]
γξγ5d−

4

9
(i∂µ)ūgG̃νξγξγ5d|ρ−(P, λ)〉+ (µ↔ ν) =

= 2fρm
3
ρ ζ4 ω

A
4

(
e(λ)

µ Pν + e(λ)
ν Pµ

)
. (4.21)

ωA
4 is estimated from QCD sum rules in App. C, with the result given in Table 2. The one-loop

anomalous dimension of the operator on the left-hand side of (4.21) is not known.
A few comments on the structure of (4.20) are in order. First, as already mentioned, twist-

4 distribution amplitudes contain contributions of operators of twist-3. Note that the twist-
4 chiral-even distributions considered here correspond to longitudinally polarized ρ mesons,
while the twist-3 parts appearing in (4.20) formally correspond to transversely polarized
mesons. The physical reason why distributions with different polarization appear to be related
is Lorentz symmetry: a longitudinally polarized ρ meson can be made transversely polarized
by going over to the meson rest frame, rotating the spin and boosting back to the infinite
momentum frame. The spin rotation, however, is not a member of the collinear conformal
group. Because of this, the conformal structure of twist-3 additions to twist-4 amplitudes is
rather complicated and does not match the naive expansion, similar to the case considered in
App. B of [3]. Formally, this is yet another complication of having a nonzero meson mass.

Secondly, we find a term in a
‖
2 that corresponds to the next-to-leading correction in the con-

formal expansion of the leading twist distribution amplitude. This contribution thus presents
an additional meson mass correction and appears, in technical terms, through the operator
identity (see App. B) relating the divergence of a two-particle conformal operator to operators
involving gluon fields. In this respect distribution amplitudes in exclusive reactions are funda-
mentally different from inclusive distributions, which involve only forward-scattering matrix
elements, so that matrix elements of operators with total derivatives vanish.
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Third, an inspection of the numerical size of the entries in Table 2 reveals that the coef-
ficients in (4.20) are grossly dominated by the term in ω4

A, which is a genuine twist-4 effect.
We do not see any physical reasons for this dominance, but, if correct, it suggests that the
above-mentioned complications may have an only marginal effect on phenomenology.

Finally, we have to specify the two-particle twist-4 distributions g3 and A defined in Sec. 2.
They are not independent, but can be expressed in terms of Φ and Ψ by using the EOM, see
Eqs. (A.10), (A.12). To next-to-leading accuracy, we obtain:

g3(u) = 1 +

(
−1− 2

7
a
‖
2 +

40

3
ζ3 −

20

3
ζ4

)
C

1/2
2 (ξ)

+

(
−27

28
a
‖
2 +

5

4
ζ3 −

15

16
ζ3

{
ωA

3 + 3ωV
3

})
C

1/2
4 (ξ), (4.22)

A(u) = 30u2ū2

{
4

5

(
1 +

1

21
a
‖
2 +

10

9
ζ3 +

25

9
ζ4

)

+
1

5

(
9

14
a
‖
2 +

1

18
ζ3 +

3

8
ζ3

[
7

3
ωV

3 − ωA
3

])
C

5/2
2 (ξ)

}

+ 10

(
−2a

‖
2 −

14

3
ζ3 +

9

2
ζ3ω

V
3 − 42ζ4ω

A
4

)

×
∫ u

0

dv

∫ v

0

dw

{
1 + C

1/2
2 (ξw)− 3ξw(1− ξ2

w) ln
1 + ξw
1− ξw

}
(4.23)

with ξw = 2w − 1. The double-integral can of course be taken analytically:

∫ u

0

dv

∫ v

0

dw

{
1 + C

1/2
2 (ξw)− 3ξw(1− ξ2

w) ln
1 + ξw
1− ξw

}
=

=
1

10
uū(2 + 13uū) +

1

5
u3(10− 15u+ 6u2) lnu+

1

5
ū3(10− 15ū+ 6ū2) ln ū. (4.24)

The resulting functions g3(u) and A(u) are shown in Fig. 1 by solid lines. The dashed curves
are obtained by omitting the next-to-leading spin corrections (which is the approximation
adopted in [4, 21]), and the dash-dotted curves correspond to taking into account the meson
mass corrections only and neglecting all twist-3 and twist-4 matrix elements. It is evident
that the contributions from next-to-leading order conformal spin are small in both cases. The
mass terms clearly dominate g3(u) and constitute about half of A(u).

We stress that the given expressions are exact, provided the three-particle distributions
are taken in the above approximation. This means, in particular, that (4.22) and (4.23)
reproduce the exact second moments of g3 and d2/du2A, i.e. the normalization of A, but
the fourth moment of g3 (second of A) also includes (uncalculated) contributions from even
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Figure 1: Two-particle twist-4 chiral-even distribution amplitudes of the ρ meson: g3 (a) and
A (b). LO means neglecting contributions of higher conformal spin for twist-3 and twist-4
operators and the mass terms correspond to pure meson mass corrections.

higher conformal spin operators. We have checked that the second moments agree with those
obtained from Taylor expanding (2.3).

Note that g3 corresponds to the spin projection s = −1/2 for both the quark and the
antiquark, and thus has a conformal expansion in Gegenbauer polynomials C1/2(2u − 1), cf.
(2.24):

g3(u, µ
2) = 1 +

∞∑

k=2,4,...

g
(k)
3 (µ2)C

1/2
k (2u− 1).

The coefficients g
(2)
3 and g

(4)
3 can be read off (4.22). The conformal expansion of A is not

straightforward and contains for instance logarithms.

5 Chiral-Odd Distribution Amplitudes

The construction of twist-4 chiral-odd distribution amplitudes parallels that for chiral-even
distributions in the previous section. We first recall the results for distribution amplitudes of
twist-3. Next, we derive the conformal expansion of three-particle distribution amplitudes to
next-to-leading order in conformal spin and relate the expansion coefficients to matrix elements
of local operators. The two-particle distribution amplitudes are then obtained from the EOM
as derived in App. A.
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5.1 Twist-3 Distributions

The leading twist-2 distribution amplitude for transversely polarized ρmesons, φ⊥, is expanded
as [17, 18]

φ⊥(u) = 6uū

[
1 + a⊥2

3

2
(5ξ2 − 1)

]
. (5.1)

The parameter a⊥2 is defined by the matrix element of a twist-2 conformal operator with
conformal spin 3,

〈0|ūσ⊥·(i
↔

D z)2d− 1

5
(i∂z)2ūσ⊥·d|ρ−(P, λ)〉 =

12

35
e
(λ)
⊥ (pz)ifT

ρ a
⊥
2 , (5.2)

and is scale-dependent:

a⊥2 (Q2) = Lγ⊥
2 /ba⊥2 (µ2), γ⊥2 =

10

3
CF . (5.3)

The numerical value of a⊥2 has been estimated from QCD sum rules and is given in Table 3
(at the reference scale µ = 1 GeV).

The only existing three-particle distribution amplitude of twist-3, T , is given by:

T (α) = 540 ζ3 ω
T
3 (αd − αu)αdαuα

2
g, (5.4)

with ωT
3 defined as

〈0|ūσµνz
ν(gGµβzβ(i

→

Dz)− (i
←

Dz)gG
µβzβ)d|ρ−(P, λ)〉 = (pz)2(e(λ)z)m2

ρf
T
ρ

3

28
ζ3ω

T
3 . (5.5)

The parameter ζ3 was already defined in (4.6). The scale-dependence of ωT
3 is given by [3]

ωT
3 (Q2) = LγωT

3 /bωT
3 (µ2), γωT

3 =
25

6
CF − 2CA. (5.6)

Finally, we also quote the two-particle distributions of twist-3 as obtained from the EOM [3]:

h
(s)
‖ (u) = 6uū

[
1 +

(
1

4
a⊥2 +

5

8
ζ3ω

T
3

)
(5ξ2 − 1)

]
, (5.7)

h
(t)
‖ (u) = 3ξ2 +

3

2
a⊥2 ξ

2 (5ξ2 − 3) +
15

16
ζ3ω

T
3 (3− 30ξ2 + 35ξ4). (5.8)

Numerical values of the input parameters are collected in Table 3.

5.2 Twist-4 Distributions

Due to the odd G-parity of the operator in (2.21), the distribution amplitudes T
(4)
i are an-

tisymmetric under the exchange of αu and αd, whereas S and S̃ are symmetric. In order to
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resolve the conformal structure of T
(4)
i , it is advantageous to exploit the fact that σµνγ5 is not

independent of σµν , and to define a “dual” matrix element

〈0|ū(z)iσαβγ5gG̃µν(vz)d(−z)|ρ〉 = r.h.s. of (2.21) with T → T̃ . (5.9)

One easily finds

T̃ (3) = T (3), T̃
(4)
1 = −T (4)

3 , T̃
(4)
2 = −T (4)

4 ,

T̃
(4)
3 = −T (4)

1 , T̃
(4)
4 = −T (4)

2 . (5.10)

We next note that the distributions T
(4)
1 and T̃

(4)
1 = −T (4)

3 correspond to the Lorentz spin
projection s = +1/2 for both quark fields and the spin projection zero for the gluon. Hence

T
(4)
1 (α) = 120t10(αu − αd)αuαdαg,

T
(4)
3 (α) = −120t̃10(αu − αd)αuαdαg. (5.11)

For the distribution amplitudes S, S̃, T
(4)
1 and T

(4)
4 , on the other hand, one has to separate

different quark spin projections. To this end, we define auxiliary amplitudes

〈0|ū(z)γ·γ∗gGµν(vz)d(−z)|ρ−(P, λ)〉 = ifT
ρ m

2
ρ[e

(λ)⊥
µ pν − e(λ)⊥

ν pµ]S
↑↓(v, pz),

〈0|ū(z)γ·γ∗iγ5gG̃µν(vz)d(−z)|ρ−(P, λ)〉 = ifT
ρ m

2
ρ[e

(λ)⊥
µ pν − e(λ)⊥

ν pµ]S̃
↑↓(v, pz), (5.12)

and, similarly, two more distributions S↓↑ and S̃↓↑ by replacing γ·γ∗ → γ∗γ·. The relations to
the distribution amplitudes in (2.21), (2.22) are given by:

S(α) =
1

2
(S↑↓(α) + S↓↑(α)),

S̃(α) =
1

2
(S̃↑↓(α) + S̃↓↑(α)),

T
(4)
4 (α) =

1

2
(S↑↓(α)− S↓↑(α)),

−T (4)
2 (α) = T̃

(4)
4 (α) =

1

2
(S̃↑↓(α)− S̃↓↑(α)). (5.13)

The auxiliary amplitudes are expanded in Appell polynomials as

S↑↓(α) = 60αuα
2
g

[
s00 + s10

(
αg −

3

2
αu

)
+ s01(αg − 3αd)

]
,

S↓↑(α) = 60αdα
2
g

[
s00 + s10

(
αg −

3

2
αd

)
+ s01(αg − 3αu)

]
, (5.14)
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and similarly for S̃↑↓ and S̃↓↑. Here we made use of the symmetry of S under the exchange of
the u and d quarks, i.e. s↑↓00 = s↓↑00, etc.

From (5.13) and (5.14) it now follows immediately that

S(α) = 30α2
g

[
s00 (1− αg) + s10

{
αg(1− αg)−

3

2
(α2

u + α2
d)

}
+ s01 {αg(1− αg)− 6αuαd}

]
,

S̃(α) = 30α2
g

[
s̃00 (1− αg) + s̃10

{
αg(1− αg)−

3

2
(α2

u + α2
d)

}
+ s̃01 {αg(1− αg)− 6αuαd}

]
,

T
(4)
2 (α) = −30α2

g(αu − αd)

[
s̃00 +

1

2
s̃10 (5αg − 3) + s̃01αg

]
,

T
(4)
4 (α) = 30α2

g(αu − αd)

[
s00 +

1

2
s10 (5αg − 3) + s01αg

]
. (5.15)

At this point, the expansion involves two parameters of leading conformal spin, s00 and s̃00,
and six more (s10, s01, s̃10, s̃01, t10, t̃10) for the corrections. Our next task will be to relate them
to matrix elements of local operators and find out how many coefficients are independent.

For the leading spin, the answer is easily obtained by taking the local limit z → 0 of (2.22),
so that

s00 = ζT
4 , s̃00 = ζ̃T

4 (5.16)

with

〈0|ūgGµνd|ρ−(P, λ)〉 = ifT
ρ m

2
ρζ

T
4 (e(λ)

µ Pν − e(λ)
ν Pµ),

〈0|ūgG̃µνiγ5d|ρ−(P, λ)〉 = ifT
ρ m

2
ρζ̃

T
4 (e(λ)

µ Pν − e(λ)
ν Pµ). (5.17)

The parameters ζT
4 , ζ̃T

4 renormalize multiplicatively [19]:

(
ζT
4 + ζ̃T

4

)
(Q2) = Lγ+/b

(
ζT
4 + ζ̃T

4

)
(µ2), γ+ = 3CA −

8

3
CF ,

(
ζT
4 − ζ̃T

4

)
(Q2) = Lγ−/b

(
ζT
4 − ζ̃T

4

)
(µ2), γ− = 4CA − 4CF . (5.18)

The numerical values can be estimated from QCD sum rules, see Table 4 and App. C.
The calculation of the next-to-leading order spin corrections is involved and presented in

detail in App. B. The main observation is that the six coefficients s10, s01, s̃10, s̃01, t10 and t̃10
involve three new nonperturbative parameters. We find:

s10 = − 3

22
a⊥2 −

1

8
ζ3ω

T
3 +

28

55
〈〈Q(1)〉〉 + 7

11
〈〈Q(3)〉〉+ 14

3
〈〈Q(5)〉〉,

s̃10 =
3

22
a⊥2 −

1

8
ζ3ω

T
3 −

28

55
〈〈Q(1)〉〉 − 7

11
〈〈Q(3)〉〉+ 14

3
〈〈Q(5)〉〉,
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s01 =
3

44
a⊥2 +

1

8
ζ3ω

T
3 +

49

110
〈〈Q(1)〉〉 − 7

22
〈〈Q(3)〉〉+ 7

3
〈〈Q(5)〉〉,

s̃01 = − 3

44
a⊥2 +

1

8
ζ3ω

T
3 −

49

110
〈〈Q(1)〉〉+ 7

22
〈〈Q(3)〉〉+ 7

3
〈〈Q(5)〉〉,

t10 = − 9

44
a⊥2 −

3

16
ζ3ω

T
3 −

63

220
〈〈Q(1)〉〉+ 119

44
〈〈Q(3)〉〉,

t̃10 =
9

44
a⊥2 −

3

16
ζ3ω

T
3 +

63

220
〈〈Q(1)〉〉+ 35

44
〈〈Q(3)〉〉. (5.19)

The above relations involve the three parameters 〈〈Q(1)〉〉, 〈〈Q(3)〉〉 and 〈〈Q(5)〉〉, which can be
defined as matrix elements of the following operators:

Q
(1)
α,ξη = −iū

↔

∇α (σξρgGηρ − σηρgGξρ)d+ 7ūDαg[G− iγ5G̃]ξηd−
11

3
∂αūg[G− iγ5G̃]ξηd,

Q
(3)
α,ξη =

{
iū
↔

∇ξ σηρg[G+ iγ5G̃]αβ d−
1

3
ūDαg[G+ iγ5G̃]ξη d−

1

3
ūDηg[G+ iγ5G̃]ξα d

+
1

3
∂αūg[G+ iγ5G̃]ξη d+

1

3
∂ηūg[G+ iγ5G̃]ξα d

}
− {ξ ↔ η},

Q
(5)
α,ξη = ūDαg[G+ iγ5G̃]ξηd−

1

2
∂αūg[G+ iγ5G̃]ξηd, (5.20)

where we used convenient short-hand notations (see [19]) for the covariant derivatives:
↔

∇α

Gµν ≡ Gµν

→

Dα −
←

Dα Gµν acting on quark fields only, and DαGµν ≡ [Dα, Gµν ] acting on gluon
fields only. The reduced matrix elements 〈〈Q(i)〉〉 of these operators are defined as

〈0|Q(i)
α,ξη|ρ−(P, λ)〉 =

[
e
(λ)
ξ

(
PαPη −

1

3
m2

ρgαη

)
− e(λ)

η

(
PαPξ −

1

3
m2

ρgαξ

)]
fT

ρ m
2
ρ〈〈Q(i)〉〉

+ (e
(λ)
ξ gαη − e(λ)

η gαξ)〈〈R(i)〉〉, (5.21)

where 〈〈Q(i)〉〉 is of twist-4 and 〈〈R(i)〉〉 of twist-5. The operators renormalize multiplicatively
and their one-loop anomalous dimensions are known [19]; to obtain the scale-dependence of
the matrix elements 〈〈Q(i)〉〉, one has to subtract the anomalous dimension of fT

ρ , Eq. (2.7), so
that

〈〈Q(i)〉〉(Q2) = L
γ

Q(i)/b 〈〈Q(i)〉〉(µ2)

γQ(1) = −4CF +
11

2
CA, γQ(3) =

10

3
CF , γQ(5) = −5

3
CF + 5CA. (5.22)
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fT
ρ [MeV] a⊥2 ζ3 ωT

3

160± 10 0.20± 0.10 0.032± 0.010 7.0± 7.0

Table 3: Parameters of twist-2 and twist-3 chiral-odd distribution amplitudes. Renormaliza-
tion scale is µ = 1 GeV.

ζT
4 ζ̃T

4 〈〈Q(1)〉〉 〈〈Q(3)〉〉 〈〈Q(5)〉〉
0.10± 0.05 −0.10± 0.05 −0.15± 0.15 0 0

Table 4: Parameters of twist-4 chiral-odd distribution amplitudes. Renormalization scale as
above.

Numerical estimates for these matrix elements were obtained in [19] and App. C and are
collected in Table 4.

Finally, we have to specify the two-particle twist-4 distributions h3 and AT defined in
Sec. 2. They are not independent, but can be expressed in terms of S, T

(4)
2 and T

(4)
4 by using

the EOM, see Eqs. (A.13), (A.14). To next-to-leading accuracy, we obtain:

h3(u) = 1 +

{
−1 +

3

7
a⊥2 − 10(ζT

4 + ζ̃T
4 )

}
C

1/2
2 (ξ)

+

{
−3

7
a⊥2 −

15

8
ζ3ω

T
3

}
C

1/2
4 (ξ), (5.23)

AT (u) = 30u2ū2

{
2

5

(
1 +

2

7
a⊥2 +

10

3
ζT
4 −

20

3
ζ̃T
4

)
+

(
3

35
a⊥2 +

1

40
ζ3ω

T
3

)
C

5/2
2 (ξ)

}

−
(

18

11
a⊥2 −

3

2
ζ3ω

T
3 +

126

55
〈〈Q(1)〉〉+ 70

11
〈〈Q(3)〉〉

)

×
(
uū(2 + 13uū) + 2u3(10− 15u+ 6u2) lnu+ 2ū3(10− 15ū+ 6ū2) ln ū

)
.(5.24)

In Fig. 2, we plot h3 and AT as functions of u, showing full results and the contributions from
leading order conformal spin and mass correction terms separately. Like in the chiral-even
case, the mass terms dominate h3(u) and constitute approximately one half of AT (u).

We stress that the given expressions are exact provided the three-particle distributions
are taken in the above approximation. This means, in particular, that (5.23) and (5.24)
reproduce the exact second moments of h3 and d2/du2AT , i.e. the normalization of AT , but
the fourth moment of h3 (second of AT ) also includes (uncalculated) contributions from even
higher conformal spin operators. We have checked that the second moments agree with those
obtained from Taylor expanding (2.16).
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Figure 2: Two-particle twist-4 chiral-odd distribution amplitudes of the ρ meson: h3 (a) and
AT (b). LO means neglecting contributions of higher conformal spin for twist-3 and twist-4
operators and the mass terms correspond to retaining meson mass corrections only.

Note that, like g3, h3 corresponds to the spin projection s = −1/2 for both the quark and
the antiquark, and thus has a conformal expansion in Gegenbauer polynomials C1/2(2u− 1),
cf. (2.24):

h3(u, µ
2) = 1 +

∞∑

k=2,4,...

h
(k)
3 (µ2)C

1/2
k (2u− 1).

The coefficients h
(2)
3 and h

(4)
3 can be read off (5.23). The conformal expansion of AT is more

complicated.

6 Summary and Conclusions

In the present paper we have studied the twist-4 two- and three-particle distribution ampli-
tudes of vector mesons in QCD and expressed them in a model-independent way by a minimal
number of nonperturbative parameters. The work reported here is an extension of our earlier
paper on twist-3 distribution amplitudes [3]. The one ingredient in the approach is the use of
the QCD equations of motion, which allow us to reveal interrelations between different distri-
bution amplitudes of a given twist and to obtain exact integral representations for distribution
amplitudes that are not dynamically independent. The other ingredient is the use of confor-
mal expansion: analogously to partial wave decomposition in quantum mechanics, it allows
one to separate transverse and longitudinal variables in the wave function. The dependence
on transverse coordinates is represented as scale-dependence of the relevant operators and is
governed by renormalization-group equations; the dependence on the longitudinal momentum
fraction is described in terms of irreducible representations of the corresponding symmetry
group, the collinear conformal group SL(2,R). The conformal partial wave expansion is ex-

24



plicitly consistent with the equations of motion since the latter are not renormalized. The
expansion thus makes maximum use of the symmetry of the theory in order to simplify the
dynamics, which is related, in the perturbative domain, to renormalization properties of the
relevant operators.

The analysis of twist-4 distribution amplitudes is complicated by the fact that the twist-
4 terms are of different origin: there are, first, “intrinsic” twist-4 corrections from matrix
elements of twist-4 operators. There are, second, admixtures of matrix elements of twist-
3 operators, as the counting of twist in terms of “good” and “bad” projections on light-
cone coordinates does not exactly match the definition of twist as “dimension minus spin”
of an operator. There are, third, meson mass corrections, which one may term kinematical
corrections, that come, on the one hand, from the subtraction of traces in the leading twist
operators and, on the other hand, from higher twist operators containing total derivatives
of twist-2 operators. Meson mass corrections of the first kind are formally analogous to
Nachtmann corrections in inclusive processes, while the contribution of operators with total
derivatives is a specific new feature of exclusive processes, which makes the structure of these
corrections much more complex.

Our final results are collected in Secs. 4 and 5. We present a complete set of distribution
amplitudes that is consistent with the QCD equations of motion and has a minimum number
of nonperturbative parameters whose numerical values are estimated from QCD sum rules. It
turns out that the meson mass corrections are the dominant ones in all two-particle twist-4
distributions, which is in contrast to what is observed in deep-inelastic scattering and welcome
from the phenomenological point of view, as the higher twist matrix elements, ζ3,4 etc., come
with considerable numerical uncertainties.

The results of our study are immediately applicable — and, in fact, have already been
applied [21] — to processes such as exclusive or radiative B decays and hard electroproduction
of vector mesons at HERA.
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Appendices

A Equations of Motion

A.1 Operator Identities

In this appendix we collect exact operator identities, which can be derived using the approach
of [15] and which present a nonlocal equivalent to the equations of motion for Wilson local
operators. The basic idea is to study the response of nonlocal operators to total translations
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and/or the change of the interquark separation along the light-cone. For convenience, we work
in the Fock–Schwinger gauge xµAµ(x) = 0, so that

[x,−x] = 1, Aµ(x) =

∫ 1

0

dv vxαGαµ(vx).

All operator relations can be made manifestly gauge invariant by restoring the path-ordered
gauge factor between field operators at different points in space-time.

For the general two-particle operator, we can write

∂

∂xµ
ū(x)Γd(−x) = −ū(x)Γ

↔

Dµ d(−x)− i
∫ 1

−1

dv vū(x)xαgGαµ(vx)Γd(−x), (A.1)

where Γ is an arbitrary Dirac matrix and
↔

Dµ=
→

Dµ −
←

Dµ= (
→

∂ −iA(−x))µ− (
←

∂ +iA(x))µ. The
derivatives act on the arguments of the quark operators.

In a similar way we can calculate the derivative with respect to the total translation:

∂µ{ū(x)Γd(−x)} = ū(x)(
←

Dµ +
→

Dµ)Γd(−x)− i
∫ 1

−1

dv ū(x)xαGαµ(vx)Γd(−x), (A.2)

where, by definition,

∂µ {ū(x)Γd(−x)} ≡
∂

∂yµ

{ū(x+ y)[x+ y,−x+ y]Γd(−x+ y)}
∣∣∣∣
y→0

. (A.3)

Here it is important to keep the gauge factors, which give a nonvanishing contribution:

∂µ[x,−x] = iAµ(x)[x,−x] − i[x,−x]Aµ(−x)− i
∫ 1

−1

dv [x, vx]xαGαµ(vx)[vx,−x].

For chiral-even operators, Γ = {γµ, γµγ5}, the first terms on the right-hand side of Eqs. (A.1),
(A.2) vanish by virtue of the massless Dirac equation, so that

∂

∂xµ
ū(x)γµ(γ5)d(−x) = − i

∫ 1

−1

dv vū(x)xαgGαµ(vx)γµ(γ5)d(−x), (A.4)

∂µ{ū(x)γµ(γ5)d(−x)} = − i
∫ 1

−1

dv ū(x)xαGαµ(vx)γµ(γ5)d(−x). (A.5)

For chiral-odd operators, Γ = {1(γ5), σµν(γ5)}, on the other hand, we can use the identities

σµν

↔

Dµ= i(
→

Dν +
←

Dν), (
→

Dµ +
←

Dµ)σµν = i
↔

Dν , (A.6)
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and get, combining Eqs. (A.1) and (A.2):

∂µū(x)σµν(γ5)d(−x) = −i ∂
∂xν

ū(x)(γ5)d(−x) +

∫ 1

−1

dv vū(x)xρgGρν(vx)(γ5)d(−x)

− i
∫ 1

−1

dv ū(x)xρgGρµ(vx)σµν(γ5)d(−x), (A.7)

∂

∂xµ
ū(x)σµν(γ5)d(−x) = −i∂ν ū(x)(γ5)d(−x) +

∫ 1

−1

dv ū(x)xρgGρν(vx)(γ5)d(−x)

− i
∫ 1

−1

dv vū(x)xρgGρµ(vx)σµν(γ5)d(−x). (A.8)

This method is general and can also be used for calculating the second derivative. In particular,
the following formula is useful:

∂2

∂xα∂xα
ū(x)Γ d(−x) = −∂2ū(x)Γ d(−x) + ū(x)[ΓσG + σGΓ]d(−x)

− 2ixν ∂

∂xµ

∫ 1

−1

dv v ū(x)ΓGνµ(vx)d(−x)− 2ixν∂µ

∫ 1

−1

dv ū(x)ΓGνµ(vx)d(−x)

+ 2

∫ 1

−1

dv

∫ v

−1

dt (1 + vt)ū(x)ΓxµxνGµρ(vx)G
ρ
ν(tx)d(−x)

+ ixν

∫ 1

−1

dv (1 + v2) ū(x)Γ[Dµ, G
µ
ν ](vx)d(−x), (A.9)

where [Dµ, G
µ
ν ] = −tA(ψ̄γνt

Aψ) , assuming summation over light flavours ψ.

A.2 Relations Between Distribution Amplitudes

We are now in a position to derive relations between two- and three-particle amplitudes.
Sandwiching (A.4) between the vacuum and the ρ meson state, we find

g3(u) = φ‖(u)− 2
d

du

∫ u

0

dαd

∫ ū

0

dαu
1

αg

{2Φ(α) + Ψ(α)} . (A.10)

To arrive at Eq. (A.10), the following formula proves useful:
∫ 1

−1

dv vk

∫
DαF(α) exp[−ipx{αu − αd + vαg}] =

=

∫ 1

0

du exp[iξpx]

∫ u

0

dαd

∫ ū

0

dαu
2

αg

[
1

αg

(αd − αu − ξ)
]k

F(α), (A.11)
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which is valid for an arbitrary function F(α).
On the other hand, taking the matrix element of (A.5), and eliminating g3 by virtue of

(A.10), we obtain

1

8

d2

du2
A(u) = 4(gv

⊥(u)− φ‖(u)) + 4
d

du

∫ u

0

dαd

∫ ū

0

dαu
1

αg
{2Φ(α) + Ψ(α)}

+
d2

du2

∫ u

0

dαd

∫ ū

0

dαu
1

α2
g

(αuu− αdū) {2Φ(α) + Ψ(α)} . (A.12)

A can then be obtained as

A(u) =

∫ u

0

dv

∫ v

0

dw
d2

dw2
A(w).

Two more relations are derived in a similar manner between chiral-odd distribution am-
plitudes using the operator identities in (A.7) and (A.8). From (A.7):

h
(s)
‖ (u)− 1

2
(h3(u) + φ⊥(u)) =

=
d

du

∫ u

0

dαd

∫ ū

0

dαu

[
αd − αu − ξ

α2
g

S(α)− 1

αg

(
T

(4)
2 (α)− T (4)

3 (α)
)]

, (A.13)

and from (A.8):

4

∫ u

0

dv

∫ v

0

dw [h3(w)− φ⊥(w)]− 1

2
AT (u)−

∫ u

0

dv (2v − 1)[φ⊥(v) + h3(v)] =

=

∫ u

0

dαd

∫ ū

0

dαu
2

αg

{
αd − αu − ξ

αg

(
T

(4)
2 (α)− T (4)

3 (α)
)
− S(α)

}
. (A.14)

B Short-Distance Expansion of Distribution Amplitu-

des: Relation to Local Operators

In this appendix we calculate the next-to-leading corrections to the conformal expansion of
twist-4 three-particle distribution amplitudes as given in Eq. (4.20) and (5.19).

B.1 Chiral-Even

Our general strategy will be to consider matrix elements of the relevant operators with all
Lorentz indices open. Taking different light-cone projections we will relate coefficients in the
conformal expansion of distribution amplitudes to the invariant Lorentz structures and then
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identify the relevant contractions of indices that relate φ10, φ01, ψ10 and ψ̃10 to matrix elements
of independent twist-4 operators.

To the next-to-leading conformal spin accuracy, we need local operators of dimension 6 with
one quark-antiquark pair, one gluon field and one additional covariant derivative. Taking
into account G-parity, only two operators can contribute, apart from operators with total
derivatives:

O
(1)
αβµν = ū(i

←

Dβ gG̃µν + gG̃µνi
→

Dβ)γαγ5d,

O
(2)
αβµν = ū(−

←

Dβ gGµν + gGµν

→

Dβ)γαd. (B.1)

For each of them we write down a general Lorentz decomposition:

〈0|O(i)
αβµν |ρ−(P, λ)〉 =

{
e(λ)

µ

[
PαPβPν −

5

24
m2

ρ(Pαgβν + Pβgαν)−
1

6
m2

ρPνgαβ

]

− e(λ)
ν

[
PαPβPµ −

5

24
m2

ρ(Pαgβµ + Pβgαµ)− 1

6
m2

ρPµgαβ

]

− 1

24
m2

ρ

[
e(λ)

α (gβνPµ − gβµPν) + e
(λ)
β (gανPµ − gαµPν)

]}
A(i)fρmρ

+ Pα(e(λ)
µ gβν − e(λ)

ν gβµ)B
(i) + Pβ(e(λ)

µ gαν − e(λ)
ν gαµ)C(i)

+ e(λ)
α (Pµgβν − Pνgβµ)D

(i) + e
(λ)
β (Pµgαν − Pνgαµ)E

(i)

−gαβ(Pµe
(λ)
ν − Pνe

(λ)
µ )F (i). (B.2)

Here A(i) is of twist-3 and can easily be related to an integral over the twist-3 distribution
amplitudes A and V, respectively. Using (4.7) and (4.8), we find

− (pz)3e
(λ)
⊥ mρfρA

(1) = 〈0|O(1)
···⊥|ρ〉 = −(pz)3e

(λ)
⊥ mρfρζ3

(
3

7
+

3

28
ωA

3

)
, (B.3)

(pz)3e
(λ)
⊥ mρfρA

(2) = 〈0|O(2)
···⊥|ρ〉 = (pz)3e

(λ)
⊥ mρfρ

3

28
ζ3ω

V
3 . (B.4)

To project onto the intrinsic twist-4 contributions, we must replace one “dot” projection
by a “perp” projection in (B.3) and (B.4), which yields

〈0|O(1)
⊥··⊥|ρ〉 = fρm

3
ρ(ez)(pz)g

⊥
⊥⊥

{
1

2

(
−1

3
ζ3 +

1

3
ζ4

)
− 1

14
(φ01 + φ10)

}
,

〈0|O(2)
⊥··⊥|ρ〉 = fρm

3
ρ(ez)(pz)g

⊥
⊥⊥

{
1

6

(
−1

3
ζ3 +

1

3
ζ4

)
+

1

14
(φ01 − φ10)

}
, (B.5)

29



whereas direct contraction of (B.2) gives

〈0|O(i)
⊥··⊥|ρ〉 = −1

4
m3

ρfρ(ez)(pz)g
⊥
⊥⊥A

(i) + (ez)(pz)g⊥⊥⊥
(
C(i) + E(i)

)
. (B.6)

Once C(i) +E(i) are known in terms of ζ3, ζ4 and ωV,A
3,4 , these two equations serve to determine

φ01 and φ10.
In order to determine C(i) + E(i), we first have to introduce some more matrix elements:

〈0|O(i)
ξβξν|ρ〉 = (eβPν + eνPβ)X

(i)
+ + (eβPν − eνPβ)X

(i)
− ,

〈0|O(i)
αξξν|ρ〉 = (eαPν + eνPα)Y

(i)
+ + (eαPν − eνPα)Y

(i)
− . (B.7)

By construction, X+ and Y+ are of twist-4 and X− and Y− of twist-5; thus, to our accuracy:

X
(i)
− = Y

(i)
− = 0.

Also note that, by definition, Eq. (4.21):

X
(1)
+ = ζ4

(
ωA

4 −
5

18

)
. (B.8)

Now, by contracting (B.2) with gαβ, etc., we find a set of linear equations relating A, B, . . . to
X+ and Y+, which can be solved to give

B = D =
1

4
(X+ − 3Y+) fρm

3
ρ,

C = E = −1

4
(X+ − 3Y+) fρm

3
ρ,

F = 0. (B.9)

We recall that contributions from twist-5 operators are neglected in these solutions.
Of the remaining three unknowns X

(2)
+ , Y

(1)
+ and Y

(2)
+ , Y

(1)
+ can be obtained rather easily

by observing that DµG̃µν = 0, so that

〈0|O(1)
αξξν +O

(1)
νξξα|ρ〉 = Pξ〈0|ū(G̃ξνγαγ5 + G̃ξαγνγ5)d|ρ〉

= −(eνPα + eαPν)fρm
3
ρ

(
2

3
ζ3 +

1

3
ζ4

)
,

which means

Y
(1)
+ = −1

3
ζ3 −

1

6
ζ4. (B.10)
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In order to determine the remaining parameters X
(2)
+ and Y

(2)
+ , we make use of the operator

identities

O
(2)
ξβξα − O

(2)
βξξα = O

(1)
ξαξβ − O

(1)
αξξβ + gαβ O

(1)
σξξσ (B.11)

and

4

5
∂µEµαβ = −12iūγρ

{
Gρβ

→

Dα −
←

Dα Gρβ + (α↔ β)
}
d− 4∂ρū(γβG̃αρ + γαG̃βρ)γ5d

− 8

3
∂β ūγσG̃σαγ5d−

8

3
∂αūγσG̃σβγ5d+

28

3
gαβ∂ρūγσG̃σρd, (B.12)

where

Eµαβ =

[
15

2
ūγµ

↔

Dα

↔

Dβ d−
3

2
∂α∂β ūγµd− traces

]

symmetrized

is a leading twist-2 conformal operator. Taking matrix elements, we find

X
(2)
+ − Y (2)

+ = X
(1)
+ − Y (1)

+ , (B.13)

and

4

7
m2

ρa
‖
2 = −24fρm

3
ρX

(2)
+ + 4fρm

3
ρ

(
2

3
ζ3 +

1

3
ζ4

)
− 8

3
fρm

3
ρζ4. (B.14)

With X(i) and Y (i) from Eqs. (B.8), (B.10) and (B.14), we get C + E from (B.9), and thus
φ10 and φ01 from (B.5) and (B.6), see the first two lines of Eq. (4.20).

Note that it is precisely operator relations of type (B.12), where the divergence of a leading
twist conformal operator is expressed as a certain combination of quark–quark–gluon opera-
tors, that make the analysis of meson mass corrections to twist-4 distribution amplitudes so
complicated. This divergence vanishes in a free theory, as expected.

The determination of the remaining parameters ψ10 and ψ̃10 is now fairly easy: introducing
a different “bad” component in (B.3) and (B.4), we find

〈0|O(i)
···∗|ρ〉 = fρm

3
ρ(ez)(pz)

1

2

{
A(i) −

(
X

(i)
+ + Y

(i)
+

)}
. (B.15)

On the other hand, taking proper integrals over distribution amplitudes:

〈0|O(1)
···∗|ρ〉 = (ez)(pz)fρm

3
ρ

(
2

3
ψ̃00 −

2

21
ψ̃10

)
,

〈0|O(2)
···∗|ρ〉 = − 2

21
fρm

3
ρ(ez)(pz)ψ10. (B.16)

By equating (B.15) and (B.16), we obtain the last two lines of Eq. (4.20).
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B.2 Chiral-Odd

The calculation of next-to-leading order spin corrections to chiral-odd distribution amplitudes
essentially parallels the calculation of similar corrections to the photon distribution amplitude
in Ref. [19]. To follow this analogy, it is convenient to express the corrections in terms of

η1 = −3

4
(s10 + 2s01), η2 = −1

4
(s10 − 2s01) (B.17)

and the corresponding “dual” quantities η̃1, η̃2, instead of the coefficients s01, s10, s̃10, s̃01 in
the expansion over Appell polynomials.

Expanding (2.21) and (2.22) in powers of (pz) to first order, we obtain

〈0|ū
↔

∇· σαβgGµνd|ρ−〉 = fT
ρ m

2
ρ

ez

2pz

[
pαpµg

⊥
βν − . . .

]
ipz

(
− 3

28
ζ3ω

T
3

)

+ fT
ρ m

2
ρipz

{[
pαe

⊥
µ g
⊥
βν − . . .

] 2

21
t10 +

[
e⊥αpµg

⊥
βν − . . .

](
−1

6
ζ̃T
4 −

1

42
η̃1 −

3

14
η̃2

)

−
[
pαpµe

⊥
β zν − . . .

] 1

pz

2

21
t̃10 +

[
pαpµzβe

⊥
ν − . . .

] 1

pz

(
1

6
ζT
4 +

1

42
η1 +

3

14
η2

)}
+O(twist-5),

(B.18)

〈0|ūgD·Gµνd|ρ−〉 = fT
ρ m

2
ρpz(e

⊥
µ pν − e⊥ν pµ)

{
1

2
ζ4 −

1

14
(η1 + η2)

}
,

〈0|ūigD·G̃µνd|ρ−〉 = fT
ρ m

2
ρpz(e

⊥
µ pν − e⊥ν pµ)

{
1

2
ζ̃4 −

1

14
(η̃1 + η̃2)

}
. (B.19)

Comparing these expressions with the reduced matrix elements of the conformal operators,
Eq. (5.21), we immediately find

〈〈Q(5)〉〉 = − 1

14
(η1 + η2)−

1

14
(η̃1 + η̃2), (B.20)

while contracting (B.18) over gβν , we find

〈〈Q(1)〉〉 = − 2

21
(t10 − t̃10)−

10

21
(η1 − η̃1)−

2

7
(η2 − η̃2). (B.21)

Next, we introduce one more operator

Q
(2)
α,ξη = iū

↔

∇α (σξρgGηρ − σηρgGξρ)d+
1

3
ūDα(gGξη − igG̃ξηγ5)d. (B.22)

Using (B.18) and (B.19), we easily find

〈〈Q(2)〉〉 =
2

21
(t10 − t̃10)−

1

21
(η1 − η̃1)−

5

21
(η2 − η̃2). (B.23)
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Q(2) is actually not independent, but related to Q(3) via an important operator identity derived
in [19]:4

Q
(2)
α,ξη =

1

3
Q

(3)
α,ξη +

1

30
∂ρ

(
O2

ξ,ηαρ − O2
η,ξαρ

)
, (B.24)

where O2 is the leading twist-2 conformal operator

O2
α··· =

15

2
ūσα·

↔

∇·
↔

∇· d−
3

2
∂2
· ūσα·d. (B.25)

The matrix element of the conformal operator on the right-hand side of Eq. (B.24) is equal to

〈0|O2
ξ,ηαρ − O2

η,ξαρ|ρ−〉 = ifT
ρ

(
−24

7
a⊥2

) {
PαPρ(eξPη − eηPξ)−

1

6
m2

ρgαρ(eξPη − eηPξ)

+
1

24
m2

ρ [eα(gξρPη − gηρPξ) + eρ(gξαPη − gηαPξ)]

+
5

24
m2

ρ [Pα(gξρeη − gηρeξ) + Pρ(gξαeη − gηαeξ)]

}
, (B.26)

so that

〈〈Q(2)〉〉 =
1

3
〈〈Q(3)〉〉 − 1

14
a⊥2 . (B.27)

At this point we have established three relations for the six independent parameters. Three
more relations follow from the analysis of the most general matrix element

〈0|Oα,µν,ξη|ρ−〉 = 〈0|ū
↔

∇α σµνigGξηd|ρ−〉

= Pα [eµ(Pξgνη − Pηgνξ)− eν(Pξgµη − Pηgµξ)]A

+ Pα [Pµ(eξgνη − eηgνξ)− Pν(eξgµη − eηgµξ)]B

+ eα [Pµ(Pξgνη − Pηgνξ)− Pν(Pξgµη − Pηgµξ)]C

+ (gαµPν − gανPµ)(eξPη − eηPξ)D + (gαξPη − gαηPξ)(eµPν − eνPµ)E

+ eα(gµξgνη − gµηgνξ)F + [gαµ(gξνeη − gηνeξ)− gαν(gξµeη − gηµeξ)]G

+ [gαξ(gηµeν − gηνeµ)− gαη(gξµeν − gξνeµ)]H. (B.28)

By projecting onto different light-cone variables, we find a set of linear equations for the
coefficients A,. . . , E (F , G, H are of twist-5 and thus not relevant for the following discussion):

A+B + C = fT
ρ m

2
ρ

3

56
ζ3ω

T
3 ,

4Note that we obtain a different sign in front of the total derivative operator on the right-hand side as
compared to Eq. (4.24) in [19]. We thank G. Stoll for checking this equation.
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B = − 2

21
fT

ρ m
2
ρt10,

A = fT
ρ m

2
ρ

(
1

6
ζ̃T
4 +

1

42
η̃1 +

3

14
η̃2

)
,

A− E = − 2

21
fT

ρ m
2
ρt̃10,

B −D = fT
ρ m

2
ρ

(
1

6
ζT
4 +

1

42
η1 +

3

14
η2

)
. (B.29)

Contracting (B.28) with gαµ, we find

〈0|ūDνGξηd− ∂ν ūGξηd|ρ−〉 = 〈0|Oρ,ρν,ξη|ρ−〉

= Pν [Pξeη − Pηeξ](B − C − 3D − E) + [eξgνξ − eηgνξ](m
2
ρB + F − 3G−H). (B.30)

Using (B.19), this can be translated into

ζT
4 −

(
1

2
ζT
4 −

1

14
(η1 + η2)

)
=

2

21
(t10 − t̃10)−

3

56
ζ3ω

T
3 + 3

(
1

6
ζT
4 +

1

42
η1 +

3

14
η2

)
, (B.31)

so that finally
2

3
(t10 − t̃10) =

3

8
ζ3ω

T
3 − 4η2. (B.32)

The same analysis can be performed for the matrix element of the dual operator

Õα,µν,ξη = ūi
↔

∇α σ̃µνG̃ξηd, (B.33)

which results in the “dual” version of the relation (B.32):

2

3
(t̃10 − t10) =

3

8
ζ3ω

T
3 − 4η̃2. (B.34)

To obtain the last relation from which η1, η2, η̃1, η̃2, t10, t̃10 can be extracted, we use the
identity:

Q
(3)
α,ξη = −2

3

(
Q

(5)
α,ξη −

1

2
∂αO

+
ξη

)
− 1

3

(
Q

(5)
η,ξα −

1

2
∂ηO

+
ξα

)
+

1

3

(
Q

(5)
ξ,ηα −

1

2
∂ξO

+
ηα

)

+ ūi
[↔
∇ξ σηρg(G+ iγ5G̃)αρ−

↔

∇η σξρg(G+ iγ5G̃)αρ

]
d, (B.35)

where O+
ξη = ū(G + iγ5G̃)ξηd. The matrix element of the first three terms on the right-hand

side is:

〈0|− 2

3
(. . .)− 1

3
(. . .)+

1

3
(. . .)|ρ−〉 = Pα(eηPξ− eξPη)f

T
ρ m

2
ρ

{
〈〈Q(5)〉〉 − 1

2
(ζT

4 + ζ̃T
4 )

}
. (B.36)
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For the remaining term on the right-hand side we use that

σηρiγ5G̃αρ = σαρGηρ −
1

2
gαησG,

and observe that the term in σG has zero matrix element over the ρ meson. Thus, using
(B.18), we find

〈0|ūi
↔

∇ξ (σηρgGαρ + σαρgGηρ)d− (ξ ↔ η)|ρ−〉 = Pα(Pξeη − Pηeξ)[2A+ 2B − 4C − 3D − 3E].
(B.37)

This gives

− 〈〈Q(3)〉〉 = 2A+ 2B − 4C − 3D − 3E + 〈〈Q(5)〉〉 − 1

2
(ζT

4 + ζ̃T
4 ), (B.38)

and with A, . . . , E from (B.29), finally:

〈〈Q(3)〉〉+ 〈〈Q(5)〉〉 =
3

14
ζ3ω

T
3 +

2

7
(t10 + t̃10)−

1

14
(η1 + 9η2)−

1

14
(η̃1 + 9η̃2). (B.39)

The eight relations (B.17), (B.20), (B.21), (B.23), (B.27), (B.32), (B.34), (B.39) yield s10, s01,
s̃10, s̃01, t10, t̃10 as given in (5.19).

C Numerical Estimates: QCD Sum Rules

In this appendix we estimate the independent nonperturbative parameters from QCD sum
rules. The sum rules for chiral-odd matrix elements can be adapted from the analysis of the
photon distribution amplitudes in Ref. [19], while those for chiral-even matrix elements are
partly available from Ref. [16], partly new. The numerical results are collected in Tables 2, 3
and 4.

C.1 Chiral-Even

To leading conformal spin accuracy, we need the single parameter ζ4 (4.18). This matrix
element was discussed at great length in [16]. The best estimate comes from considering the
correlation function

i

∫
d4x eiqx 〈0|T ū(x)gG̃µαγ

αγ5d(x) d̄(0)γνu(0)|0〉 = (qµqν − gµνq
2)Πζ4(q

2), (C.1)

which yields the following sum rule [16]:

f 2
ρ

m2
ρ

M2
ζ4e
−m2

ρ/M2

=

= − αs

18π3
M2

{
1− e−s0/M2

(
1 +

s0

M2

)}
+
〈(αs/π)G2〉

6M2
− 32

27M4
παs〈q̄q〉2. (C.2)
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In the Borel window 1 GeV2 ≤ M2 ≤ 2 GeV2 and with s0 ≈ 1.5 GeV2 and the condensates
〈(αs/π)G2〉 = (0.012± 0.006) GeV4 and 〈√αsq̄q〉2 = 0.56 · (−0.25 GeV)6, we obtain

ζ4(µ = 1 GeV) = 0.15± 0.10. (C.3)

The calculation of ωA
4 involves dimension 6 operators for which the QCD sum rule approach

becomes rather unreliable. Because of this, we choose to make a simple estimate by considering
the leading contribution to a correlation function that vanishes in perturbation theory:

CFX = i

∫
d4y eiqy〈0|T d̄(y)σκλu(y)O

(1)
ξβξν(0)|0〉

=
i

2
〈q̄σgGq〉 qβ

q2
(qκgλν − qλgκν) +O(1/q4). (C.4)

The contribution of the ρ meson to this correlation function is

CFX =
i

m2
ρ − q2

fρf
T
ρ m

3
ρ

[
qν(qκgλβ − qλgκβ)(X

(1)
+ +X

(1)
− ) + qβ(qκgλν − qλgκν)(X

(1)
+ −X(1)

− )
]
,

(C.5)
from which we obtain in the local duality limit q2 → −∞:

X
(1)
+ ≃ −X(1)

− ≃ −
1

4fρfT
ρ m

3
ρ

〈q̄σgGq〉 (C.6)

at a hadronic scale µ ≈ 1 GeV. This has to be compared with the estimate for ζ4 obtained in
the same approximation by considering a similar correlation function with the operator (4.18):

ζ4 ≃ −
1

2fρfT
ρ m

3
ρ

〈q̄σgGq〉. (C.7)

Putting in numbers, we get ζ4 ≈ 0.3, which is a factor two larger than what comes from the
more accurate (and laborious) analysis in [16], see above. Using the definition (B.8) we get,
finally

ωA
4 (1 GeV) ≈ 7/9 (C.8)

with, probably, a 100% error.

C.2 Chiral-Odd

The calculation of the matrix elements ζT
4 and ζ̃T

4 , defined in (5.17), and the matrix elements

〈〈Q(i)〉〉 of the operators Q
(i)
α,ξη, i = 1, 3, 5, defined in (5.21), is analogous to calculation of the

parameters of the photon distribution function in Ref. [19], and the sum rules obtained in this
paper can be adapted to the present case.
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To leading conformal spin accuracy, we need to estimate two parameters, ζT
4 and ζ̃T

4 . To
this end, we consider the correlation functions

CF± = i

∫
d4y eiqy〈0|T d̄(y)γµu(y) ū(0)g[G(0)± iγ5G̃(0)]αβd(0)|0〉 , (C.9)

which vanish in perturbation theory. The leading power corrections were calculated in [19],
yielding

CF+ = i(qβgµα − qαgµβ)O(1/q4),

CF− = i(qβgµα − qαgµβ)

{〈q̄σgGq〉
3q2

+O(1/q4)

}
. (C.10)

Saturation with a ρ meson gives, on the other hand,

CF± =
1

m2
ρ − q2

m3
ρfρf

T
ρ (ζT

4 ± ζ̃T
4 )i(gµαPβ − gβµPα), (C.11)

so that, taking into account only the leading 1/q2 terms, we have

ζT
4 + ζ̃T

4 = 0,

ζT
4 − ζ̃T

4 = −1

3

〈q̄σgGq〉
m3

ρfρfT
ρ

. (C.12)

Using the same numerical input as in the last section, we obtain

ζT
4 (1 GeV) = −ζ̃T

4 (1 GeV) = 0.10± 0.05 (C.13)

with a rather conservative large error.
We use the same method to estimate also the 〈〈Q(i)〉〉, and consider the correlation functions

CF (i) = i

∫
d4y eiqy〈0|T d̄(y)γκu(y)Q

(i)
α,ξη(0)|0〉. (C.14)

As shown in [19], the lowest order power correction to CF (3,5) vanishes, so that

〈〈Q(3)〉〉 = 〈〈Q(5)〉〉 = 0 (C.15)

to that accuracy. For 〈〈Q(1)〉〉, on the other hand, the mixed condensate gives a nonzero
contribution and we obtain

〈〈Q(1)〉〉(1 GeV) ≃ 5

9

〈q̄σgGq〉(1 GeV)

m3
ρfρfT

ρ

≃ −0.30 (C.16)

This value is likely to be overestimated since the mass scale in the correlation function is much
larger than the ρ meson mass, see the discussion in [19]. We thus prefer to give

〈〈Q(1)〉〉(1 GeV) = −0.15± 0.15 (C.17)

as a conservative estimate.
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