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Abstract

The data collected by ALEPH at LEP at centre-of-mass energies ranging from 181 to
184 GeV, corresponding to an integrated luminosity of 57 pb�1, are analysed to search for
pair-produced neutral Higgs bosons h and A, in the b�bb�b and �+��b�b �nal states. Two
events are found in the data with 2.5 expected from standard model processes. When
combined with the lower energy data collected by ALEPH and with earlier reported
searches for associated hZ production, these analyses are interpreted in the context of the
minimal supersymmetric extension of the standard model (MSSM). For standard choices
of MSSM parameter sets, this combination results in 95% C.L. exclusion lower limits
of 72.2 and 76.1 GeV/c2 for mh and mA, irrespective of tan �. A scan of the MSSM
parameter space is performed in which the model parameters are varied over wide ranges.
For low values of tan�, i.e., for 1 < tan� <

�
2, the limit on mh of � 88 GeV/c2 is shown

to be robust, being satis�ed in essentially all of the physically allowed domain.
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1 Introduction

In the minimal supersymmetric extension of the standard model (MSSM), the Higgs sector

consists of �ve physical states, namely three neutral bosons { two CP-even (h and H), and one

CP-odd (A) { and a pair of charged bosons (H�). At LEP2 energies, the neutral Higgs bosons

can be produced via two complementary processes, the Higgs-strahlung process e+e� ! hZ,

with a small contribution from the WW and ZZ fusion processes to the h��� and he+e�

�nal states, with a cross section proportional to sin2(� � �), and the associated production

e+e� ! hA with a cross section proportional to cos2(� � �). Here, � is the mixing angle in

the CP-even sector, and tan � is the ratio of the vacuum expectation values of the two Higgs

doublets.

The Higgs-strahlung process and associated production have already been investigated by

ALEPH at centre-of-mass energies from 130 to 172 GeV [1, 2]. Searches for the Higgs-strahlung

process at energies around 183 GeV were also reported in Ref. [3]. In all of these searches, the

events selected in the data were found to be compatible with expectations from standard model

background processes. Similar results have been obtained by the other LEP experiments [4].

This letter presents an update of the associated production search using the 57 pb�1 of data

collected with the ALEPH detector at LEP at
p
s from 181 to 184 GeV during 1997. For most

MSSM parameter values, the prominent decay modes of h and A are into b�b (� 90%) and �+��

(� 10%), leading to the two dominant �nal states b�bb�b and �+��b�b.

The combination of the searches for these two topologies and for those produced by the

Higgs-strahlung process are su�cient to cover the vast majority of the kinematically accessible

con�gurations predicted by the MSSM. This is in particular the case for the benchmark

parameter sets suggested in Ref. [5], the so-called minimal and maximal mixing con�gurations.

However, in some regions of the MSSM parameter space, other decays may open up and/or

the usual pattern of couplings and masses may be a�ected in such a way that the traditional

hZ and hA searches are rendered ine�ective. An account of these anomalous con�gurations is

given in this letter, the detailed analysis of which can be found in Ref. [6].

This letter is organized as follows. In Section 2, the relevant aspects of the ALEPH detector

and the b quark tagging performance are described. Event selections used in the various search

channels are presented in Section 3. In Section 4, the results from the analyses presented in

this letter are combined with results from the updated hZ search [3], and are interpreted in

the context of the benchmark parameter con�gurations of the MSSM. Finally, a more general

interpretation of these results is given in Section 5 where a scan of the parameter space of the

MSSM is performed taking into account searches for charged Higgs bosons [7], for invisible Higgs

boson decays [8], for supersymmetric particles [9, 10] and various LEP 1 results [11, 12, 13].
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2 The ALEPH detector

The ALEPH detector and its performance are described in Refs. [14, 15, 16]. The tracking

system consists of the silicon vertex detector surrounded by the inner tracking chamber and the

time projection chamber. A 1.5 T axial magnetic �eld delivered by a superconducting solenoidal

coil allows a charged particle 1/pT resolution of (6� 10�4
L
5� 10�3=pT ) (GeV=c)�1 to be

achieved. The three-dimensional impact parameter resolution of charged particle tracks with

coordinates in the silicon vertex detector can be parametrized as (34+70=p)�(1+1:6 cos4 �) �m,
with p in GeV/c, and is used to identify b quark jets. Charged particle tracks are used in these

analyses if they are reconstructed with at least four hits in the time projection chamber and

originate from within a cylinder of length 20 cm and radius 2 cm coaxial with the beam and

centered at the nominal interaction point. Events with at least eight such good tracks accounting

for more than 10% of the centre-of-mass energy are referred to as hadronic events.

Electrons are identi�ed by combining the information from the speci�c ionization

measurement in the time projection chamber with information from the lead/proportional

chamber electromagnetic calorimeter. The calorimeter has �ne readout segmentation and a

total thickness of 22 radiation lengths at normal incidence. It provides a relative electromagnetic

energy resolution of 0:18=
p
E + 0:009 (E in GeV) for isolated electrons and photons.

Muons are identi�ed by a hit pattern characteristic of a penetrating particle in the hadron

calorimeter, a 1.2 m thick magnet return yoke instrumented with 23 layers of streamer tubes,

and in the two surrounding layers of muon chambers. Together with the electromagnetic

calorimeter, the hadron calorimeter also provides a measurement of the energy of charged

and neutral hadrons with a relative resolution of 0:85=
p
E (E in GeV).

This information is combined in an energy ow algorithm. When the measurements from

the above detectors are supplemented with measurements of energy detected at low polar angles

by additional electromagnetic calorimeters principally used for luminosity determination, the

total energy, and therefore the missing energy can be measured. The energy ow algorithm

gives a measurement of the total energy with a resolution of (0:6
p
E+0:6) GeV (E in GeV) for

hadronic events. The charged and neutral objects reconstructed with this algorithm are called

energy-ow particles and are used to form jets, with a typical angular resolution of 20 mrad

for both polar and azimuthal angles, and a relatively uniform energy resolution over the whole

detector acceptance.

Jets originating from b quarks are identi�ed by taking advantage of the lifetime of b

hadrons, and of the presence in the jets of high pT leptons. Algorithms based on track impact

parameters [17] and secondary decay vertices [18] are used to detect the presence of long-lived

b hadrons, while the identi�ed lepton of highest transverse momentum in the jet (relative to

the jet it belongs to) is used to search for semileptonic decays of heavy b hadrons. These

quantities are input into a neural network trained to discriminate between jets containing b

hadrons (giving a neural network output � close to 1) and those originating from light quarks

(� ' 0). The neural network is similar in structure and in performance to the one used to

analyse the data collected at centre-of-mass energies of 130 to 172 GeV [2].
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3 Update of the e+e� ! hA event selections

As at lower centre-of-mass energies, the search for the hA pair-production process consists of

di�erent topological selections addressing the b�bb�b and the �+��b�b �nal states. The selections

described in Ref. [2] were used again to analyse the data taken in 1997. In the �nal states with

� 's, however, the two selection algorithms were uni�ed in a selection based on a neural network

combination of the existing discriminating variables.

These selections were optimized for hA production with mh = mA = 75 GeV=c2, close to

the actual sensitivity of the experiment for cos2(� � �) = 1. To do so, the expected combined

con�dence level that would be obtained on average if no signal were present [19] was minimized

with respect to (some of) the most relevant selection cuts of the two analyses, namely on

� a variable F , combining the b quark content and the four-jet compatibility in the b�bb�b

channel;

� the neural network output in the �+��b�b �nal state.

In parallel, the selectivity of the con�dence level determined from the b�bb�b search was improved

with respect to Ref. [2] by including F in the test statistic, in addition to the sum of the

two reconstructed Higgs boson masses (also used in the �+��b�b analysis). The e�ect of this

improvement is to further reduce the contribution of each single background event to the

con�dence level. As in Ref. [2], no background subtraction was performed. The validity of

the results presented here is therefore una�ected by possible systematic uncertainties related

to the knowledge of the residual background.

The �nal sets of selection cuts, leading to the overall smallest expected combined con�dence

level for mh = mA = 75 GeV=c2 and cos2(� � �) = 1, are described in the next two sections.

This con�dence level optimization was performed with Monte Carlo data sets corresponding

to at least 100 times the integrated luminosity actually recorded for the various background

processes (as described in Ref. [1]) and of 10 000 hA events generated with the HZHA

program [20]. The result of the analysis combination when applied to the data is presented in

Section 4.

3.1 The b�bb�b �nal state

The signature of the b�bb�b channel is a four-jet topology and a high b quark content. The three

main sources of background to the four-jet topology are hadron production e+e� ! q�qgg, and

ZZ and W+W� production. The preselection of hadronic four-jet events is essentially identical

to that applied to the 130{172 GeV data [2]: the Durham algorithm was used to cluster the

event into four jets, and the ycut transition value between three and four jets was required

to be greater than 0.001; events with radiative returns to the Z resonance were rejected by

requiring that jpzj � 1:5(mvis�90), where pz and mvis are the total momentum along the beam

direction (in GeV/c) and the total visible mass (in GeV/c2) of the event, respectively. The

only change in the preselection was that the upper cut on the thrust was relaxed from 0.85 to

0.90. This improves the signal e�ciency slightly while the majority of additional background
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events selected have a low dijet mass sum (below 100 GeV/c2) for the dijet combination with

the smallest mass di�erence, thus not a�ecting the signal search region.

The signal e�ciency after this preselection is 95%, while the q�qgg, ZZ and W+W�

backgrounds are reduced by factors of roughly 25, 6 and 2, respectively. A total of 755 events

was observed in the data, in satisfactory agreement with the 701 events expected from the

simulation (218 q�q, 29 ZZ, and 454 W+W�). The last step combines b-tagging information

and a measurement of the four-jet compatibility. The b-tagging variable B4 is related to the

sum of the four neural network outputs �j,

B4 = 4�
4X

j=1

�j ;

and the four-jet compatibility is gauged with the smallest jet-jet angle �min
ij . As in Ref. [2],

these two quantities are combined into a single variable

F = 90B4 � �min
ij (�min

ij in degrees);

the distribution of which is shown in Fig. 1. The optimized cut value F < 67 leads to a signal

e�ciency of 60.5% for mh = 75 GeV=c2, corresponding to 3.10 signal events expected, while

2:4� 0:1 events are expected from the background (1.1 q�q, 1.0 ZZ and 0.3 W+W� events).

Two events were selected in the data.

e+e-→ W+W-
e+e-→ qq

_
 (γ)

e+e-→ ZZ

e+e-→ hA

ALEPH data

F(B4,θij
min)

E
ve

nt
s 

/ 2
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20

40
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140
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Figure 1: Distribution of the F variable at the preselection level of the b�bb�b analysis. The expected background

sources are shown in the cumulative shaded histograms while the expected signal (mh � mA � 75 GeV=c2) is

magni�ed ten times. The arrow shows the cut value on F .

Systematic studies were performed to estimate the uncertainty on the signal selection

e�ciency. The dominant uncertainty comes from b tagging. The e�ect of the underlying
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physics distribution was studied by varying the momenta, lifetimes and multiplicities of the b

hadrons within their current experimental uncertainties using a reweighting method. Varying

the b hadron lifetimes around the world average value results in a 0.7% uncertainty for the

signal e�ciency. The systematic error associated with varying the multiplicity and b hadron

momentum spectrum within their uncertainties were estimated to be 0.4%. The e�ciency

uncertainty due to the simulation of the detector response was estimated as described in Ref. [2]

to be approximately 2.0%. The size of the hA Monte Carlo sample gives an additional 0.5%

systematic uncertainty on the e�ciency. The total systematic uncertainty, taken into account

in the �nal setting of the limit, therefore amounts to 2.2%.

3.2 The �
+
�
�
b�b �nal state

Events in the �+��b�b �nal state are characterized by a pair of energetic and isolated narrow

jets (originating from the � decays) and a pair of energetic hadronic jets, accompanied by

missing energy and transverse momentum. In place of the jet- and track-based � identi�cation

algorithms used previously [2], a unique and simpler � identi�cation based upon \minijets" was

developed and found to give performance similar to the combination of the former two. It is

performed as follows.

The energy ow particles of the hadronic events are clustered into minijets using the

invariant mass algorithm, with a mass cut of 2.7 GeV/c2. Ten minijets are typically formed

in a signal event. To be considered as a � candidate, a minijet must be isolated, narrow, and

energetic, according to the following criteria.

1. The minijet isolation angle, de�ned as the half-angle of the largest cone around the minijet

direction containing less than 5% of the total energy of the other minijets in the event,

must exceed 15�.

2. The minijet charged multiplicity (counted with particles of momentum in excess

of 1 GeV/c) must be one, two or three; minijets with three charged particles are required

to have unit charge, and the charge of minijets with multiplicity two is de�ned to be the

charge of the higher momentum charged particle.

3. The energy of a minijet with two or three good tracks is required to be larger than

12.5 GeV; this cut is loosened to 7.5 GeV for a minijet with one prong if the charged

particle carries less than 80% of its energy, unless it is identi�ed as an electron or a muon

in which case no such cut is applied to allow for the presence of two neutrinos from the

� decay. In contrast, in case the minijet contains an identi�ed lepton, the energy of this

lepton must be less than 25% of the centre-of-mass energy to reject WW and ZZ events

with leptonic decays.

Energetic converted photons (e.g., from radiative return to the Z peak) usually satisfy these

three criteria. To reject these candidate � 's, it was required that (i) minijets consisting of a

single identi�ed electron be associated with at least one hit in the vertex detector and that this

electron not form an identi�ed V0 [16] with another charged particle; and (ii) no electrons be

identi�ed in minijets with two charged particles. The remaining events from radiative return to
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the Z resonance (with an energetic unconverted photon) were rejected by cutting on the total

missing energy Emiss and the total missing longitudinal momentum pz (jpzj+ Emiss � 1:8Epeak

and jpzj � 0:6Epeak), for those events in which the photon escapes undetected along the beam

direction with an expected energy Epeak = (s �mZ
2)=2

p
s, and on the energy E of the most

energetic photon (E � 0:6Epeak) for the others.

Events were selected with at least two such � candidates of opposite electric charges, of

which at least one contains exactly one charged particle. Some missing energy and momentum

was ensured by requiring the total missing momentum transverse to the beam to be greater

than 2.5% of the centre-of-mass energy.

The energy ow particles were then separated into the two � minijets and the rest, clustered

into two hadronic jets with the Durham algorithm. A kinematic �t was performed to determine

the four jet energies, �xing the hadronic jet velocities and the � jet directions to the measured

ones, �xing the � jet masses to m� , constraining the invariant masses of the � jet pair and

of the hadronic jet pair to be equal, and imposing total energy-momentum conservation. The

�tted hadronic jet energies were required to exceed 75% of the measured energies. Finally,

if several con�gurations of � candidates and hadronic jets were found to satisfy all the above

requirements, only that with the smallest �2 was kept.

This preselection preserves 57% of the signal and yields an expected background of 61:7�0:6
events, dominated by W+W�, with 56 events observed in the data. Four additional quantities

were used so that hA! b�b�+�� events (withmh = mA = 75 GeV=c2) are further discriminated

from the preselected background events:

� the total transverse momentum of the event;

� the sum of the two � minijet isolation angles;

� the �2 of the kinematic �t;

� the b content of the two hadronic jets (B2 = �1 + �2).

Better performance is obtained when these four quantities are combined using a multivariate

analysis. Here, a neural network technique is used. The distributions of the neural network

output as expected for signal and background processes and observed in the data are shown

in Fig. 2. The optimized cut value of 0.96 leads to a signal e�ciency of 28.6 % for

mh = mA = 75 GeV=c2, corresponding to 0.27 signal events expected, with 0.07 background

events expected.

No events were selected in the data.

The systematic uncertainties arising from b tagging were evaluated as described in the

previous section. Varying the b jet multiplicity and momentum spectrum results in 0.6% and

0.2% uncertainties on the selection e�ciency. The uncertainty due to the simulation of the

detector response was found to be 0.5%, while that due to the b lifetime is negligible.

Additional uncertainties arise from possible discrepancies between the data and the

simulation in jet reconstruction and event kinematics. To estimate these e�ects, jet directions

and energies were smeared, the most relevant Monte Carlo distributions (total missing
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Figure 2: Neural network output distributions in the �+��b�b analysis, as expected from background (solid

curve), from signal (dashed curve, arbitrary scale), and as observed in the data (dots with error bars). The

arrow shows the cut value for the neural network output.

transverse momentum, total missing energy) were reweighted to match those of the data at

the preselection level, and the signal e�ciency was determined again. Uncertainties in other

variables were found to have a negligible impact upon the signal e�ciency. As a result, a total

systematic uncertainty of 0.5% was assigned to these possible e�ects.

The systematic uncertainty from all sources in this channel is therefore 0.9% which, when

combined with the 1.5% uncertainty due to the limited number of signal Monte Carlo events,

sets the total systematic uncertainty in the �+��b�b channel to 1.8%.

4 Results in the benchmark cases

The searches described in the previous sections selected two events in the data with 2.5 expected

from standard model background processes. The two candidate events were selected in the b�bb�b

channel, with reconstructed mh +mA values of 57.8 and 130.2 GeV/c2. The con�dence levels

expected and observed in the two channels are displayed in Figs. 3a and b, for equal h and A

masses and cos2(� � �) = 1.

These results were combined with the lower energy results, obtained with data taken at
p
s

from 130 to 172 GeV, as shown in Fig. 3c. In the MSSM, for cos2(� � �) = 1 (i.e., at large

tan�), the hA selection combination excludes all h and A masses below 76.1 GeV/c2 at the

95% con�dence level, with an expected limit of 71.7 GeV/c2. The probability to observe at

least as high a limit is 23%.
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Figure 3: Con�dence levels observed (solid curves) and expected (dashed curves) for the hA pair-production

process with mh = mA as a function of the common mass, in (a) the b�bb�b �nal state; (b) the �+��b�b �nal

state; and (c) combined with lower energy ALEPH results. In (b), the expected and observed con�dence levels

are hardly distinguishable.
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The hZ [3] and hA searches can also be interpreted at lower cos2(� � �) values as was done

in Ref. [2]. An almost parameter-independent limit (with the same caveats as in Ref. [2]) can

be obtained in the [mh, sin
2(� � �)] plane, from a reinterpretation of the various selections,

(i) for the hZ process, the cross section of which is proportional to sin2(� � �); and (ii) for

hA production, with a cross section proportional to cos2(� � �). The results are displayed in

Fig. 4, together with that of the combination of the hZ and hA results.

These results can also be expressed in the [mh,tan �] plane, as is done in Fig. 5 for the

benchmark sets of MSSM parameters [5], where MSUSY, the quadratic mean of the two stop

masses, is �xed to 1 TeV/c2, and for two extreme con�gurations of stop mixing controlled by At

and �: minimal mixing (At; �� MSUSY) and maximal mixing (At� �=tan� =
p
6MSUSY). An

absolute lower limit of 72.2 GeV/c2 is derived for mh, irrespective of tan �. If tan � is restricted

to exceed 1, this corresponds to a lower limit of 76.1 GeV/c2 for mA. These values include the

e�ect of the systematic uncertainties, taken into account following the method of Ref. [21], and

resulting in a change in the mass limits of about �20 MeV=c2.
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Figure 4: Regions excluded at the 95% con�dence level in the [mh,sin
2(� � �)] plane by the hZ and hA

searches (dashed curves) and their combination (solid curve). The dash-dotted curve displays the expected 95%

C.L. limit in this plane.
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mass scale of 1 TeV/c2. The dark regions are not allowed theoretically. The combined experimentally excluded

region is essentially identical in the case of no stop mixing, for which the theoretically forbidden region is also

indicated (dash-dotted curve).
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5 Beyond the benchmark

In this section, it is investigated how the results obtained in the benchmark cases of minimal

and maximal mixing are a�ected when the model parameters are allowed to vary. The study

is conducted within the framework of a \semi-constrained" MSSM. Universal SUSY breaking

masses m0 and m1=2 are assumed for all matter scalars and for the three gauginos at the GUT

scale, respectively, but no such constraint is imposed in the Higgs sector and radiative breaking

of the electroweak symmetry is not enforced. Therefore, the CP-odd Higgs boson mass mA

and the Higgs mixing supersymmetric mass � remain as free parameters. The parameter set is

further speci�ed by the values of tan � and of the trilinear coupling At which controls the stop

mixing. The other trilinear couplings are assumed for simplicity to be equal to At. (This choice

has very little impact on what follows.) Once such a parameter set fm0, m1=2, �, tan �, At,

mAg is speci�ed, the masses and couplings of all sleptons, squarks, gauginos and Higgs bosons

can be calculated, and hence all production cross sections and decay branching ratios [20, 22].

Such an exploration of the MSSM parameter space is expected to lead to the identi�cation

of parameter sets such that

i) either the cross section of the Higgs-strahlung process is vanishingly small for some low

mh value, but this is not compensated by a large cross section for the pair production

reaction because of too large an mA value; such situations are anomalous in the sense

that a small ZZh coupling normally goes together with h and A bosons close in mass;

ii) or the Higgs boson decay patterns prevent the usual Higgs boson searches from being

e�cient, as for instance in the case of a vanishing hbb coupling.

The study presented here is an attempt to quantify the level of �ne tuning which these

anomalous con�gurations require and, from this point of view, represents an expansion on

Refs. [23] and [24]. A detailed account of this analysis can be found in Ref. [6].

5.1 Constraints on the parameter sets

The following theoretical and experimental constraints are used to decide whether a given

parameter set is excluded or not, with R-parity conservation assumed throughout.

� No particles of the MSSM spectrum should be tachyonic, and the lightest supersymmetric

particle must be the lightest neutralino �. This de�nes the physically acceptable sets.

� The masses of charginos, sleptons and stops must exceed their most recent ALEPH

limits [9, 10]. The sneutrino mass must exceed its LEP1 limit of 43 GeV/c2, inferred

from the Z width measurement [11].

� The LEP1 limit on sin2(� � �) as a function of mh must be satis�ed. The published

ALEPH results [13] have been updated according to Ref. [12] using the full LEP1
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statistics. The resulting constraint on sin2(� � �) is applied, taking into account the

h decay branching ratios into standard-model-like �nal states or into pairs of A bosons.

� The LEP1 constraints on cos2(� � �) as a function of mh and mA are enforced. First,

the partial width of the Z! hA decay must be smaller than 7 MeV; this limit is deduced

from the Z width measurement assuming a light Higgs boson. Next, the published

ALEPH results [13] on searches for e+e� ! hA have been updated and are used in

the present analysis for mA > 2mb, taking into account the values of the h and A decay

branching ratios into �+�� and into hadrons. Finally, to cope with the con�guration

where mA < 2mb, in which case the e+e� ! hA process leads to a three-jet topology

when h ! AA, a search for �nal states consisting of three jets, of which one reduces to

a �+�� pair, was developed [6]. Although small, the branching ratio of A ! �+�� is

never negligible when mA < 2mb, and the results of this simple analysis turn out to be

su�ciently constraining whenever they are needed.

� The upper limit on sin2(� � �) as a function of mh reported in Section 4 (Fig. 4) must be

satis�ed. Possible reductions of the sensitivity of the searches for e+e� ! hZ due to an h

decay branching ratio into b�b lower than in the standard model are taken into account.

It has been veri�ed that the e�ciencies of the searches in the h`+`� and h��� �nal states

are una�ected if h decays to a pair of A bosons when mA > 2mb. In contrast, a reduction

of the selection e�ciency occurs in the hq�q channel when h ! AA, due to the six-jet

rather than four-jet structure of the �nal state. This is taken into account when relevant.

A null e�ciency is assumed in the case of h! AA decays when mA < 2mb.

� For a Higgs boson decaying invisibly, the sin2(� � �) limit as a function of mh is taken

from Refs. [8] and [13]. Here, the value of the branching ratio of h ! �� is taken into

account.

� The upper limit on cos2(� � �) as a function of mh reported in Section 4 (Fig. 4) must

be satis�ed. The values of the h and A decay branching ratios into �+�� and into b�b

are taken into account. The e�ciency reduction which takes place in the case of unequal

masses has been mapped as a function of mh and mA [6].

� The mass of the charged Higgs boson must exceed its lower limit as a function of its decay

branching ratio into ��, as determined by ALEPH searches [7] for e+e� ! H+H�.

In addition, it occasionally happens that valuable constraints are obtained by the

replacement of h by H, where H is the heavier CP-even neutral Higgs boson, with the appropriate

coupling modi�cations.

Ultra-light Higgs bosons, i.e., mh or mA < 2m�, are not considered in the present analysis.

In such a case, the only allowed Higgs boson decay modes are into e+e� or , and the

nonzero lifetimes must be explicitly taken into account. A dedicated search was performed

by ALEPH [25] using LEP1 data collected until the end of 1991. The conclusion, namely that

such a possibility is excluded within the benchmark case of minimal mixing, relied on a delicate

combination of a large variety of signatures. Assessing how general this conclusion is would

necessitate a thorough investigation which is beyond the scope of the present study.
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5.2 Scans of the MSSM parameter space: procedure

In the scans described below, a top quark mass of 175 GeV/c2 is assumed unless otherwise

speci�ed. Nine values of tan � were probed, f1=
p
2, 1,

p
2, 2, 2

p
2, 4, 8, 16, 32g. Various

samplings, summarized in Table 1, were used for the dimensionful parameters m0, m1=2,

j�j and jAtj, with both signs for � and At: i) nine values for the \coarse logarithmic"

scans, f0 and 2000=2ng GeV=c2 with n = 7 to 0, supplemented with a tenth value for jAtj,
4000 GeV/c2; ii) seventeen values for the \�ne logarithmic" scans, f0 and 2000=2n=2g GeV=c2
with n = 15 to 0, supplemented with two more values for jAtj, 2000

p
2 and 4000 GeV/c2;

iii) eleven values for the \linear" scans, f0 and 200ng GeV=c2 with n = 1 to 10, supplemented

with two more values for jAtj, 2200 and 2400 GeV/c2.

Table 1: Summary of the de�nition of the scan procedures for m0, m1=2, j�j, and jAtj. For a given parameter,

Nvalues is the number of values considered in the scan.

Parameters

Scan Values m0, m1=2, j�j jAtj
(GeV/c2) n range Nvalues n range Nvalues

Coarse logarithmic f0, 2000=2ng n: 7! 0 9 n: 7! �1 10

Fine logarithmic f0, 2000=2n=2g n: 15! 0 17 n: 15! �2 19

Linear f0, 200� ng n: 1! 10 11 n: 1! 12 13

Coarse logarithmic scans were performed for the nine selected values of tan�. Moreover,

for two values of tan �, namely
p
2 and 32, which are typical of the low and high tan� regimes,

�ne logarithmic scans were also performed. Finally, for those two same tan � values, additional

scans were made: linear scans in order to investigate possible dependences of the results on the

way the parameter space is sampled; and coarse logarithmic scans formt = 170 and 180 GeV/c2

to study the sensitivity of the results to the top quark mass. In the coarse logarithmic scans,

26 163 sets of fm0, m1=2, �, Atg values are explored, 352 869 sets in the �ne logarithmic scans

and 63 525 in the linear scans.

For each of those ftan �, m0, m1=2, �, Atg sets, the lower limit on mh is determined in

the following way. First, mA is incremented using a still �ner logarithmic sampling consisting

of 35 values, f0 and 2000=2n=4g GeV=c2 with n = 33 to 0. The mA scan is interrupted as

soon as a value leading to an unexcluded situation is encountered, according to the criteria

listed in the previous subsection. The interval separating the last excluded value and the �rst

unexcluded value is then explored using a dichotomy technique to �nd the value of the limit on

mh. Explorations are also performed between successive values of mA which are not excluded

by at least one common constraint, or for which opposite signs of sin(���), cos(���), or sin�
are encountered. (In such cases, the e+e� ! hZ cross section, the e+e� ! hA cross section, or

the h! b�b branching ratio, respectively, is expected to vanish somewhere in between.)

Altogether, the nine coarse logarithmic scans represent a sampling of the parameter space

consisting of 8.2 million sets of ftan�, m0, m1=2, �, At, mAg values, and the two �ne logarithmic
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scans each represent a sampling of 12.4 million sets of fm0, m1=2, �, At, mAg values, not

including the additional mA values tested in the dichotomy procedures.

5.3 Scans of the MSSM parameter space: results

The low tan� regime is speci�cally addressed by the �ne logarithmic scan for tan � =
p
2. Out

of the 352 869 sets of fm0, m1=2, �, Atg values explored, 127 994 are unphysical and 142 204

are rejected by the constraints on supersymmetric particles. Out of the 82 671 remaining sets,

41 319 are excluded irrespective of the value of mA, which means that tan� =
p
2 is excluded

for such sets. The benchmark case with minimal mixing is an example of such a con�guration

(Fig. 5). The distribution of the mh limit for the 41 352 other sets is shown in Fig. 6a. In the

vast majority of cases, the limit is indistinguishable from that obtained in the case of maximal

mixing from the search for the Higgs-strahlung process at LEP2 (Fig. 5), i.e., 88 GeV/c2.

The limit is nevertheless signi�cantly lower for 28 sets, which is to be compared to a total

of about 225 000 physically acceptable sets. The proportion of sets for which the mh limit is

degraded is therefore at the 10�4 level. These \pathological" sets correspond to the anomalous

con�gurations which had been anticipated, namely a vanishing ZZh or hb�b coupling.

The additional scans for tan � =
p
2 do not reveal any new anomalous features. The linear

scan leads to a similar fraction of pathological sets. The only noticeable e�ect of increasing

(decreasing) the top quark mass is to reduce (increase) the fraction of sets excluded irrespective

of the value of mA, but the proportion of sets leading to a signi�cantly reduced mh limit is

una�ected.

Similar investigations have been made for the high tan � regime. In the �ne logarithmic scan

for tan� = 32, out of the 352 869 sets explored 120 223 are unphysical and 150 647 are rejected

by the constraints on supersymmetric particles. Out of the 81 999 remaining sets, only 434 are

excluded irrespective of the value of mA, which is not unexpected for such a large value of tan�

(Fig. 5). The distribution of the mh limit for the 81 565 other sets is shown in Fig. 6b. While a

peak is clearly visible at 76 GeV/c2, i.e., the value obtained for maximal mixing, a broad tail

is seen to extend to lower masses. (For instance, a total of 1 572 sets is found to lead to a limit

smaller than the benchmark absolute limit of 72 GeV/c2.) This comes from the fact that the

main rôle is played in this high tan � regime by the search for e+e� ! hA at LEP2, a search

in which the kinematically relevant variable is mh+mA rather than mh. Indeed, it can be seen

in Fig. 6c that the peak in the limit, at 152 GeV/c2, is much sharper when displayed using

that variable. There remain 182 sets for which a limit on mh +mA lower than 144 GeV/c2 is

obtained, a fraction at the 10�3 level with respect to the number of physically acceptable sets.

The characteristics of those pathological sets and the conclusions drawn from the additional

scans are the same as for tan� =
p
2.

For the nine selected tan� values, a summary of the results of the coarse logarithmic scans

is displayed in Table 2. It can be seen that the behaviour observed for tan � = 1 or 2 is

very similar to that detailed for tan � =
p
2, and similarly for tan � = 8 and 16 compared to

tan� = 32. The values tan � = 2
p
2 and 4 correspond to the transition from the low to the

high tan� regimes and share features of both.
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Figure 6: Distribution of the lower limit on mh, (a) for tan� =
p
2 and (b) for tan� = 32. (c) Distribution of

the lower limit on mh +mA for tan� = 32. In (b) and (c), the arrows indicate the value of the reference mass

value close to the limit obtained in the benchmark case. This value cannot be distinguished from the peak at

87 GeV/c2 in (a).
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Table 2: Results of the coarse logarithmic scans. The value of tan� is given in the �rst column. The second

column indicates as \test" a mass value in GeV/c2 close to the limit obtained in the benchmark case of \maximal

mixing" either for mh (values without asterisks) or for mh + mA (values with asterisks). The third column

contains the number of physically acceptable parameter sets, out of a total of 26 163 explored. The number

of sets excluded by the searches for supersymmetric particles is given in the fourth column. The �fth column

contains the number of sets for which the whole physical domain is excluded by the searches for Higgs bosons.

The number of sets for which the limit obtained for mh or for mh+mA, as relevant, is equal to (or larger than)

the test value is shown in the sixth column. The number of sets for which the limit is degraded with respect

to the test value is indicated in the last column. For tan� = 1=
p
2, the �rst (second) line is obtained when the

constraints on the charged Higgs boson mass obtained at the Tevatron [26] are not (are) taken into account.

tan � Test value Physical Excluded Excluded Better Worse

(GeV/c2) sets by SUSY by Higgs limit limit

1=
p
2 87 15096 9666 168 691 4571

630 4788 12

1 87 16057 10106 3065 2882 4p
2 87 16044 9974 2494 3570 6

2 87 16131 9971 1030 5117 13

2
p
2 80 17123 10780 137 5923 283

140 * 6204 2

4 67 17258 10797 45 6221 195

140 * 6376 40

8 140 * 17016 10584 29 6367 36

16 142 * 17002 10570 20 6402 10

32 144 * 16711 10287 23 6395 6

The case of tan � = 1=
p
2 is quite di�erent. The lower edge of the physical domain for mh,

around 70 GeV/c2, tends to be unexcluded because the search for the Higgs-strahlung process

at LEP2, which involves b tagging, becomes ine�cient in this con�guration where h ! AA

is dominant while mA < 2mb. (This problem does not arise for tan� > 1 because such low

mA values are always associated with mh values small enough to be well within the reach of

searches at LEP1 which do not require b tagging.) It may be noticed however that the low mA

region also corresponds to rather low charged Higgs boson masses which, for tan� < 1, have

been excluded at the Tevatron [26]. Taking this additional constraint into account brings the

fraction of sets for which the mh limit is degraded in line with that found for 1 � tan � <� 2.

In the course of the above scans, parameter sets were identi�ed with values of mh well

below the limit obtained in the benchmark case, and such that no exclusion can ever be

expected at LEP [6]. For such sets, the ZZh coupling vanishes while mh + mA exceeds the

ultimate kinematic reach of LEP2; moreover, the e+e� ! HZ or H+H� processes also remain

kinematically unaccessible, and similarly for the production of supersymmetric particles. No

qualitative changes with respect to the conclusions drawn from the present study are therefore

to be expected from further LEP energy increases nor from additional integrated luminosity.
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5.4 Results in a less constrained MSSM

The version of the MSSM used in the analysis presented above may be viewed as too restrictive,

in particular because of the assumption of a universal scalar mass for all sleptons and squarks

at the GUT scale. To assess the impact of this assumption, coarse logarithmic scans have been

repeated for tan � =
p
2 and 32, (i) ignoring all the constraints on sleptons and sneutrinos

(except for the model-independent limits coming from the Z width measurement), thus allowing

in particular the LSP to be a sneutrino, and (ii) replacing the LEP2 limits on charginos, which

depend on the sneutrino mass, by the constraint m�� > 75 GeV/c2, valid except in the case

of chargino-sneutrino mass degeneracy [9]. In these scans, the m0 parameter was furthermore

replaced by two independent soft supersymmetry breaking masses, mQ and mU, appearing in

the diagonal terms of the stop mass matrix. This leads to a total of 235 467 sets of fmQ, mU,

m1=2, �, Atg values explored for each of the two tan � values. The fraction of sets with a limit

signi�cantly degraded compared to the benchmark case remains at or below the 10�3 level.

Similar results are obtained with linear scans. The basic conclusions of this analysis therefore

do not depend on the universality assumption for squark and slepton masses.

6 Conclusion

Searches for neutral Higgs bosons produced in pairs through the e+e� ! hA process have

been carried out in the b�bb�b and �+��b�b �nal states using the 57 pb�1 of data collected at

centre-of-mass energies from 181 to 184 GeV. The two selected candidate events are consistent

with coming from standard background processes. When combined with previous ALEPH

searches for neutral Higgs bosons, these observations yield 95% C.L. exclusion limits of 72.2

and 76.1 GeV/c2 for mh and mA, for standard choices of MSSM parameter sets, irrespective of

tan�.

A full scan of the MSSM parameter space revealed that the lower limit on the mass of

the CP-even neutral Higgs boson is robust in the low tan � regime, i.e., for 1 < tan � <� 2:

irrespective of whether the MSSM parameter space is sampled logarithmically or linearly, and

at least for values of the dimensionful parameters not exceeding 2 TeV/c2, the fraction of

physically allowed parameter sets for which the limit on mh of �88 GeV/c2 obtained in the

benchmark case is signi�cantly reduced is at the per mil level. For larger tan � values, a similar

conclusion holds in terms of a limit of 140{150 GeV/c2 on mh +mA.
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