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1 Introdution

1.1 Setting the sene

Sine its invention in the late sixties, string theory has grown up in a tumultuous history

of unexpeted paradigm shifts and deeptive lulls. Not the least of these storms was the

disovery that the �ve anomaly-free perturbative superstring theories were as many glanes

on a single eleven-dimensional theoria inognita, soon baptized M-theory, awaiting a better

name [307, 319℄. The genus expansion of eah string theory orresponds to a di�erent

perturbative series in a partiular limit gs → 0 in the M-theory parameter spae, muh

in the same way as the genus expansion arises in 't Hooft large-N , �xed-g2
YMN regime of

Yang�Mills theory [302℄. M-theory an be de�ned by the superstring expansions on eah

path, and the superstring (perturbative or non-perturbative) dualities allow a translation

from one path to another, in a way analogous to the de�nition of a di�erential manifold

by harts and transition funtions. This analogy overlooks the fat that string theories are

only de�ned as asymptoti series in gs → 0, and some analytiity is therefore required to

move into the bulk of parameter spae.

This de�nition has been e�etive in unovering a number of features of M-theory, or

rather its BPS setor, whih behaves in a ontrolled way under analyti ontinuation at

�nite-gs. In partiular, M-theory is required to ontain Cremmer, Julia and Sherk's eleven-

dimensional supergravity [76℄ in order to aount for the Kaluza�Klein-like tower of type

IIA D0-branes as exitations arrying momentum along the eleventh dimension of radius

Rs ∼ g
2/3
s , as shown by Townsend and Witten [307, 319℄; it should also ontain membrane

and �vebrane states, in order to reprodue the D2- and D4-brane, as well as the NS5-brane

and the type IIA �fundamental� string. Whih of these states is elementary is not deided

yet, although M2-branes and D0-branes are favourite andidates [86, 24℄. It may even

turn out that none of them may be required, and that 11D SUGRA may emerge as the

low-energy limit of a non-gravitational theory [163℄.

While the dualities between string theories relate di�erent languages for the same

physis, the symmetries of string theory provide a powerful guide into M-theory, whih

is believed to hold beyond the BPS setor. The best established of them is ertainly

T-duality, whih identi�es seemingly distint string bakgrounds with isometries (see for

instane Refs. [135, 3℄ and referenes therein). Throughout this review, we shall restrit

ourselves to maximally supersymmetri type II or M theories, and aordingly T-duality

will redue to the inversion of a radius on a d-dimensional torus. To be more preise, a

T-duality maps to eah other type IIA and type IIB string theories ompati�ed on ir-

les with inverse radii, while a T-symmetry onsists of an even number of suh inversions

(together with Kalb�Ramond spetral �ows to whih we shall return), and therefore or-

responds to a symmetry of type II string theories and of their M-theory extension

‡1
. As

we shall reall, suh T-symmetries on a torus T d
generate a SO(d, d,Z) disrete symmetry

group, the ontinuous version of whih SO(d, d,R) appears as a symmetry of the low-energy

‡1
Having emphasized this point, we shall heneforth omit the distintion between dualities and symme-

tries.
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e�etive ation.

On the other hand, the ation of 11D or type IIA supergravity ompati�ed on a torus T d

as well as of the equations of motion of unompati�ed type IIB supergravity have for long

been known to exhibit ontinuous non-ompat global symmetries, namely the exeptional

symmetry Ed(d)(R) of Cremmer and Julia and the Sl(2,R) symmetry of Shwarz and West

respetively [72, 182, 185, 277℄. These symmetries transform the salar �elds and in general

do not preserve the weak oupling regime, whih puts them out of reah of perturbation

theory, in ontrast to the well established target-spae T-duality.

In analogy with the eletri�magneti Sl(2,Z) Montonen-Olive-Sen duality of four-

dimensional N = 4 super Yang�Mills theory [231, 281℄, Hull and Townsend have proposed

[175℄ that a disrete subgroup Ed(d)(Z) (resp. Sl(2,Z)B) remains as an exat quantum

symmetry of M-theory ompati�ed on a torus T d
(resp. of ten-dimensional type IIB string

theory and ompati�ations thereof)

‡2
. The two statements are atually equivalent, sine

after ompati�ation on a irle the type IIB string theory beomes equivalent under T-

duality on the (say) tenth diretion to type IIA, and the symmetry Ed(d)(Z) an be obtained
by intertwining the Sl(2,Z)B non-perturbative symmetry with the T-duality SO(d−1, d−
1,Z). Conversely, the Sl(2,Z)B symmetry of type IIB theory an be obtained from the M-

theory desription as the modular group of the 2-torus in the tenth and eleventh diretions

[273, 16℄, and is a partiular subgroup of the modular group Sl(d,Z) of the d-torus. This,
being a remnant of eleven-dimensional di�eomorphism invariane after ompati�ation on

the torus T d
, has to be an exat symmetry as soon as M-theory ontains the graviton. The

T-duality symmetry SO(d− 1, d − 1,Z) is however not manifest in the M-theory piture.

All in all, the U-duality group reads

Ed(d)(Z) = Sl(d,Z) ⊲⊳ SO(d− 1, d− 1,Z) , (1.1)

where the symbol ⊲⊳ denotes the group generated by the two non-ommuting subgroups.

The struture of the group (1.1) will be disussed at length in this review, and a set

of Weyl and Borel generators will be identi�ed. The former preserve the retangularity

of the torus and the vanishing of the gauge bakground, while the latter allow a move to

arbitrary tori. States are lassi�ed into representations of the U-duality group Ed(d)(Z),
whether BPS or not, and we will derive U-duality invariant mass and tension formulae for

1/2- and 1/4-BPS states, as well as onditions for a state to preserve a given fration of

the supersymmetries. Besides the entertaining enounter with disrete exeptional groups,

this will atually teah us about the spetrum of M-theory, sine the more M-theory is

ompati�ed, the more degrees of freedom ome into play. In partiular, we will show the

need to inlude states with masses that behave as 1/gn
s , n ≥ 3, whih are unonventional in

perturbative string theory. An important appliation of these results is the exat determi-

nation of ertain physial amplitudes in M-theory, suh as the four-graviton R4
oupling,

whih an be interpreted as traes over M-theory BPS states [21, 142, 253℄. The weak

oupling analysis of these exat ouplings provides a very useful insight into the rules of

semi-lassial alulus in string theory [34, 246, 140, 146, 20, 199, 255℄.

‡2
The �rst example of string duality atually appeared in the ontext of heteroti string theory [119℄.
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A proposal has reently been put forward by Banks, Fishler, Shenker and Susskind to

de�ne M-theory ab initio on the (disrete) light front, as the large-N limit of a supersym-

metri matrix model given by the dimensional redution of 10D U(N) super Yang�Mills

(SYM) theory to 0 + 1 dimension [24, 300℄. This model also desribes low-energy inter-

ations of D0-branes indued by open string �utuations [82, 186, 100℄, and, as shown

by Seiberg, arises from onsidering M-theory on the light front as a partiular limit of M-

theory ompati�ed on a irle, i.e. type IIA theory [278℄. D0-branes are therefore identi�ed

as the partons of M-theory in this framework. This proposal has passed numerous tests,

and has been shown to inorporate membrane and (transverse) �vebrane solutions, and to

reprodue 11D SUGRA omputations. The invariane under eleven-dimensional Lorentz

invariane remains, however, to be demonstrated (see [217℄ for a step in that diretion).

Upon ompati�ation of d dimensions, the D0-branes interat by open strings wrapped

many times around the ompati�ation manifold, and the in�nite-dimensional quantum

mehanis an be rephrased as a gauge theory in d+1 dimensions [305, 127℄. This dramati

inrease of degrees of freedom ertainly removes part of the appeal of the proposal, but

beomes even more serious for d ≥ 4, where the gauge theory loses its asymptoti freedom

and beomes ill-de�ned at small distanes. We will brie�y disuss the proposals for ex-

tending this de�nition to d = 4, 5. We will also disuss the interpretation of M-theory BPS

states in the gauge theory, and show the ourrene of unonventional states with energy

1/g2n
YM, n ≥ 2. Despite these di�ulties, the Matrix gauge theory gives a nie understand-

ing of U-duality as the eletri�magneti duality of the gauge theory, together with the

modular group of the torus on whih it lives [299, 127, 110℄. The interpretation of �nite-N
matrix theory as the ompati�ation of M-theory on a light-like irle implies that the

U-duality group Ed(d)(Z) be enlarged to Ed+1(d+1)(Z) [172, 54, 244, 173℄; we will show that

this extra symmetry mixes the rank N of the gauge group with harges in a way reminisent

of Nahm duality. All these features are guidelines for a hypothetial fundamental de�nition

of Matrix gauge theory.

1.2 Soures and omissions

This review is intended as a pedagogial introdution to M-theory, from the point of view

of its 11D SUGRA low-energy limit, its strongly oupled type II string desription, and

its purported M(atrix) theory de�nition. It is restrited to maximally supersymmetri

toroidally ompati�ed M-theory, and uses U-duality as the main tool to unover the part

of the spetrum that is annihilated by half or a quarter of the 32 supersymmetries. The

exposition mainly follows [110, 255, 244℄, but relies heavily on [318, 319, 310, 278, 91℄. It

is usefully supplemented by other presentations on supergravity solutions [296, 309, 310℄,

M(atrix) theory [22, 51, 94℄, D-branes [257, 267, 306, 19℄, string dualities [98, 275, 316, 87,

238, 284℄ and perturbative string theory [247, 198℄ and general introdutions [254, 14, 276℄.

The following topis are beyond the sope of this work:

• Blak hole entropy: the modelisation of extremal blak-holes by D-brane bound states

has allowed a desription of their mirosopi degrees of freedom and a derivation of

9



their Bekenstein�Hawking entropy [297℄ (see [224, 252℄ for reviews). The latter an

be related to a U-duality invariant of the blak hole harges [167, 79, 189, 5, 9℄, and

U-duality an even allow the ontrol of non-extremal states [294℄.

• Gauge dynamis: the study of D-brane on�gurations has also led to a qualitative

understanding of gauge theories dynamis as world-volume dynamis of these objets;

see [133℄ for a thorough review. We will mainly onsider on�gurations of parallel

branes, as desribing the Matrix gauge theory desription of M-theory on the light

one.

• BPS-saturated amplitudes: A speial lass of terms in the e�etive ations of M-

theory and string theory reeives ontributions from BPS states only. We will brie�y

disuss an appliation of the M-theory mass formulae that we derived to the om-

putation of exat R4
ouplings in Subsetion 5.8, and refer to the existing liter-

ature for more details on the exat non-perturbative omputation of these ou-

plings, and their interpretation at weak oupling as a sum of instanton e�ets.

Relevant referenes inlude [34, 246, 280℄ for two-derivative terms in N = 2 type

II strings, [156, 157, 147, 12℄ for four-derivative terms in type II/heteroti the-

ories, [21, 20, 199℄, for F 4
(and related) terms in type I/heteroti theories, and

[140, 146, 142, 200, 12, 48, 192, 255, 253, 141, 145℄ for R4
(and related) terms in

type IIB/M-theory. In�nite series of higher-derivative BPS-saturated R2F 2g−2
or

R4H4g−4
, and Rn

terms have also been omputed or onjetured in Refs. [11, 226℄

and [49, 268, 180, 191℄.

• Sattering amplitudes: in order to validate the M(atrix) theory onjeture of BFSS,

a number of sattering omputations have been arried out both in the Matrix model

and in 11D supergravity; they have shown agreement up to two loops, see for instane

[32, 33, 258, 66, 96, 193, 317, 245, 229, 112℄. This agreement is better than naively

expeted, and indiates the existene of non-renormalization theorems [248℄ for these

interations.

• D-instanton matrix model: an alternative formulation of M-theory as a statistial

matrix model has been proposed by Ishibashi, Kawai, Kitazawa and Tsuhiya [179℄.

It has so far not been developed to the same extent as the BFSS proposal, and in

partiular the origin of U-duality has not been expliited. See Refs. [64, 114, 160,

113, 270, 203, 63, 65, 123, 201, 53, 225, 301, 13, 4, 124℄ for further disussion.

• Twelve dimensions and beyond: the struture of U-duality symmetry has led to speu-

late on the existene of a 12D [313, 27, 30, 242℄ or higher [28, 29, 26, 241, 293, 266, 240℄

dimensional parent of M-theory, with extra time diretions. The N = 2 heteroti

strings suggest an appealing onstrution of this theory (see [227℄ for a review).

However, the full higher-dimensional Lorentz symmetry is partially redued to its

U-duality subgroup, and its usefulness remains unlear at present. We shall, how-

ever, enounter in Subsetion 4.6 a tantalizing hint for an extra time-like diretion

with �length� l3p.
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• String networks: a onstrution of 1/4-BPS states based on three-string juntions

[275, 60, 83℄ has been suggested [288℄, that reprodues the U-duality invariant mass

formula in 8 dimensions [50, 50, 208℄. These solutions have been onstruted from the

M2-brane [206, 228℄ and their dynamis disussed in [264, 61℄, but their supergravity

desription is still unlear.

• Non-ommutative geometry: it has been argued that non-ommutative geometry [69℄

is the appropriate framework to disuss D-brane dynamis, and is even required in

the presene of Kalb�Ramond two-form bakground [70, 99, 67℄. This desription

inorporates T-duality [261, 271℄ and even U-duality in its Born�Infeld generaliza-

tion [162℄. It should in partiular (see Subsetion 7.8) extend Nahm's duality of

ordinary two-dimensional Maxwell theory to higher-dimensional ases [237℄. Related

disussions an be found in Refs. [161, 213, 190, 44, 233, 211, 71℄.

• Gauged supergravity: 11D SUGRA possesses maximally supersymmetri bakgrounds

other than tori, namely ompati�ations on produts of spheres and anti-deSitter

spaes [120℄. These orrespond to the near-horizon geometry of M2- and M5-branes,

and have been argued to provide a dual desription to the gauge theory on these

extended objets [223℄. They will be ignored in this review.

• String theories with non maximal supersymmetry: the E8 × E8 heteroti string and

type I string an be obtained from M-theory by orbifold ompati�ation [165, 166℄,

while the SO(32) heteroti string is related to E8 × E8 by a T-duality, or to type

I string theory by a non-perturbative duality [259℄. M(atrix) theory desriptions

have been proposed both in the heteroti [25, 235, 215, 194, 262, 164, 137, 187, 216,

205, 204, 90℄ and the type II [117, 197, 46, 138, 195, 89, 90℄ ases, as well as on

non-orientable surfaes [196, 322℄, and will not be treated here.

• Non-BPS states: The study of stable non-BPS states has been iniated in [287℄ and

further examined [286, 289, 285, 36℄. It would be interesting to investigate the impli-

ations of U-duality symmetry on the spetrum of non-BPS states.

1.3 Outline

Setion 2 introdues the superalgebra and fundamental BPS states of M-theory in the on-

text of 11D SUGRA and type IIA/B superstring theories. T-duality is realled and revisited

in Setion 3 from an algebrai point of view, at the level of the e�etive ation and of the

perturbative and non-perturbative BPS spetrum. The same tehniques are used in Setion

4 to introdue U-duality and its ation on the spetrum of partiles and strings, restrit-

ing to Weyl generators. Borel generators are inorporated in Setion 5, where U-duality

invariant mass and tension formulae for general toroidal ompati�ation with arbitrary

gauge bakgrounds are derived, as well as U-duality multiplets of BPS onstraints. Setion

6 introdues Matrix gauge theory as the Disrete Light-Cone Quantization of M-theory fol-

lowing an argument by Seiberg, and disusses the ditionary between M-theory and Matrix

gauge theory. The U-duality symmetry is �nally disussed in Setion 7 from the perspetive

of the Matrix gauge theory, as well as the extended U-duality symmetry arising from the

extra light-like diretion.
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2 M-theory and BPS states

2.1 M-theory and type IIA string theory

M-theory was originally introdued as the strong oupling limit of type IIA superstring

theory. The latter has been argued [318, 307℄ to dynamially generate an extra ompat

dimension at �nite oupling of radius Rs ∼ g
2/3
s in units of an eleven-dimensional Plank

length lp:

Rs/lp = g2/3
s , l3p = gsl

3
s (2.1)

where 1/l2s = α′
denotes the string tension and gs its oupling onstant. The strong oupling

limit gs → ∞ should therefore exhibit eleven-dimensional N = 1 super-Poinaré invariane.

While a onsistent eleven-dimensional theory of quantum gravity is still missing, it has

been known for a long time that type IIA supergravity an be obtained from the eleven-

dimensional N = 1 supergravity of Cremmer, Julia and Sherk, by dimensional redution

on a irle. M-theory is therefore required to redue at energies muh smaller than 1/lp
to 11D SUGRA, in the same way as type IIA (or type IIB) superstring theory redues to

type IIA [62, 178, 131℄ (or type IIB [277, 168, 272℄) supergravity at energies muh smaller

than 1/ls (whih is also smaller than both the ten-dimensional Plank mass g
−1/4
s /ls and

the eleven-dimensional Plank mass g
−1/3
s /ls at weak oupling). This is summarized in the

following diagram:

M-theory −→
S1

type IIA string theory

↓ ↓
11D supergravity −→

S1
10D type IIA supergravity

where ompati�ation on a irle ours from left to right and the energy dereases from

top to bottom.

The mathing relations (2.1) an be easily obtained by studying the Kaluza�Klein re-

dution of 11D SUGRA, desribed by the ation

S11 =
1

l9p

∫

d11x
√−g

(

R− l6p
48

(dC)2

)

+

√
2

27 · 32

∫

C ∧ dC ∧ dC (2.2)

up to fermioni terms that we will ignore in the following. In addition to the usual Einstein�

Hilbert term involving the salar urvature R of the metri gMN , the ation ontains a

kineti term for the 3�form gauge potential CMNR (whih we shall often denote by C3) as

well as a topologial Wess�Zumino term required by supersymmetry. The ation (2.2) does

not ontain any dimensionless parameter, and the normalization of the Wess�Zumino term

with respet to the Einstein term is �xed by supersymmetry. The dependene on the Plank

length lp has been reinstated by dimensional analysis, with the following onventions:

[dx] = 0, [gMN ] = 2, [
√−g] = 11, [R] = −2, [CMNR] = 0, [d] = 0 , (2.3)
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relegating the dimension to the metri only. In partiular, the relation between the eleven-

dimensional Plank length and Newton's onstant is given by κ2
11 = l9p/(2(2π)8). We will

generally ignore all numerial fators.

Dimensional redution is arried out by substituting an ansatz

ds2
11 = R2

s(dx
s + Aµdx

µ)2 + ds2
10 (2.4)

for the metri, where Rs stands for the �utuating radius of ompati�ation (as measured

in the eleven-dimensional metri) and A desribes the Kaluza�Klein U(1) gauge �eld arising
from the isometry along xs ‡3

, and splitting the three-form CMNR in a two-form Bµν = Cµνs

and a 3-form Cµνρ. Only the zero Fourier omponent (i.e. the zero Kaluza�Klein momentum

part) of these �elds along xs
is kept. On dimensional grounds the salar urvature beomes

R(gMN) = R(gµν) +

(

∂Rs

Rs

)2

+R2
s(dA)2 , (2.5)

so that the redued ation reads

S10 =
1

l9p

∫

d10xRs

√−g
[

R +

(

∂Rs

Rs

)2

+R2
s(dA)2 + l6p(dC)2 +

l6p
R2

s

(dB)2

]

+

∫

B ∧ dC ∧ dC . (2.6)

On the other hand, the low-energy limit of type IIA string theory is given (in the string

frame) by the ation

SIIA =
1

l8s

∫

d10x
√−g

[

e−2φ

(

R + 4(∂φ)2 − l4s
12

(dB)2

)

− l2s
4

(dA)2 − l6s
48

(dC)2

]

+

∫

B ∧ dC ∧ dC , (2.7)

whih desribes the dynamis of the (bosoni) massless setor

NS-NS : gµν , Bµν , φ (2.8a)

R-R : Aµ , Cµνρ (2.8b)

denoting the metri, antisymmetri tensor and dilaton from the Neveu�Shwarz square

setor, and the one- and three-form gauge potentials from the Ramond square setor (indies

µ run over 1 . . . 10). Ramond p-form gauge �elds will be generially denoted by Rp. The

dependene on the string length ls is again instated on dimensional grounds, while the

dependene on the oupling

g2
s = e2φ

(2.9)

‡3
The subsript s is used to indiate that string theory is obtained in this way.
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stems from the fat that the two-derivative ation originates from string tree level (hene

the e−2φ
fator), with eah Ramond �eld oming with an additional power of eφ

, ensuring

the orret Maxwell and Bianhi identities (see [260℄ for a reent disussion). In partiular,

the ten-dimensional Newton's onstant is given by κ2
10 = g2

s l
8
s . Identifying the dilaton φ

with the salar modulus lnRs up to a numerial fator, and mathing the two ations (2.6)

and (2.7) leads to the relations

Rs

l9p
=

1

g2
s l

8
s

,
1

Rsl3p
=

1

g2
s l

4
s

,
R3

s

l9p
=

1

l6s
,

Rs

l3p
=

1

l2s
, (2.10)

obtained by omparing the terms R, dB, dA and dC respetively in Eqs. (2.6) and (2.7).

Two of these four relations turn out to be redundant as a onsequene of supersymme-

try, and they an be redued to the mathing relations already stated in Eq. (2.1), or

equivalently

Rs = lsgs ,
Rs

l3p
=

1

l2s
, (2.11)

whih summarize the relation between the M-theory parameters {lp, Rs} and the string

theory parameters {ls, gs}.
Using (2.11) and (2.9) in the metri (2.4) we �nd the alternative form

ds2
11

l2p
= e4φ/3(dxs + Aµdx

µ)2 + e−2φ/3 ds2
10

l2s
, (2.12)

whih will be used to relate low-energy solutions of M-theory and type IIA string theory.

2.2 M-theory superalgebra and BPS states

While M-theory has to redue to 11D SUGRA in the low-energy limit, little is known about

its mirosopi degrees of freedom. It is however postulated that the N = 1 supersymmetry

of 11D SUGRA should be valid at any energy, and the spetrum is therefore organized into

representations of the super-Poinaré algebra [308℄:

{Qα, Qβ} = (CΓM)αβZM +
1

2
(CΓMN)αβZ

MN
(2.13a)

+
1

5!
(CΓMNPQR)αβZ

MNPQR

[

Qα, Z
M...
]

= 0 . (2.13b)

Here Qα denotes the 32-omponent Majorana spinor generating the supersymmetry (see

[207℄ for a general aount on spinorial representations), and ΓMN... the antisymmetri

produt of Γ matries, i.e. ΓMΓN . . . for distint indies and zero otherwise. See Appendix

A.1 for our gamma matrix onventions.
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In addition to the usual translation operator PM , whih we denoted by ZM for uni-

formity, the right-hand side of Eq. (2.13a) ontains �entral harges� ZMN
and ZMNRST

in non-trivial representations of the Lorentz group. These harges appear as irreduible

representations (irreps) in the deomposition 528 = 11 + 55 + 462 of the symmetri ten-

sor produt {Qα, Qβ}, and the simplest assumption is that they should ommute with the

SUSY harges Qα
‡4
(their ommutation properties with the Lorentz generators are enoded

in their index struture). They an be identi�ed as the eletri and magneti harges of

extended objets [169, 84℄ with respet to the gauge potential CMNP and the metri gMN

and their Kaluza�Klein desendants.

The various omponents of the entral harges, their orresponding potentials, as well as

the nature of the solution, are summarized in Table 2.1. Here, E6 denotes the six-form dual

to C3 and KI;IMNPQRST the 7-form

‡5
dual to the Kaluza�Klein gauge potential gIM after

ompatifying the diretion I. This hints toward the existene of extended states harged

under these gauge �elds, namely 2-branes, 5-branes, 6-branes and 9-branes. The 9-branes,

whih are not harged under a gauge potential, are not dynamial and orrespond to the

�end-of-the-world� branes in ompati�ations of M-theory with lower supersymmetry [165℄.

They will not be further onsidered in this review, but we will shortly return to the M2,

M5 and KK6-brane.

Z0 ZI ZIJ ZIJKLM Z0I Z0IJKL

g00 g0I C0IJ E0IJKLM none KM ;MNPQRST0

mass momentum M2-brane M5-brane 9-brane KK6-brane

Table 2.1: M-theory entral harges, gauge �elds and extended objets.

The generi representation of the superalgebra (2.13) is generated by the ation of 16

fermioni reation operators on a vauum |0〉 in a given representation of the Lorentz group;
it is therefore 216

-dimensional, i.e. ontains 32768 bosoni states and 32768 fermioni states.

The positivity of the matrix 〈0|{Qα, Qβ}|0〉 implies a bound on the rest mass Z0 known

as the Bogomolny bound. When this bound is saturated, part of the supersymmetries

annihilate the vauum |0〉:
∑

Z

ZMN...(CΓMN...)
αβQβ |0〉 = 0 , (2.14)

resulting in a redued degeneray. Equation (2.14) requires that the 32 × 32 matrix

ZMN...(ΓMN...)
αβ

has at least one zero eigenvalue, and implies in partiular the BPS ondi-

‡4
It is possible to introdue non-Abelian relations while still preserving the Jaobi identity [292℄, but the

status of this possibility is still unlear.

‡5
No antisymmetry is assumed for indies separated by a semi-olon. The peuliar index struture

K1;8 = KI;IMNPQRST ensures that the seven-form indies M, . . . , T are distint from the ompat diretion

I, and the double ourrene of I has the same origin as the square radius R2
in Eq. (2.28).
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tion

det
αβ

(

∑

Z

(Z · Γ)αβ

)

= 0 , (2.15)

whih determines the rest mass Z0 in terms of the other harges.

The dimension an be further redued if the zero eigenvalue is degenerate, and this

requires more relations between the various harges. Sine only Z0 ontributes to the trae

on the right-hand side of Eq. (2.13a), the maximum number of zero eigenvalues is 16,

orresponding to a state annihilated by half the supersymmetries, or in short a 1/2-BPS

state. Beause of its redued dimension, a BPS state with smallest harge annot deay,

exept if it an pair up with another state of opposite harge to make a representation twie

as long [321℄. These states an therefore be followed at strong oupling (in the M-theory

language, this means for arbitrary geometries of the ompati�ation manifold) and serve

as the basis for many duality heks.

As an illustration, we wish to investigate the ase where, besides the mass M = Z0,

only the two-form entral harges ZIJ
do not vanish. This will be later interpreted as an

arbitrary superposition of M2-branes. We therefore have to solve the eigenvalue equation:

Γǫ = Mǫ , Γ ≡ ZIJΓ0IJ (2.16)

Squaring this equation yields

Γ2 = ZIJZIJ + ZIJZKLΓIJKL ⊜ M2 , (2.17)

where the symbol ⊜ denotes the equality when ating on ǫ. The spae of solutions now

depends on the value of kIJKL ≡ Z [IJZKL] = Z ∧ Z. If k = 0, Eq. (2.17) implies

(ZIJ)2 = M2
and Γ2 = M2

. Sine Tr Γ = 0, the 32 × 32 matrix Γ has 16 eigenvalues M
and 16 eigenvalues −M, and therefore Eq. (2.16) is satis�ed for a dimension-16 spae of

vetors ǫ. The state with harges ZIJ
is therefore annihilated by half the supersymmetry

generators Qα, and has a mass

M2
0 = ZIJZIJ . (2.18)

The ondition Z ∧Z = 0 means that the antisymmetri harge matrix ZIJ
has rank 2, i.e.

that only parallel M2-branes are superposed.

If on the other hand Z ∧ Z 6= 0, we may rewrite Eq. (2.17) as

Γ′ǫ =
(

M2 −M2
0

)

ǫ , Γ′ = kIJKLΓIJKL , (2.19)

and we are lead bak to an equation similar to Eq. (2.16). Squaring again yields

Γ
′2 = (kIJKL)2 + (k · k)IJKLΓIJKL + (k ∧ k)IJKLMNPQΓIJKLMNPQ

⊜
(

M2 −M2
0

)2
, (2.20)
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where (k · k)IJKL = kIJMNkKLMN
. As before, if k · k = k ∧ k = 0, this equation implies

(kIJKL)2 = (M2 − M2
0)

2 = Γ
′2
. Sine Tr Γ′ = 0, Eq. (2.19) is satis�ed by half the

supersymmetries, but Eq. (2.16) by a quarter only. We therefore get a 1/4-BPS state with

mass squared:

M2 = ZIJZIJ +
√
kIJKLkIJKL

(2.21a)

kIJKL = Z [IJZKL] . (2.21b)

This expression redues to Eq. (2.18) for a 1/2-BPS state, i.e. when kIJKL = 0. On the

other hand, if k · k or k∧k 6= 0 do not vanish, the state is at most 1/8-BPS and we have to

arry the same analysis one step further. Note that the onditions k ·k 6= 0 (resp. k∧k 6= 0)
an only be satis�ed when d ≥ 6 ( resp. d ≥ 8), in agreement with the absene of 1/8-BPS

states in more than �ve spae-time dimensions.

2.3 BPS solutions of 11D SUGRA

In want of a mirosopi formulation of M-theory (or of non-perturbative type IIA string

theory), it is ertainly di�ult to determine what representations of the eleven-dimensional

Poinaré superalgebra atually our in the spetrum. However, this is ahievable for

BPS states, sine supersymmetry protets these from quantum e�ets and in partiular

determine their exat mass formula. They an be studied at arbitrarily low energy, and

in partiular in the 11D SUGRA limit of M-theory. Instead of desribing the equations

implied by the BPS ondition on the supergravity on�guration, we refer the reader to

existing reviews in the literature [106, 104, 309, 296, 310℄, and ontent ourselves with

realling the four 1/2-BPS standard solutions: the pp-wave and three extended solutions,

the membrane (or M2-brane), �vebrane (M5-brane) and the Kaluza�Klein monopole, also

known as the KK6-brane.

The eleven-dimensional metri desribing the extended solutions splits into two parts:

the world-volume, denoted by E1,p
, inluding the time and p world-volume diretions, and

the transverse Eulidean part E10−p
. These solutions are given in terms of a harmoni

funtion H on the transverse spae, whih we hoose as a single pole

H(r) = 1 +
k

r8−p
, (2.22)

although any superposition of suh poles would do (this is stating the no-fore ondition

between stati BPS states; the onstant shift in Eq. (2.22) ensures the asymptoti �atness

of spae-time, required for a soliton interpretation). The onstant k depends on Newton's

onstant κ11 and on the p-brane tension, and is quantized by the requirement that the

spae-time be smooth (we will heneforth hoose the smaller quantum).

The pp-wave‡6 and KK6-brane solutions only involve the metri, and read [170, 307℄

pp-wave : ds2
11 = −dt2 + dρ2 + (H − 1)(dt+ dρ)2 + ds2(E9) (2.23a)

‡6
The name pp-wave stands for plane fronted wave with parallel rays [55℄. The solution (2.23) was

generalized in [41℄ to inlude exitations of the three-form potential.
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H = 1 +
k

r7
(2.23b)

KK6-brane : ds2
11 = ds2(E1,6) + ds2

TN(y) (2.24a)

ds2
TN = Hdyidyi +H−1

(

dψTN + Vi(y)dy
i
)2

, i = 1, 2, 3 (2.24b)

∇× V = ∇ ·H , H = 1 +
k

|y| . (2.24)

The KK6-brane solution is analogous to the �ve-dimensional Kaluza�Klein monopole [295℄,

and is built out from the four-dimensional Taub�NUT gravitational instanton (see Ref.

[109℄ for a review of this topi), whih is asymptotially of the form R3 × S1
, where ψTN

is the ompat oordinate of S1
with period 2πR. Consequently, this solution only arises

when at least one diretion is ompat. It is loalized in the four Taub�NUT diretions,

as should be the ase for a 6-brane, and magnetially harged under the graviphoton gµTN.

It an be onsidered as the eletromagneti dual of a pp-wave, eletrially harged under

the graviphoton arising after ompati�ation on a irle of radius R. pp-waves in ompat

diretions will be alled indi�erently Kaluza�Klein exitations or momentum states.

The orresponding solutions for the M2- and M5-brane read [108, 149℄:

M2-brane : ds2
11 = H−2/3ds2(E1,2) +H1/3ds2(E8) (2.25a)

dC3 = Vol(E1,2) ∧ dH−1
(2.25b)

H = 1 +
k

r6
, k =

κ2
11T2

3Ω7

(2.25)

M5-brane : ds2
11 = H−1/3ds2(E1,5) +H2/3ds2(E5) (2.26a)

dC3 = ⋆5dH (2.26b)

H = 1 +
k

r3
, k =

κ2
11T5

3Ω4

, (2.26)

whih also show that the M2-brane (resp. M5-) is eletrially (resp. magnetially) harged

under the 3-form gauge potential. The symbol ⋆q denotes Hodge duality in q dimensions,

and Ωn the volume of the sphere Sn
with unit radius:

Ωn =
2π

n+1
2

Γ
(

n+1
2

) . (2.27)
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The tensions (or mass per unit world-volume) of these four basi BPS on�gurations

an be easily evaluated from ADM boundary integrals and Dira quantization, or more

easily yet by dimensional analysis:

KK-state : T0 =
1

R
, KK6-brane : T6 =

R2

l9p
,

M2-brane : T2 =
1

l3p
, M5-brane : T5 =

1

l6p
.

(2.28)

The tension (i.e. mass) of the pp-wave with momentum along a ompat diretion of radius

R (oasionally denoted as RTN) is the one expeted for a massless partile in eleven

dimensions; the tension of the KK6-brane is easily obtained from the latter by eletri�

magneti duality, after reading o� from Eq. (2.6) the Kaluza�Klein gauge oupling 1/g2
KK =

R3/l9p:

T6 =
T0

g2
KK

=
R2

l9p
. (2.29)

All these BPS states have been inferred from a lassial analysis of 11D supergravity.

They should in priniple arise from a mirosopi de�nition of M-theory, whih would

allow a full aount of their interations. Nevertheless, it is still possible to formulate

their dynamis in terms of their olletive oordinates whih result from the breaking of

global symmetries in the presene of the soliton [130℄. Supersymmetry gives an important

guideline, sine (the unbroken) half of the 32 superharges has to be realized linearly on the

world-volume, while the other half is realized non-linearly. This �xes the dynamis of the

M5-brane to be desribed in terms of the hiral (2, 0) six-dimensional tensor theory [59℄,

while the membrane is desribed by the 2+1 supermembrane ation [42, 86℄. Unfortunately,

the quantization of these two theories remains a hallenge. As for the KK6-brane, the

desription of its dynamis is still an unsettled problem [155℄.

2.4 Redution to type IIA BPS solutions

Upon ompati�ation on a irle (with periodi boundary onditions on the fermion �elds),

the supersymmetry algebra is una�eted and the generators merely deompose under the

redued Lorentz group. The 32-omponent Majorana spinor Qα deomposes into two 16-

omponent Majorana�Weyl spinors of SO(1, 9) with opposite hiralities, and the N = 1
supersymmetry in 11D gives rise to non-hiral N = 2 supersymmetry in 10D. However, it

is onvenient not to separate the two hiralities expliitly, and rewrite the supersymmetry

algebra as

{Qα, Qβ} = (CΓµ)αβPµ + (CΓs)αβZ

+
1

2
(CΓµν)αβZ

µν + (CΓµΓs)αβZ
µ

(2.30)

+
1

5!
(CΓµνρστ )αβZ

µνρστ +
1

4!
(CΓµνρσΓs)αβZ

µνρσ ,
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where the eleventh Gammamatrix Γs is identi�ed with the 10D hirality operator Γ0Γ1 . . .Γ9.

The eleven-dimensional entral harges give rise to the harges Z, Zµ
, Zµν

, Zµνρσ
, Zµνρστ

whose interpretation is summarized in Table 2.2, where we omitted the momentum harge

Pµ. In this table, Km;mnpqrst denotes the 6-form dual to gµm after ompati�ation of the

diretion m.

Z Z ij Z i Z ijklm Z ijkl Z0i Z0 Z0ijkl Z0ijk

A0 C0ij B0i E0ijklm R0ijkl none none Km;mpqrs0 R0lmnpqr

D0 D2 F1 NS5 D4 D8 9-brane KK5 D6

Table 2.2: Type IIA entral harges, gauge �elds and extended objets

Under Kaluza�Klein redution, the BPS solutions of 11D SUGRA yield BPS solutions

of type IIA supergravity. This redution an, however, be arried out only if the eleventh di-

mension is a Killing vetor of the on�guration. This is automatially obeyed if the eleventh

diretion is hosen along the world-volume E1,p
, and redues the eleven-dimensional p-brane

to a ten-dimensional (p−1)-brane with tension Tp−1 = RTp; this proedure is alled diagonal

or double redution [105℄, and we shall all the resulting solutions wrapped or longitudinal

branes. One may also want to hoose the eleventh diretion transverse to the brane, but

this is not an isometry, sine the dependene of the harmoni funtion H on the transverse

oordinates is non-trivial. However, this an be easily evaded by using the superposition

property of BPS states, and onstruting a ontinuous stak of parallel p-branes along the
eleventh diretion. The harmoni funtion on E10−p

turns into an harmoni funtion on

E9−p
:

∫ ∞

−∞

dxs

[(xs)2 + ρ2]
8−p

2

∼ 1

ρ7−p
. (2.31)

We therefore obtain an unwrapped or transverse p-brane in ten dimensions with the same

tension Tp as the one we started with. This proedure is usually alled vertial or diret

redution. It has also been proposed to redue along the isometry that arises when the

sphere S9−p
in the transverse spae E10−p

is odd-dimensional, hene given as a U(1) Hopf
�bration [107℄, but the status of the solutions obtained by this angular redution is still

unlear.

Applying this proedure to the four M-theory BPS on�gurations, with tensions given

in Eq. (2.28), we �nd, after using the relations (2.11), the set of BPS states of type IIA

string theory listed in Table 2.3:

As the table shows, we reover the set of all 1/2 BPS solutions of type IIA string theory,

whih inlude the KK exitations, the fundamental string and the set of solitoni states

omprised by the NS5-brane, KK5-brane and the Dp-branes‡7 with p = 0, 2, 4, 6 ‡8
. The

‡7
The letter D stands for the Dirihlet boundary onditions in the 9 − p diretions orthogonal to the

world-volume of the Dp-brane, whih fore the open strings to move on this (p+1)-dimensional hyperplane.

‡8
There is also an 8-brane oupling to a nine-form, whose expetation value is related to the osmologial

onstant [256, 40, 38℄.
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M-theory mass/tension type IIA

longitudinal M2-brane T1 =

Rs

l3p
=

1
l2s

F-string

transverse M2-brane T2 =

1
l3p

=

1
gsl3s

D2-brane

longitudinal M5-brane T4 =

Rs

l6p
=

1
gsl5s

D4-brane

transverse M5-brane T5 =

1
l6p

=

1
g2

s l6s
NS5-brane

longitudinal KK mode T0 =

1
Rs

=

1
gsls

D0-brane

transverse KK mode T0 =

1
Ri

=

1
Ri

KK mode

longitudinal KK6-brane T5 =

RsR2
TN

l9p
=

R2
TN

g2
s l8s

KK5-brane

KK6-brane with RTN = Rs T6 =

R2
s

l9p
=

1
gsl7s

D6-brane

transverse KK6-brane T6 =

R2
TN

l9p
=

R2
TN

g3
s l9s

6

1
3-brane

Table 2.3: Relation between M-theory and type IIA BPS states.

NS5-brane is a solitoni solution that is magnetially harged under the Neveu�Shwarz

B-�eld [59℄. The Dp-branes are solitoni solutions, eletrially harged under the RR gauge

potentials Rp+1 (or magnetially under R7−p) [256℄. The tension of these BPS states does

not reeive any quantum orretions perturbative or non-perturbative, whih is why these

objets are useful when onsidering non-perturbative dualities. States eletrially (resp.

magnetially) harged under the Neveu�Shwarz gauge �elds have tensions that sale with

the string oupling onstant as g0
s (resp. 1/g2

s), whereas states harged under the Ramond

�elds have tensions that sale as 1/gs.

The last line in Table 2.3 is an unonventional solution, whih we all a 6

1
3-brane, ob-

tained by vertial redution of the KK6-brane in a diretion in the R3
part of the Taub�NUT

spae [54℄. The integration involved in building up the stak is, however, logarithmially

divergent, and, if regularized, yields a non-asymptotially �at spae. However, as we will

see in more detail in Subsetion 4.9, at the algebrai level this solution is required by U-

duality symmetry. At that point we will also explain our nomenlature for this (and other)

non-onventional solutions. It is also interesting to note that all the tensions obtained

above are not independent, sine they follow from the basi relations (2.11). This already

hints at the presene of a larger struture that relates all these states, a fat that we will

establish using the onjetured U-duality symmetry of ompati�ed M-theory.

The dimensional redution an also be arried out at the level of the supergravity

on�guration itself. For example, using the relation (2.12) between the 11D metri and

10D string metri, one �nds that a solution with 11D metri of the form

ds2
11 = Hκds2(E1,p) +Hλds2(E10−p) (2.32)
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yields two 10D solutions with metri and dilaton

ds2
10 = Hαds2(E1,p′) +Hβds2(E9−p′) , e−2φ = Hγ

(2.33a)

where

diagonal : p′ = p− 1 , α =
3κ

2
, β = λ+

κ

2
, γ = −3κ

2
, (2.33b)

vertial : p′ = p , α = κ+
λ

2
, β =

3λ

2
, γ = −3λ

2
, (2.33)

for diagonal and vertial redution respetively. As explained in the beginning of this

subsetion, in the �rst ase the harmoni funtion is the same as the original one, and in

the seond ase it is an harmoni funtion on a transverse spae with one dimension less.

The redution of the gauge potentials an be worked out similarly.

The resulting 10D type IIA on�gurations are then desribed by the following solutions:

F-string : ds2
10 = H−1ds2(E1,1) + ds2(E8) (2.34a)

B01 = H−1 , e−2φ = H , H = 1 +
k

r6
(2.34b)

NS5-brane : ds2
10 = ds2(E1,5) +Hds2(E4) (2.35a)

dB = ⋆4dH , e−2φ = H−1 , H = 1 +
k

r2
(2.35b)

Dp-brane : ds2
10 = H−1/2ds2(E1,p) +H1/2ds2(E9−p) (2.36a)

e−2φ = H(p−3)/2 , H = 1 +
k

r7−p
(2.36b)

F (p+2)
e = Vol(E1,p) ∧ dH−1 , p = 0, 1, 2 (2.36)

F (8−p)
m = ⋆9−pdH , p = 4, 5, 6 (2.36d)

F (5) = F (5)
e + F (5)

m , p = 3 (2.36e)
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where, for ompleteness, we have inluded the Dp-brane solutions for all p = 0 . . . 6, al-
though we note that only even p ours in type IIA. The subsripts e and m indiate

whether the p-branes are eletrially or magnetially harged under the indiated �elds.

One also �nds the ten-dimensional gravitational solutions, onsisting of the pp-waves and
KK5-brane, whih have a metri analogous to the eleven-dimensional ase (see (2.23) and

(2.24)), with harmoni funtions on a transverse spae with one dimension less. Of ourse,

one may expliitly verify that all of these solutions are indeed solutions of the tree-level

ation (2.7).

In ontrast to the M2-brane and M5-brane, the dynamis of Dp-branes has a nie and

tratable desription as (p + 1)-dimensional hyperplanes on whih open strings an end

and exhange momentum with [256℄. The integration of open string �utuations around a

single D-brane at tree level yields the Born�Infeld ation [58, 210, 18℄,

SBI =
1

lp+1
s

∫

dp+1ξe−φ

√

ĝ + B̂ + l2sF . (2.37)

Here, the hatted �elds ĝ, B̂ stand for the pullbaks of the bulk metri and antisymmetri

tensor to the world-volume of the brane, and F is the �eld strength of the U(1) gauge �eld
living on the brane. The oupling to the RR gauge potentials is given by the topologial

term [97, 143℄

‡9

SRR = i

∫

eB̂+l2sF ∧R , (2.38)

where R =
∑

p Rp denotes the total RR potential.

In the zero-slope limit, the Born�Infeld ation beomes the ation of a supersymmetri

Maxwell theory with 16 superharges. In the presene of N oiniding D-branes the world-

volume gauge symmetry gets enhaned from U(1)N
to U(N), as a onsequene of zero

mass strings strething between di�erent D-branes [320℄. The non-Abelian analogue of the

Born�Infeld ation is not known, although some partial Abelianization is available [312℄,

but its zero-slope limit is still given by U(N) super-Yang�Mills theory.

2.5 T-duality and type IIA/B string theory

So far, we have disussed M-theory and its relation to type IIA string theory. In this

subsetion, we turn to type IIB string theory and its relation, via T-duality, to type IIA

[95, 80℄. We �rst reall that the massless setor of type IIB onsists of the same Neveu�

Shwarz �elds (2.8a) as the type IIA string, but the Ramond gauge potentials of type IIB

now inlude a 0-form (salar), a 2-form and a 4-form with self-dual �eld strength,

a , Bµν , Dµνρσ , (2.39)

‡9
There is also a gravitational term required for the anellation of anomalies [139℄, but it does not

ontribute on �at bakgrounds.
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with ∗D4 = D4. The low-energy e�etive ation has a form similar to that in (2.7), with the

appropriate �eld strengths of the even-form RR potentials in (2.39), as long as the 4-form

is not inluded

‡10
. The standard 1/2-BPS solutions of type IIB are the fundamental string,

NS5-brane, Dp-branes with odd p, pp-waves and KK5-brane.

In order to desribe the preise T-duality mapping, we again write the ten-dimensional

metri as a U(1) �bration

ds2
10 = R2(dx9 + Aµdx

µ)2 + gµνdx
µdxν , µ, ν = 0 . . . 8 . (2.40)

T-duality on the diretion 9 relates the �elds in the type IIA and type IIB theories in the

Neveu�Shwarz setor as

T9 : R ↔ l2s
R
, gs ↔ gs

ls
R
, Aµ ↔ B9µ , Bµν ↔ Bµν − AµB9ν + AνB9µ , (2.41)

leaving gµν and the string length ls invariant. The Ramond gauge potentials are furthermore

identi�ed on both sides aording to

T9 : R ↔ dx9 · R + dx9 ∧R , R =
∑

p

Rp , (2.42)

where · and ∧ denote the interior and exterior produts respetively. In other words, the 9
index is added to the antisymmetri indies of R when absent, or deleted if it was already

present. These identi�ations atually reeive orretions when B 6= 0, and the preise

mapping is [41, 143, 111℄

eBR → dx9 · (eBR) + dx9 ∧ (eBR) (2.43)

in aord with the T-duality ovariane of the RR oupling in (2.38). Whereas one T-

duality maps the type IIA string theory to IIB and should be thought of as a hange of

variable, an even number of dualities an be performed and orrespond to atual global

symmetries of either type IIA or type IIB theories. This symmetry will be disussed in

Setion 3, and its non-perturbative extension in Setion 4.

The ation on the BPS spetrum an again be easily worked out, at the level of tension

formulae or of the supergravity solutions themselves. As implied by the exhange of the

Kaluza�Klein and Kalb�Ramond gauge �elds Aµ and B9µ, states with momentum along the

9th diretion are interhanged with fundamental string winding around the same diretion.

On the other hand, T-duality exhanges Neumann and Dirihlet boundary onditions on

the open string world-sheet along the 9th diretion, mapping Dp-branes to D(p + 1)- or
D(p − 1)-branes, depending on the orientation of the world-volume with respet to x9

[80, 37℄. This of ourse agrees with the mapping of Ramond gauge potentials in Eq. (2.42).

Similarly, NS5-branes are invariant or exhanged with KK5-branes, aording to whether

‡10
A loal ovariant ation for the self-dual four-form an be written with the help of auxiliary �elds [81℄,

but for most purposes the equations of motion are su�ient.
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they are wrapped or unwrapped, respetively [111, 249℄

‡11
. This an also be easily seen

by applying the transformation (2.41) to the tension formulae, as summarized in Table 2.4

for a T-duality Ti on an arbitrary ompat dimension with radius Ri.

type IIA (B) tension Ti-dual tension type IIB (A)

KK mode M = 1
Ri

M = Ri

l2s
winding mode

wrapped Dp-brane Tp−1 = Ri

gslp+1
s

Tp−1 = 1
gslps

unwrapped D(p− 1)-brane

wrapped NS5-brane T4 = Ri

g2
s l6s

T4 = Ri

g2
s l6s

wrapped NS5-brane

unwrapped NS5-brane T5 = 1
g2

s l6s
T5 =

R2
i

g2
s l6s

unwrapped KK5-brane

Table 2.4: T-duality of type II BPS states.

T-duality an then be used to translate the relation between strongly oupled type IIA

theory and M-theory in type IIB terms. In this way, it is found that the type IIB string

theory is obtained by ompatifying M-theory on a two-torus T 2
, with vanishing area, and

a omplex struture τ equated to the type IIB omplex oupling parameter [273℄:

τ = a +
i

gs
. (2.44)

Here, a is the expetation value of the Ramond salar and gs the type IIB string oupling.

We fous for simpliity on the ase where the torus is retangular, so that τ is purely

imaginary and hene the RR salar a vanishes. In this ase, the relation between the

M-theory parameters and type IIB parameters reads

gs =
Rs

R9

, l2s =
l3p
Rs

, RB =
l3p

RsR9

, (2.45)

where Rs, R9 are the radii of the M-theory torus and RB the radius of the type IIB 9th

diretion. The unompati�ed type IIB theory is obtained in the limit (Rs, R9) → ∞,

keeping Rs/R9 �xed. From Eq. (2.45), we an then identify the type IIB BPS states to

those of M-theory ompati�ed on T 2
. The results are displayed in Table 2.5 for states

still existing in unompati�ed type IIB theory, and in Table 2.6 for states existing only

for �nite values of RB.

‡11
Whereas the worldvolume dynamis of type IIB NS5- and D5-branes is desribed by a non-hiral

(1, 1) vetor multiplet, the type IIB KK5-brane is hiral and supports a (2, 0) tensor multiplet. Indeed, it
is T-dual to the hiral type IIA NS5-brane [10℄. On the other hand, the type IIA KK5-brane, dual to the

type IIB NS5-brane, is nonhiral.
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M-theory

mass/tension type IIB

M2-brane wrapped around xs Rs

l3p
= 1

l2s
fundamental string

M2-brane wrapped around x9 R9

l3p
= 1

gsl2s
D1-brane (D-string)

M5-brane wrapped on xs, x9 RsR9

l6p
= 1

gsl4s
D3-brane

KK6-brane wrapped on x9
,

harged under gµs

R2
sR9

l9p
= 1

gsl6s
D5-brane

KK6-brane wrapped on xs
,

harged under gµ9

R2
9Rs

l9p
= 1

g2
s l6s

NS5-brane

Table 2.5: Relations between M-theory and type IIB BPS states.

M-theory

mass/tension type IIB

M2-brane wrapped on xs, x9 R9Rs

l3p
= 1

RB
KK mode

unwrapped M5-brane

1
l6p

=
R2

B

g2
s l8s

KK5-brane with RTN = Rs

unwrapped M2-brane

1
l3p

= RB

gsl4s
wrapped D3-brane

M5-brane wrapped on xs Rs

l6p
= RB

gsl6s
wrapped D5-brane

M5-brane wrapped on x9 R9

l6p
= RB

g2
s l6s

wrapped NS5-brane

unwrapped KK6-brane,

harged under gµs

R2
s

l9p
= RB

gsl8s
wrapped D7-brane

unwrapped KK6-brane,

harged under gµ9

R2
s

l9p
= RB

g3
s l8s

wrapped 73-brane

Table 2.6: More relations between M-theory and type IIB BPS states.

As in Table 2.3, we see in the last entry of Table 2.6 a non-standard BPS state with

tension saling as g−3
s , whih we have alled a 73-brane. As this brane will turn out to be

related to the D7-brane by S-duality (see Subsetion 4.5) it may also be referred to as a

(1,0) 7-brane. This and other non-standard solutions will be disussed in more detail in

Subsetion 4.9.
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3 T-duality and toroidal ompati�ation

Having disussed how dualities of string theory lead to the idea of a more fundamental

eleven-dimensional M-theory, we now turn to the symmetries that this theory should ex-

hibit, with the hope of getting more insight into its underlying struture. For this purpose,

it is onvenient to onsider ompati�ations on tori, whih have the advantage of preserv-

ing a maximal amount of the original super-Poinaré symmetries, while bringing in degrees

of freedom from extended states in eleven dimensions in a still manageable way.

The approah here is similar to the one that was taken for the perturbative string

itself, where the study of T-duality in toroidal ompati�ations revealed the existene

of spontaneously broken �stringy� gauge symmetries (see [135℄ for a review). Given the

analogy between the two problems, we shall �rst review in this setion how T-duality in

string theory appears at the level of the low-energy e�etive ation and of the spetrum,

with a partiular emphasis on the brane spetrum. We shall then apply the same tehniques

in Setions 4 and 5 in order to disuss U-duality in M-theory.

3.1 Continuous symmetry of the e�etive ation

Compati�ation of string theory on a torus T d
an be easily worked out at the level of the

low-energy e�etive ation, by substituting an ansatz similar to (2.4)

ds2
10 = gij

(

dxi + Ai
µdx

µ
) (

dxj + Aj
νdx

ν
)

+ gµνdx
µdxν

(3.1a)

i, j = 1 . . . d , µ, ν = 0 . . . (9 − d) (3.1b)

in the ten-dimensional ation

S10 =
1

l8s

∫

d10x
√−ge−2φ

(

R + 4(∂φ)2 − l4s
12

(dB)2

)

, (3.2)

where we omitted Ramond and fermion terms. We have also split the ten-dimensional

two-form B into d(d− 1)/2 salars Bij , d vetors Biµ and a two-form Bµν .

Conentrating on the salar setor, and rede�ning the dilaton as V e−2φ = ldse
−2φd

where

V =
√

det g ‡12
is the volume of the internal metri, we obtain

Sscal =
1

l8−d
s

∫

d10−dx
√−ge−2φd

(

4(∂φd)
2 +

1

4
Tr ∂g∂g−1 +

1

4
Tr g−1∂B g−1∂B

)

. (3.3)

This an be rewritten as

Sscal =
1

l8−d
s

∫

d10−dx
√−ge−2φd

(

4(∂φd)
2 +

1

8
Tr ∂M∂M−1

)

, (3.4)

‡12g denotes the internal metri gij , exept in the spae-time volume element

√−g multiplying the ation

density.
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where M is the 2d× 2d symmetri matrix

M =

(

g−1 g−1B

−Bg−1 g −Bg−1B

)

, M tηM = η , η =

(

Id

Id

)

, (3.5)

orthogonal for the signature (d, d) metri η. The salars gij and Bij therefore parametrize

a symmetri manifold

H =
SO(d, d,R)

SO(d) × SO(d)
∋M , (3.6)

where SO(d) × SO(d) is the maximal ompat subgroup of SO(d, d,R). The matrix M
is more properly thought of as the SO(d) × SO(d) invariant M = V tV built out from the

vielbein in SO(d, d,R)

V =

























1/R1

1/R2

.

.

.

R1

R2

.

.

.

























.

























1 −A1
2 . . . B11 B12 . . .

1
.

.

. B21 B22 . . .
.

.

.

.

.

.

.

.

.

1 A1
2 . . .

1
.

.

.

.

.

.

























(3.7)

orresponding to the Iwasawa deomposition of SO(d, d,R), as will be disussed in more

detail in Setion 4.2. The two-derivative ation for the salars gij, Bij, φd is therefore

invariant [222℄ under the ation M → ΩtMΩ of Ω ∈ O(d, d,R), and so is the entire two-

derivative ation in the Neveu�Shwarz setor, if the 2d gauge �elds Ai
µ and Biµ transform

altogether as a vetor under O(d, d,R), the dilaton φd, metri gµν and two-form Bµν being

invariant.

The ation on the Ramond setor is more ompliated, sine the Ramond salars and

one-forms transform as a spinor (resp. onjugate spinor) of SO(d, d,R), with the hiral-

ity depending on whether we onsider type IIA or IIB. Elements of O(d, d,R) with (−1)
determinant �ip the hirality of spinors; they therefore are not symmetries of the ation

in the Ramond setor, but dualities, exhanging type IIA and type IIB theories. Indeed

it is easy to see that the R → 1/R dualities that we disussed in Subsetion 2.5 belong

to this lass of transformations. The tree-level e�etive ation is therefore invariant under

the ontinuous symmetry SO(d, d,R), whih extends the symmetry Sl(d,R) that would be

present in the dimensional redution of any Lorentz-invariant �eld theory.

3.2 Charge quantization and T-duality symmetry

Owing to the ourrene of partiles harged under the gauge �elds Ai
µ and Biµ, the on-

tinuous symmetry SO(d, d,R) an, however, not exist at the quantum level. For instane,
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perturbative string states have integer momenta mi and winding numbers mi
under these

gauge �elds, lying in an even self-dual Lorentzian lattie Γp. The 1/2-BPS states are ob-

tained when the world-sheet osillators α†
µn and ᾱ†

µn are not exited, and satisfy the mass

formula and mathing ondition

M2 = mtMm

= (mi +Bijm
j)gik(mk +Bklm

l) +migijm
j

(3.8a)

‖m‖2 = 0 , (3.8b)

where m = (mi, m
i) is the vetor of harges, ‖m‖2 = 2mim

i
its Lorentzian square-norm

and M is the moduli matrix given in (3.5).

On the other hand, 1/4-BPS states are obtained when the world-sheet osillators are

exited on the holomorphi (or antiholomorphi) side only, and have mass

M2 = mtMm+
∣

∣‖m‖2
∣

∣ , (3.9)

where the norm |‖m‖2| is equated to the left or right osillator number by the mathing

onditions. Only the disrete subgroup preserving Γp an be a quantum symmetry, and

this group is O(d, d,Z), the set of integer-valued O(d, d,R) matries. In partiular, the

subgroup Sl(d,R) of SO(d, d,R) is redued to the modular group of the torus Sl(d,Z), an
obvious onsequene of momentum quantization in ompat spaes.

In addition to this perturbative spetrum, type II string theory also admits a variety of

D-branes, whih are harged under the Ramond gauge potentials. Their harges take value

in another lattie, ΓD, and transform as a spinor under SO(d, d,R). Again, the determinant

(−1) elements of O(d, d,Z) �ip the hirality of spinors, and therefore do not preserve ΓD.

As we shall see shortly, SO(d, d,Z) however does preserve the lattie of D-brane harges.

This is in agreement with the fat that this group an be seen as the Weyl group of the

extended gauge symmetries that appear at partiular points in the torus moduli spae, and

are spontaneously broken elsewhere [134℄.

3.3 Weyl and Borel generators

In order to better understand the struture of the T-duality symmetry, it is useful to

isolate a set of generating elements of SO(d, d,Z). We de�ne Weyl elements as the ones

that preserve the onditions

gij = R2
i δij , Bij = 0 , (3.10)

that is square tori with vanishing two-form bakground, and Borel elements as the ones

that do not. Weyl generators inlude the exhanges of radii Sij : Ri ↔ Rj , whih belong

to the Sl(d,Z) modular group, as well as the simultaneous inversions of two radii Tij :
(Ri, Rj) → (1/Rj, 1/Ri).
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We hoose the following minimal set of Weyl generators:

Si : Ri ↔ Ri+1 , i = 1 . . . d− 1 , (3.11a)

T : (gs, R1, R2) ↔
(

gs

R1R2
,

1

R2
,

1

R1

)

. (3.11b)

For onveniene, we followed the double T-duality on diretions 1 and 2 by an exhange of

the two radii, inluded the ation on the oupling onstant and set the string length ls to
1. Altogether, the Weyl group of SO(d, d,Z) is the �nite group

W (SO(d, d)) = Z2 ⊲⊳ Sd (3.12)

generated by the T-duality transformation T and the permutation group Sd of the d dire-
tions of the torus

‡13
.

On the other hand, Borel generators inlude the Borel elements of the modular subgroup,

ating as γi → γi + γj on the homology lattie of the lattie, as well as the integer shifts of

the expetation value of the two-form in the internal diretions Bij → Bij +1. Any element

in SO(d, d,Z) an be reahed by a sequene of these transformations.

Weyl and Borel generators an be given a more preise de�nition as operators on the

weight spae of the Lie group or algebra under onsideration (see for instane Ref. [176℄ for

an introdution to the relevant group theory)

‡14
. Weyl generators orrespond to orthogonal

re�etions with respet to planes normal to any root and generate a �nite disrete group,

while Borel generators at on the weight lattie by translation by a positive root. Any �nite-

dimensional irreduible representation (of the omplex Lie algebra) an then be obtained

by ation of the Borel group on a, so alled, highest-weight vetor, and splits into orbits of

the Weyl group with de�nite lengths.

3.4 Weyl generators and Weyl re�etions

Weyl generators enode the simplest and most interesting part of T-duality. It is very easy

to study the struture of the �nite group they generate, by viewing them as orthogonal

re�etions in a vetor spae (the weight spae) generated by the logarithms of the radii.

More preisely, let us represent the salar moduli (ln gs, lnR1, . . . , lnRd) as a form ϕ on a

vetor spae Vd+1 with basis e0, e1, . . . , ed, and assoiate to any weight vetor λ = x0e0 +
x1e1 + · · ·+ xded, its tension

‡15

T = e〈ϕ,λ〉 = gx0

s R
x1

1 R
x2

2 . . . Rxd

d . (3.13)

‡13
The Weyl group of SO(d, d) an atually be written as the semi-diret produt Sd ⋉ (Z2)

d−1
, where

the ommuting Z2's are the double inversions of Ri and, say, R1.

‡14
From this point of view, Weyl generators are not properly speaking elements of the group, but an be

lifted to generators thereof, at the ost of introduing Z2 phases in their ation on the step operators Eα.

See for instane Appendix B in Ref. [212℄, for a disussion of this issue in the physis literature.

‡15
One ould omit the x0

oordinate sine gs an be absorbed by a power of the invariant Plank length

∏

Ri/g2
s , but we inlude it for later onveniene.
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The vetor λ should be seen as labelling a state in the BPS spetrum, with tension T . The

generators (3.11) are then implemented as linear operators on Vd+1 with matries

Si =















1

1

1

Id−3















, T =















1

−1 −1

−1 −1

Id−3















(3.14)

These operators Si and T in (3.14) are easily seen to be orthogonal with respet to the

signature (− + · · ·+) metri

ds2 = −(dx0)2 + (dxi)2 + dx0(dx1 + · · ·+ dxd) , (3.15)

and orrespond to Weyl re�etions

λ→ ρα(λ) = λ− 2
α · λ
α · α α (3.16)

with respet to planes normal to the vetors

αi = ei+1 − ei , i = 1 . . . d− 1 (3.17a)

α0 = e1 + e2 . (3.17b)

The group generated by Si and T is therefore a Coxeter group, familiar from the theory of

Lie algebras (see [176℄ for an introdution, and [177, 122℄ for a full aount). Its struture

an be haraterized by the matrix of salar produts of these roots:

(αi)
2 = (α0)

2 = 2 (3.18a)

αi · αi+1 = α2 · α0 = −1 . (3.18b)

This preisely reprodues the Cartan matrix Dd of the T-duality group SO(d, d,R), sum-

marized in the Dynkin diagram:

©0

�

⊕2 − ⊕3 − · · ·− ⊕d−1

�

+1

(3.19)

The only deliate point is that the signature of the metri (3.15) on Vd+1 is not positive-

de�nite. This an be easily evaded by noting that the invariane of Newton's onstant

∏

Ri/g
2
s implies that all roots are orthogonal to the vetor

δ = e1 + · · ·+ ed − 2e0 (3.20)
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with negative proper length δ2 = −(d + 4), so that the re�etions atually restrit to the

hyperplane Vd normal to δ:

δ · x = x0 = 0 . (3.21)

The Lorentz metri on Vd+1 then restrits to a positive-de�nite metri gij = δij on Vd.

The dualities Si and T therefore generate the Coxeter group Dd, whih is the same as the

Weyl group of the Lie algebra of SO(d, d,R). In order to distinguish the various real and

disrete forms of Dd, one needs to take into aount the Borel generators, whih we defer

to Subsetion 3.7.

The Dynkin diagram (3.19) allows a number of simple observations. We may reognize

the Dynkin diagramAd−1 of the Lorentz group Sl(d,R) (denoted with+), extended with the

root© into the Dynkin diagram of the T-duality symmetry SO(d, d,R). T-duality between
type IIA and type IIB orresponds to the outer automorphism ating as a re�etion along

the horizontal axis of the Dynkin diagram. The hain denoted with ©'s represents a dual

Sl(d,R) subgroup, whih is nothing but the Lorentz group on the type IIB T-dual torus.

The full T-duality group is generated by these two non-ommuting Lorentz groups of the

torus and the dual torus.

Deompati�ation of the torus T d
into T d−1

is ahieved by dropping the rightmost

root, whih redues Dd to Dd−1. When the root α2 is reahed, the diagram disonnets

into two piees, orresponding to the identity SO(2, 2,R) = Sl(2,R) × Sl(2,R), or to the

deomposition of the torus moduli spae into the T and U upper half-planes

‡16
. Finally,

for d = 1 the T-duality group SO(1, 1,Z) beomes trivial, while the generator of O(1, 1,Z)
orresponds to the inversion R ↔ 1/R, not a symmetry of either type IIA or type IIB

theories.

3.5 BPS spetrum and highest weights

Having proved that the transformations Si and T indeed generate the Weyl group of

SO(d, d,Z), we an use the same formalism to investigate the orbit of the various BPS

states of string theory. Aording to (3.13) the mass or tension an be represented as a

weight vetor in Vd+1, and one should let Weyl and Borel generators at on it to obtain the

full orbit. Eah orbit admits a highest weight from whih all other elements an be reahed

by a sequene of Weyl and Borel generators (Weyl generators alone are not su�ient,

beause they preserve the length of the weight).

All highest weights an be written as linear ombinations with positive integer oe�-

‡16
The extra Z2 exhanging the two Sl(2, R) fators belongs to O(2, 2, R) but not to SO(2, 2, R).
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ients of the fundamental weights

λ(1) = e1 − e0 → MwD =
R1

gs
(3.22a)

λ(2) = e1 + e2 − 2e0 → MNS =
R1R2

g2
s

(3.22b)

λ(d−2) = e1 + · · ·+ ed−2 − 2e0 → Mw...wNS =
R1 . . . Rd−2

g2
s

(3.22)

λ(d−1) = e1 + · · · + ed−1 − 2e0
.
= −ed → MwF =

1

Rd
(3.22d)

λ(0) = −e0 → MD =
1

gs

(3.22e)

dual to the simple roots, that is λ(i) · αj = −δij ‡17
.We used the symbol

.
= for equality

modulo the invariant vetor δ in Eq. (3.20), and the notation F ,D and NS for fundamental,

Dirihlet and Neveu�Shwarz states, respetively, depending on the power of the oupling

onstant involved, and w for eah wrapped diretion (the notation wF is justi�ed by the

fat that the Kaluza�Klein states are in the same multiplet as the string winding states).

This is summarized in the Dynkin diagram

1
gs

�

R1R2

g2
s

− R1R2R3

g2
s

− · · ·− 1
Rd

�

R1

gs

(3.23)

whih shows the highest weights assoiated to eah node of the Dynkin diagram.

In partiular, we see from (3.23) that the type IIA D-partile mass (M = 1/gsls) lies
in the spinor representation dual to α1, just as do the type IIB D-string tension (T1 =
1/gsl

2
s) and D-instanton ation (T−1 = 1/gs), whereas the type IIB D-partile mass (M =

Ri/gsl
2
s) and type IIA D-string tension (T1 = Ri/gsl

3
s) and D-instanton ation (T = Ri/gsls)

transform in the spinor representation dual to α0, of opposite hirality. On the other hand,

the Kaluza�Klein states lie in a vetor representation. All highest-weight representations

an be obtained from the tensor produt of these �extreme� (from the point of view of the

Dynkin diagram) representations. T-duality on a single radius exhanges the two spinor

representations, as it should.

‡17
The minus sign shows that we are really onsidering lowest-weight vetors, but we shall keep this abuse

of language.
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3.6 Weyl-invariant e�etive ation

In the previous subsetions, we have disussed how the Weyl group of SO(d, d) arises as
the �nite group generated by the permutations and double T-duality (3.11), whereas the

low-energy ation itself is invariant under the ontinuous group SO(d, d,R). This has been
heked in the salar setor in Eq. (3.4), by diret redution of the 10D e�etive ation on

T d
. It is however possible to rewrite the full ation in a manifestly Weyl-invariant way, by

a step-by-step redution from 10D, as was originally developed in Ref. [218℄ in the ontext

of 11D supergravity. This proedure leads to a lear identi�ation of �dilatoni� salars,

whih appear through exponential fators in the ation and inlude the dilaton gs and the

radii Ri of the torus, versus �Peei�Quinn� salars whih have onstant shift symmetries

and are better thought of as 0-forms with a 1-form �eld strength.

Eah �eld strength F (p)
gives rise to �eld strengths of lower degree F

(q)
i1...iq

, with internal

indies i1 . . . iq (given by the exterior derivative of a (q − 1)-form up to Chern�Simons

orretions), while the metri gives rise to Kaluza�Klein two-form �eld strengths F (2)i
and

one-form �eld strengths F i(1)
j , i < j, of the vielbein omponents in the upper triangular

gauge

gMN = EP
ME

Q
N ηPQ , (3.24a)

EN
M =

























R1

R2

.

.

.

Rd−1

Rd

Eν
µ

























.

























1 A1
2 A1

3 . . . A1
d A1

µ

1 A2
3 . . . A2

d A2
µ

.

.

.

.

.

.

1 Ad−1
d Ad−1

µ

1 Ad
µ

I11−d

























, (3.24b)

where Eν
µ denotes the vielbein in the unompati�ed diretions. The ation (2.7) in the

Neveu�Shwarz setor then takes the simple form:

SNS,10−d =

∫

d10−dx
√−g V

g2
s l

8
s

[

R + (∂φ)2 +
∑

i

(

∂Ri

Ri

)2

+
∑

i<j

(

Ri

Rj
F i(1)

j

)2

+
∑

i

(

RiF (2)i
)2

+
(

l2sF
(3)
)2

+
∑

i

(

l2s
Ri
F

(2)
i

)2

+
∑

i<j

(

l2s
RiRj

F
(1)
ij

)2
]

, (3.25)

where the �rst �ve terms ome from the redution of the Einstein�Hilbert term and the

last three terms from the kineti term of the two-form.

Putting together the forms of the same degree, we see that their oe�ients form the

Weyl orbit Φs, of the string tension (F (3)
λ ), the Weyl orbit ΦKK of the Kaluza�Klein and
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winding states (F (2)
λ ), and the set of positive roots Φ+ = {ei ± ej , i < j} (F (1)

α ). We an

therefore rewrite the ation in the Weyl-invariant form:

SNS,10−d =
∫

d10−dx
√−g V

g2
s l8s

[

R + ∂ϕ · ∂ϕ +
∑

α∈Φ+
e−2〈ϕ,α〉

(

F (1)
α

)2

+
∑

λ∈ΦKK
e−2〈ϕ,λ〉

(

F (2)
λ

)2

+
∑

λ∈Φs
e−2〈ϕ,λ〉

(

F (3)
λ

)2
]

, (3.26)

where ϕ = (ln gs, lnR1, . . . , lnRd) is the vetor of dilatoni salars, 〈ϕ, λ〉 the duality braket
in Eq. (3.13) and ∂ϕ · ∂ϕ the Weyl-invariant kineti term obtained from the non-diagonal

metri (3.15). A diagonal metri on the dilatoni salars is reovered upon going to the

Einstein frame.

The Weyl group ats by permuting the various weights appearing in Eq. (3.26), and the

invariane in the gauge setor is therefore manifest. As for the salars, the set of positive

roots Φ+ is not invariant under Weyl re�etions, but the Peei�Quinn salars undergo

non-linear transformations A(0) → e−2〈ϕ,α〉A(0)
that ompensate the sign hange [220℄. The

Peei�Quinn salars therefore appear as displaements along the positive (non-ompat)

roots. Together with the dilatoni (non-ompat) salars ϕ, they generate the solvable Lie

subalgebra that forms the tangent spae of the moduli spae H [8, 6, 7, 311℄.

We have so far onentrated on the Neveu�Shwarz setor, but the same reasoning

an be applied to the full type II ation. The T-duality Weyl symmetry an, however,

be exhibited only by dualizing the p-form gauge �elds G(p) = dR(p−1)
into lower rank

(10 − d − p)-form gauge �elds when possible, and keeping them together when their dual

when the self-duality ondition 10 − d − p = p is satis�ed. We then obtain, for the ation

of the Ramond �elds

SRR =
∫

d10−dx
√−g V

g2
s l8s

[

∑

λ∈ΦDI
e−2〈ϕ,λ〉

(

G(1)
λ

)2

+
∑

λ∈ΦD0
e−2〈ϕ,λ〉

(

G(2)
λ

)2

+
∑

λ∈ΦD1
e−2〈ϕ,λ〉

(

G(3)
λ

)2

+
∑

λ∈ΦD2
e−2〈ϕ,λ〉

(

G(4)
λ

)2
]

, (3.27)

where ΦDI,ΦD0,ΦD1,ΦD2 denote the Weyl orbits with highest weight 1/gsRi, 1/gsls, Ri/gsl
2
s ,

1/gsl
3
s respetively, orresponding in turn to the two spinor representations.

3.7 Spetral �ow and Borel generators

Having disussed the struture of the Weyl group we now want to investigate the full

SO(d, d,Z) symmetry. For this purpose, it is instrutive to go bak to the perturbative

multiplet of Kaluza�Klein and winding states. The ation of the Weyl group on the highest

weight 1/Rd of the vetor representation generates an orbit of 2d elements, 1/Ri and Ri.

However, a partile an have any number of momentum exitation along eah axis, and

wind along any yle of the torus T d
. It is therefore desribed by integer momenta mi and

winding numbers mi
, so that its mass on an arbitrary torus reads

M2 = mig
ijmj +migijm

j , i, j = 1 . . . d , (3.28)
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when Bij = 0. This mass formula is then invariant under modular transformations γi →
γi + ∆Ai

jγ
j
of the torus, i.e. integer shifts Ai

j → Ai
j + ∆Ai

j of the o�-diagonal term of the

metri (no sum on i)

ds2
d = R2

i (dx
i + Ai

jdx
j)2 + gjkdx

jdxk , (3.29)

upon transforming the momenta and winding as

mk → mk − ∆Ai
kmi , mk → mk + δk

i ∆A
i
jm

j . (3.30)

This transformation generates a spetral �ow on the lattie of harges mi and m
i
.

In addition, being harged under the gauge potential Bµi, the momentum of the partile

shifts aording to mi → m̃i = mi +Bijm
j
, yielding the mass (3.8). From this, we see that

the Borel generator Bij → Bij + ∆Bij indues a spetral �ow

mk → mk + ∆Bjkm
j , mk → mk . (3.31)

The two spetral �ows (3.30) and (3.31) an be understood in a uni�ed way as transla-

tions on the weight lattie by positive roots. Indeed, the set of all positive roots of SO(d, d)
inludes the Sl(d) roots ej−ei, i < j, images of the simple roots αi = ei+1−ei, 1 ≤ i ≤ d−1
under the Weyl group Sd of Sl(d), as well as the roots ei + ej, whih are images of the

T-duality simple root α0 = e1 + e2. The translation by a root ej −ei generates in�nitesimal

rotations in the (i, j) plane‡18:

∆| − ek〉 = −∆Ai
k| − ei〉 , ∆|ek〉 = δk

i ∆A
i
j |ej〉 (3.32)

equivalent to the spetral �ow in Eq. (3.30), whereas translations by a root ei +ej generate

an in�nitesimal Bij shift:

∆| − ek〉 = ∆Bjk|ej〉 , ∆|ek〉 = 0 (3.33)

as in Eq. (3.31). The moduli Ai
j and Bij an therefore be identi�ed as displaements on

the moduli spae H along the positive roots ei − ej and ei + ej . We note that the two

displaements do not neessarily ommute and that only integer shifts are symmetries of

the harge lattie.

3.8 D-branes and T-duality invariant mass

In order to study the analogous properties of the D-brane states, we may try to write down

the moduli matrix MS ∈ SO(d, d,R)/SO(d) × SO(d) in the spinorial representation and

look for the transformations of harges that leave the mass mtMSm invariant, when now m
is a spinor of D-brane harges. It is in fat muh easier to study the D-brane on�guration

itself and ompute its Born�Infeld mass [255, 152℄.

‡18
The Borel generators Eα atually either translate the weight vetors λ or annihilate them.
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BPS D-brane states are obtained by wrapping Dp-branes on a supersymmetri p-yle
of the ompati�ation manifold. In the ase of a torus T d

, this is simply a straight yle,

and in the stati gauge the embedding is spei�ed by a set of integer (winding) numbers

N i
α:

X i = N i
ασ

α , i = 1 . . . d , α = 1 . . . p , (3.34)

where σα
and X i

are the spae-like world-volume and embedding oordinates respetively.

The numbers N i
α an, however, be hanged by a world-volume di�eomorphism, and one

should instead look at the invariant

mijkl = ǫαβγδN i
αN

j
βN

k
γN

l
δ , (3.35)

where we restrited to p = 4 for illustrative purposes. mijkl
is a four-form integer harge

that spei�es the four-yle in T d
. In addition, the D-brane supports a U(1) gauge �eld

that an be haraterized by the invariants

mij =
1

2
ǫαβγδN i

αN
j
βFγδ , m =

1

8
ǫαβγδFαβFγδ , (3.36)

whih are again integer-valued, beause of the �ux and instanton-number integrality. The

harges N = {m,mij , mijkl, . . . } onstitute preisely the right number to make a spinor

representation of SO(d, d,Z) when p = d or p = d + 1 (depending on the type of theory

and dimensionality of the torus); indeed, the spinor representation of SO(d, d) deomposes

under Sl(d) as a sum of even or odd forms, depending on the hirality of the spinor. The

Chern�Simons oupling (2.38) an be rewritten in terms of these harges (up to orretions

when B 6= 0) as
∫

eB̂+α′FR = mR0 +
1

2
mijR0ij +

1

4!
mijklR0ijkl + . . . (3.37)

so that (for p = 4) the instanton number m an be identi�ed as the D0-brane harge, the

�ux mij
as the D2-brane harge and mijkl

as the D4-brane harge. Con�gurations with

m 6= 0 exist in SYM theory on a torus, even for a U(1) gauge group, and orrespond to

torons [303, 150, 151℄.

The mass of the wrapped D-brane an be evaluated by using the Born�Infeld ation

(2.37), and depends only on the parametrization-independent integer hargesm,mij , mijkl, . . .
Expliitly, we obtain, for p = d, the T-duality invariant mass formula:

‡19

M2 =
1

g2
s l

2
s

m̃2 +
1

2 g2
s l

6
s

(m̃ij)2 +
1

4! g2
s l

10
s

(m̃ijkl)2 + . . . (3.38a)

m̃ = m+
1

2
mijBij +

1

8
mijklBijBkl + . . . (3.38b)

m̃ij = mij +
1

2
mklijBkl + . . . (3.38)

m̃ijkl = mijkl + . . . (3.38d)

‡19
This expression was originally derived in Ref. [255℄ by a sequene of T-dualities and ovariantizations.
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where the dots stand for the obvious extra terms when d ≥ 4. A similar expression holds

for p = d+ 1 and yields the tension of D-strings:

T 2
1 =

1

g2
s l

6
s

(m̃i)2 +
1

3! g2
s l

10
s

(m̃ijk)2 +
1

5! g2
s l

14
s

(m̃ijkll)2 + . . . (3.39a)

m̃i = mi +
1

2
mjkiBjk +

1

8
mjklmiBjkBlm + . . . (3.39b)

m̃ijk = mijk +
1

2
mlmijkBlm + . . . (3.39)

m̃ijklm = mijklm + . . . (3.39d)

where the integer harges read, e.g. for p = 5,

mijklm = ǫαβγδǫN i
αN

j
βN

k
γN

l
δN

m
ǫ (3.40a)

mijk =
1

2
ǫαβγδǫN i

αN
j
βN

k
γFδǫ (3.40b)

mi =
1

8
ǫαβγδǫN

i
αFβγFδǫ . (3.40)

The mass formulae (3.38) and (3.39) hold for 1/2-BPS states only; they are the analogues

of Eq. (3.8) for the two spinor representations of SO(d, d). They an be derived by analysing
the BPS eigenvalue equation in a similar way as in Subsetion 2.2. This analysis is arried

out in Appendix A.3, and yields, in addition, the onditions for the state to be 1/2-BPS,

as well as the extra ontribution to the mass in the 1/4-BPS ase. In the d ≤ 6 ase, we

�nd a set of onditions:

kijkl ≡ m[ijmkl] +m mijkl = 0 (3.41a)

ki;jklmn ≡ mi[jmklmn] +m mijklmn = 0 (3.41b)

kij;klmnpq ≡ nijnklmnpq + nij[klnmnpq] = 0 (3.41)

analogous to the level-mathing ondition ‖m‖2 = 0 on the perturbative states. In ontrast

to the latter, they have a very lear geometri origin, sine they an be derived by expressing

the harges m in terms of the integer numbers N i
α (Eq. (3.38)). For d = 6, they transform

in a 15 + 36 + 15 = 66 irrep of the T-duality group SO(6, 6,Z). The last line in (3.41)

drops when d = 5, giving a 5 + 5 = 10 irrep of SO(5, 5,Z). When d = 4, only the

k1234 = m2 ∧m2 +m m4 ≡ 0 omponent remains, whih is a singlet under SO(4, 4,Z).

When the onditions n = 0 in (3.41) are not met, the state is at most 1/4-BPS, and its

mass reeives an extra ontribution, e.g. for d = 5:

M2 =
1

g2
s l

2
s

[

m̃2 +
1

2l4s

(

m̃ij
)2

+
1

4!l8s

(

m̃ijkl
)2

+

√

1

4!l12s

(

k̃ijkl
)2

+
1

5!l16s

(

k̃i;jklmn
)2
]

, (3.42)
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where the shifted harges are given by

k̃ijkl = kijkl +Bmnk
m;nijkl , k̃i;jklmnp = ki;jklmnp . (3.43)

For d = 6, there are still onditions to be imposed in order for the state to be 1/4-BPS

instead of simply 1/8-BPS, whih are now ubi in the harges m and transform as a 32
of SO(6, 6,Z) (see Appendix A and Subsetion 5.9).
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4 U-duality in toroidal ompati�ations of M-theory

T-duality is only a small part of the symmetries of toroidally ompati�ed string theory,

namely the part visible in perturbation theory. We shall now extend the tehniques of

Setion 3 in order to study the algebrai struture of the non-perturbative symmetries,

whih go under the name of U-duality. In this setion, we fous on the subgroup of the

U-duality symmetry that preserves ompati�ations on retangular tori with vanishing

expetation values of the gauge potentials. The most general ase of non-retangular tori

with gauge potentials, for whih the full U-duality symmetry an be exhibited, is disussed

in the next setion.

4.1 Continuous R-symmetries of the superalgebra

As in our presentation of unompati�ed M-theory in Setion 2, the superalgebra o�ers a

onvenient starting point to disuss the symmetries of M-theory ompati�ed on a torus

T d
. The N = 1, 11D supersymmetry algebra is preserved under toroidal ompati�ation:

the generators Qα merely deompose as bispinor representations of the unbroken group

SO(1, 10 − d) × SO(d), and form an N-extended super-Poinaré algebra in dimensions

D = 11 − d. The �rst fator SO(1, 10 − d) orresponds to the Lorentz group in the

unompati�ed dimensions and is atually part of the superalgebra, while the seond only

ats as an automorphism thereof, and is also known as an R-symmetry

‡20
. There an be

automorphisms beyond the obvious SO(d) symmetry, however, and these are expeted to

be symmetries of the �eld theory.

This symmetry enhanement an be observed at the level of the Cli�ord algebra itself

[181, 220℄. The Gamma matries ΓM ,M = 0, d + 1 . . . 10 of eleven-dimensional super-

symmetry an be kept to form a (reduible) Cli�ord algebra of SO(1, 10 − d), while the

matries ΓI , I = 1 . . . d form an internal Cli�ord algebra. Note that we have hosen here,

in ontrast to the notation of the rest of the review, the internal indies running from 1 to

d. The generators ΓIJ generate the SO(d) R-symmetry, but they an be supplemented by

generators ΓI to form the Lie algebra of a larger R-symmetry group SO(d+ 1) ‡21
. It was

the attempt to exhibit the SO(8) symmetry of 11D SUGRA ompati�ed on T 7
that led

to the disovery of hidden symmetries [73℄.

The R-symmetry group is atually larger still. Consider the algebra generated by

Γ(2),Γ(3),Γ(6),Γ(7), where the subsripts denote the number of antisymmetri internal in-

dies, and the orresponding generators are dropped when the number of internal diretions

is insu�ient:

• For d = 2, the only generator ΓIJ = Γ12 generates a U(1) R-symmetry.

‡20
The R-symmetry is atually part of the loal supersymmetry, but we are only interested in its global

�at limit.

‡21
This is the basis for the twelve-dimensional S-theory proposal [27℄. It is important that these generators

ommute with the momentum harge CΓµ.
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• For d = 3, Γ(2) and Γ(3) ommute, and generate an SO(3) × U(1) symmetry.

• For d = 4, Γ(3) = Γ+Γ(1), where Γ+ is the spae-time or internal hirality (see Eq.

(A.1)) and, together with Γ(2), generates an SO(5) symmetry.

• For d = 5, Γ(2) ± Γ+Γ(3) generate two ommuting SO(5) subgroups.

• For d = 6, Γ(6) appears in the ommutator [Γ(3),Γ(3)] and a USp(8) is generated.

• For d = 7 (resp. d = 8) the generator Γ(7) omes into play and one obtains an

SU(8) × U(1) (resp. SO(16)) R-symmetry group.

The various R-symmetry groups are summarized in the right olumn of Table 4.1, whih

furthermore gives the deomposition of the 528 entral harges on the right-hand side of

Eq. (2.13a) under the Lorentz group SO(1, 10−d) in the unompat diretions and the R-

symmetry group. The various olumns orrespond to distint SO(1, 10−d) representations,
after dualizing (moving) entral harges into harges with less indies when possible. In

all these ases, the superalgebra an be reast in a form manifestly invariant under the

R-symmetry. Here we ollet the ases D = 4, 5, 6, inluding the entral harges, whih

transform linearly under the R-symmetry:

• ForD = 4 (d = 7), the 32 superharges split into 8 omplexWeyl spinors transforming

as an 8 ⊕ 8̄ of SU(8):
{

QαA, Qβ̇B̄

}

= σµ

αβ̇
Pµ δAB̄ (4.1a)

{QαA, QβB} = ǫαβ ZAB (4.1b)

{

Qα̇Ā, Qβ̇B̄

}

= ǫα̇β̇ Z
∗
ĀB̄, (4.1)

where µ = 0, 1, 2, 3 are SO(3, 1) vetor indies, α, α̇ = 1, 2 are Weyl spinor indies,

and A, Ā = 1, · · · , 8 are 8, 8̄ indies of SU(8). The entral harges are inorporated
into a omplex antisymmetri matrix ZAB.

• For D = 5 (d = 6), the 32 superharges split into 8 Dira spinors of SO(4, 1),
transforming in the fundamental representation of USp(8). The N = 8 superalgebra

in a USp(8) basis is

{QαA, QβB} = Pµ (Cγµ)αβ ΩAB + Cαβ ZAB (4.2)

where µ = 0, 1, 2, 3, 4 are SO(4, 1) vetor indies, α = 1, 2, 3, 4 are Dira spinor in-

dies, A = 1, · · · , 8 are indies in the 8 of USp(8), and ΩAB is the invariant sympleti

form and ZAB is the entral harge matrix.

• For D = 6 (d = 5), the 32 superharges form 4 omplex spinors transforming in the

(4, 1) + (1, 4) of SO(5) × SO(5) and the superalgbra takes the form

{

Qa
α, Q

b
β

}

= ωabγµ
αβpµ, (4.3)

{

Qa
α, Q̄

b
β

}

= δαβZ
ab, (4.4)
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where a, b = 1, . . . , 4 are SO(5) spinor indies and ωab
is an invariant antisymmet-

ri matrix, from the loal isomorphism SO(5) = USp(4). The 16 entral harges

are inorporated in a matrix Zab
transforming as a bispinor under the R-symmetry

SO(5) × SO(5) and satisfying the reality ondition Z∗ = ωZωt
.

The R-symmetries that we have disussed here will be of use in the next setion to determine

the salar manifold of the ompati�ed 11D SUGRA and hene the global symmetries.

d Qa
α

p = 0
ZI , ZIJ

ZIJKLM

p = 1
Zµ, ZµI

ZµIJKL

p = 2
ZµI

ZµνIJK

p = 3
ZµνρIJ

p = 4
ZµνρσI

p = 5
Zµνρστ H

1 (±, 16)
1 + 0
+0

1 + 1
+0

1
+0

0 1
1+

+1−
1

2 (2, 16)
2 + 1
+0

= 2 + 1

1 + 2
+0

= 2 + 1

1 + 0
= 1

1
[1]
+2

= 2 + 1

(1)

move
SO(2)

3
(2, 8+)

+(2, 8−)

3 + 3
+0

= 3+ + 3−

1 + 3
+0

= 3 + 1

1 + 1
= 1 + 1

3 + [1]
= 3 + 1

3+

+3−

= 3+ + 3−

(1)

move

SO(2)
×U(1)

4 (4, 8)
4 + 6
+0

= 10

1 + 4
+1

= 5 + 1

1 + 4
+[1]

= 5 + 1

6 + [4]
= 10

(4)

move

(1)

move
SO(5)

5
(4, 4̄)

+(4̄, 4)

5 + 10
+1

= (4, 4)

1 + 5
+5 + [1]
= (5, 1)
+(1, 5)
+2(1, 1)

1 + 10
+[5]

= (4, 4)

10+ + 10−

= (10, 1)
+(1, 10)

(5)

move

(1)

move

SO(5)
×SO(5)

6 (8, 4)

6 + 15
+6
+[1]

= 27 + 1

1 + 6
+15 + [6]
= 27 + 1

1 + 20
+[15]
= 36

(15)

move

(6)

move

(1)

move
USp(8)

7
(8+, 2)

+(8−, 2̄)

7 + 21
+21
+[7]

= 28c

1 + 7
+35 + [21]
= 63 + 1

1± + 35±

= 36c

(21)

move

(7)

move
0 SU(8)

8 (16, 2)

8 + 28
+56
+[28]
= 120

1 + 8 + 70
+[1 + 56]
= 135 + 1

(1 + 56)

move

(28)

move
0 0 SO(16)

Table 4.1: Classi�ation of the superharges and entral harges w.r.t the Lorentz/R-

symmetry group SO(1, 10 − d) ×H . Irreps of H are in bold fae. Charges in parenthesis

are Poinaré-dualized (moved) into harges in square brakets. Adapted from Ref. [27℄.
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4.2 Continuous symmetries of the e�etive ation

In our disussion of the ontinuous symmetry of the e�etive ation of the toroidally om-

pati�ed type IIA theory in Subsetion 3.1, we have intentionnally foused our attention

on the Neveu�Shwarz setor, and have brie�y desribed how the Ramond �elds would

transform under the symmetries of the Neveu�Shwarz salar manifold. The distintion

between Neveu�Shwarz and Ramond setors is however an artefat of perturbation theory

and, as we disussed in Setion 2, the two sets of �elds are uni�ed in the 11D SUGRA

desription. They mix under the eleven-dimensional Lorentz symmetries unbroken by the

ompati�ation on T d ‡22
, namely Sl(d,R). The low-energy e�etive ation therefore

admits a ontinuous symmetry group Gd ontaining

SO(d− 1, d− 1,R) ⊲⊳ Sl(d,R) , (4.5)

where the symbol ⊲⊳ denotes the group generated by the two non-ommuting subgroups.

As found by Cremmer and Julia [72, 182℄, the groups Gd turn out to orrespond to the

Ed(d) series, listed in Table 4.2.

D d Gd = Ed(d) Hd

10 1 R+
1

9 2 Sl(2,R) × R+ U(1)

8 3 Sl(3,R) × Sl(2,R) SO(3) × U(1)

7 4 Sl(5,R) SO(5)

6 5 SO(5, 5,R) SO(5) × SO(5)

5 6 E6(6) USp(8)

4 7 E7(7) SU(8)

3 8 E8(8) SO(16)

Table 4.2: Cremmer�Julia symmetry groups and their maximal ompat subgroups.

The notation Ed(d) denotes a partiular non-ompat form of the exeptional group Ed,

namely its normal real form

‡23
, and from now on this distintion will be omitted. As ev-

ident from their Dynkin diagrams shown in Table 4.3, the groups Ed form an inreasing

family, whose members are related by a proess of group disintegration re�eting the de-

ompati�ation of one ompat diretion in T d
. This is displayed in Table 4.3, and will

be disussed more fully in the next subsetion.

The ourrene of these groups an be understood by �tting the number of salar �elds

(inluding the duals of forms of higher degree) to the dimension of a oset spae Gd/Hd,

‡22
Note that d has been upgraded by one unit with respet to the previous setion.

‡23
The normal real form has all its Cartan generators and positive roots non-ompat, and is the maximal

non-ompat real form of the omplex algebra Ed(C) [158, 132℄.
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E9 = Ê8

❣ ❣ ❣ ❣ ❣ ❣ ❣ ✇

2 4 6 5 4 3 2 1

❣
3

E8

❣ ❣ ❣ ❣ ❣ ❣ ❣

2 4 6 5 4 3 2

❣
3

E7

❣ ❣ ❣ ❣ ❣ ❣

2 3 4 3 2 1

❣
2

E6

❣ ❣ ❣ ❣ ❣

1 2 3 2 1

❣
2

E5 = D5

❣ ❣ ❣ ❣

1 2 2 1

❣
1

E4 = A4

❣ ❣ ❣

1 1 1

❣
1

E3 = A2 ⊕A1

❣ ❣

1 1

❣

E2 = A1

❣

Table 4.3: Dynkin diagrams of the Ed series. The group disintegration proeeds by omitting

the rightmost node. The integers shown are the Coxeter labels, that is the oordinates of

the highest root on all simple roots.
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where Hd is the R-symmetry of the superalgebra desribed in the previous setion. In

order to have a positive metri for the salars, it is neessary that Hd be the maximal

ompat subgroup of Gd. Together with the dimension of the salar manifold, this su�es

to determine Gd.

Salar �elds arise from the internal omponents of the metri gIJ of the torus T d
, and

from the expetation value of the three-form gauge �eld CIJK on T d
; they also arise from

the expetation value EIJKLMN on T d
of the six-form dual to CMNP in eleven dimensions,

or equivalently the expetation value of the salar dual to the three-form Cµνρ in D = 5,
the axion salar dual to the two-form CµνI in D = 4, or to the one-form CµIJ in D = 3;
similarly, the Kaluza�Klein gauge potentials gµI an be dualized in D = 3 into salars KI ,

whih an be interpreted as the expetation value KI;JKLMNPQR on T d
of the magneti

gauge potential dual to gMN in eleven dimensions. The ounting is summarized in Table

4.4. The fator R+
appearing in D = 10 and D = 9 orresponds to the type IIA dilaton,

and generates a saling symmetry of the e�etive ation, alled trombonne symmetry in

Ref. [78℄. Note that a quite di�erent U-duality group would be inferred if one did not

dualize the Ramond �elds into �elds with less indies [219, 74℄, or if one would onsiderer

Eulidean supergravities [174, 77℄.

An analogous ounting has been performed in Tables 4.5 and 4.6 for one-form and two-

form potentials, induing partile and string eletri harges, respetively. The latter an

be put in one-to-one orrespondene to the entral harges of the supersymmetry algebra

disussed in the previous setion, with two exeptions. Firstly, the Lorentz-invariant entral

harge Z01234
in �ve dimensions, where 0 . . . 4 denote the �ve spae-time dimensions, does

not orrespond to any one-form potential [31, 27℄

‡24
. This trunation of the superalgebra

is onsistent with U-duality and is of no onern, exept for the twelve-dimensional origin

of M-theory. Seondly, there are only 120 Lorentz singlet entral harges in D = 3 for 128

gauge potentials (equivalently, there are only 64 Lorentz vetor harges inD = 4 for 70 two-
form gauge �elds). As we shall see shortly, U-duality implies that there should in fat be

248 eletri harges in D = 3 (133 string harges in D = 4), yielding a linear representation
of the duality group E8 (resp. E7). Of ourse, the notion of eletri harge is ill-de�ned in

D = 3, where a one-form (or a two-form in D = 4) is Poinaré-dual to a zero-form and a

partile (or a string) to an instanton. Another manifestation of the pathology of the D = 3
ase is the non-asymptoti �atness of the point-like solitons (or string-like in D = 4), and
the logarithmi divergene of the kernel of the Laplaian in the transverse diretions. In

spite of these di�ulties, we shall pursue the algebrai analysis of these ases in the hope

that they an be resolved.

If the harges m under the gauge �elds an be put in one-to-one orrespondene with the

entral harges Z, they are nevertheless not equal: the gauge harges are integer-quantized,
as we will disuss in the next subsetion, whereas the entral harges are moduli-dependent

‡24
Equivalently, the entral harges Z01234

,Z02345 . . . transform as a vetor in six spae-time dimensions.

These harges ould be attributed to a KK6-brane, if only the KK6-brane did not need six ompat

diretions to yield a string, and seven to yield a partile state.
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linear ombinations of the latter:

Z = V ·m , (4.6)

where V is an element in the group Gd ontaining the moduli dependene; it is de�ned up to

the left ation of the ompat subgroup K = Hd, induing an R-symmetry transformation

on Z.

The loal Hd gauge invariane an be onveniently gauge-�xed thanks to the Iwasawa

deomposition (see for instane [202, 232℄)

V = k · a · n ∈ K · A ·N (4.7)

ofGd into the maximal ompatK, AbelianA and nilpotentN . A natural gauge is obtained

by taking K = 1, in whih ase the �vielbein� V beomes a (generalized) upper triangular

matrix V = a·n. The Abelian fator A is parametrized by the �dilatoni salars�, namely the

radii of the internal torus, whereas the nilpotent fator N inorporates the �gauge salars�,

namely the expetation values of the gauge �elds (inluding the o�-diagonal metri, three-

form and their duals) on the torus. Gd ats on the harges m from the left and on V from

the right. The transformed V an then be brought bak into an upper triangular form by

a moduli-dependent R-symmetry ompensating transformation on the left. This implies

that the entral harges Z transform non-linearly under the ontinuous U-duality group

Gd. For the ase of T-duality in type II string theory this deomposition is given in Eq.

(3.7). In Setion 5, we shall obtain an expliit parametrization of V in terms of the shape

of the torus and the various gauge bakgrounds.

D d g C3 E6 K1;8 total salar manifold

10 1 1 1 R+

9 2 3 3 Sl(2,R)/U(1) × R+

8 3 6 1 7 Sl(3,R)/SO(3)× Sl(2,R)/U(1)

7 4 10 4 14 Sl(5,R)/SO(5)

6 5 15 10 25 SO(5, 5,R)/SO(5)× SO(5)

5 6 21 20 1 42 E6(6)/USp(8)

4 7 28 35 7 70 E7(7)/SU(8)

3 8 36 56 28 8 128 E8(8)/SO(16)

Table 4.4: Salar ounting and salar manifolds in ompati�ed M-theory.

4.3 Charge quantization and U-duality

As in the ase of T-duality, the ontinuous symmetry Ed(d)(R) of the two-derivative e�e-
tive ation annot be a symmetry of the quantum theory: the gauge potentials transform
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D d g C3 E6 K1;8 total harge representation

10 1 1 1 1

9 2 2 1 3 3 of Sl(2)

8 3 3 3 6 (3, 2) of Sl(3) × Sl(2)

7 4 4 6 10 10 of Sl(5)

6 5 5 10 1 16 16 of SO(5, 5)

5 6 6 15 6 27 27 of E6(6)

4 7 7 21 21 7 56 56 of E7(7)

3 8 8 28 56 36 128 248 of E8(8)

Table 4.5: Vetors and partile harge representations in ompati�ed M-theory.

D d g C3 E6 K1;8 total harge representation

10 1 1 1 1

9 2 2 2 2 of Sl(2)

8 3 3 3 (3, 1) of Sl(3) × Sl(2)

7 4 4 1 5 5 of Sl(5)

6 5 5 5 10 10 of SO(5, 5)

5 6 6 15 6 27 2̄7 of E6(6)

4 7 7 35 28 70 133 of E7(7)

Table 4.6: Two-forms and string harge representations in ompati�ed M-theory.

non-trivially under Ed, and the ontinuous symmetry is therefore broken by the existene

of states harged under these potentials. At best there an remain a disrete subgroup

Ed(d)(Z), whih leaves the lattie of harges invariant. For one thing, a subset of the

harges orresponds to the Kaluza�Klein momentum along the internal torus, and are

therefore onstrained to lie in the reiproal lattie of the torus. Another subset of harges

orresponds to the wrapping numbers of extended objets around yles of T d
, and are

then onstrained to lie in the homology lattie of T d
.

A way to determine the remaining disrete subgroup is to onsider M-theory ompat-

i�ed to D = 4 dimensions, in whih ase Poinaré duality exhanges gauge one-forms with

their magneti duals [175℄. In this dimension, Dira�Zwanziger harge quantization takes

the usual form

min′
i −m

′ini ∈ Z (4.8)

for two partiles of eletri and magneti harges mi
and ni respetively, and i runs from
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1 to 28, as read o� from Table 4.5. This ondition is invariant under the eletri�magneti

duality Sp(56,Z), under whih (mi, ni) transforms as a vetor. The exat symmetry group

is therefore at most

E7(7)(Z) ⊂ E7(7)(R) ∩ Sp(56,Z) , (4.9)

This translates into a ondition on Ed(d)(Z) for d ≤ 7 by the embedding Ed(d)(Z) ⊂ E7(7)(Z).
A similar ondition an be obtained in D = 3, where all one-forms are dual to salars.

The ondition (4.9) requires a preise knowledge of the embedding ofE7(7)(R) in Sp(46,R).
Instead, we shall take another approah, and postulate that the U-duality group of M-theory

ompati�ed on a torus T d
is generated by the T-duality SO(d − 1, d − 1,Z) of type IIA

string theory ompati�ed on T d−1
, and by the modular group Sl(d,Z) of the torus T d

:

Ed(d)(Z) = SO(d− 1, d− 1,Z) ⊲⊳ Sl(d,Z) . (4.10)

The former was argued to be a non-perturbative symmetry of type IIA string theory, as

disussed in the previous setion, while the latter is the remnant of eleven-dimensional

general reparametrization invariane, after ompati�ation on a torus T d
: it is therefore

guaranteed to hold, as long as M-theory, whatever its formulation may be, ontains the

graviton in its spetrum. The above onstrut is therefore the minimal U-duality group,

and sine it preserves the sympleti ondition (4.8)

‡25
also the maximal one.

In the d = 2 ase, the U-duality group (4.10) is the modular group Sl(2,Z) of the M-

theory torus, whih in partiular ontains the exhange of Rs and R9; translated in type IIB

variables, this is simply the Sl(2,Z) S-duality of type IIB theory (in 9 or 10 dimensions),

whih ontains the strong-weak oupling duality gs → 1/gs, as an be seen from Eq. (2.45).

Note that we do not expet any quantum symmetry from the trombonne symmetry fator

R+
. For d = 3, the T-duality group splits into two fators Sl(2,Z)×Sl(2,Z), one of whih

is a subgroup of the modular group Sl(3,Z) of the M-theory torus T 3
. The de�nition

(4.10) therefore yields E3(3)(Z) = Sl(3,Z) × Sl(2,Z) and is the natural disrete group of

E3. For d = 4, SO(3, 3,Z) is isomorphi to a Sl(4,Z) (in the same way as SO(6) ∼ SU(4))
whih does not ommute with the modular group Sl(4,Z) of M-theory on a torus T 4

.

Altogether, they make the Sl(5,Z) subgroup of E4(4)(R) = Sl(5,R). For d = 5, we obtain
the SO(5, 5,Z) subgroup of E5(5)(R) = SO(5, 5,R). For d ≥ 6, this provides a de�nition of

the disrete subgroups of the exeptional groups Ed(d)(R)‡26. These groups are summarized

in the rather tautologial Table 4.7. We note that it is ruial that the groups Ed(d)(R)
be non-ompat in order for an in�nite disrete group to exist. The maximal non-ompat

form is also required in order that all representations be real (i.e. that the mass of a partile

and its anti-partile be equal, see Setion 4.8).

‡25
A veri�ation of this statement requires a preise knowledge of the branhing funtions of Sp(56) into

E7.

‡26
This is partiularly interesting in the d ≥ 9 ase, where we obtain disrete versions of a�ne and

hyperboli groups, see Setion 4.6.
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D d Ed(d)(R) Ed(d)(Z)

10 1 1 1

9 2 Sl(2,R) Sl(2,Z)

8 3 Sl(3,R) × Sl(2,R) Sl(3,Z) × Sl(2,Z)

7 4 Sl(5,R) Sl(5,Z)

6 5 SO(5, 5,R) SO(5, 5,Z)

5 6 E6(6)(R) E6(6)(Z)

4 7 E7(7)(R) E7(7)(Z)

3 8 E8(8)(R) E8(8)(Z)

Table 4.7: Disrete subgroups of Ed.

4.4 Weyl and Borel generators

A set of generators of the U-duality group an easily be obtained by onjugating the T-

duality generators under Sl(d,Z). The Weyl generators now inlude the exhange of the

eleven-dimensional radius Rs with any radius of the string-theory torus T d−1
, in addition

to the exhange of the string-theory torus diretions among themselves and T-duality on

two diretions thereof. It is interesting to rephrase the latter in M-theory variables, using

relations (2.1) and (3.11):

Tij : Ri →
l3p

RjRs
, Rj →

l3p
RsRi

, Rs →
l3p

RiRj
, l3p → l6p

RiRjRs
(4.11)

These relations are symmetri under permutation of i, j, s indies, and using an Rk ↔ Rs

transformation, we are free to hoose i, j, s along any diretion of the M-theory torus T d
.

The M-theory T-duality therefore reads

TIJK : RI → l3p
RJRK

, RJ → l3p
RKRI

, RK → l3p
RIRJ

, l3p → l6p
RIRJRK

(4.12)

and in partiular involves three diretions, ontrary to the naive expetation. We em-

phasize that the above equation summarizes the non-trivial part of U-duality, and arises

as a mixture of T-duality and S-duality transformations. It an in partiular be used to

derive [Antoniadis:1999rm℄ the duality between the heteroti string ompati�ed on T 4

and type IIA ompati�ed on K3 in the Horava-Witten piture [Horava:1996ma℄, and thus

unify all vaua with 16 supersymmetries. We however restrit ourselves to the maximally

supersymmetri ase in this review.

The Weyl group an be written in a way, similar to Eq. (3.12)

‡27
:

W (Ed) = Z2 ⊲⊳ Sd (4.13)

‡27
This equation holds for d ≥ 3 only; when d < 3 the Z2 symmetry (4.12) ollapses and only the

permutation group Sd remains.
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but it should be borne in mind that the algebrai relations between the Z2 symmetry T123

and the permutations SIJ are di�erent from those of the T-duality generators T12 and

Sij ; in addition d di�ers by one unit from the one we used there. We also note that the

transformations TIJK and SIJ preserve the Newton's onstant

1

κ2
d

=

∏

RI

l9p
=
VR

l9p
, (4.14)

where we have de�ned VR to be the volume of the M-theory ompati�ation torus.

On the other hand, the Borel generators now inlude a generator γi → γi+γs that mixes

the eleven-dimensional diretion with the other ones, as well as the T-duality spetral �ow

Bij → Bij + 1, from whih, by an Rs ↔ Ri onjugation, we an reah the more general

M-theory spetral �ow

‡28

CIJK : CIJK → CIJK + 1 . (4.15)

We should also inlude a set of generators shifting the other salars from the dual gauge

potentials, as explained in Setion 4.2:

EIJKLMN : EIJKLMN → EIJKLMN + 1 (4.16a)

KI;JKLMNPQR : KI;JKLMNPQR → KI;JKLMNPQR + 1 . (4.16b)

These salars and orresponding shifts are needed for d ≥ 6 and d ≥ 8 respetively. For

d ≥ 9, as will beome lear in Setion 4.6, the enlargement of the symmetry group to an

a�ne or Ka-Moody symmetry requires an in�nite number of suh Borel generators. As we

shall see in Subsetion 5.4, the Borel generators (4.16) an be obtained from ommutators

of CIJK transformations.

4.5 Type IIB BPS states and S-duality

Before studying the struture of the U-duality group, we shall pause and brie�y disuss the

ation of the extra Weyl generator Rs ↔ R9 on the type IIB side. Using the identi�ation

(2.45) to onvert to type IIB variables, this ation inverts the oupling onstant and resales

the string length as

gs ↔
1

gs

, l2s ↔ l2sgs , (4.17)

in suh a way that Newton's onstant 1/(g2
s l

8
s) is invariant. Its ation on the BPS spetrum

an be straightforwardly obtained by working out the ation on the masses or tensions, and

is summarized in Table 4.8.

In this table, we have displayed the ation of the Z2 Weyl element only. Under more

general duality transformations, the fundamental string and the NS5-brane generate orbits

‡28
As disussed in Subsetion 5.4, the C shift atually has to be aompanied by E and K shifts to be a

symmetry of the equations of motion.
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state tension S-dual dual state

D1-brane

1
gsl2s

1
l2s

F-string

D3-brane

1
gsl4s

1
gsl4s

D3-brane

D5-brane

1
gsl6s

1
g2

s l6s
NS5-brane

KK5-brane

R2

g2
s l8s

R2

g2
s l8s

KK5-brane

D7-brane

1
gsl8s

1
g3

s l8s
73-brane

D9-brane

1
gsl10s

1
g4

s l10s
94-brane

Table 4.8: S-dual type IIB BPS states.

of so alled (p, q) strings and (p, q) �ve-branes. The former an be seen as a bound state of p
fundamental strings and q D1-branes, or (in the Eulidean ase) as a oherent superposition
of q D1-branes with p instantons [200℄. The (p, q) �ve-branes similarly orrespond to bound

states of p NS5-branes and q D5-branes.

On the other hand, the ation of S-duality on the D7 and D9-brane yields states with

tension 1/g3
s and 1/g4

s respetively. These exoti states will be disussed in Subsetion

4.9, where our nomenlature will be explained as well. Again, suh states have less than

three transverse dimensions, and do not preserve the asymptoti �atness of spae-time and

the asymptoti onstant value of the salar �elds. In partiular, the D7-brane generates a

monodromy τ → τ + 1 in the omplex salar τ at in�nity. Its images under S-duality then

generate a more general Sl(2,Z)B monodromy

M =

(

1 − pq p2

−q2 1 + pq

)

(4.18)

asribable to a (p, q) 7-brane

‡29
. We �nally remark that the relations in Table 4.8 an

also be veri�ed diretly using the Rs ↔ R9 �ip and the M-theory/IIB identi�ations as

(un)wrapped M-theory branes, given in Tables 2.5 and 2.6.

4.6 Weyl generators and Weyl re�etions

In order to understand the ourrene of the Ed(d) U-duality group, we shall now apply

the same tehnique as in the T-duality ase and investigate the group generated by the

Weyl generators. We hoose as a minimal set of Weyl generators the exhange of the M-

theory torus diretions SI : RI ↔ RI+1, where I = 1 . . . d − 1, as well as the T-duality

T = T123 on diretions 1,2,3 of the M-theory torus. Adapting the onstrution of Ref.

‡29
It has also been proposed that the IIB 7-branes transform as a triplet of Sl(2, Z) [230℄.
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[110℄

‡30
and Subsetion 3.4, we represent the monomials ϕ = (ln l3p, lnR1, lnR2, . . . , lnRd)

as a form on a vetor spae Vd+1 with basis e0, e1, e2, . . . , ed, and assoiate to any weight

vetor λ = x0e0 + x1e1 + · · ·+ xded its �tension�

‡31

T = e〈ϕ,λ〉 = l3x0

p Rx1

1 R
x2

2 . . . Rxd

d . (4.19)

The generators SI and T an then be implemented as linear operators on Vd+1, with matrix

SI =















1

1

1

Id−3















, T =



















2 1 1 1

−1 −1 −1

−1 −1 −1

−1 −1 −1

Id−3



















. (4.20)

The operators SI and T in (4.20) are easily seen to be orthogonal with respet to the

Lorentz metri

ds2 = −(dx0)2 + (dxI)2 , (4.21)

and orrespond to Weyl re�etions

λ→ ρα(λ) = λ− 2
α · λ
α · αα (4.22)

along planes orthogonal to the vetors

αI = eI+1 − eI , I = 1 . . . d− 1 , α0 = e1 + e2 + e3 − e0 . (4.23)

It is very striking that l3p appears on the same footing as the other radii RI , but with a

minus sign in the metri: it an be interpreted as the radius of an extra time-like diretion,

muh in the spirit of ertain proposals about F-theory [313, 27℄. The only non-vanishing

(Lorentzian) salar produts of these roots turn out to be

(αI)
2 = (α0)

2 = 2 , αI · αI+1 = α3 · α0 = −1 (4.24)

summarized in the Dynkin diagram:

©0

|
+1 − ⊕2 − ⊕3 − ⊕4 − · · ·− ⊕d−1

(4.25)

‡30
In Ref. [110℄, the disussion was arried out from the gauge theory side, and the U-duality invariant

(4.14) was used to eliminate the vetor e0, exept when d = 9. This vetor an, however, be kept for any
d, and, as we shall momentarily see, appears as an extra time-like diretion.

‡31T atually has the dimension of a p-brane tension Tp, with p = −(3x0 + x1 + · · · + xd + 1).
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This is preisely the Dynkin diagram of Ed as shown in Table 4.3, in agreement with the

analysis based on moduli ounting.

In Eq. (4.25) it is easy to reognize the diagrams of the SO(d−1, d−1,Z) (denoted by

©'s) and Sl(d,Z) (denoted by +'s) subgroups. The branhing of the Sl(d) diagram on the

third root re�ets the ation of T-duality on three diretions. The full diagram an be built

from the M-theory Lorentz group Sl(d,Z) denoted by +'s, and from the type IIB Lorentz

group Sl(d − 1,Z) generated by the roots α0, α3, . . . , αd−1
‡32
. Under deompati�ation,

the rightmost root has to be dropped, so that Ed disintegrates into Ed−1
‡33
. When the

root at the intersetion is reahed, the diagram falls into two piees, orresponding to the

two Sl(2) and Sl(3) subgroups in D = 8. The root α0 itself disappears for d = 2, leaving
only the root α1 of Sl(2,R).

Again, the ation of the Weyl group on Vd+1 is reduible, at least for d ≤ 8. Indeed,

the invariane of Newton's onstant

∏

RI/l
9
p implies that the roots are all orthogonal to

the vetor

δ = e1 + · · ·+ ed − 3e0 , (4.26)

with proper length δ2 = d− 9, so that the re�etions atually restrit to the hyperplane Vd

normal to δ:

x1 + · · ·+ xd + 3x0 = 0 . (4.27)

The Lorentz metri on Vd+1 restrits to a metri gIJ = δIJ − 1/9 on Vd, whih is positive-

de�nite for d ≤ 8, so that SI and T indeed generate the Weyl group of the Lie algebra

Ed(R). The order and number of roots of these groups are realled in Table 4.9 [177℄.

When d = 9, however, the invariant vetor δ beomes null, so that Vd+1 no longer

splits into δ and its orthogonal spae; the generators at on the entire Lorentzian vetor

spae Vd+1, and the generators SI and T no longer span a �nite group. Instead, they

orrespond to the Weyl group of the a�ne Lie algebra E9 = Ê8. This is in agreement

with the ourrene of in�nitely many onserved urrents in D = 2 spae-time dimensions.

This ase requires a spei� treatment and will be disussed in Subsetion 4.12. For d > 9,
that is ompati�ation to a line or a point, the situation is even more dramati, with the

ourrene of the hyperboli Ka�Moody algebras E10 and E11, about whih very little is

known. The reader should go to [184, 183, 239, 129℄ for further disussion and referenes.

4.7 BPS spetrum and highest weights

Pursuing the parallel with our presentation on T-duality, we now disuss the representations

of the U-duality Weyl group. The fundamental weights dual to the roots α1, . . . , αd−1, α0

‡32
From this point of view, the U-duality is a onsequene of general oordinate invariane in M and type

IIB theories [209℄.

‡33
There is a notable exeption for d = 8, where E8 disintegrates into E7 × Sl(2). This is beause the

extended Dynkin diagram of E8 has an extra root onneted to α8. Only Sl(2) singlets remain in the

spetrum, however. The same happens in d = 4, where E3 = Sl(3)×Sl(2) in E4 = Sl(5) is not a maximal

embedding.
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d 2 3 4 5 6 7 8 9

Ed A1 A2 × A1 A4 D5 E6 E7 E8 Ê8

order 2 6 × 2 5! 245! 27345 210345 7 21435527 ∞
roots 2 6 + 2 20 40 72 126 240 ∞

Table 4.9: Order and number of roots of Ed Weyl groups.

are easily omputed:

λ(1) = e1 − e0 → T1 =
R1

l3p
(4.28a)

λ(2) = e1 + e2 − 2e0 → T3 =
R1R2

l6p
(4.28b)

λ(3) = e1 + e2 + e3 − 3e0 → T ′
5 =

R1R2R3

l9p
(4.28)

λ(4) = e1 + · · · + e4 − 3e0 → T ′
4 =

R1R2R3R4

l9p
(4.28d)

. . .

λ(d−2) = e1 + · · ·+ ed−2 − 3e0 → T ′
10−d =

R1 . . . Rd−2

l9p
(4.28e)

λ(d−1) = e1 + · · ·+ ed−1 − 3e0
.
= −ed → M =

1

Rd

(4.28f)

λ(0) = −e0 → T2 =
1

l3p
(4.28g)

where the symbol

.
= in Eq. (4.28f) denotes equality modulo δ, that is up to a power of the

invariant Plank length. In the above equations, we have translated the weight vetors into

monomials, and interpreted it as the tension Tp+1 of a p-brane:

• The weight λ(d−1)
orresponds to the Kaluza�Klein states, with mass 1/RI , as well

as its U-duality desendants. We shall name its orbit the partile multiplet, or �ux

multiplet, for reasons that will beome apparent in Subsetion 6.9.

• The weight λ(1)
on the other hand has dimension 1/L2

, and orresponds to the tension

of a membrane wrapped on the diretion 1: it will go under the name of string mul-

tiplet, or momentum multiplet. The latter name will also beome lear in Subsetion

6.9.

• The weight λ(0)
is the highest weight of the membrane multiplet ontaining the fun-

damental membrane with tension 1/l3p, together with its desendants.
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• The weights λ(2)
and λ(5)

both orrespond to threebrane tensions T3 and T ′
3 . Even

though they are inequivalent under the Weyl group, it turns out that λ(5)
is a de-

sendant of λ(3)
under the full U-duality group. The U-duality orbit of the state with

tension T ′
3 is therefore a subset of the orbit of the state with tension T3, and λ

(3)
is

the true highest-weight vetor of the threebrane multiplet.

• The same holds for λ(6)
assoiated to a membrane tension T ′

2 and desendant of the

highest weight λ(0)
of the membrane multiplet under U-duality, as well as for λ(7)

and

λ(1)
.

• The weight λ(3)
orresponds to a �vebrane tension T ′

5 , but is again not the highest

weight of the �vebrane multiplet, whih is instead a non-fundamental weight:

T5 =
1

l6p
→ λ = −2e6 = 2λ(0) . (4.29)

Similarly, the weight λ(4)
orresponds to a fourbrane tension T ′

4 , and is not the highest

weight of the fourbrane multiplet, whih is instead a non-fundamental weight:

T4 =
R1

l6p
→ λ = e1 − 2e6 = λ(1) + λ(0) . (4.30)

• Finally, the instanton multiplet does not appear in Eq. (4.28). An instanton on�gu-

ration an be obtained by wrapping a membrane on a three-yle

‡34
, and orresponds

to a weight vetor

T−1 =
R1R2R3

l3p
→ λ = α0 . (4.31)

Sine this vetor is a simple root, it orresponds to a multiplet in the adjoint rep-

resentation. It is, however, not the highest weight of the U-duality multiplet, whih

is instead the highest root ψ whose expansion oe�ients on the base of the simple

roots are given by the Coxeter labels in Table 4.3. An expliit omputation gives

d = 4 : ψ = δ − λ(1) − λ(0)
(4.32a)

d = 5 : ψ = δ − λ(2)
(4.32b)

d = 6 : ψ = δ − λ(0)
(4.32)

d = 7 : ψ = δ − λ(1)
(4.32d)

d = 8 : ψ = δ − λ(7) . (4.32e)

Sine the fundamental weights λ(i)
are dual to the simple roots αI , it is lear that

ψ · αI = δi,I , where I is the index appearing on λ in Eq. (4.32) at a given d, and
moreover it an be easily heked that ψ2 = 2. The highest root an therefore be

added as an extra root in the Dynkin diagrams in Table 4.3, and turns them into

extended Dynkin diagrams.

‡34
We should, however, warn the reader that it is not the representation arising in non-perturbative

ouplings, as we shall disuss in Subsetion 5.8.
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The previous onsiderations are summarized in the diagram

1
l3p

|
R1

l3p
− R1R2

l6p
− R1R2R3

l9p
− R1R2R3R4

l9p
− · · ·− 1

Rd

(4.33)

where we have indiated the highest weight assoiated to eah node of the Dynkin diagram.

For simpliity, we shall heneforth fous our attention on the partile and string multiplets,

orresponding to the rightmost node with weight λ(d−1)
and leftmost node with weight λ(1)

respetively.

4.8 The partile alias �ux multiplet

The full partile multiplet an be obtained by ating with Weyl and Borel transformations

on the Kaluza�Klein state with mass 1/RI . Instead of working out the preise transfor-

mation of the supergravity on�gurations

‡35
, we an restrit ourselves to onsidering the

masses of the various states in the multiplet. We note that the ation of SIJ and TIJK on

the dilatoni salars RI is independent of the dimension d of the torus, so that we an work

out the maximally ompati�ed ase D = 3, and obtain the higher-dimensional ases by

simply deleting states that require too many di�erent diretions on T d
to exist.

The results are displayed in Table 4.10, where distint letters stand for distint indies.

The states are organized in representations of the Sl(8,Z) modular group of the torus T 8
.

These representations arrange themselves in shells with inreasing power of l3p; sine lp is

invariant under Sl(8,Z), this orresponds to the grading with respet to the simple root α0.

Generalized T-duality TIJK may move from one shell to the next or previous one, whereas

SIJ ats within eah shell. Eight states with mass VR/l
9
p have been added in the middle

line, orresponding to zero-length weights that annot be reahed from the length-2 highest

state. These states are, however, neessary in order to get a omplete representation of the

modular group Sl(8,Z), and an be reahed by a Borel transformation in Sl(8,Z). They

an be thought of as the eight ways to resolve the radius that appears square in the mass of

the other states on the same line, into a produt of two distint radii. This is not required

for the other lines, sine all squares an be absorbed with a power of Newton's onstant.

In the last olumn of Table 4.10, we have indiated the representation of Sl(8,Z) that
yields the same dimension. The supersripts denote the number of antisymmetri indies,

and no symmetry property is assumed aross a semiolon. In other words, m1;7
orrespond

to the V ⊗ ∧7V where V is the de�ning representation of Sl(d). These representations

are preisely dual to those under whih the various gauge vetors transform (see Table

4.5); they atually orrespond to the harges of the BPS state under these U(1) gauge

symmetries (see also Subsetion 4.2). They generalize the D-brane harges we disussed in

Setion 3. Altogether, these states sum up to 248, the adjoint representation of E8, whih

‡35
See Ref. [221℄ for the onstrution of U-duality multiplets of p-brane solutions, and Ref. [115℄ for a

disussion of the ontinuous U-duality orbits of p-brane solutions.
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indeed deomposes in the indiated way under the branhing Sl(8) ⊂ E8. The ourrene

of the adjoint representation simply follows from the last equality of Eq. (4.32) identifying

the fundamental weight λ(7)
with the highest root of E8.

mass M Sl(8) irrep harge

1
RI

8 m1

RIRJ

l3p
28 m2

RIRJRKRLRM

l6p
56 m5

R2
I
RJRKRLRMRN RP

l9p
, 8

VR

l9p
1+63 m1;7

R2
IR2

JR2
KRLRM RN RP RQ

l12p
56 m3;8

R2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP RQ

l15p
28 m6;8

R3
IR2

JR2
KR2

LR2
M R2

N R2
P R2

Q

l18p
8 m1;8;8

Table 4.10: Partile/�ux multiplet 248 of E8.

The �rst three lines in Table 4.10 have an obvious interpretation. The state with mass

1
RI

is simply the Kaluza�Klein exitation on the dimension I, and mI denotes the vetor of

integer momentum harges. The state with mass RIRJ/l
3
p is the membrane wrapped on a

two-yle T 2
of the ompati�ation torus T d

, and the two-form mIJ
labels the preise two-

yle, just as in the D-brane ase of the previous setion. The third line orresponds to the

�vebrane wrapped on the �ve-yle labelled by mIJKLM
. The states on the fourth line are

more interesting. The �rst of them involves one square radius, and therefore does not exist

in unompati�ed eleven dimensions. It is simply the KK6-brane with Taub�NUT diretion

along RI and wrapped along the diretions J to P . The seond state with mass VR/l
9
p,

however, does exist in eleven unompati�ed diretions, and has the tension of a would-be

8-brane. Its asymptoti spae-time is however not �at, but logarithmially divergent. The

status of this solution is unlear at present, together with that of the following lines of the

table. These states only appear as partiles in D = 3, with the peuliarities that we have

already mentioned.

Upon deompati�ation, the last two lines in Table 4.10 disappear sine they require

eight distint radii, and the partile multiplet redues to a representation of the orre-

sponding U-duality group, as indiated in Table 4.11. When d ≥ 4, the representation

remains the one dual to the rightmost root. For d = 3, the U-duality group disonnets

into Sl(3) and Sl(2), and −ed beomes equal to λ(2) +λ(3)
instead of being equal to λ(3)

, as

in other ases. Consequently, the partile multiplet transforms as a (3, 2) representation

of U-duality.

The full partile multiplet on T d
an be easily deomposed in representations of the

U-duality group Ed−1(Z) in one dimension higher by separating the states in Table 4.10

aording to their dependene on the deompati�ed radius Rd (whih gives a gradation
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with respet to the simple root αd−1). We obtain the general deomposition

‡36

M(d) = 1|−1 ⊕M|0 ⊕ (T1 ⊕ T ′
1 )|1 ⊕ T ′

2 |2 ⊕ (T ′
1 )2|3 , (4.34)

where we have denoted the multiplets as in Eq. (4.28) and spei�ed the power of Rd in

subsript. The notation (T ′
1 )2

means twie the fundamental weight assoiated to T ′
1 . The

multiplets on the right-hand side of (4.34) beome empty as d dereases. In partiular,

we note that the partile multiplet on T d
deomposes into a singlet, orresponding to the

Kaluza�Klein exitation around the deompati�ed diretion xd
, as well as a partile and

a string multiplet on T d−1
, depending on whether the state was wrapped around xd

. There

are also a number of additional states that appear for d ≥ 6, to whih we shall ome bak

in Subsetion 7.7.

D d U-duality group irrep Sl(d) ontent

10 1 1 1 1

9 2 Sl(2,Z) 3 2 + 1

8 3 Sl(3,Z) × Sl(2,Z) (3, 2) 3 + 3

7 4 Sl(5,Z) 10 4 + 6

6 5 SO(5, 5,Z) 16 5 + 10 + 1

5 6 E6(6)(Z) 27 6 + 15 + 6

4 7 E7(7)(Z) 56 7 + 21 + 21 +7

3 8 E8(8)(Z) 248 2(8 + 28 + 56) + 63 + 1

Table 4.11: Partile/�ux multiplets of Ed.

As a side remark, we note that Table 4.10 is symmetri under re�etion with respet to

the middle line: for eah state with mass M there is a state with mass M′
satisfying

MM′ =

(

VR

l9p

)2

, (4.35)

where VR is the volume of the eight-torus. In partiular, the lowest weight is equal to

minus the highest weight, modulo the invariant vetor δ. This is a general property of

real representations of ompat group, and indeed 248 is the adjoint representation of E8,

therefore real. The same also holds for the 56 representation of E7 in the d = 7 ase.

However, whether real or not with respet to the ompat real form of the group Ed(C), all
the representations appearing in Table 4.11 are real as representations of the non-ompat

group Ed(d), as is required by the existene of an anti-partile for eah partile. This is

obvious for d ≤ 4; for d = 5, it is equivalent to the statement that the spinor of SO(8) is
real, sine the reality properties of spinors of SO(p, q) depend only on p− q mod 8. This
property is a harateristi feature of the representations of the maximally non ompat

real form.

‡36
For d = 8, this is 248 = 1⊕ 56⊕ (133⊕ 1) ⊕ 56⊕ 1.
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4.9 T-duality deomposition and exoti states

In order to make ontat with string theory solutions, it is useful to deompose the partile

multiplet into irreduible representations of the T-duality group SO(d−1, d−1,Z). This an
be simply arried out by distinguishing whether the indies lie along the eleventh dimension

or not, and substituting the mathing relations (2.1). Sine T-duality ommutes with the

grading in powers of the string oupling gs, the various irreps are then sorted out aording

to the dependene of the mass of the states on gs. Table 4.12 summarizes the deomposition

of the partile/�ux multiplet for M-theory on T 8
into irreduible representations of the

SO(7, 7) T-duality symmetry group of type IIA string theory on T 7
, as well as the Sl(8)

(resp. Sl(7)) modular group of the M-theory (resp. string theory) torus.

The masses of the states in the a-th olumn depend on the string oupling onstant as

1/ga−1
s , and are given by

V : 1
Ri
, Ri

l2s
(4.36a)

SA : 1
gs

(

1
ls
,

RiRj

l3s
,

RiRjRkRl

l5s
,

RiRjRkRlRmRn

l7s

)

(4.36b)

S + AS : 1
g2

s

(

RiRjRkRlRm

l6s
,

V ′

R

l8s
,

R2
i RjRkRlRmRn

l8s
,

V ′

R
RiRj

l10s

)

(4.36)

SB :
V ′

R

g3
s l8s

(

Ri

ls
,

RiRjRk

l3s
,

RiRjRkRlRm

l5s
,

V ′

R

l7s

)

(4.36d)

V ′ :
(

V ′

R

g2
s l8s

)2 (
l2s
Ri
, Ri

)

(4.36e)

where V ′
R denotes the volume of the string-theory seven-torus. At level 1/g0

s we observe

the usual KK and winding states of the string and the level 1/gs reprodues the D0-,D2-

,D4- and D6-branes. At level 1/g2
s , the NS5 and KK5-brane appear together with two new

types of state, a 72-brane and a 52
2-brane. Our nomenlature displays on-line the number of

spatial world-volume diretions, i.e. the number of radii appearing linearly in the mass; the

supersript spei�es the number of diretions (if non-zero) that appear quadrati, ubi,

et., listed from the right to the left. the subsript denotes the inverse power of the string

oupling appearing in the mass formula; for example, in this onvention the KK5-brane is

a 51
2-brane. Aording to this notation, we �nd at level 1/g3

s a 61
3-, 43

3-, 25
3- and 07

3-brane.

Their masses are related to those of the even Dp-branes, by the type IIA (on T 7
) mirror

symmetry

MM′ =

(

V ′
R

g2
s l

8
s

)2

, (4.37)

whih follows from the M-theory mirror symmetry relation (4.35). Finally, at level 1/g4
s ,

a 16
4- and a 0

(1,6)
4 -brane are obtained, whose masses are related to those of the KK and

winding states by (4.37).

At this point a few remarks are in order about the new type IIA states that appear

in (4.36). The 72- and 52
2-brane, with mass proportional to 1/g2

s have a onventional
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dependene on the string oupling, but no supergravity solutions are known for these

states. In addition, a variety of states with exoti dependene on the string oupling, 1/g3
s

and 1/g4
s , are observed. They arise from M-theory states with mass diverging as 1/l9p or

faster. It is not lear what the meaning of these new states in M-theory and type IIA string

theory is. These states annot be aommodated in weakly oupled string theory where the

most singular behaviour is expeted to be 1/g2
s , orresponding to Neveu�Shwarz solitons.

A higher power would imply a ontribution of a Riemann surfae with Euler harateristi

χ > 2. Another way to see this is by onsidering the gravitational �eld reated by these

objets, whih sales as Mκ2
10: sine κ

2
10 ∼ g2

s , states whose mass goes like gn
s , n ≤ 2 reate

a vanishing or at most �nite gravitational �eld in the weak oupling limit, allowing for a �at

spae desription in the spirit of D-branes. On the other hand, when n > 2, the surrounding
spae beomes in�nitely urved at weak oupling, and these states do not orrespond to

solitons anymore. In fat, the simplest of these states, namely 61
3, an be obtained by

onstruting an array of Kaluza-Klein along a non-ompat diretion of the Taub-NUT

spae

‡37
, and wrapping the worldvolume diretions on the string theory torus T 6

[54℄. The

summation of the poles in the harmoni funtion is logarithmially divergent, implying

that the asymptoti spae-time is logarithmially divergent as well. This is the rule and

not the exeption for a pointlike state in 3 spae-time dimensions (sine the Laplaian in

the two transverse oordinates has a logarithmi kernel), and the onventional states with

an asymptotially �at spae-time are simply on�gurations with a vanishing harge. The

same issue arises for p-branes in p+3 dimensions (or less). We emphasize, though, that our

present purpose is to examine the onsequenes at the algebrai level of the presene of the

onjetured U-duality, whih does require these exoti states. The supergravity solutions

desribing these states an in priniple by omputed using the known duality relations,

whih indeed do not preserve the asymptoti �atness of the metri.

248(E8)⊃ SO(7,7)
∪

Sl(8)
14 (V ) 64 (SA) 1 + 91 (S ⊕ AS) 64 (SB) 14 (V ′

)

8 (m1) 7 (m1) 1 (ms)

28 (m2
) 7 (ms1

) 21 (m2
)

56 (m5) 35 (ms4
) 21 (m5

)

1+ 63 (m1;7
) 7 (ms;s6

) 1 + 1+ 48 (ms;7, m1;s6
) 7 (m1;7

)

56 (m3;8
) 21 (ms2;s7

) 35 (m3;s7
)

28 (m6;8
) 21 (ms5;s7

) 7 (m6;s7
)

8 (m1;8;8
) 1 (ms;s7;s7

) 7 (m1;s7;s7
)

Table 4.12: Branhing of the d = 8 partile multiplet into irreps of Sl(8) and SO(7, 7).
The entries in the table denote the irreps under the ommon Sl(7) subgroup of Sl(8) and
SO(7, 7).

‡37
This onstrution �rst appeared in the ontext of the onifold singularity in the hypermultiplet moduli

spae [246℄.
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4.10 The string alias momentum multiplet

The same analysis an be arried out for the string multiplet, by applying a sequene

of Weyl re�etions on the highest weight RI/l
3
p desribing the wrapped membrane. After

adding a multiplet of length 2 and 35 zero-weights for Sl(8,Z) invariane, we obtain a 3875
representation of E8(8). The preise ontent of this representation is displayed in Appendix

B; instead, we display in Table 4.13 the more manageable result for the d = 7 ase, where

the string multiplet transforms as a 133 adjoint representation of E7(7). The ourrene of

the adjoint representation is again understood from Eq. (4.32) relating the fundamental

weight λ(1)
to the highest root ψ.

tension T mass Sl(7) irrep harge

RI

l3p
7 n1

RIRJRKRL

l6p
35 n4

R2
I
RJRKRLRM RN

l9p
, 7

VR

l9p
1+48 n1;6

R2
I
R2

J
R2

K
RLRMRN RP

l12p
35 n3;7

R2
IR2

JR2
KR2

LR2
MR2

N RP

l15p
7 n6;7

Table 4.13: String/momentum multiplet 133 of E7.

D d U-duality group irrep Sl(d) ontent

10 1 1 1 1

9 2 Sl(2,Z) 2 2

8 3 Sl(3,Z) × Sl(2,Z) (3, 1) 3

7 4 Sl(5,Z) 5 4 + 1

6 5 SO(5, 5,Z) 10 5 + 5

5 6 E6(6)(Z) 2̄7 6 + 15 + 6

4 7 E7(7)(Z) 133 7 + 35 + 49 + 35 + 7

3 8 E8(8)(Z) 3875 8 + 70 + . . .

Table 4.14: String/momentum multiplets of Ed.

These states have the same interpretation as the states in the partile multiplet, but

for wrapping one dimension less of the world-volume. In other words, the states in the

partile multiplet an be obtained by wrapping strings on one dimension more� exept for

the Kaluza�Klein state, whih is a genuine point-like (or wave-like, rather) objet. We
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note again that Table 4.13 is symmetri under re�etion with respet to its middle line, in

agreement with the reality of the 133 adjoint representation of E7.

The string multiplet in higher dimensions is simply obtained by dropping the states that

require too many di�erent radii, as displayed in Table 4.14; in all ases, it orresponds to the

representation dual to the leftmost root α1. We note that in d = 6 the 2̄7 string multiplet

is distint from the 27 partile multiplet, but is related to it by an outer automorphism of

E6 orresponding to the Z2 symmetry of its Dynkin diagram. We also note, for later use,

that in all ases the string multiplet representation arises in the symmetri tensor produt

of two partile multiplets, i.e. (M⊗s M) ⊗ T always ontains a singlet.

Like the partile multiplet, the full string multiplet on T d
an be easily deomposed in

representations of the U-duality group Ed−1(d−1)(Z) in one dimension higher by using the

gradation in powers of the deompati�ed radius Rd
‡38

T (d)
1 = T1|0 ⊕ (T2 ⊕ T ′

2 )|1 ⊕ T ′
3 |2 , (4.38)

where we have denoted the multiplets as in Eq. (4.28) and again spei�ed the power of

Rd in subsripts. In partiular, we note that the string multiplet on T d
deomposes into

a string and a membrane multiplet on T d−1
, depending whether the state was wrapped

around xd
. There are also a number of additional states that disappear for d ≤ 6.

133(E7)⊃ SO(6,6)
∪

Sl(7)
1 (S) 32 (SB) 1 + 66 (S ′ ⊕AS) 32 (S ′

B) 1 (S ′′
)

7 (n1
) 1 (ns

) 6 (n1
)

35 (n4
) 20 (ns3

) 15 (n4
)

1+ 48 (n1;6
) 6 (ns;s5

) 1 + 1+ 35 (ns;6, n1;s5
) 6 (n1;6

)

35 (n3;7
) 15 (ns2;s6

) 20 (n3;s6
)

7 (n6;7
) 6 (ns5;s6

) 1 (n6;s6
)

Table 4.15: Branhing of the d = 7 string multiplet into irreps of Sl(7) and SO(6, 6).
The entries in the table denote the irreps under the ommon Sl(6) subgroup of Sl(7) and
SO(6, 6).

As in the previous subsetion, we give the branhing of the d = 7 string multiplet in

terms of irreps of the T-duality SO(6, 6,Z) as well as the modular groups Sl(7,Z) and

Sl(6,Z) of the M-theory and string theory tori in Table 4.15.

4.11 Weyl-invariant e�etive ation

As in our disussion of T-duality, we would now like to write the supergravity ation (2.2)

in a manifestly Weyl-invariant form. This has been arried out in Refs. [218, 220℄, a

‡38
For d = 7, this is 133 = 27⊕ (78⊕ 1) ⊕ 2̄7.
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simpli�ed version of whih will be presented here. As in Eq. (3.25), we deompose the

eleven-dimensional �eld strength F (4)
and metri in lower-degree forms. The ation then

takes the simple form:

S11−d =

∫

d11−dx
√−g V

l9p

[

R +
∑

i

(

∂Ri

Ri

)2

+
∑

i<j

(

Ri

Rj
F i(1)

j

)2

+
∑

i

(

RiF (2)i
)2

+
(

l3pF
(4)
)2

+
∑

i

(

l3p
Ri
F

(3)
i

)2

+
∑

i<j

(

l3p
RiRj

F
(2)
ij

)2

+
∑

i<j<k

(

l3p
RiRjRk

F
(1)
i

)2
]

, (4.39)

where the �rst line omes from the redution of the Einstein�Hilbert term and the seond

from the kineti term of the three-form.

In Eq. (4.39) we again reognize in front of the one-form �eld strength F (1)
and F (1)

the positive roots ei − ej and ei + ej + ek − e0, in front of the two-form �eld strength F (2)

the weights −ei of the partile multiplet, in front of the three-form �eld strength F (3)
the

weights ei − e0 of the string multiplet, and in front of the four-form �eld strength F (4)

the weight −e0 of the membrane multiplet. However, these weights do not form omplete

orbits: it is neessary to dualize the �eld strengths F (p)
into lower-degree �eld strengths

F (11−d−p)
so as to display the Weyl symmetry. In the 2p = 11 − d ase, both the �eld

strength and its dual should be kept. Alternatively, all �eld strengths may be doubled with

their duals, and display an even larger symmetry [74, 75℄.

We then obtain a manifestly Weyl-invariant ation:

S11−d =

∫

d11−dx
√−g V

l9p
[R + ∂ϕ · ∂ϕ

+
∑

α∈Φ+

e−2〈ϕ,α〉
(

F (1)
α

)2
+
∑

λ∈Φpart

e−2〈ϕ,λ〉
(

F (2)
λ

)2

+
∑

λ∈Φstring

e−2〈ϕ,λ〉
(

F (3)
λ

)2

+
∑

λ∈Φmembrane

e−2〈ϕ,λ〉
(

F (4)
λ

)2

+ . . .



 , (4.40)

where ϕ = (ln l3p, lnR1, . . . , lnRd) is the vetor of dilatoni salars (whose �rst omponent

is non-dynamial), 〈ϕ, λ〉 = x0 ln l3p +x1 lnR1 + . . . is the duality braket (4.19) and ∂ϕ ·∂ϕ
the Weyl-invariant kineti term (∂l3p = 0) obtained from the metri (4.21). In addition

to the equations of motion from (4.40), the duality equations F (p) = ∗F (11−d−p)
should

also be imposed. As in the ase of T-duality, the set of positive roots Φ+ is not invariant

under Weyl re�etions, but the Peei�Quinn salars undergo non-linear transformations

A(0) → e−2〈ϕ,α〉A(0)
that ompensate for the sign hange [220℄.
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4.12 Compati�ation on T 9
and a�ne Ê8 symmetry

As we pointed out in Subsetion 4.6, the ompati�ation on a nine-torus T 9
to two spae-

time dimensions gives rise to a qualitative hange in the U-duality group: the invariant

vetor δ in (4.26) orresponding to the dimensionless Newton onstant beomes light-like

in the Lorentzian metri −(dx0)2 +(dx1)2 + · · ·+(dx9)2
, so that the ation of the U-duality

group generated by SI and T in Eq. (4.20) annot be restrited to its orthogonal subspae.

Instead, it generates the Weyl group of the Ê8 a�ne algebra, as was shown in Ref. [110℄;

we shall reast their onstrution in the notation of this review, at the same time settling

several issues.

In order to see the a�ne symmetry Ê8 arise, we simply note that the Dynkin diagram of

E9 (see Table 4.3) is nothing but the extended Dynkin diagram of E8, where the additional

root with Coxeter label 1 orresponds to α8 = e9−e8. The roots α0, α1, . . . , α7 generate the

E8 horizontal Lie algebra, whereas α8 and δ =
∑9

I=1 eI−3e0 are the extra dimensions needed

to represent the entral harge K and degree D generators of the standard onstrution of

a�ne Lie algebras (see e.g. Ref. [121℄). To make the identi�ation preise, we reall that

the simple roots of an a�ne Lie algebra Ĝ an be hosen as

‡39

α̂I = (αI , 0, 0) , I = 1 . . . r , α̂0 = (−ψ, 0, 1) (4.41)

in the basis (µ, k, d) of the Minkovskian weight spae Vr+2 = Rr +R1,1
with norm µ2 +2kd.

Here, ψ is the highest root of G, r is the rank of G, k is the a�ne level, and d the L0

eigenvalue. In the ase at hand, we have G = E8 so r = 8 and want to �nd the hange of

basis between the roots αI , I = 0 . . . 8 and null vetor δ of our formalism and the standard

roots α̂I , I = 0 . . . 8 and vetors γ = (0, 0, 1), κ = (0, 1, 0). From Eq. (4.32) we have,

ψ = e1 + · · ·+ e7 + 2e8 − 3e0 = δ − α8 , (4.42)

so that, omparing with Eq. (4.41), we an identify δ with γ = (0, 0, 1) and

α̂I = αI , I = 1 . . . 7 , (4.43a)

α̂8 = α0 , (4.43b)

α̂0 = α8 . (4.43)

The vetor κ = (0, 1, 0) an be easily alulated from the requirements that κ2 = κ · α̂I =
0, I = 1 . . . 8 and κ · δ = 1:

κ =
1

2
(−e1 − · · · − e8 + e9 + 3e0) = e9 −

δ

2
. (4.44)

The level k and degree d of any weight vetor λ ∈ V10 an now be obtained from the

produts δ · λ and δ · κ respetively, and they both have a simple interpretation:

k = δ · λ = x1 + · · · + x9 + 3x0
(4.45)

‡39
In order to keep with the standard notation, the simple roots of the Lie algebra are now labelled by

subsripts ranging from 1 to r, as opposed to our notation for the simple roots of the U-duality groups Er,

whih arry labels 0 to r − 1.
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is simply the length dimension of the assoiated monomial

∏

RxI

I l
3x0

p , and

d = κ · λ = x9 − k/2 (4.46)

ounts the power of R9 appearing in the same monomial, up to a shift k/2. This was

expeted, sine the horizontal subalgebra E8 ⊂ Ê8 does not a�et R9 and by de�nition

ommutes with L0. L−n generators, on the other hand, bring additional powers of R9 and

inrease the degree d. In partiular, the L0 eigenvalues are integer-spaed, as they should.

We proeed by onsidering the partile/�ux and string/momentum multiplets intro-

dued in Subsetions 4.8 and 4.10, with highest weights λ(d−1) = −e9 and λ(1) = e1 − e0
respetively (see Eq. (4.28)). The partile multiplet is therefore a level −1 representation

with trivial ground state µ = 0 (that is, in the hiral blok of the identity). A bit of

experimentation reveals the �rst Sl(9) representations ourring in the partile multiplet:

m1;1;9, m1;4;9, m2;6;9, m4;7;9, m7;7;9, m2;3;9;9, . . . (4.47)

with tensions saling from 1/l12p to 1/l24p , in addition to the representations already present

in d = 8, given in Table 4.10. However, the full orbit is in�nite. On the other hand,

the string multiplet is a level −2 representation with ground state in the 3875 of E8. In

both ases, the representations are in�nite-dimensional, and need to be supplemented with

weights of smaller length as in the E7 and E8 ases. The instanton multiplet, on the other

hand, is a level-0 representation of Ê8, with a non-singlet ground state in the adjoint of E8,

making it obvious that the usual unitarity restritions for ompat a�ne Lie algebras do

not apply in our ase. This onludes our analysis of the d = 9 ase, and we now restrit

ourselves to the better understood d ≤ 8 ase.
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5 Mass formulae on skew tori with gauge

bakgrounds

We would now like to generalize the mass formulae of the U-duality multiplets obtained

so far for retangular tori and vanishing gauge potentials to the more general ase of skew

tori and arbitrary gauge potentials, whih will exhibit the full U-duality group. This will

also allow a better understanding of the ation of Borel generators on the BPS spetrum.

We will onentrate on the d = 7 �ux multiplet, but the same method applies to the other

multiplets.

5.1 Skew tori and Sl(d,Z) invariane

We have already argued that BPS states ould be labelled by a set of tensors of integer

harges desribing their various momenta and wrappings. In partiular, for the ase of the

d = 7 �ux multiplet, the harges

m1, m
2, m5, m1;7

(5.1)

desribe the Kaluza�Klein momentum, membrane, �vebrane and KK6-brane wrappings.

The position of the index has been hosen in suh a way that we obtain the orret mass

by ontrating eah of them with the vetor of radii RI
or inverse radii 1/RI . Note that

for d = 7 the tensor m1;7
is really a tensor m1

, but the extra seven indies aount for an

extra fator of the volume in the tension. Of ourse, a BPS state with generi harges m
will not be 1/2-BPS state in general (for d ≥ 5): some quadrati onditions on m have to

be imposed, as already disussed in Subsetions 2.2 and 3.8. We shall heneforth assume

these onditions ful�lled, deferring the study of the latter to Subsetion 5.9.

The 1/2-BPS state mass formula for a non-diagonal metri gIJ an be straightforwardly

obtained by replaing ontrations with the vetor of radii by ontrations with the metri,

and inserting the proper symmetry fator and power of the Plank length on dimensional

grounds:

M2 = (m1)
2 + (m2)2 + (m5)2 + (m1;7)2

= mIg
IJmJ + 1

2! l6p
mIJgIKgJLm

KL

+ 1
5! l12p

mIJKLMgINgJPgKQgLRgMSm
NPQRS + . . .

(5.2)

This formula is invariant under Sl(d,Z), but not yet under the T-duality subgroup SO(d−
1, d− 1,Z) of the U-duality group. It only holds when the expetation value of the various

gauge �elds on the torus vanish. To reinstate the dependene on the three-form CIJK , we

apply the following strategy.

• Deompose the �ux multiplet as a sum of T-duality irreps.

• Inlude the orret oupling to the NS two-form �eld Bij using the T-duality invariant

mass formulae.

66



• Study the T-duality spetral �ow B → B + ∆B.

• Covariantize this �ow under Sl(d,Z) into a C → C + ∆C �ow.

• Integrate the C → C + ∆C �ow to obtain the U-duality invariant mass formula.

5.2 T-duality deomposition and invariant mass formula

We have already disussed the �rst step in Subsetion 4.9, and we only need to restrit

ourselves to the ase d = 7. Table 4.12 then trunates to its upper left-hand orner displayed
in Table 5.1, as an be read from the d = 7 partile multiplet mass formula (5.2) written

with s and i indies:

M2 =
[

m2
s

g2
s

+ (m1)
2
]

+
[

(ms1)2 + (m2)2

g2
s

]

+
[

(ms4)2

g2
s

+ (m5)2

g4
s

]

+
[

(ms;s6)2

g2
s

+ m1;s6)2

g4
s

]

(5.3)

orresponding to three SO(6, 6) irreps,

V = (m1, m
s1) momentum and winding (5.4a)

S = (ms, m
2, ms4, ms;s6) D0-,D2-,D4-,D6-brane (5.4b)

V ′ = (m5, m1;s6) NS5-brane and KK5-brane (5.4)

56(E7)⊃ SO(6,6)
∪

Sl(7)
12 (V ) 32 (SA) 12 (V ′

)

7 (m1) 6 (m1) 1 (ms)

21 (m2
) 6 (ms1

) 15 (m2
)

21 (m5) 15 (ms4
) 6 (m5

)

7 (m1;7
) 1 (ms;s6

) 6 (m1;s6
)

Table 5.1: Branhing of the d = 7 partile multiplet into irreps of Sl(7) and SO(6, 6).
The entries in the table denote the irreps under the ommon Sl(6) subgroup of Sl(7) and
SO(6, 6).

We an now use the T-duality invariant mass formulae for the T-duality irreps that we

obtained in Setion 3. In terms of the present harges, they shematially read (in units of
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ls)

M2
V =

(

mi +Bijm
sj
)

gik
(

mk +Bklm
sl
)

+msigijm
sj

(5.5a)

M2
SB

=
1

g2
s

[

(

ms +m2B2 +ms4B2
2 +ms;s6B3

2

)2

+
(

m2 +ms4B2 +ms;s6B2
2

)2

+
(

ms4 +ms;s6B2

)2
+
(

ms;s6
)2
]

(5.5b)

M2
V ′ =

1

g4
s

[

(

m5 +m1;s6B2

)2
+
(

m1;s6
)2
]

, (5.5)

where we used the vetor and spinor representation mass formulae (3.8) and (3.38). Adding

the three ontributions M2
{V,SB,V ′} together, we now obtain the �ux multiplet mass formula

for vanishing values of the Ramond �elds and arbitrary B-�eld:

M2 =
[

m̃2
s

g2
s

+ (m̃1)
2
]

+
[

(m̃s1)2 + (m̃2)2

g2
s

]

(5.6a)

+
[

(m̃s4)2

g2
s

+ (m̃5)2

g4
s

]

+
[

(m̃s;s6)2

g2
s

+ m̃1;s6)2

g4
s

]

, (5.6b)

where the tilded harges are shifted to inorporate the e�et of the two-form as in (5.5), so

that for instane

m̃s = ms +
1

2
B2m

2 +
1

8
B2

2m
s4 +

1

48
B3

2m
s;s6

(5.7)

is the shift in the D0-brane harge.

5.3 T-duality spetral �ow

In Subsetions 3.7 and 3.8 we have already disussed the spetral �ow Bij → Bij + ∆Bij

in the vetorial and spinorial representations. We only need to rephrase this �ow in terms

of the present harges:

V : mi → mi + ∆Bjim
sj , msi → msi

SB : ms → ms + 1
2
∆Bijm

ij , mij → mij + 1
2
∆Bklm

sklij

msijkl → msijkl + 1
2
∆Bmnm

s;smnijkl , ms;s6 → ms;s6

V ′ : mijklm → mijklm − ∆Bnpm
n;spijklm

m1;s6 → m1;s6 .

(5.8)

The �ow indeed ats as an automorphism on the harge lattie, and in partiular the

harges annot be restrited to positive integers (exept for m1;7
). This fat will be of use

in Subsetion 7.8.
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Alternatively, the above spetral �ow an be reast into a system of di�erential equations

for the shifted harges m̃, e.g. for the spinor representation we have

SB :
∂m̃s

∂Bij
= 1

2
m̃ij , ∂m̃ij

∂Bkl
= 1

2
m̃sijkl

∂m̃sijkl

∂Bmn
= 1

2
m̃s;sijklmn , ∂m̃s;sijklmn

∂Bpq
= 0 .

(5.9)

This system an be integrated to yield the spinor representation mass formula; the onstants

of integration orrespond to the integer harges m. The integrability of this system of

di�erential equations follows from the ommutativity of the spetral �ow.

5.4 U-duality spetral �ows

The mass formula (5.6) obtained so far is invariant under T-duality and holds for vanishing

values of Ramond gauge bakgrounds. In order to obtain a U-duality invariant mass for-

mula, we have to allow expetation values of the M-theory gauge three-form CIJK , whih

extends the Neveu-Shwarz two-form Bij = Csij ; the expetation value of the Ramond one-

form is already inorporated as the o�-diagonal metri omponent Ai = gsi/R
2
s 6= 0. For

d ≥ 6, one should also allow expetation values of the six-form EIJKLMN (Poinaré-dual

to CIJK in eleven dimensions). In string-theory language, this orresponds to the Ramond

�ve-form Es5 and the Neveu-Shwarz six-form dual to Bµν in ten dimensions

‡40
.

In order to reinstate the CIJK dependene in mass formula we ovariantize the Bij = Csij

spetral �ow (5.8) under Sl(d,Z), with the result that

mI → mI + 1
2
∆CJKI m

JK

mIJ → mIJ + 1
6
∆CKLM mKLMIJ

mIJKLM → mIJKLM + 1
2
∆CNPQ mN ;PQIJKLM

m1;7 → m1;7 .

(5.10)

Here, however, the C spetral �ow turns out to be non-integrable. De�ning ∇IJK
as the

�ow indued by the shift CIJK → CIJK + ∆CIJK , we have the ommutator

[

∇IJK , ∇LMN
]

= 20∇IJKLMN , (5.11)

where ∇IJKLMN
is the �ow indued by the shift EIJKLMN → EIJKLMN + ∆EIJKLMN :

mI → mI + 1
5!

∆EJKLMNI m
JKLMN

mIJ → mIJ + 1
5!

∆EKLMNPQ mK;LMNPQIJ

m5 → m5

m1;7 → m1;7 .

(5.12)

‡40
For d = 8, we also need to inlude the form K1;8, whih in string-theory language inludes the Ramond

seven-form Ks;s7, along with a K1;s7 form.
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The non-integrability (5.11) of the C-�ow an be understood as a onsequene of the

Chern�Simons interation in the 11D supergravity ation Eq. (2.2) [74, 75℄: the equation

of motion for C reads

d ∗ F4 +
1

2
F4 ∧ F4 = 0 , (5.13)

so that the dual �eld strength of F4 has a Chern�Simons term

F7 ≡ ∗F4 = dE6 −
1

2
C3 ∧ F4 . (5.14)

The equation of motion (5.14) is invariant under the gauge transformations

δC3 = Λ3 , δE6 = Λ6 −
1

2
Λ3 ∧ C3 , (5.15)

for losed Λ3 and Λ6. Restriting to onstant shifts, this reprodues the ommutation

relations (5.11). An equivalent statement holds in D = 3, where the C3 and E6 shifts lose

on a K1;8 shift.

The non-integrability of the system (5.10) an therefore be evaded by ombining the

∆C3 shift with a ∆E6 shift

1

5!
∆EIJKLMN =

1

12
C[IJK∆CLMN ] , (5.16)

upon whih the resulting �ow

∇′IJK = ∇IJK − 10CKLM∇KLMIJK
(5.17)

beomes integrable

‡41
. The extra shift is invisible in the type IIA piture for zero Ramond

potentials sine it does not ontribute to the T-duality spetral �ow. We emphasize again

that these extra terms are generated as a onsequene of the integrability of the �ow, whih

we take as a guiding priniple for reonstruting the invariant mass formula. The expliit

form of the resulting �ow equations that follow from (5.17) is then given by [244℄

∇′JKLm̃I =
1

2
m̃JKδL

I (5.18a)

∇′KLMm̃IJ =
1

6
m̃KLMIJ

(5.18b)

∇′NPQm̃IJKLM =
1

2
m̃N ;PQIJKLM

(5.18)

∇′RST m̃I;JKLMNPQ = 0 , (5.18d)

‡41
For d = 8 there is also a non-trivial ommutator [74℄ between the C3 and E6 �ow, losing onto the K1;8

�ow, whih indues further shifts.
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∇JKLMNP m̃I =
1

5!
m̃JKLMNδP

I (5.19a)

∇KLMNPQm̃IJ =
1

5!
m̃K;LMNPQIJ

(5.19b)

∇NPQRST m̃IJKLM = 0 (5.19)

∇RSTUV W m̃I;JKLMNPQ = 0 , (5.19d)

whih now an be integrated, as will be shown in Subsetion 5.6.

5.5 A digression on Iwasawa deomposition

In order to understand the non-ommutativity of the spetral �ow from another perspetive,

it is worthwhile oming bak to a simpler example of a non-ompat group, namely the

prototypial G(R) = Sl(n,R) group. The Iwasawa deomposition (4.7) then takes the form

g = k · a · n ∈ K ·A ·N , (5.20)

where K = SO(n,R) is the maximal ompat subgroup of G(R), A is the Abelian group

of diagonal matries with determinant 1 and N is the nilpotent group of upper triangular

matries. The fator k is absorbed in the oset G(R)/K, and the oset spae is really

parametrized by A ·N .

Now the subgroup of G(Z) leaving A invariant is nothing but the Weyl group Sn of

permutations of entries of A, whereas that leaving N invariant is the Borel group of integer-

valued upper triangular matries with 1's on the diagonal. The latter is graded by the

distane away from the diagonal, in the sense that

[Bp, Bp′] ⊂ Bp+p′ , (5.21)

where Bp is the subset of upper triangular matries with 1's on the diagonal and other non

zero entries on the p-th diagonal only. In partiular, Bp is a non-ompat Abelian subgroup

when p > n/2.

Returning to the ase at hand, we see that ∇3
, ∇6

(and ∇1;8
in the d = 8 ase) are

analogous to the B1, B2 (and B3) Borel generators of Sl(3) (or Sl(4)). More preisely,

they orrespond to the grading of the root lattie of Ed with respet to the simple root α0

extending the Sl(d,Z) Lorentz subgroup to the full Ed(d)(Z) subgroup, or in other words the
grading of the adjoint representation in powers of l3p. This an be seen from Table 4.10 for

d = 8 sine, in this ase, the partile multiplet happens to be in the adjoint representation

248 of E8. For d < 8, this an also be seen from the Coxeter label a0 of α0 in Table 4.3,

i.e. the α0 omponent of the highest root of Ed: the degree p of all the positive roots then
runs from 0 (orresponding to the gIJ Borel generators) to a0, with intermediate values 1
for the C3 �ow, 2 for E6 and 3 for K1;8.
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We �nally note that, in the notation of Eq. (5.20), the mass formula we are seeking

takes the form,

M2 = mt Rt(a · n)R(a · n) m , (5.22)

where m is the vetor of integer harges transforming in the appropriate linear representa-

tion R of Ed(d)(R).

5.6 Partile multiplet and U-duality invariant mass formula

The �ow (5.18) an be integrated to obtain the E7(7)(Z)-invariant mass formula for the

partile multiplet of M-theory ompati�ed on a torus T 7
with arbitrary shape and gauge

bakground. The result is:

M2 = (m̃1)
2 +

1

2! l6p

(

m̃2
)2

+
1

5! l12p

(

m̃5
)2

+
1

7! l18p

(

m̃1;7
)2

, (5.23)

where the shifted harges depend on the gauge potentials as

m̃I = mI +
1

2
CJKIm

JK +

(

1

4!
CJKLCMNI +

1

5!
EJKLMNI

)

mJKLMN

+

(

1

3!4!
CJKLCMNPCQRI +

1

2 · 5!
CJKLEMNPQRI

)

mJ ;KLMNPQR

(5.24a)

m̃IJ = mIJ +
1

3!
CKLMm

KLMIJ

+

(

1

4!
CKLMCNPQ +

1

5!
EKLMNPQ

)

mK;LMNPQIJ

(5.24b)

m̃IJKLM = mIJKLM +
1

2
CNPQm

N ;PQIJKLM
(5.24)

m̃I;JKLMNPQ = mI;JKLMNPQ . (5.24d)

The shifts indued by the expetation values of C3 and E6 give an expliit parametrization

of the upper triangular

‡42
vielbein V in terms of the physial ompati�ation parameters

(see Eq. (4.6)). The mass formula (5.23) is now invariant under T-duality, besides the

manifest Sl(d,Z) symmetry.

As an illustration, we an look at the shift in T-duality vetor harge ms1
implied by

the above equation:

m̃s1 + A1m̃
2 = ms1

+ A1m
2 + (C3 + A1B2)m

s4 + (Es5 + C3B2 + A1B2B2)m
s;s6

+ (A1C3)m
5 +

(

E6 + C3
3 + A1Es5 + A1B2C3

)

m1;s6 . (5.25)

‡42V is atually upper triangular in bloks, beause we did not deompose the metri gIJ in a produt of

upper triangular vielbeins.
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The seond line preisely involves the tensor produt of the harge spinor representation S
with the spinor representation made up by the Ramond moduli. In fat, to see that the set

(A1,C3 +A1B2, Es5 + C3B2 +A1B2B2) transforms as a spinor, one may simply note that it

is preisely the ombination that appears in the expansion in powers of F of the T-duality

invariant D-brane oupling

∫

eB+l2sF ∧R. Formula (5.23) redues to the d = 5 result of Ref.

[91℄ for vanishing expetation values of the gauge bakgrounds (see also [298℄).

5.7 String multiplet and U-duality invariant tension formula

Exatly the same analysis an be done for the momentum multiplet. We give here the

result for d = 6. The ontributing harges n1, n4, n1;6
deompose into SO(6, 6) T-duality

multiplets

I = (ns) , S ′ = (n1, ns3, ns;s5) , V = (n4, n1;s5) , (5.26)

and we obtain the E6(6)(Z)-invariant tension formula for the d = 6 string multiplet:

T 2 =

[

1

l6p

(

ñ1
)2

+
1

l12p

(

ñ4
)2

+
1

l18p

(

ñ1;6
)2
]

, (5.27)

where the shifted harges are

ñ1 = n1 + C3n
4 + (C3C3 + E6)n

1;6

ñ4 = n4 + C3n
1;6

ñ1;6 = n1;6

(5.28)

The ombinatorial fators and expliit index ontrations are easily reinstated in this equa-

tion by omparison with (5.24a). This yields the parametrization of the vielbein V of Eq.

(4.6) in the representation appropriate to the string multiplet.

5.8 Appliation to R4
ouplings

As an illustration of the result (5.27), we display the d ≤ 5 string multiplet invariant

tension formula. Beause of antisymmetry, only the harges n1
and n4

ontribute, so that

the tension of the string multiplet is given by

T 2 =
1

l6p

(

nI +
1

3!
nIJKLCJKL

)

gIM

(

nM +
1

3!
nMNPQCNPQ

)

+
1

4! l12p

nIJKLgIMgJNgKPgLQn
MNPQ . (5.29)

This is preisely the U-duality invariant quantity that was obtained in the study of instanton

orretions to R4
orretions in type II theories in Ref. [200℄, where it was onjetured that
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the oupling for d = 5 is given by the SO(5, 5,Z) Eisenstein series

A =
V

l9p

ˆ∑

nI ,nIJKL

[

T 2
]−3/2

=
2πV

l9p

∫ ∞

0

dt

t5/2

ˆ∑

nI ,nIJKL
e−πT 2/t , (5.30)

where T is given by the tension formula (5.29), and V denotes the volume of the M-theory

torus T d
. As will beome lear in the next Subsetion (see Eq. (5.38a)), the sum has to

be restrited to integers suh that n[InJKLM ] = 0, in order to pik up the ontribution

of half-BPS states only. The generalization of this onstrution to ompati�ations of

M-theory to lower dimensions was addressed in Ref. [243℄.

Under Poisson resummation on the harge ns
, the U-duality invariant funtion (5.30)

exhibits a sum of instanton e�ets of order e−1/gs
, orresponding to the D0-branes (with

harge n1
) and D2-branes (with harge ns3

), but there is also a ontribution of the extra

harge n4
super�ially of order e−1/g2

s
. The NS5-brane does not yield any instanton on T 4

,

so these e�ets seem rather mysterious. On the other hand, we may interpret Eq. (5.30)

as a sum of loops from all perturbative and non-perturbative strings. The ourrene

of the NS5-brane of the string multiplet is then no longer surprising. This soliton loop

interpretation should, however, be taken with are, sine in any ase we have not sueeded

yet in reovering the one-loop R4
oupling from the SO(5, 5,Z) Eisenstein series.

5.9 Half-BPS onditions and Quarter-BPS states

The U-duality mass formulae (5.23) and (5.27) that we have obtained only hold for 1/2-BPS

states, and require partiular onditions on the various integer harges. These onditions

an be obtained from a preise analysis of the BPS eigenvalue equation, as in Subsetion 2.2,

or from a sequene of U-dualities from the perturbative level-mathing ondition ‖m‖2 = 0
in Eq. (3.8). In analogy to the latter ondition, they should be quadrati in the integer

harges, be moduli-independent, and onstitute a representation of the U-duality group

Ed(d)(Z), appearing in the symmetri tensor produt of two harge multiplets.

We have already notied in Subsetion 4.10 that the string multiplet always appears

in the symmetri produt of two partile multiplets, and indeed all the omputations in

Appendix A point to the fat

‡43
that the 1/2-BPS ondition on the partile multiplet is the

string multiplet onstruted out of the partile harges. This has also been observed in Ref.

[115℄, where it was shown that for d = 7 the 1/2-BPS onditions on the 56 partile multiplet

were transforming in a 133 adjoint representation of E7, whih is the orresponding string

multiplet.

In order to extrat the preise onditions, it is onvenient to onsider the branhing

‡43
The naive inlusion of the KK6-brane as an extra ΓIJKLMNZ0IJKLMN

term does not seem, however,

to yield a U-duality invariant mass formula by this method.
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under the ST-duality group:

E7(7) ⊃ SO(6, 6) × Sl(2) (5.31)

56 = (12, 2) + (32, 1)

133 = (1, 3) + (3̄2, 2) + (66, 1),

where the 32 orrespond to the D-brane harges ms, m
2, ms4, ms;s6

and the two 12's to
the Kaluza�Klein and winding harges m1, m

1s
and the NS5-brane/KK5-brane harges

m5, m1;s6
respetively (see also Tables 5.1 and 4.15). The 133 in the symmetri tensor

produt 56 ⊗s 56 of two partile multiplets is therefore

(1 ∈ 12 ⊗s 12, 3) + (3̄2 ∈ 12 ⊗ 32, 2) + (66 ∈ 32 ⊗s 32 + 12 ∧ 12, 1) . (5.32)

So as to work out the tensor produts in Eq. (5.32), it is advisable to onsider the

further branhing

SO(6, 6) ⊃ Sl(6) × O(1, 1) (5.33)

12 = 61 + 6̄−1

32 = 13 + 1̄51 + 15−1 + 1−3

66 = 152 + 10 + 350 + 1̄5−2 .

The deomposition of the 133 onditions in terms of the various Sl(6) ⊂ SO(6, 6) harges
is therefore

12 : ks ≡ m1m
s1

(5.34a)

321 :















k1 ≡ m1m
2 +msm

s1

k3s ≡ m1m
s4 +ms1m2

ks;s5 ≡ m1m
s;s6 +ms1ms4

(5.34b)

660 :















k4 ≡ msm
s4 +m2m2 +m1m

5

k1;s5 ≡ m2ms4 +msm
s;s6 +ms1m5 +m1m

1;s6

ks2;s6 ≡ m2ms;s6 +ms4ms4 +ms1m1;s6

(5.34)

10 : ks;6 ≡ ms1m5 +msm
s;s6

(5.34d)

32−1 :















k1;6 ≡ m5m2 +m1;s6ms

k3;s6 ≡ m5ms4 +m1;s6m2

ks5;s6 ≡ m5ms;s6 +m1;s6ms4

(5.34e)

1−2 : k6;s6 ≡ m5m1;s6
(5.34f)

where the subindex denotes the SO(1, 1) ⊂ Sl(2) harge, and the ontrations are the

obvious ones. In partiular, for D-brane harges only, the ondition 660 redues to the one
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introdued in Subsetion 3.8. The ondition 12 is the familiar perturbative level-mathing

ondition, whereas 1−2 is the analogous ondition on NS5�KK5 bound states. The other

onditions mix di�erent T-duality multiplets. For example, the spinor onstraints (5.34b)

and (5.34e) are omposed of produts of D-brane harges with either KK- and winding

harges or NS5- and KK5-brane harges.

As suggested by the index struture of the onditions k in (5.34), the onstraints ombine
in a string or momentum multiplet as

‡44

k1 = m1m
2

(5.35a)

k4 = m1m
5 +m2m2

(5.35b)

k1;6 = m1m
1;7 +m2m5

(5.35)

k3;7 = m2m1;7 +m5m5
(5.35d)

k6;7 = m5m1;7
(5.35e)

If these omposite harges do not vanish, the state is at most 1/4-BPS, in whih ase its

mass formula is given by

M2 = M2
0(m) +

√

[T (k)]2 , (5.36)

where M0(m) and T (k) are given by the half-BPS mass and tension formulae (5.23) and

(5.27).

Noting from Eq. (4.34) that the string multiplet T1 appears in the deompati�ation

of the partile multiplet M, we an obtain the half-BPS ondition on the string multiplet

by allowing non-zero ms1, ms4, m1;s6
harges only, where s denotes a �xed diretion on the

torus:

ks;s5 = ms1ms4
(5.37a)

ks2;s6 = ms1m1;s6 +ms4ms4
(5.37b)

ks5;s6 = ms4m1;s6
(5.37)

and identifying these harges with the n1, n4, n1;6
harges of the string multiplet in one

dimension lower. We therefore obtain a multiplet of half-BPS onditions

k5 = n1n4
(5.38a)

k2;6 = n1n1;6 + n4n4
(5.38b)

k5;6 = n4n1;6
(5.38)

This is easily seen to transform as a T ′
3 multiplet, as an also be inferred from the deom-

position (4.38) at level 2 of the string multiplet under deompati�ation. For d = 6, this is

‡44
One ould have alternatively derived these onditions from the branhing E7 ⊃ Sl(7), but the one we

used is more onstrained and more onvenient.
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a 2̄7 quadrati ondition on the 2̄7 string multiplet of E6, whereas for d = 5 only the �rst

ondition remains, giving a singlet ondition on the 10 multiplet of SO(5, 5). For d < 5, a
BPS string state is automatially 1/2-BPS, while for d = 7 the T ′

3 ondition transform as

a 1539 of E7. The tension of a 1/4-BPS string an also be obtained by deompatifying

one diretion in Eq. (5.36), and has an analogous struture

T 2 = T 2
0 (n) +

√

[T ′
3 (k)]2 (5.39)

where T0(n) and T ′
3 (k) are given by the half-BPS tension (5.27) and the half-BPS 3-brane

tension, whih an be worked out easily.

For d ≥ 6 (resp d ≥ 5), there still remain onditions to be imposed on the partile

multiplet (resp. string multiplet) in order for the state to be 1/4-BPS and not 1/8. In

the d = 7 ase, it should be required that the 56 in the third symmetri tensor power of

the 56 partile harges vanishes [115℄. For d = 6, this redues to the statement that the

singlet in 273
should vanish. This ondition is empty for d ≤ 5. We shall however not

investigate the 1/8-BPS ase any further, and refer to Appendix A.4 for the 1/8-BPS mass

formula of a NS5�KK-winding bound state in d = 6 (D = 5). In ontrast to 1/2-BPS

states, 1/4-BPS and 1/8-BPS states in general have a non-trivial degeneray and therefore

entropy, whih still has to be a U-duality invariant quantity depending on the harges m
[167, 189, 79, 92, 5℄. This allows non-trivial heks on U-duality and preditions on BPS

bound states, whih we shall only mention here [314, 315, 282℄.

77



6 Matrix gauge theory

The de�nition of M-theory as the strong-oupling limit of type IIA string theory and the

�nite energy extension of the eleven-dimensional SUGRA does not allow the systemati

omputation of S-matrix elements, sine type IIA theory is only de�ned through its per-

turbative expansion and 11D SUGRA is severely non-renormalizable. In Ref. [24℄, Banks,

Fishler, Susskind and Shenker (BFSS) formulated a proposal for a non-perturbative def-

inition of M-theory, in whih M-theory in the in�nite momentum frame (IMF) with IMF

momentum P = N/R, is related to the supersymmetri quantum mehanis

‡45
of N ×N

Hermitian matries in the large-N limit, the same as the one desribing the interations

of N D0-branes indued by �utuations of open strings. Despite the powerful onstraints

of supersymmetry, it is still a formidable problem to solve this quantum mehanis in the

large-N limit.

As was argued by Susskind [300℄, sense an however be made of the �nite-N Matrix

gauge theory, as desribing the Disrete Light-Cone Quantization (DLCQ) of M-theory, that

is quantization on a light-like irle. This stronger onjeture has been further motivated

in Ref. [278℄, relating through an in�nite Lorentz boost the ompati�ation of M-theory

on a light-like irle to ompati�ation on a vanishing spae-like irle, i.e. to type IIA

string theory in the presene of D0-branes. This argument gives a general presription for

ompati�ation of M-theory (see also Sen's argument Ref. [283℄), and we shall brie�y go

through it in this Setion.

Upon toroidal ompati�ation on T d
, the extra degrees of freedom brought in by the

wrapping modes of the open strings extend this quantum mehanis to a quantum �eld

theory, namely a U(N) Yang�Mills theory with 16 supersymmetries on the T-dual torus

T̃ d
in the large-N limit [127, 305℄. This presription is onsistent up to d ≤ 3, but breaks

down for ompati�ation on higher-dimensional tori, owing to the ill-de�nition of SYM

theory at short distanes. Several proposals have been made as to how to supplement

the SYM theory with additional degrees of freedom while still avoiding the oupling to

gravity, whih will be brie�y disussed in this setion. Besides their relevane for M-theory

ompati�ation, these theories are also interesting theories in their own right, as non-trivial

interating �eld theories in higher dimensions.

Our aim is to provide the bakground to disuss in Setion 7 the impliations of U-

duality for the Matrix gauge theory desribing toroidal ompati�ation of M-theory. The

relation between the M-theory ompati�ation moduli, inluding gauge bakgrounds, and

Matrix gauge-theory parameters will be obtained, as well as the spetrum of exitations

that Matrix gauge theory should exhibit in order to desribe ompati�ed M-theory. This

will leave open the issue of what is the orret Matrix gauge theory reproduing these

features.

‡45
This model was �rst introdued in Ref. [68, 118, 17℄.
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6.1 Disrete Light-Cone Quantization

The �nite-N onjeture of Ref. [300℄ is formulated in the framework of the DLCQ, the es-

sentials of whih we review �rst. In �eld theory, it is ustomary to use equal-time (t = x0
)

quantization, whih breaks Poinaré invariane, but preserves invariane under the kine-

matial generators onsisting of spatial rotations and translations. However, an alternative

quantization proedure exists, in whih the theory is quantized with respet to the proper

time x+ = (x0 + x1)/
√

2, whih is referred to as light-one quantization. In this ase, the

transverse translations P i
and rotations Lij

, as well as the longitudinal momentum P+
and

the boosts L−i
, L+−

do not depend on the dynamis, while the generator P−
generates

the translations in the x+
diretion and plays the role of the Hamiltonian. The usual dis-

persion relation H =
√
P iPi + M2

in equal-time quantization, is replaed in the light-one

quantization by

P− =
P iPi + M2

2P+
, (6.1)

exhibiting Galilean invariane on the transverse spae. Partiles, with positive energy

P− > 0, neessarily have positive longitudinal momentum P+
, while antipartiles will have

negative P+
. The vauum of P−

is hene redued to the Fok-spae state |0〉, and the

negative-norm ghost states are deoupled as well. This simpli�ation of the theory is at

the expense of instantaneous non-loal interations due to the P+ = 0 pole in (6.1).

Disrete light-one quantization proeeds by ompatifying the longitudinal diretion

x− on a irle of radius Rl:

x− ≃ x− + 2πRl . (6.2)

This results into a quantization of the longitudinal momentum of any partile i aording
to

P+
i =

ni

Rl
. (6.3)

Beause the total momentum is onserved, the Hilbert spae deomposes into �nite-dimensional

superseletion setors labelled by N =
∑

ni. Note that the �nite dimension does not re-

quire imposing any ultraviolet ut-o� on the eigenvalues ni, but follows from the ondition

ni > 0.

It is important to note that, beause the x− diretion is a light-like diretion, the length

Rl of the radius is not invariant, but an be modi�ed by a Lorentz boost L+−
,

(

x0

x1

)

→
(

cosh β − sinh β

− sinh β cosh β

)(

x0

x1

)

, (6.4a)

whih amounts to

Rl → eβRl , P− → eβP− , P+ → e−βP+ . (6.5)

This implies that the Hamiltonian P+
depends on the radius Rl through an over-all fator

P+ = RlHN , (6.6)

so that the mass M2 = 2P+P−
is independent of Rl.
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6.2 Why is Matrix theory orret ?

Following Ref. [278℄, we will now derive the Hamiltonian HN desribing the DLCQ of

M-theory, and obtain the BFSS Matrix-theory onjeture. The basi idea is to onsider the

ompati�ation on the light-like irle as Lorentz-equivalent to a limit of a ompati�ation

on a spae-like irle. Ating with a boost (6.4) on an ordinary spae-like irle, we �nd

(

cosh β − sinh β

− sinh β cosh β

)(

0

Rs

)

=
Rl√

2

(

−1 + e−2β

1 + e2β

)

→ 1√
2

(

−Rl

Rl

)

(6.7)

where Rs = Rle
−β
. Sending β → ∞ while keeping Rl �nite, we see that the light-like irle

is Lorentz-equivalent to a spae-like irle of radius Rs → 0.

In order to keep the energy �nite, whih from Eq. (6.6) and on dimensional ground sales

as Rl/l
2
p, we should also resale the Plank length (and any other length) as lp,s = e−β/2lp.

Altogether, M-theory with Plank length lp on the light-like irle of radius Rl in the

momentum P+ = N
Rl

setor is equivalent to M-theory with Plank length lp,s on the spae-

like irle of radius Rs in the momentum P = N
Rs

setor, with

Rs = Rle
−β , lp,s = e−β/2lp (6.8)

in the limit β → ∞. Eliminating β, we obtain the following saling limit:

Rs → 0 , M =
Rs

l2p,s

=
Rl

l2p
= fixed . (6.9)

Following Ref. [278℄, we shall denote the latter theory as M̃ theory.

Sine the spae-like irle Rs shrinks to zero in lp,s units, this relates the DLCQ of M-

theory to weakly oupled type IIA string theory in the presene of N D0-branes arrying

the momentum along the vanishing ompat dimension. Using Eq. (2.1), the saling limit

beomes

gs = (RsM)3/4 , α′ = l2s =
R

1/2
s

M3/2
, Rs → 0 , M = �xed . (6.10)

In partiular, gs and α
′
go to zero, so that the bulk degrees of freedom deouple, and only

the leading-order Yang�Mills interations between D0-branes remain. This validates the

BFSS onjeture, up to the possible ambiguities in the light-like limit β → ∞ [159, 52℄.

Several di�ulties have also been shown to arise for ompati�ation on urved manifolds

[103, 102℄, but sine we are only onerned with toroidal ompati�ations, we will ignore

these issues.

6.3 Compati�ation and Matrix gauge theory

For toroidal ompati�ations of M-theory, we onsider the same saling limit as in (6.9),

and keep the torus size onstant in Plank length units, that is

RI = rI

(

Rs

M

)1/2

, rI =
RI

lp,s
= fixed . (6.11)
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However, omparing (6.9) and (6.11), we �nd that the size of the torus goes to zero in the

saling limit. To avoid this it is onvenient to onsider the theory on the T-dual torus T̃ d
,

obtained by a maximal T-duality in all d diretions. From Eq. (2.5), this has the e�et

that,

IIA with N D0-branes →
{

IIA with N Dd-branes d = even

IIB with N Dd-branes d = odd
(6.12)

Using the maximal T-duality transformation

∏d
I=1 TI , with TI given in (2.5), the type II

parameters then beome

gs =
(RsM)(3−d)/4

∏

rI
, α′ = l2s =

R
1/2
s

M3/2
, R̃I =

1

rIM
, (6.13a)

Rs → 0 , M =
Rs

l2p,s

= fixed , rI =
RI

lp,s
= fixed , (6.13b)

so that, in partiular, the size of the dual torus is �xed in the saling limit. We will

sometimes refer to the type II theory in this T-dual piture as the ĨI-theory.

The behaviour of the string oupling in the saling limit is now di�erent aording to

the dimension of the torus:

gs →















0 d < 3

finite d = 3

∞ d > 3

(6.14)

In partiular for d < 3 we still have weakly oupled type IIA or IIB string theory in

the presene of N Dd-branes, so that M-theory is desribed by the SYM theory with 16

superharges living on the world-volume of the N Dd-branes. The gauge oupling onstant
of this Matrix gauge theory and the radii sI of the torus on whih the D-branes are wrapped

read

g2
YM = gsl

d−3
s =

M3−d

Vr

, Vr ≡
∏

I

rI , sI = R̃I =
1

rIM
(6.15)

showing, in partiular, that g2
Y M is �nite in the saling limit.

The speial ase of Matrix theory on a irle (d = 1) yields (after an S-duality transform-

ing the bakground D1-strings into fundamental strings) Matrix string theory [234, 93, 94℄,

in whih an identi�ation between the large-N limit of two-dimensional N=8 supersym-

metri YM theory and type IIA string theory is established. We will not further disuss

this topi here, and refer to Ref. [116, 291℄ for the next ase d = 2 and its relation to type

IIB string theory. Moving on to the ase d = 3, the same onlusion as in the d < 3 ase

ontinues to hold, sine although the string oupling is �nite, the string length goes to zero
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so that loop orretions are suppressed in the α′ → 0 limit. Consequently, the d = 3 Matrix

gauge theory is N=4 supersymmetri Yang Mills theory.

For d > 3, however, the oupling gs blows up, and the weakly oupled string desription

of the D-branes is no longer valid. This oinides with the fat that the Yang�Mills theory

beomes non-renormalizable and strongly oupled in the UV. Hene, in order to de�ne a

onsistent quantum theory, one needs to supplement the theory with additional degrees of

freedom. In the following we brie�y review the proposals for d = 4 and d = 5, and show

the ompliation that arises for d = 6. These proposals follow from the above presription,

using further duality symmetries, whih will be examined in more detail in Setion 7. Other

deoupling limits have been onsidered in [171℄.

6.4 Matrix gauge theory on T 4

In the ase d = 4, it follows from (6.12) that the e�etive theory is 4+1 SYM oming from

the type IIA D4-brane world-volume theory. In the saling limit the type IIA theory be-

omes strongly oupled and using the orrespondene between strongly oupled IIA theory

and M-theory a new eleventh dimension is generated, whih plays the role of a �fth spae

dimension in the gauge theory [265, 47, 45℄. Using Eqs. (2.11) and (6.13a), the radius and

11D Plank length are

R̃ = gsls =
1

MVr
, l̃p = g1/3

s ls = R1/6
s M−5/6V −1/3

r . (6.16)

Moreover, omparing with (6.15) we �nd that the radius R̃ is in fat equal to the YM

oupling onstant

R̃ = g2
YM . (6.17)

Hene, in the saling limit (6.9), the Plank length l̃p goes to zero so that the bulk

degrees of freedom deouple, while the radius R̃ remains �nite. The N type IIA D4-branes

beome N M5-branes wrapped around the extra radius R̃, and M-theory on T 4 × S1
is

then desribed by the (2,0) world-volume theory of N M5-branes, wrapped on T 4
and the

extra radius R̃, related to the Yang�Mills oupling onstant by Eq. (6.17). The proper

formulation of this theory is still unlear, but Matrix light-one desriptions have been

proposed in Refs. [56, 279, 214, 15, 2, 188, 128℄ and the low-energy formulation studied in

Refs. [125, 148℄. In partiular, at energies of order 1/g2
YM the Kaluza�Klein states along

the extra irle ome into play. They an be identi�ed as instantons of 4D SYM lifted as

partiles in the (4+1)-dimensional gauge theory. Additional evidene for this onjeture

that follows from the U-duality symmetry will be disussed in Setion 7.

6.5 Matrix gauge theory on T 5

In the ase d = 5, we have N type IIB D5-branes at strong string oupling, so that it is

useful to perform an S-duality that maps the D5-branes to NS5-branes. Using Eqs. (4.17))
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and (6.13a), we �nd that the string oupling and length beome

ĝs =
1

gs
= (RsM)1/2Vr , l̂2s = gsl

2
s =

1

M2Vr
, R̂I = R̃I . (6.18)

Moreover, omparing with Eq. (6.15), we �nd that the string tension is related to the gauge

oupling onstant by

l̂2s = g2
YM . (6.19)

The string oupling ĝs goes to zero in the saling limit, so that the bulk modes are

deoupled from those loalized on the NS5-branes. However, the string theory on the NS5-

branes is still non-trivial, and has a �nite string tension in the saling limit [47℄. As a

onsequene, we �nd that M-theory on T 5 × S1
is desribed by a theory of non-ritial

strings propagating on the NS5-brane world-volume with a tension related to the gauge

oupling by Eq. (6.19). The proper formulation of this theory is still unlear, but light-one

Matrix formulations have been proposed [279, 290℄. The string an be identi�ed with a 4D

Yang�Mills instanton lifted to 1+5 dimensions. This desription is lose but not idential

to the proposal in Refs. [92, 91℄ aording to whih the (1/4-) BPS setor of M-theory

should be desribed by the (1/2-) BPS exitations of the M5-brane, whose dynamis would

be desribed by a (ground-state) non-ritial �miro-string� theory on its six-dimensional

world-volume. In partiular, the theory on the type IIB NS5-brane is non-hiral, whereas

that on the M5-brane is hiral. We refer the reader to the work of [94℄ for a disussion of

these two approahes.

6.6 Matrix gauge theory on T 6

Finally, we disuss the problems that arise for d = 6, in whih ase we have N type IIA

D6-branes at strong oupling. As in the d = 4 ase, an eleventh dimension opens up, and

we �nd M-theory ompati�ed on a irle of radius R̃ with

R̃ = gsls =
1

R
1/2
s M3/2Vr

, l̃p = g1/3
s ls =

1

MV
1/3

r

. (6.20)

The N D6-branes atually orrespond to N oiniding Kaluza�Klein monopoles with Taub�

NUT diretion along the eleventh diretion, and as R̃ → ∞, the monopoles shrink to zero

size and redue to an AN singularity in the eleven-dimensional metri. It was suggested in

Ref. [155℄ that the bulk dynamis still deouples from the (6+1)-dimensional world-volume,

and that the latter an be desribed in the IMF by the m(atrix) quantum mehanis of N1

D0-branes inside N ten-dimensional Kaluza�Klein monopole, in the large-N1 limit. This

is very reminisent to the BFSS desription of M-theory, but the quantum mehanis is

now a matrix model with eight supersymmetries and orresponds to the Coulomb phase

of the quiver gauge theory in 0+1 dimensions assoiated to the Dynkin diagram AN [101℄.

In other words, this is a sigma model with vetor multiplets in the adjoint representation

of [U(N1)]
⊗N

and hypermultiplets in bifundamental representations (N1, N̄1) of U(N1)k ×
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U(N1)k+1 for k = 1 . . .N , with U(N1)k denoting the k-th opy of U(N1) and U(N1)1

identi�ed with U(N1)N ; this model is restrited to its Coulomb phase, where the hypers

have no expetation value. In the low-energy limit, it is expeted to redue to SYM in 1+6

dimensions, with gauge oupling

l̃3p = g2
YM . (6.21)

Other approahes have been proposed in Refs. [57, 126℄. We shall ome bak to the d = 6
ase in Setion 7 when we display the BPS states in terms of the low-energy SYM theory.

6.7 Ditionary between M-theory and Matrix gauge theory

We �nally give the ditionary that allows us to go from M-theory on T d × S1
(with S1

a light-like irle) in the setor P+ = N/Rl and Matrix gauge theory on T̃ d
. This an

be obtained by solving (6.13a) and (6.15), for the parameters (sI , N, gYM) of the U(N)
Matrix gauge theory in terms of the parameters (RI , Rl, lp) of M-theory ompati�ation

on T d × S1
:

sI =
l3p

RlRI
(6.22a)

g2
YM =

l
3(d−2)
p

Rd−3
l

∏

RI

. (6.22b)

For ompleteness we also give the inverse relations

RI =
1

sI

(

RlVs

g2
YM

)1/2

, l3p =

(

R3
l Vs

g2
YM

)1/2

, P+ =
N

Rl

, (6.23)

where we have de�ned Vs =
∏

I sI as the volume of the dual torus on whih the Matrix

gauge theory lives.

6.8 Comparison of M-theory and Matrix gauge theory SUSY

In order to desribe the M-theory BPS states from the point of view of the gauge the-

ory, we need to understand how the spae-time supersymmetry translates to the brane

world-volume. This is in omplete analogy with the perturbative string in the Ramond�

Neveu�Shwarz formalism, in whih spae-time supersymmetry emerges from world-sheet

supersymmetry (see [144℄, Setion 5.2), and the ase of the M5-brane has been thoroughly

disussed in Ref. [91℄. We will abstrat their argument and disuss the ase of a general

1/2-BPS brane, whether D, M, KK or otherwise, referring to that work for omputational

details.

In the presene of a p-brane, the breaking of the 11D N = 1 spae-time supersymmetry

is only spontaneous. The unbroken SUSY harges generate a superalgebra on the world-

volume of the brane, whereas the broken ones generate fermioni zero modes. The �xing of

84



the reparametrization invariane on the world-volume is most easily done in the light-one

gauge. The 32-omponent superharge Qα then deomposes as a

‡46
(spinor,spinor,spinor)

of the unbroken Lorentz group SO(1, 1)×SO(p−1)×SO(10−p). The algebra is graded by
the eigenvalue ±1/2 of the generator of SO(1, 1), so that the unbroken generators Q+

aα have

harge +1/2 and the broken ones Q−
aα harge −1/2, where a is the spinorial index of the

SO(10− p) R-symmetry and α the spinorial index of the SO(p− 1) Lorentz world-volume

symmetry. The antiommutation relations then take the form

{Q+, Q+} = H + P + Z++
(6.24a)

{Q+, Q−} = p+ Z0
(6.24b)

{Q−, Q−} = Z−− . (6.24)

In this expression, H and P are the world-volume Hamiltonian and momentum, Z++
, Z0

,

Z−−
some possible entral harges and p is the transverse momentum. A ontration of the

entral harges with the appropriate Gamma matries is also assumed. In the following,

we absorb the momentum in the harges Z++
, and set p = 0 by onsidering a partile at

rest in the transverse diretions.

The entral harges Z0
and Z±±

are simply a renaming of the ZMN
, ZMNPQR

entral

harges of the 11D superalgebra (2.13a). As their indies show, Z0
is a singlet of SO(1, 1),

whereas Z++
and Z−−

ombine in a vetor of SO(1, 1); Z0
is therefore identi�ed with

the ZIJ
, ZIJKLM

harges, whereas Z±±
orrespond to the Z1I

, Z1IJKLM
harges, where

as usual I, J, . . . , are diretions on the torus and 1 is the spae-time diretion ombined

with the time diretion on the light one. In other words, Z0
is identi�ed with the partile

harges, whereas Z±±
orrespond to the string harges. In order for the superalgebra

(6.24a) to reprodue the spae-time superalgebra (2.13a) with partile harges only, we

therefore need to impose Z±± = 0 on the physial states. This is the analogue of the

L0 = L̄0 level-mathing ondition.

The broken generators Q−
and the entral harges Z0

are given by the fermioni and

bosoni zero modes only. On the other hand, the unbroken generators as well as the entral

harges Z±±
have a non-zero-mode ontribution:

Q+ = Q+
0 + Q̂+ , Z±± = Z±±

0 + Ẑ±± , H = H0 + Ĥ . (6.25)

The zero-mode part of the generators Q+
0 is built out of the bosoni and fermioni zero

modes Z0
and Q−

, and antiommutes with the osillator part Q̂+
. It generates the same

algebra as in Eq. (6.24a), while the osillator parts generate the same algebra on their own

and antiommute with the zero-mode broken generators Q− = Q−
0 . The level-mathing

onditions Z±± = 0 are ahieved through a anellation of the zero-mode part, quadrati

in the partile harges Z0
, and the osillator parts.

Let us now onsider the Hamiltonian H . Beause of supersymmetry, both H0 and Ĥ
are positive operators and for given zero modes Z0

, the supersymmetri ground state is

given by the ondition Ĥ = 0, or Q̂+|0〉 = 0. This state is therefore annihilated by all the

‡46
or a sum of, depending on the parity of p.
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Q̂+
supersymmetries, that is half the spae-time supersymmetries, and must have vanishing

Ẑ±±
harge, that is from the level-mathing onditions Z±±

0 = (Z0)2 = 0. This ondition is,
in less detail, the 1/2-BPS ondition k = 0 with k de�ned as in Eq. (2.21b). The energy of

this state is given by the zero-mode part H0 = {Q+
0 , Q

+
0 } quadrati in the partile harges

Z0
. This is equivalent to the mass formula Eq. (2.18) for 1/2-BPS states in spae-time.

On the other hand, BPS states preserving 1/4 of the spae-time supersymmetry are

only annihilated by half the world-volume superharges Q̂+
, and their energy is shifted by

the non-zero-mode ontribution Ĥ . The latter is quadrati in the non-zero-mode part of

the string harges Ẑ±± = −Z±±
0 = −(Z0)2

, therefore quarti in the partile harge. This

is preisely what was found in Eq. (2.21a):

E = M2(Z) +

√

[T (K)]2 . (6.26)

This equation has a simple interpretation: the quadrati term orresponds to the 1/2-BPS

bound state between the heavy mass Mp p-brane and the mass M partile, with binding

energy

E =
√

M2
p + M2 −Mp ≃

M2

Mp
, (6.27)

whereas the seond orresponds to a 1/4-BPS bound state between the p-brane and the

mass M = RT of the string with tension T wrapped on the irle R:

E = (Mp + M) −Mp = RT . (6.28)

There is therefore a omplete identity between i) the spae-time supersymmetry algebra

and partile spetrum in the absene of the p-brane, ii) the p-brane world-volume gauge

theory and iii) the bound states of the p-brane with other partiles. This also holds at

the level of spae-time �eld on�gurations, whih an be seen as on�gurations on the

world-volume [60, 39℄.

6.9 SYM masses from M-theory masses

We shall now expliit the orrespondene of the previous subsetion in the D-brane ase,

relevant for Matrix gauge theory, and relate the energies in the Yang�Mills theory to the

masses in spae-time. This has been disussed in partiular in Refs. [299, 127, 116, 136℄.

Based on the last interpretation as bound states of the N bakground D-branes with other

partiles, we identify R = Rl and Mp = P+ = N/Rl, where Rl is the radius of the light-like

diretion, and �x the normalization of the Yang�Mills energies as

EYM =
Rl

N
M2(Z) +Rl

√

[T (K)]2 . (6.29)

We then proeed by using the ditionary (6.22) to obtain the Yang�Mills energy of the

BPS states we disussed previously.
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We now apply these onsiderations to the highest-weight states of the two U-duality

multiplets of Subsetions 4.8 and 4.10. The highest-weight state of the partile multiplet

is a Kaluza�Klein exitation on the I-th diretion, whih beomes, after the maximal T-

duality, an NS-winding state bound to the bakground Dd-brane. Hene, it is a bound

state with non-zero binding energy, and using Eq. (6.27) we �nd

EYM =
(1/RI)

2

N/Rl
=
g2
YMs

2
I

NVs
, (6.30)

where in the seond step we used the ditionary (6.22) to translate to Matrix gauge theory

variables. This is the energy of a state in the gauge theory arrying eletri �ux in the I-th
diretion. For this reason, the partile multiplet is also alled the �ux multiplet.

Next we turn to the highest-weight state of the string multiplet, wrapped on the light-

like diretion Rl. The highest weight is a membrane wrapped on RI and Rl, whih beomes,

after the maximal T-duality, a Kaluza�Klein state bound to the bakground Dd-brane.
These two states form a bound state at threshold and aording to (6.28) we have

EYM =
RlRI

l3p
=

1

sI
, (6.31)

where Eq. (6.22) was used again in the seond step. This is the energy of a massless partile

with momentum along the I-th diretion in the gauge theory, so that we may alternatively

all the string multiplet the momentum multiplet from the point of view of Matrix gauge

theory.

This translation an be arried out for all other members of the U-duality multiplets,

and sine U-duality preserves the supersymmetry properties of the bound state, one �nds

the following general relation between SYM masses and M-theory masses:

partile/�ux multiplet : EYM =
Rl

N
M , (6.32a)

string/momentum multiplet : EYM = RlT1 . (6.32b)

In Subsetion 7.2, we will expliitly see for the ases d = 3, 4, 5 that indeed all non-zero bind-
ing energy and threshold bound states appear in the partile/�ux and string/momentum

multiplets respetively. Finally, we remark that the equalities in the two equations (6.30)

and (6.31) an be solved to yield the ditionary (6.22), so that the omparison of these two

types of energy quanta gives a onvenient short-ut to (6.22).
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7 U-duality symmetry of Matrix gauge theory

If any of the previously disussed Matrix gauge theories purports to desribe ompati�ed

Matrix gauge theory, it should ertainly exhibit U-duality invariane. In this setion, we

wish to investigate the impliations of U-duality on the Matrix gauge theory at the algebrai

level, irrespetive of its preise realization.

To this end we use the ditionary (6.22) between ompati�ed M-theory and Matrix

gauge theory. We �rst reast the Weyl transformations of the U-duality group (see Subse-

tion 4.4) in the gauge-theory language and interpret them as generalized eletri�magneti

dualities of the gauge theory. Then, we translate the U-duality multiplets of Subsetions

4.8 and 4.10 in Matrix gauge theory and disuss the interpretation of the states. Finally,

we use the results of Subsetion 5.4 to disuss the realization of the full U-duality group

in Matrix gauge theory and in partiular the ouplings indued by non-vanishing gauge

potentials.

At the end of this setion a more speulative aspet of �nite-N matrix gauge theory is

disussed. By promoting the rank N to an ordinary harge, we show the existene of an

Ed+1(d+1)(Z) ation on the spetrum of BPS states. In this way, we �nd that the onjetured

extended U-duality symmetry of matrix theory on T d
in DLCQ has an implementation as

ation of Ed+1(d+1)(Z) on the BPS spetrum, as demanded by eleven-dimensional Lorentz

invariane.

7.1 Weyl transformations in Matrix gauge theory

The disussion of Matrix gauge theory from M-theory in Setion 6 has been restrited to

retangular tori with vanishing gauge potentials, so that we �rst fous on the transforma-

tions in the Weyl subgroup of the U-duality group

‡47

W(Ed(d)(Z)) = Z2 ⊲⊳ Sd . (7.1)

The permutation group Sd that interhanges the radii RI of the M-theory torus obviously

still permutes the radii sI of the Matrix gauge theory T-dual torus. On the other hand,

the generalized T-duality TIJK in (4.12), using the ditionary (6.22), translates into the

following transformation of the Matrix gauge theory parameters:

SIJK :















g2
YM → g

2(d−4)
YM

W d−5 W ≡∏a6=I,J,K sa

sα → sα α = I, J,K

sa → g2
YM

W
sa a 6= I, J,K

(7.2)

For d = 3 the transformation (7.2) is preisely the (Weyl subgroup of) S-duality sym-

metry of N = 4 SYM in 3+1 dimensions [299, 127℄:

g2
YM → 1/g2

YM , (7.3)

‡47
We restrit to the ase d ≥ 3; the ase d = 1 has trivial Weyl group, while for the ase d = 2 there is

only the permutation symmetry S2.
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obtained for zero theta angle. The transformation (7.2) generalizes this symmetry to the

ase d > 3, by ating as S-duality in the (3+1)-dimensional theory obtained by reduing

the Matrix gauge theory in d + 1 dimensions to the diretions I, J,K and the time only

[110℄. Indeed, the oupling onstant for the e�etive (3+1)-dimensional gauge theory reads

1

g2
eff

=
W

g2
YM

, (7.4)

and the transformation (7.2) beomes

(g2
eff , sα, sa) → (1/g2

eff , sα, g
2
effsa) . (7.5)

To summarize, we see that from the point of view of the Matrix gauge theory the U-

dualities are aounted for by the modular group of the torus on whih the gauge theory

lives (yielding the Sl(d,Z) subgroup) as well as by generalized eletri�magneti dualities

(implementing the T-dualities of type IIA string)

‡48
.

We now disuss in more detail the d = 4, 5, 6 ases, in order to give more support to

the proposals disussed in Setion 6. Expliitly, one obtains

d = 4 : SIJK

{

g2
YM ↔ sa a 6= I, J,K

sα → sα α = I, J,K
(7.6a)

d = 5 : SIJK















g2
YM → g2

YM

sa → g2
YM

sb
a, b 6= I, J,K

sα → sα α = I, J,K

(7.6b)

d = 6 : SIJK















g2
YM → g4

YM

sasbsc
a, b, c 6= I, J,K

sa → g2
YM

sbsc

sα → sα α = I, J,K

(7.6)

For d = 4 we see that (7.6a) indues a permutation of the YM oupling onstant with the

radii, in aordane with the interpretation (6.17) of the YM oupling onstant as an extra

radius. For d = 5, Eq. (7.6b) takes the form of a T-duality symmetry (2.41) of the non-

ritial string theory living on the type IIB NS5-brane world-volume with the YM oupling

related to the string length as in (6.19). Finally, for d = 6, we see by omparing (7.6) with

the U-duality transformation in (4.12) that we reover the symmetry transformation TIJK

in M-theory with the YM oupling onstant related to the Plank length by (6.21).

At this point, it is also instrutive to reall the full U-duality groups for toroidal

ompati�ations of M-theory, as summarized in Table 4.2, and disuss their interpre-

tation in view of the Matrix gauge theories for d = 3, 4, 5 (see Table 7.1). For d = 3,
‡48

From the point of view of type IIB theory, it an be shown that the latter also aount for the restoration

of the transverse Lorentz invariane [291℄.
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D d U-duality origin

8 3 Sl(3,Z) × Sl(2,Z) S-duality × symmetry of T 3

7 4 Sl(5,Z) symmetry of T 5
of M5-brane

6 5 SO(5, 5,Z) T-duality symmetry on NS5-brane

D ≤ 5 d ≥ 6 Ed(d)(Z) unlear

Table 7.1: Interpretation of U-duality in Matrix gauge theory.

the Sl(3,Z) × Sl(2,Z) U-duality symmetry is the produt of the (full) S-duality and the

reparametrization group of the three-torus. For d = 4, the Sl(5,Z) symmetry is the modu-

lar group of the �ve-torus, orroborating the interpretation of this ase as the (2,0) theory

on the M5-brane [265℄. Finally, for d = 5 the SO(5, 5,Z) symmetry should be interpreted

as the T-duality symmetry of the string theory living on the NS5-brane [91, 47℄. The

E6(6)(Z) symmetry is by no means obvious in the IMF desription disussed in Subsetion

6.6, but this is expeted sine part of it are Lorentz transformations broken by the IMF

quantization. The interpretation of the exeptional groups Ed(d)(Z), d = 7, 8 is not obvious

either, sine a onsistent quantum desription for these ases is laking as well.

In Subsetions 7.4�7.6, the preise identi�ation of the full U-duality groups for d =
3, 4, 5 will be disussed in further detail. Note also that as we are onsidering M-theory

ompati�ed on a torus times a light-like irle, it has been onjetured that the Ed(d)(Z)
U-duality symmetry should be extended to Ed+1(d+1)(Z), as a onsequene of Lorentz in-

variane. This extended U-duality symmetry will be disussed in Subsetion 7.7.

Finally, we an translate the U-duality invariant Newton onstant (4.14) in the Matrix

gauge theory language. The most onvenient form is obtained by writing

Id =
V d−5

s

g
2(d−3)
YM

=

(

VR

l9p

)2

R9−d
l , (7.7)

whih depends on the invariant D-dimensional Plank length and the radius of the light-

like irle, invariant under the Ed(d)(Z) transformations ating on the transverse spae.

Again, in agreement with the Matrix gauge theory desriptions, we see that for d = 3 the

invariant I3 = 1/V 2
s is related to the volume Vs of the three-torus; for d = 4 the invariant

I4 = 1/(Vsg
2
YM) is related to the total volume of the �ve-torus, onstruted from the four-

torus and the extra radius R̃ = g2
YM; for d = 5 the invariant I5 = 1/g4

YM is related to the

�nite string tension T = 1/g2
YM of the string theory. Finally, note also that for d = 6 the

U-duality invariant I6 = Vs/g
6
YM is related to the 5-D Plank length, when using l3p = g2

YM.

7.2 U-duality multiplets of Matrix gauge theory

We now turn to the translation of the U-duality multiplets of Subsetions 4.8 and 4.10

in the Matrix gauge theory piture. To this end we use the ditionary (6.22) and the
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mass relations in Eq. (6.32). Equivalently, one may start with the highest-weight states

orresponding to eletri �ux (6.30) and momentum states (6.31) in the Matrix gauge theory

and subsequently at with the transformations (7.2) of the Weyl subgroup. Of ourse these

two methods lead to the same result, whih are summarized in Tables 7.2 and 7.3, for

the partile/�ux and string/momentum multiplet respetively. As a ompromise between

expliitness and omplexity, we have hosen to write down the ontent for d = 7 in the �rst

ase, and for d = 6 in the latter ase. The tables list the mass M in M-theory variables,

the orresponding gauge theory energy EYM and their assoiated harges, obtained from

the M-theory harges by raising lower indies or lowering upper indies.

M EYM harge

1
RI

g2
YMs2

I

NVs
m1

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

m2

RIRJRKRLRM

l6p

V 3
s

Ng6
YM(sIsJsKsLsM )2

m5

RI ;RJRKRLRMRN RP RQ

l9p

V 5
s

Ng10
YM(sI ;sJsKsLsMsNsP sQ)2

m1;7

Table 7.2: Flux multiplet (56 of E7) for Matrix gauge theory on T 7
.

M EYM harge

RlRI

l3p

1
sI

n1

RlRIRJRKRL

l6p

Vs

g2
YMsIsJsKsL

n4

RlRI ;RJRKRLRMRN RP

l9p

V 2
s

g4
YMsI ;sJsKsLsMsNsP

n1;6

RlRIRJRK ;RLRM RN RP RQRRRS

l12p

V 3
s

g6
YMsIsJsK ;sLsMsN sP sQsRsS

n3;7

RlRIRJRKRLRM RN ;RP RQRRRSRT RURV

l15p

V 4
s

g8
YMsIsJsKsLsMsN ;sP sQsRsSsT sUsV

n6;7

Table 7.3: Momentum multiplet (133 of E7) for Matrix gauge theory on T 7
.

In Table 7.2, the �rst entry orresponds to a state with eletri �ux in the I-th diretion,
while the seond one arries magneti �ux in the I, J diretion. The �rst entry in Table 7.3

is a KK state of the gauge theory, while the seond one is a YM instanton in 3+1 dimensions,

lifted to d+ 1 dimensions. For d ≥ 5, new states appear. As a further illustration, we take

a loser look at the speial ases d = 3, 4, 5, 6, whih an be obtained from the tables by

omitting those states that have too many ompati�ed dimensions. The Tables 7.4�7.7

list the ontent of eah of the two multiplets for these ases [110, 244, 269℄, inluding the

M-theory mass, the YM energy, the multipliity of eah type of state and its interpretation

both in the Matrix gauge theory and as a bound state with the N bakground type ĨI
Dd-branes. For d = 4, 5 we have also added a olumn giving the bound-state interpretation

in the M5- and NS5-brane theories respetively.
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M EYM # YM state b.s. of N D3

1
RI

g2
YMs2

I

NVs
3 eletri �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

3 magneti �ux D1

RlRI

l3p

1
sI

3 momentum KK

Table 7.4: Flux and momentum multiplet for d = 3: (3, 2) and (3, 1) of Sl(3) × Sl(2).

M EYM # YM state b.s. of N D4 b.s. of N M5

1
RI

g2
YMs2

I

NVs
4 eletri �ux NS-w

M2

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

6 magneti �ux D2

RlRI

l3p

1
sI

4 momentum KK

KK

RlVR

l6p

1
g2
YM

1 YM partile D0

Table 7.5: Flux and momentum multiplet for d = 4: 10 and 5 of Sl(5).

M EYM # YM state b.s. of N D6

1
RI

g2
YMs2

I

NVs
6 eletri �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

15 magneti �ux D4

VR

RI l6p

Vss
2
I

Ng6
YM

6 new setor KK5

RlRI

l3p

1
sI

6 momentum KK

RlVR

RIRJ l6p

sIsJ

g2
YM

15 YM membrane D2

RlRIVR

l9p

Vs

g4
YMsI

6 new setor NS5

Table 7.7: Flux and momentum multiplet for d = 6: 27 and 2̄7 of E6.

A few omments on these tables are in order.

• A number of states in the Matrix gauge theory have a uniformly valid interpretation

as bound states with the bakground Dd-branes, namely, for the �ux multiplet,

eletri �ux = Dd�NS-winding bound state (7.8a)

magneti �ux = Dd�D(d− 2) bound state (7.8b)
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M EYM # YM state b.s. of N D5 b.s. of N NS5

1
RI

g2
YMs2

I

NVs
5 eletri �ux NS-w D1

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

10 magneti �ux D3 D3

VR

l6p

Vs

Ng6
YM

1 new setor NS5 D5

RlRI

l3p

1
sI

5 momentum KK KK

RlVR

RI l6p

sI

g2
YM

5 YM string D1 NS-w

Table 7.6: Flux and momentum multiplet for d = 5: 16 and 10 of SO(5, 5).

and for the momentum multiplet,

KK momentum = Dd�KK bound state (7.9a)

YM state = Dd�D(d− 4) bound state (7.9b)

where the YM state denote the 4D Yang�Mills instanton lifted to d + 1 dimensions.

The orrespondenes in Eq. (7.8) and (7.9) were noted in Refs. [250, 97, 320℄.

• In the d = 3 ase, only perturbative states are observed in Table 7.4.

• For d = 4 one non-perturbative state ours in Table 7.5, whih orresponds preisely

to momentum along the dynamially generated �fth diretion, i.e. to a Yang�Mills

instanton lifted to 4+1 dimensions [265℄. From the M5-brane point of view, the

�ux multiplet desribes the M2-brane exitations, while the momentum multiplet

omprises the KK states, as indiated in the last olumn.

• For the ase d = 5 in Table 7.6, we fous on the last olumn obtained by S-duality from

the D5-brane piture of the ĨI theory. The YM string in the momentum multiplet

arises in this ase from the wound strings on the NS5-brane. The wrapped transverse

�vebrane on T 5
appears as a bound state of D5-branes with the bakground NS5-

branes, with non-zero binding energy (sine it is related by eletri�magneti duality

to the D1�NS1 bound state). It orresponds to a new setor in the Matrix gauge

theory Hilbert spae, with energy saling as 1/g6
YM. This state does not orrespond

to any known on�guration of the 1+5 gauge theory, but may be understood as a

magneti �ux along one ordinary dimension together with the dynamially generated

dimension in a 1+4 gauge theory obtained by reduing the original one on a irle

[154℄.

For the d = 6 ase, we see from Table 7.7 that all BPS states of type IIA theory on T 6
are

involved in the bound states of the �ux and momentum multiplet, exept for the D6�D0
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�bound state�. It has been argued that the latter forms a non-supersymmetri resonane

with the unonventional mass relation [88, 304℄:

M =
(

M2/3
D6 + M2/3

D0

)3/2

. (7.10)

As a onsequene we expet to �nd a state in the gauge theory with energy

EYM =
(

M2/3
ND6 + M2/3

D0

)3/2

−MND6 ≃ M2/3
D0 M

1/3
ND6 . (7.11)

Using the orresponding D-brane masses and the relation g2
YM = gsl

3
s we then obtain

EYM = N1/3V
1/3
s

g2
YM

= N1/3I
1/3
6 . (7.12)

In the last step we have expressed the mass in terms of the U-duality invariant (7.7),

expliitly showing that this extra state transforms as a singlet under the U-duality group

E6(6)(Z). Sine the D0-brane is mapped onto a D6-brane under the maximal T-duality,

the spae-time interpretation of this extra U-duality multiplet follows from the M-theory

origin of the D6-brane, i.e. the state is KK6-brane with the TN diretion along the light-

like diretion. The orresponding data of this extra singlet are summarized in Table 7.8.

The d = 7 ase is disussed in Appendix C, and exhibits a number of similar states (with

M-theory masses depending on multiple fators of Rl) as the extra singlet in d = 6.

M EYM # YM state b.s. of N D6

R2
l VR

l9p

N1/3V
1/3
s

g2
YM

1 new setor D0

Table 7.8: Additional multiplet for d = 6: 1 of E6.

7.3 Gauge bakgrounds in Matrix gauge theory

Our disussion of the Matrix gauge theory U-duality symmetries and mass formulae has

so far been restrited to the retangular-torus ase, with zero expetation values for the

M-theory gauge potentials. However, gauge bakgrounds in M-theory yield moduli, and

should have a ounterpart as ouplings in the Matrix gauge theory.

As a simple example, onsider �rst M-theory on T 3
, in whih ase we an swith on an

expetation value for the omponent C123 of the three-form. Together with the volume V
of T 3

, it forms a omplex salar

τ = C123 + i
V

l3p
, (7.13)
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whih transforms as a modular parameter under the subgroup Sl(2,Z) of the U-duality

group Sl(3,Z) × Sl(2,Z) [146℄. On the other hand, aording to Eq. (6.22a) the volume

is identi�ed in the Matrix gauge theory with 1/g2
YM, whih together with the theta angle

forms a omplex salar

S =
θ

2π
+ i

4π

g2
YM

, (7.14)

transforming as a modular parameter under the eletri�magneti duality group Sl(2,Z).
One should therefore identify C123 with θ, or in other words the three-form bakground

indues a topologial oupling

∫

F ∧ F on the D3-brane world-volume.

This an be derived more generally for any d by making use of Seiberg's argument and

the well-known oupling of Ramond gauge �elds to the D-brane world-volume. Details of

the derivation an be found in Ref. [244℄ and we only quote the result whih is that the

expetation value of the three-form indues the following topologial oupling in Matrix

gauge theory:

SC = CIJK

∫

dt

∫

T̃ d

F0IFJK . (7.15)

This oupling redues to the θ term (7.14) for d = 3 and was onjetured in Ref. [35℄. As

we now show, the oupling (7.15) an also be inferred from the U-duality invariant mass

formulae.

To see this, we �rst translate the general U-duality invariant mass formulae (5.23) into

the gauge theory language using (6.22) and (6.32), restriting to d ≤ 6 for simpliity:

EYM =
g2
YM

NVs

[

(

m̃1
)2

+

(

Vs

g2
YM

)2

(m̃2)
2 +

(

Vs

g2
YM

)4

(m̃5)
2

]

+

√

(ñ1)
2 +

(

Vs

g2
YM

)2

(ñ4)
2 +

(

Vs

g2
YM

)4

(ñ1;6)
2

(7.16)

in whih we have added the �ux multiplet and momentum multiplet together, as was argued

in Subsetion 6.8. Index ontrations are performed with the dual metri g̃IJ = gIJ l6p/R
2
l ,

and upper (lower) indies in the M-theory piture have beome lower (upper) indies in the

Matrix gauge theory piture. We also reall that Vs is the volume of the dual torus T̃ d
on

whih the Matrix gauge theory lives. The expression of shifted harges is then given by

m̃1 = m1 + C3m2 +
(

C3C3 + E6
)

m5 (7.17a)

m̃2 = m2 + C3m5 (7.17b)

m̃5 = m5 (7.17)

ñ1 = n1 + C3n4 +
(

C3C3 + E6
)

n1;6 (7.17d)

ñ4 = n4 + C3n1;6 (7.17e)

ñ1;6 = n1;6 . (7.17f)
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As we will see below, the linear shift in C3
is in agreement with the oupling obtained in

Eq. (7.15). As a preview, the interpretation of the C3
oupling in the various Matrix gauge

theories is summarized in Table 7.9. We will disuss these formulae in further detail for

d = 3, 4, 5 below. There is as yet no derivation of the oupling of the E6 gauge potential to

the Matrix gauge theory.

D d CIJK interpretation

8 3 1 θ-parameter

7 4 4 o�-diagonal omponent AI of T
5
-metri

6 5 10 BIJ -bakground �eld of string theory on 5-brane

D ≤ 5 d ≥ 6
(

d
3

)

unlear

Table 7.9: Matrix gauge theory interpretation of three-form potential.

7.4 Sl(3,Z)× Sl(2,Z)-invariant mass formula for N=4 SYM

in 3+1 dimensions

As a �rst ase, we onsider the mass formula (7.16) for d = 3,

EYM =
g2
YM

NVs

(

mI +
1

2
CIJKmJK

)

g̃IL

(

mL +
1

2
CLMNmMN

)

(7.18)

+
Vs

Ng2
YM

(

mIJ g̃
IK g̃JLmKL

)

+
√

nI g̃IJnJ .

This inludes the energy of the eletri �ux mI
(i.e. the momentum onjugate to

∫

F0I)

and the magneti �ux mIJ =
∫

FIJ in the diagonal Abelian subgroup of U(N), together
with the energy of a massless exitation with quantized momentum nI . We observe that

the e�et of the M-theory bakground value of the three-form C3 is to shift the eletri �ux

mI
, whih is a manifestation of the Witten e�et and indiates that the oupling of C3 to

gauge theory ours through the topologial term (7.15). Indeed, the only e�et of suh a

oupling is to shift the momentum onjugate to ∂0AI by a quantity CIJK
∫

FJK .

Moreover, introduing the dual magneti harge mI
∗ = 1

2
ǫIJKmJK and setting CIJK =

θǫIJK
, the mass formula (7.18) an be written in the alternative form

EYM =
1

NVs
(g2

YM(mI + θmI
∗)g̃IJ(mJ + θmJ

∗ ) +
1

g2
YM

mI
∗g̃IJm

J
∗ )

+
√

nI g̃IJnJ ,

(7.19)

whih manifestly exhibits the Sl(2,Z) S-duality symmetry as well as the Sl(3,Z) modular

group of the three-torus.
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7.5 Sl(5,Z)-invariant mass formula for (2,0) theory on the M5-

brane

Moving on to the ase d = 4, an extra momentum harge n4 appears in (7.16), whih

orresponds to the momentum along the dynamially generated 5th dimension. After some

algebra, the total mass (7.16) an be rewritten in a manifestly U-duality (Sl(5,Z))-invariant
form:

EYM =
1

NV5
mABg̃AC g̃BDm

CD +
√

nAg̃ABnB (7.20)

where A,B, · · · = 1 . . . 5 and V5 = Vsg
2
YM is the volume of the �ve-dimensional torus. Here,

the two-form and vetor harges mAB
, nA on the �ve-torus are related to the original set

on the four-torus by

mI5 = mI , mIJ =
1

2
ǫIJKLmKL (7.21a)

nI = nI , n5 =
1

4!
ǫIJKLnIJKL I, J, · · · = 1, . . . , 4 (7.21b)

where the harge mAB
is the quantized �ux (in the diagonal Abelian group) onjugate

to the two-form gauge �eld that lives on the (5+1)-dimensional world-volume, and nA is

simply the momentum along the diretion A. The gauge potential CIJK ombines with the

gauge oupling and the T 4
metri to make the metri on T 5

:

ds2
5 = R̃2(dx5 + AIdxI)

2 + ds2
4 (7.22a)

R̃ = g2
YM , AI =

1

3!
ǫIJKLCJKL . (7.22b)

In partiular, it is seen that the three-form potential plays the role of the o�-diagonal

omponent of the �ve-dimensional metri relevant to the M5-brane.

As a hek, we reall that the bosoni part of the M5-brane ation an be written in a

non-ovariant form by solving the self-duality ondition after singling out a speial (�fth)

spae-like diretion and integrating the resulting equations of motion [274, 251, 1℄. In

partiular, it ontains the oupling

L = −1

4
ǫµνλρσ

G5λ

G55
H̃µνH̃ρσ

(7.23a)

H̃µν =
1

6
ǫµνρλσHρλσ , µ, ν = 0 . . . 4 , (7.23b)

whih preisely reprodues, upon the identi�ations in (7.22), the topologial oupling

(7.15) in the e�etive (4+1)-dimensional SYM theory, where the �eld strength Fµν is iden-

ti�ed with the dual �eld strength H̃µν . Finally, we note that EYM in (7.20) depends on the

volume of T 5
through an over-all fator V

−1/5
5 , in agreement with the sale invariane of

the onjetured (5+1)-dimensional (2,0) theory.
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7.6 SO(5, 5,Z)-invariant mass formula for non-ritial string
theory on the NS5-brane

Finally, we onsider the ase d = 5, for whih aording to the reasoning in Subsetion

6.5 the Matrix gauge theory should orrespond to a non-ritial string theory on the type

IIB NS5-brane with vanishing string oupling ĝs
‡49

and �nite string tension l̂2s = g2
YM.

After some algebra, the mass formula (7.16) an be rewritten in the manifestly U-duality

(SO(5, 5)) invariant form

EYM =
1

NMNS5

M2(D1,D3,D5) +
√

M2(KK,F1) , (7.24)

where MNS5 = Vs

ĝ2
s l̂6s

is the mass of the bakground NS5-brane.

The seond part of (7.24) involves the momentum (n1) and winding (n1
, dual to n4)

exitations of the strings living on the world-volume, whih form the vetor representation

10 of the SO(5, 5) T-duality group. The orresponding invariant mass

M2(KK,F1) = (n1 +B2n
1)2 +

1

l̂2s
(n1)2

(7.25)

diretly follows from the seond part of (7.16), using the identi�ation

BIJ =
1

3!
ǫIJKLMCKLM

(7.26)

for the bakground antisymmetri tensor �eld in terms of the omponents of the three-form

gauge potential on the �ve-torus.

The �rst term in (7.24) involves the D-brane exitations arising from the harges

(m1, m2, m5) that an be dualized into (m1, m3, m5). It exhibits the orret invariant mass

Eq. (3.39) for a spinor representation of SO(5, 5):

M2(D1,D3,D5) =

(

m̃1

ĝsl̂2s

)2

+

(

m̃3

ĝsl̂4s

)2

+

(

m5

ĝs l̂6s

)2

(7.27a)

m̃1 = m1 +B2m
3 +B2

2m
5 , m̃3 = m3 +B2m

5
(7.27b)

where we again used the identi�ation (7.26).

As a further hek, let us note that the Green�Shwarz term

∫

d6xB ∧ F ∧ F in the

e�etive ation of the six-dimensional string theory, orretly gives the topologial term

(7.15) after using the relation (7.26) between the bakground string theory B-�eld and the

vauum expetation values of the M-theory three-form.

‡49ĝs anels out in the following formulae.
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7.7 Extended U-duality symmetry and Lorentz invariane

M(atrix) theory still laks a proof of eleven-dimensional Lorentz ovariane to shorten its

name to M-theory. In the original onjeture, this feature was redited to the large-N
in�nite-momentum limit. The muh stronger Disrete Light Cone (DLC) onjeture, if

orret, allows Lorentz invariane to be heked at �nite N � or rather at �nite N 's, sine

the non-manifest Lorentz generators mix distint N superseletion setors. In partiular,

M(atrix) theory on T d
in the DLC should exhibit a U-duality Ed+1(d+1)(Z), if it is assumed

that U-duality is una�eted by light-like ompati�ations [172, 54, 244℄. In this setion,

we show that an ation of Ed+1(Z) on the M-theory BPS spetrum an be de�ned when

we inlude the light-like irle S1
on an equal footing with the spae-like torus T d

.

partile multiplet harge string multiplet harge missing harges ext. part.

1
RI

m1(7) N(1) M1(8)

RIRJ

l3p
m2(21) RlRJ

l3p
n1(7) M2(28)

RIRJRKRLRM

l6p
m5(21) RlRIRJRKRL

l6p
n4(35) M5(56)

R2
IRJRKRLRMRN RP

l9p
m1;7(7)

RlR
2
IRKRLRMRN RP

l9p
n1;6(49) N6(7), N7(1) M1;7(64)

RlR
2
I
R2

J
R2

K
RLRMRN RP

l12p
n3;7(35) N2;7(21) M3;8(56)

RlR
2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP

l15p
n6;7(7) N5;7(21) M6;8(28)

N1;7;7(7), N7;7(1) M1;8;8(8)

Table 7.10: Partile multiplet and string multiplet wrapped on Rl for d = 7. Together with
the rank multiplets, they form the d = 8 partile multiplet.

In the presene of an extra (light-like) ompat diretion of radius Rl, the states from

the string multiplet in Table 4.13 an be wrapped to yield extra partiles in the spetrum

that join the already existing states from the partile multiplet in Table 4.10. We have

summarized in Table 7.10 the various partiles obtained in the ase d = 7. It learly

appears that altogether, the d = 7 partile and string multiplets build a partile multiplet

of the d = 8 U-duality group, whose harges M are obtained from the partile m and string

n harges through the relations

m1 = M1 m1;7 = M1;7 , n1;6 = M1;l6

m2 = M2 , n1 = M l1 m3,8 = M3;8 , n3,7 = M3;l7

m5 = M5 , n4 = M l4 m6,8 = M6,8 , n6,7 = M6;l7

(7.28)

where we have denoted the light-one diretion by an index l ‡50
. This is not quite orret,

however, sine in partiular there is no andidate for the Ml state, whih would orrespond

‡50
As usual, the same relations hold for d < 7 by dropping the tensors with too many antisymmetri

indies.
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to a Kaluza�Klein exitation along the light-like diretion. Obviously, this missing harge

is nothing but the rank of the gauge group

N = Ml , (7.29)

whih indeed denotes the momentum along the light-like diretion, and should therefore

be onsidered as a harge on the same footing as the others. labelling the vauum of some

M(eta) theory on whih the eleven-dimensional Lorentz group is represented. This harge

has to be invariant under the U-duality group Ed(d)(Z), but it gets mixed with other harges

under Ed+1(d+1)(Z).

While N is the only missing harge for d ≤ 5, there is still, for d ≥ 6, an extra missing

U-duality singlet

N6 = M l;l6
(7.30)

whih an be interpreted as the D6�D0 bound state of Eq. (7.12). For d = 7, one needs
even more extra harges, namely

N2;7 ≡M l2;l7 , N6 ≡M l;l6 , N5;7 ≡M l5;l7 , N1;7;7 ≡M1;l7;l7 , (7.31)

whih form the 56 of E7, isomorphi to the partile multiplet of Table 5.1, as well as the

two singlets

N7 = M l;7 , N7;7 = M l;l7;l7 , (7.32)

for whih Table C.2 gives the bound-state interpretation as well. These extra harges along

with N were referred to in [244℄ as the rank multiplet. The results are summarized in

the Table 7.11, whih lists, for all d's, the dimensions of the partile and string multiplet,

as well as the rank multiplets that are needed to omplete the �rst two into the partile

multiplet of the d+ 1 ase.

We note that the above disussion follows immediately from the deomposition (4.34)

of the partile multiplet of Ed(d) into the partile and string multiplet of Ed−1(d−1) plus

extra irreps for d ≥ 6. In partiular, the extra representations that appear are nothing

but the extra harges forming the rank multiplet. If we omit the light-like diretion, we

indeed see an extra T ′
1 |1 for d = 6; for d = 7 we have the extra representations T ′

1 |1, T ′
2 |2

and (T ′
1 )2|3, whose subsripts are in preise orrespondene with the number of times the

light-like diretion appears in the harges of (7.30) and (7.31),(7.32).

7.8 Nahm-type duality and interpretation of rank

To see the physial signi�ane of the U-duality enhanement, we disuss the extra genera-

tors in Ed+1(d+1)(Z). First there is the Weyl generator, exhanging the light-one diretion

with a hosen diretion I on T d
:

Rl ↔ RI . (7.33)
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U-duality Flux Mom. Rank Total

D d Ed(d)(Z) {m} {n} {N} {M}
10 1 1 1 1 1 3

9 2 Sl(2) 3 2 1 6

8 3 Sl(3) × Sl(2) (3, 2) (3, 1) 1 10

7 4 Sl(5) 10 5 1 16

6 5 SO(5, 5) 16 10 1 27

5 6 E6 27 2̄7 1+1 56

4 7 E7 56 133 56 + 1 248

+1+1

3 8 E8 248 3875 ∞ ∞

Table 7.11: Flux, momentum and rank multiplets.

The ation of this Weyl transformation leaves the other RJ 's and lp invariant. In partiular,
Newton's onstant in 11 − (d+ 1) dimensions

1

κ2
=
VRRl

l9p
= R

(d−7)/2
l

V
(d−5)/2
s

gd−3
(7.34)

is invariant under U-duality. In terms of Matrix gauge theory, this means

g2
YM →

(

Rl

RI

)d−4

g2
YM , sI → sI , sJ 6=I →

(

Rl

RI

)

sJ . (7.35)

Note that the transformed parameters depend on the original ones and on Rl. On the other

hand, the only dependene of the gauge theory on Rl should be through a multipliative

fator in the Hamiltonian, sine Rl an be resaled by a Lorentz boost (see Eq. (6.4)). This

leaves open the question of how the M(eta) theory itself depends on Rl.

The ation on the harges follows from the exhange of the I and l indies, so that

restriting to d = 6 for simpliity, we have

N ↔ mI

n1 ↔ mI1

n4 ↔ mI4

n1;6 ↔ m1;I6 .

(7.36)

In partiular, the rank N of the gauge group is exhanged with the eletri �ux mI , whereas

the momenta are exhanged with magneti �uxes. This is reminisent of Nahm duality,
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relating (at the lassial level) a U(N) gauge theory on T 2
with bakground �ux m to a

U(m) gauge theory on the dual torus with bakground �ux N [236℄. In the ontext of

higher-dimensional Yang-Mills theories, this symmetry was �rst observed at the level of

the multipliities of the BPS spetrum of SYM in 1 + 3 dimensions [153℄, and extended in

the ontext of Matrix theory on T d
in Refs. [173, 54, 244, 85℄. Non-ommutative geometry

may provide the orret framework for this duality [237℄.

The other generator is the Borel generator,

ClJK → ClJK ,+∆ClJK (7.37)

whih is obtained from the usual Ed(d)(Z) shifts by onjugation under Nahm-type duality.

It is therefore not an independent generator, but still gives a spetral �ow on the BPS

spetrum

N → N + ∆Cl2 m
2

m1 → m1 + ∆Cl2 n
1

m2 → m2 + ∆Cl2 n
4

m5 → m5 + ∆Cl2 n
1;6 .

(7.38)

In partiular, this implies that states with negative N need to be inorporated in the M(eta)

theory if it is to be Ed+1(d+1)(Z)-invariant. This is somewhat surprising sine the DLC

quantization selets N > 0, and it seems to require a revision both of the interpretation

of N as the rank of a gauge theory and of the relation between N and the light-one

momentum P+ ‡51
.

Finally, let us omment in some more generality on the ourrene of this extended

U-duality group. At least at low energies, the Matrix gauge theory desribing the DLCQ of

M-theory ompati�ed on T d
is nothing but the gauge theory on the N Dd-brane wrapped

on T d
. The latter is ertainly invariant under the T-duality SO(d, d,Z), and not only

SO(d − 1, d − 1,Z) ⊲⊳ Sl(d). Its spetrum of exitations, or equivalently bound states, is

therefore invariant under SO(d, d,Z), and very plausibly under the extended duality group

Ed+1(d+1)(Z). On the other hand, we have expanded the bound-state mass in the limit

where the N Dd-branes are muh heavier than their bound partners, whereas T-duality an

exhange the Dd-branes with some of their exitations. SO(d, d,Z) is therefore expliitly
broken, and Ed+1(d+1)(Z) is broken to Ed(d)(Z). The invariane of the mass spetrum an

be restored by using the full non-ommutative Born�Infeld dynamis instead of its small α′

Yang�Mills limit [70℄. While not relevant for M(atrix) theory anymore, interesting insights

an ertainly be obtained by studying these truly stringy gauge theories.
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Note added in proof :

Boundaries of M-theory moduli spae

As we disussed in Setion 2, M-theory arises in the strong oupling regime of type II string

theory, and redues at low energy to 11D supergravity. It is important to determine what

portion of the M-theory moduli spae are overed by these weakly oupled desriptions,

and thus what room is left for truly M-theoreti dynamis. The tehniques we developed

in Setion 4 allow us to easily answer this question, �rst addressed in Ref. [319℄ for om-

pati�ations down to D ≥ 4, and reently for D = 2 in Ref. [23℄. We �rst onsider

the ase D > 2, and onsider an asymptoti diretion in the moduli spae, represented

by an arbitrarily large weight vetor λ in the weight spae Vd+1, see Setion 4.6. Modulo

U-duality, λ an be hosen in the fundamental Weyl hamber λ ·α > 0 for all positive roots

α. This orresponds to hoosing

R1 < R2 < · · · < Rd , R1R2R3 > l3p , (7.39)

where the inequalities are understood to be large inequalities, in order to have a maximal

degeneration in the moduli spae [319℄. The 11D supergravity desription is valid provided

all radii are larger than the Plank length, i.e.

11D SUGRA : lp < R1 . (7.40)

On the other hand, when the radius R1 is muh smaller than lp, we an have a type IIA

desription with weak oupling g2
s = (R1/lp)

3
, provided all radii are larger than the string

length l2s = l3p/R1 :

IIA : R1 < lp , R1R
2
2 > l3p . (7.41)

If this is not the ase, then we may instead try a type IIB desription with weak oupling

gs = R1/R2, same string length l2s = l3p/R1 and 10-th radius RB = l3p/(R1R2). The IIB radii

RB and R3, . . . , Rd are larger than the string length provided R1R
2
2 < l3p and R1R

2
3 > l3p,

and it is not di�ult to see that, using Eq. (7.39), the �rst implies R1 < lp, and the seond

is automatially satis�ed. The type IIB desription thus hold in the region

IIB : R1 < lp , R1R
2
2 < l3p . (7.42)
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The weakly oupled 11D supergravity, type IIA and type IIB desriptions therefore over,

up to U-duality, the entire asymptoti moduli spae of M-theory on T d
, d > 2. Of ourse,

these desriptions fail when any of the large inequalities above beome approximate equali-

ties, hene the need for a more fundamental de�nition of M-theory. On the ontrary, when

D ≤ 2, there are asymptoti setors of the moduli spae where no perturbative desrip-

tion is possible. Indeed, the weight spae Vd+1 is now intrinsially Minkovskian, and the

light-one λ · λ = −(x0)2 +
∑

(xi)2 = 0 separates the moduli spae into three setors that

an never be related to eah other by U-duality. For instane, the 11D supergravity region

(7.39) has xi > x0/3 for all i, so that λ ·λ > 0. It therefore sits in the interior of the future

light-one if x0 > 0, or past light-one if x0 < 0 (one may hoose x0 = 0 by working in

lp units). In fat, the time-like region an be shown to have a weakly oupled 11D super-

gravity, type IIA or type IIB desription, whereas the spaelike region an be argued to be

osmologially forbidden by the holographi priniple [23℄.

Appendies

A BPS mass formulae

In this Appendix, we analyse the BPS eigenvalue equation (2.14) for various hoies of

non-vanishing entral harges. This gives a hek on the mass formulae obtained on the

basis of duality, and yields the onditions on the harges for a state to preserve a given

fration of supersymmetry.

A.1 Gamma Matrix theory

In order to maintain manifest eleven-dimensional Lorentz invariane, we use the 11D Clif-

ford algebra [ΓM ,ΓN ] = 2ηMN , with signature (−,+, . . . ), even after ompati�ation. The

matries ΓM are then 32 × 32 real symmetri exept for the harge onjugation matrix

C = Γ0, whih is real antisymmetri. All produts of Gamma matries are traeless exept

for

Γ0Γ1 . . .Γ9Γs = 1 , (A.1)

where we denote by s the eleventh diretion. We de�ne ΓMN... = ΓMΓN . . . if the p indies
M,N, . . . are distint, zero otherwise, and abbreviate it as Γ(p). We have

(Γ(p))
2 = (−1)[

p

2 ] , (Γ0Γ(p))
2 = (−1)[

p−1
2 ] , (A.2)
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where the p indies are non-zero and the square brakets denote the integer part. Further-

more,

Γ(p)Γ(q) + (−)pqΓ(q)Γ(p) =

∞
∑

k=0
p+q−4k≥|p−q|

Γ(p+q−4k) (A.3a)

Γ(p)Γ(q) − (−)pqΓ(q)Γ(p) =
∞
∑

k=0
p+q−2−4k≥|p−q|

Γ(p+q−2−4k) , (A.3b)

with no restritions on the p + q indies. On the right-hand side of Eq. (A.3a) (resp.

(A.3b)), a ontration between the �rst 2k (resp. 2k + 1) indies of Γ(p) and the �rst 2k
(resp. 2k + 1) indies of Γ(p) is implied. In partiular,

[Γ(2),Γ(p)] = Γ(p) , (A.4)

sine Γ(2) generates Lorentz rotations.

A.2 A general on�guration of KK-M2-M5 on T 5

Here we onsider M-theory ompati�ed on T 5
, and allow for non-vanishing entral harges

ZI , ZIJ , ZIJKLM , where the indies I, J, . . . are internal indies on T 5
. We therefore look

for solutions to the eigenvalue equation

Γǫ = Mǫ (A.5)

Γ ≡ ZIΓ
0I + ZIJΓ0IJ + ZIJKLMΓ0IJKLM .

Squaring this equation, we obtain

ZIZJ{ΓI ,ΓJ} − ZIJZKL{ΓIJ ,ΓKL} + ZIJKLMZNPQRS{ΓIJKLM ,ΓNPQRS}

+ 2ZIZ
JK
[

ΓI ,ΓJK

]

+ 2ZIZ
JKLMN

{

ΓI ,ΓJKLMN

}

− 2ZIJZKLMNP [ΓIJ ,ΓKLMNP ] ⊜ M2 , (A.6)

where the symbol⊜ denotes the equality when ating on ǫ. Using the identities (A.3a),(A.3b),
this redues to

(ZI)
2 + (ZIJ)2 + (ZIJKLM)2 + +ZJZ

IJΓI +
(

ZMZ
MIJKL + ZIJZKL

)

ΓIJKL ⊜ 1 (A.7)

A 1/2-BPS state is obtained under the onditions

kI ≡ ZJZ
IJ = 0 (A.8a)

kIJKL ≡ ZMZ
MIJKL + ZIJZKL = 0 , (A.8b)
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whih indeed form a string multiplet (10) of E5 = SO(5, 5), and has a mass given by

M2
0 = (ZI)

2 + (ZIJ)2 + (ZIJKLM)2 . (A.9)

If the onditions are not satis�ed, we an de�ne kI = ǫIJKLMk
IJKL/4!, Γ6 = Γ12345 and

rewrite Eq. (A.7) as

kIΓI + kIΓ6Γ
I

⊜ M2 −M2
0 . (A.10)

Note that the SO(5, 5) vetor (kI , k
I) is null: kIk

I = 0. Squaring again yields the 1/4-BPS

state mass formula

M2 = (ZI)
2 + (ZIJ)2 + (ZIJKLM)2 +

√

(kI)2 + (kI)2 . (A.11)

This result an be straightforwardly made invariant under the full U-duality group by

inluding the ouplings to the gauge potentials through the lower harges as found for the

partile and string multiplet in (5.23) and (5.27).

A.3 A general on�guration of D0,D2,D4-branes on T 5

We now onsider the D-brane setor of M-theory on T 6
, that is a general on�guration of

D0,D2,D4-branes. The eigenvalue equation beomes

Γǫ = Mǫ (A.12a)

Γ ≡ ZΓ0s + Z ijΓ0ij + Z ijklΓ0ijkls , (A.12b)

where Z, Z ij
, Z ijkl

denote the D0,D2,D4-brane harges respetively, and i, j, . . . run from

1 to 5. Squaring this equation, we obtain

2Z2 + Z ijZkl{Γij,Γkl} + Z ijklZmnpq{ΓijklΓmnpq}

+ 4Z Z ijklΓijkl + 2Z ijZklmn [Γij,Γklmn] Γs ⊜ M2 . (A.13)

Using identities (A.3a),(A.3b), this beomes

Z2 + (Z ij)2 + (Z ijkl)2 + kijklΓijkl + (k′)ijklΓijkls ⊜ M2 , (A.14)

where we de�ned

kijkl ≡ Z [ijZkl] + Z Z ijkl
(A.15a)

k
′ijkl ≡ Zm[iZjkl]m . (A.15b)

The seond ombination an be rewritten on T 5
as a form ki;jklmn = Z i[jZklmn]

. Then, k4

and k1;5
an be dualized into a 10 null vetor (ki, k

i) of the T-duality group SO(5, 5). A
state with k = k′ = 0 is 1/2-BPS with mass

M2
0 = (Z)2 + (Z ij)2 + (Z ijkl)2 . (A.16)
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If these onditions are not met, we an rewrite Eq. (A.14) as

kiΓ
iΓ6 + k′iΓ

iΓ6Γs ⊜ M2 −M2
0 , (A.17)

implying a mass formula

M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2
√

(ki)2 + (ki)2
(A.18)

or, in terms of the natural undualized harges,

M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2
√

(kijkl)2 + (ki;jklmn)2 . (A.19)

A.4 A general on�guration of KK�w�NS5 on T 5

Finally, we onsider the Neveu�Shwarz setor of the theory onsidered in the Appendix

A.3, namely the bound states of NS5-branes, winding and Kaluza�Klein states. The eigen-

value equation then reads

(

ziΓ
0i + ziΓ0si + zijklmΓ0ijklm

)

ǫ = Mǫ . (A.20)

Taking the square gives

z2 + (zi)2 + (zi)
2 + 2zziΓ6i + 2zziΓ6si − 2Γsz

izi ⊜ M2 , (A.21)

so the 1/2-BPS onditions appear to be

z zi = z zi = zizi = 0 . (A.22)

This agrees with the vanishing of the entropy zzizi and its �rst derivatives, as obtained in

Ref. [115℄. We an go further and �nd the omplete 1/8-BPS mass formula: multiply Eq.

(A.20) by zΓ06:

−z ziΓ6i − z ziΓ6si − z2ǫ ⊜ zMΓ06 (A.23)

and ombine with Eq. (A.21) to obtain:

(

−z2 + (zi)2 + (zi)
2 + 2zMΓ60 − 2ziziΓs

)

⊜ M2 . (A.24)

Now Γs and Γ06 ommute, are traeless and square to 1, so this is a seond-order equation:

−z2 + (zi)2 + (zi)
2 ± 2zM± 2zizi ⊜ M2 , (A.25)

with solutions

M = ±z ±
√

(zi ± zi)2
(A.26)

or, equivalently:

M2 = z2 + (zi)
2 + (zi)2 + 2|ziz

i| + 2|z|
√

(zi)2 + (zi)2 + 2|zizi| . (A.27)

This redues to the usual mass formula for perturbative string states (z = 0) and for KK�

NS5 or w�NS5 bound states. For momentum and winding harges along a single diretion,

this redues to M = ±z±z1±z1
, in agreement with the identi�ation of entral harges in

Ref. [115℄. The U-duality invariant generalization of this mass formula is however unlear.
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B The d = 8 string/momentum multiplet

For ompleteness, we give in Table B.1 the ontent of the string/momentum multiplet for

d = 8 in the 3875 of E8(8). It omprises the 2160 states in the Weyl orbit of the highest

weight Ri/l
3
p of length 4, together with 7 opies of the 240 weights of length 2 with tension

T =
VR

l9p
× (d = 8 partile multiplet) , (B.1)

as well as 35 zero weights with tension

T =

(

VR

l9p

)2

. (B.2)

As in d = 7, the resulting multiplet exhibits a mirror symmetry, whih relates eah state

with tension R3a−2/l3a
p , a = 1 . . . 6 to another state with tension R34−3a/l

3(12−a)
p through

the relation

MM′ =

(

VR

l9p

)4

, (B.3)

where VR is the volume of the eight-torus. For this reason, Table B.1 only gives the expliit

form of the tensions for the lower half a = 1 . . . 5 and the self-mirror part a = 6. The

seond olumn gives the Sl(8) irreps at eah level graded by 1/l3a
p , while the last olumn

lists the orresponding harges. Here the notation is as follows: a semiolon denotes an

ordinary tensor produt as before (so in general ontains more than one Sl(8) irrep); two
supersripts (p; q) grouped within parentheses and separated by a semiolon denote the

irrep, whose Young tableau is formed by juxtaposition of a olumn with p rows and one

with q rows.

As an aid to the reader, we give the harges of the dual states at level l
3(12−a)
p :

a = 1 : n7;8;8;8 , a = 2 : n4;8;8;8 , a = 3 : n2;7;8;8
(B.4)

a = 4 : n1;5;8;8, n(7;7);8;8 , a = 5 : n(1;2);8;8, n4;7;8;8

Finally, we display the deomposition of the d = 8 string multiplet under the T-duality

subgroup group SO(7, 7,Z). Here, we may again restrit to those states with (type IIA)

tensions M ∼ 1/ga
s , a = 0 . . . 4, for eah of whih there is a dual state with tension M′

related to it by

MM′ =

(

V ′
R

g2
s l

8
s

)4

, (B.5)

where V ′
R stands for the seven-dimensional type IIA torus. The type IIA mirror symmetry

(B.5) easily follows from (B.3) using the M-theory/type IIA onnetion in (2.11). The

results are summarized in Table B.2.
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mass Sl(8) irrep harge

RI

l3p
8 n1

RIRJRKRL

l6p
70 n4

R2
IRJRKRLRMRN

l9p
, 7

VR

RI l9p
8 + 216 n1;6

R2
I
R2

J
R2

K
RLRM RN RP

l12p

VRR2
I

l12p
, 7

VRRIRJ

l12p
28 + 36 + 420 n3;7, n(1;1);8

R2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP

l15p

VRR2
IRJRKRL

l15p
, 7

VRRIRJRKRLRM

l15p
56 + 168 + 404 n(6;7)

, n1;4;8

VRR2
I
R2

J
RKRLRM RN

l18p
, 7

VRR2
I
RJRKRLRM RN RP

l18p
, 35

V 2
R

l18p
1 + 63 + 720 n(1;7);8

, n2;6;8

Table B.1: String/momentum multiplet 3875 of E8.

Here the type IIA states in the a-th olumn, have a tension proportional to 1/ga−1
s .

The �rst olumn is the singlet irrep formed by the fundamental string. The seond olumn

is the spinor irrep onsisting of Dp=0-,2-,4-,6-branes, with one unwrapped world-volume

diretion. The third olumn an be deomposed into the SO(7, 7) irreps 378 = 1 ⊕ 3 ×
91⊕ 104, and ontains, together with NS5 and KK5 with one unwrapped diretion, many

non-standard states with tension ∼ 1/g2
s . The fourth olumn ontains the representation

896 = 14⊗64 formed by tensor produt of vetor and spinor representation, and has states

with tension ∼ 1/g3
s . The �fth olumn onsists of 1197 states with tension ∼ 1/g4

s . The set

of duals of these states inludes states with tension up to 1/g8
s , all of whih are at present

far from understood.

We note that the string state with tension

VRR2
I

l12p
is presumably related to the onjetured

M9-brane [38, 43℄, whih should more properly be alled M8-brane. In fat, for d = 9 there

will be a orresponding partile with mass

VRR2
I

l12p
, where VR is now the volume of the nine-

torus. Taking RI = Rs = lsgs, this redues to the mass of the type IIA D8-brane, while

taking Rs in one of the other world-volume diretions gives an 8-brane with exoti mass

V ′

RR2
i

l11s g3
s
. Vertial redution, on the other hand, would give a type IIA 9-brane.

C Matrix gauge theory on T 7

In this appendix we disuss in some detail the Matrix gauge theory on T 7
, performing the

analysis of Subsetion 7.2 for the ase d = 7.

For our disussion, it will be useful to �rst onsider the type IIB states obtained from

the set of type IIA states in (4.36), by performing a maximal T-duality on the seven-

torus. Using (2.41), we �nd the following T-duality multiplets for type IIB string theory
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3875(E8)⊃ SO(7,7)
∪

Sl(8)
1 64 378 896 1197 896 . . .

8 1 7

70 35 35

224 21 154 49

484 1 154 294 35

728 35 292 294 7

847 154 539 154

728 7 294 292 . . .

484 35 294 . . .
.

.

.

.

.

.

.

.

.

Table B.2: Branhing of the d = 8 string multiplet into representations of Sl(8) and

SO(7, 7). The entries in the table denote the ommon Sl(7) reps. The full table an be

reonstruted using mirror symmetry in the point with Sl(7) representation 539.

ompati�ed on T 7

V : Ri

l2s
, 1

Ri
(C.1a)

SB : 1
gs

(

VR

l8s
,

RiRjRkRlRm

l6s
,

RiRjRk

l4s
, Ri

l2s

)

(C.1b)

S + AS : 1
g2

s

(

VRRiRj

l10s
, 8VR

l8s
,

R2
i RjRkRlRmRn

l8s
,

RiRjRkRlRm

l6s

)

(C.1)

SA : VR

g3
s l8s

(

RiRjRkRlRmRn

l6s
,

RiRjRkRl

l4s
,

RiRj

l2s
, 1
)

(C.1d)

V ′ :
(

VR

g2
s l8s

)2 (

Ri,
l2s
Ri

)

. (C.1e)

Here we have given the states in eah multiplet in the order in whih they are obtained

from the orresponding type IIA states. At the levels 1/ga
s , with a even, we obtain the

same set of states as in type IIA. At odd level, however, the spinor representations are

interhanged, so that at level 1/gs we obtain the odd Dp branes, while at level 1/g3
s we �nd

the set of p7−p
3 branes with p = 1, 3, 5, 7.

We also give the S-duality struture of the type IIB states (C.1). Using (4.17), the

following list of S-duality singlets (appearing at eah level) is found:

KK , D3 , 72 , KK5 , 34
3 , 0

(1,6)
4 . (C.2)

The remaining states pair up into S-duality doublets

F1�D1 , D5�NS5 , D7�73 , 52
2�5

2
3 , 16

3�1
6
4 . (C.3)
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The M-theory mass, gauge-theory energy and bound-state interpretation of the �ux and

momentum multiplets is given in Table C.1.

M EYM # YM state b.s. of N D7

1
RI

g2
YMs2

I

NVs
7 eletri �ux NS�w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

21 magneti �ux D5

VR

RIRJ l6p

Vs(sIsJ)2

Ng6
YM

21 new setor 52
2

VRRI

l9p

V 3
s

Ng10
YMs2

I
7 new setor 16

3

RlRI

l3p

1
sI

7 KK momentum KK

RlVR

RIRJRK l6p

sIsJsK

g2
YM

35 YM threebrane D3

RlRIVR

RJ l9p

VssJ

g4
YMsI

49 new setor KK5, 72

RlRIRJRKVR

l12p

V 2
s

g6
YMsIsJsK

35 new setor 34
3

RlV
2
R

RI l15p

V 2
s sI

g8
YM

7 new setor 0
(1,6)
4

Table C.1: Flux and momentum multiplet for d = 7: 56 and 133 of E7.

Comparing the states in the last olumn of this table with the total set of 1/2 BPS

states (C.1) for type IIB on T 7
, we note that there is a large number of states that do not

appear. In analogy with the extra D6�D0 multiplet (a singlet) that appeared for d = 6,
we an onstrut in this ase an extra multiplet that ontains the D7�D1 bound state, for

whih we onjeture (by T-duality) the same bound-state mass formula as in Eq. (7.10),

so that

EYM = M2/3
D1M

1/3
ND7 = N1/3V

1/3
s s

2/3
I

g2
YM

, (C.4)

where we used g2
YM = gsl

4
s . The relevant data of the orresponding U-duality multiplet,

whih forms the 56 of E7(7)(Z), is given in Table C.2. The easiest way to obtain this

table, starting with the gauge-theory mass (C.4) obtained for the D7�D1 bound state, is

by notiing that this state is, up to a multipliative U-duality invariant fator I
1/3
7 (see Eq.

(7.7)) and up to a power of 1/3, exatly analogous to the �ux multiplet of Table C.1. Note

that the 56 states are preisely the S-dual states of those involved in the �ux multiplet

bound states. The bound states relevant to the momentum multiplet, on the other hand,

involve S-duality singlets.

Besides the D7 itself, this leaves two more possible states left in the type IIB, whih

an form a bound state with the D7, namely the two 7-branes with mass

Vs

g2
s l

8
s

,
Vs

g3
s l

8
s

. (C.5)
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For the �rst one, we know already from the momentum multiplet that the mass relation is

EYM = M =
Vs

g4
YM

= I
1/2
7 (C.6)

and hene a U-duality singlet. For the seond state in (C.5), we dedue the mass relation

by the requirement that the bound-state energy be suh that

EYM = [Ma
ND7 + Ma]1/a −MND7 ≃ MaM1−a

ND7 (C.7)

i) an be written in gauge-theory variables, and ii) is a U-duality singlet. Either of these

requirements yields a = 1/2, and we are left with a gauge-theory state with energy

EYM = M1/2
73

M1/2
ND7 = N1/2 Vs

g4
YM

= N1/2I
1/2
7 . (C.8)

The singlets in Eqs. (C.6) and (C.8) are also given in Table C.2.

M EYM # YM state b.s. of N D7

R2
l VR

RI l9p

N1/3V
1/3
s s

2/3

I

g2
YM

7 new setor D1

R2
l RIRJVR

l12p

N1/3Vs

g
8/3

YM(sIsJ)2/3
21 new setor NS5

R2
l V

2
R

RIRJ l15p

N1/3Vs(sIsJ)2/3

g
14/3

YM

21 new setor 52
3

R2
l RIV

2
R

l18p

N1/3V
5/3
s

g6
YMs

2/3

I

7 new setor 16
4

RlVR

l9p

Vs

g4
YM

1 new setor 72

R3
l V

2
R

l18p

N1/2Vs

g4
YM

1 new setor 73

Table C.2: Additional multiplets for d = 7: 56, 1 and 1 of E7.

112



Referenes

[1℄ M. Aganagi, J. Park, C. Popesu, and J. H. Shwarz. World volume ation of the

M theory �ve-brane. Nul. Phys., B496:191�214, 1997, hep-th/9701166.

[2℄ O. Aharony, M. Berkooz, S. Kahru, N. Seiberg, and E. Silverstein. Matrix desription

of interating theories in six dimensions. Adv. Theor. Math. Phys., 1:148�157, 1998,

hep-th/9707079.

[3℄ E. Alvarez, L. Alvarez-Gaume, and Y. Lozano. An introdution to T duality in string

theory. Nul. Phys. Pro. Suppl., 41:1�20, 1995, hep-th/9410237.

[4℄ J. Ambjorn and L. Chekhov. The NBI matrix model of IIB superstrings. J. High

Energy Phys., 12:007, 1998, hep-th/9805212.

[5℄ L. Andrianopoli, R. D'Auria, and S. Ferrara. Five-dimensional U duality, blak hole

entropy and topologial invariants. Phys. Lett., B411:39�45, 1997, hep-th/9705024.

[6℄ L. Andrianopoli, R. D'Auria, and S. Ferrara. U duality and entral harges in various

dimensions revisited. Int. J. Mod. Phys., A13:431�490, 1998, hep-th/9612105.

[7℄ L. Andrianopoli, R. D'Auria, S. Ferrara, P. Fré, R. Minasian, and M. Trigiante.

Solvable Lie algebras in type IIA, type IIB and M theories. Nul. Phys., B493:249�

280, 1997, hep-th/9612202.

[8℄ L. Andrianopoli, R. D'Auria, S. Ferrara, P. Fré, and M. Trigiante. R-R salars, U

duality and solvable Lie algebras. Nul. Phys., B496:617�629, 1997, hep-th/9611014.

[9℄ L. Andrianopoli, R. D'Auria, S. Ferrara, P. Fré, and M. Trigiante. E7(7) duality,

BPS blak hole evolution and �xed salars. Nul. Phys., B509:463�518, 1998, hep-

th/9707087.

[10℄ I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain. R4
ouplings in M and type

II theories on Calabi-Yau spaes. Nul. Phys., B507:571�588, 1997, hep-th/9707013.

[11℄ I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor. N = 2 type II heteroti duality
and higher derivative F terms. Nul. Phys., B455:109�130, 1995, hep-th/9507115.

[12℄ I. Antoniadis, B. Pioline, and T. R. Taylor. Calulable e−1/λ
e�ets. Nul. Phys.,

B512:61�78, 1998, hep-th/9707222.

[13℄ H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, and T. Tada. Spae-time strutures from

IIB matrix model. Prog. Theor. Phys., 99:713�746, 1998, hep-th/9802085.

[14℄ R. Argurio. Brane physis in M theory. PhD thesis, Université Libre de Bruxelles,

1998, hep-th/9807171. hep-th/9807171.

[15℄ R. Argurio and L. Houart. Little theories in six dimensions and seven dimensions.

Nul. Phys., B517:205�226, 1998, hep-th/9710027.

113



[16℄ P. S. Aspinwall. Some relationships between dualities in string theory. Nul. Phys.

Pro. Suppl., 46:30�38, 1996, hep-th/9508154.

[17℄ M. Baake, M. Reinike, and V. Rittenberg. Fierz identities for real Cli�ord algebras

and the number of superharges. J. Math. Phys., 26:1070, 1985.

[18℄ C. Bahas. D-brane dynamis. Phys. Lett., B374:37�42, 1996, hep-th/9511043.

[19℄ C. Bahas. Letures on D-branes. In Spring Shool and Workshop on String Theory,

Gauge Theory and Quantum Gravity, Trieste, April 1998, hep-th/9806199.

[20℄ C. Bahas, C. Fabre, E. Kiritsis, N. A. Obers, and P. Vanhove. Heteroti/type I

duality and D-brane instantons. Nul. Phys., B509:33�52, 1998, hep-th/9707126.

[21℄ C. Bahas and E. Kiritsis. F 4
terms in N = 4 string vaua. Nul. Phys. Pro. Suppl.,

55B:194�199, 1997, hep-th/9611205.

[22℄ T. Banks. Matrix theory. Nul. Phys. Pro. Suppl., 67:180, 1998, hep-th/9710231.

[23℄ T. Banks, W. Fishler, and L. Motl. Dualities versus singularities. J. High Energy

Phys., 01:018, 1999, hep-th/9811194.

[24℄ T. Banks, W. Fishler, S. H. Shenker, and L. Susskind. M theory as a matrix model:

A onjeture. Phys. Rev., D55:5112�5128, 1997, hep-th/9610043.

[25℄ T. Banks and L. Motl. Heteroti strings from matries. J. High Energy Phys., 12:004,

1997, hep-th/9703218.

[26℄ I. Bars. Algebrai struture of S theory. In 2nd International Sakharov Conferene

on Physis, Mosow, May 1996, hep-th/9608061.

[27℄ I. Bars. Supersymmetry, p-brane duality and hidden spae-time dimensions. Phys.

Rev., D54:5203�5210, 1996, hep-th/9604139.

[28℄ I. Bars. A ase for fourteen dimensions. Phys. Lett., B403:257�264, 1997, hep-

th/9704054.

[29℄ I. Bars. S theory. Phys. Rev., D55:2373�2381, 1997, hep-th/9607112.

[30℄ I. Bars and C. Kounnas. Theories with two times. Phys. Lett., B402:25�32, 1997,

hep-th/9703060.

[31℄ I. Bars and S. Yankielowiz. U duality multiplets and nonperturbative superstring

states. Phys. Rev., D53:4489�4498, 1996, hep-th/9511098.

[32℄ K. Beker and M. Beker. A two-loop test of M(atrix) theory. Nul. Phys., B506:48�

60, 1997, hep-th/9705091.

[33℄ K. Beker, M. Beker, J. Polhinski, and A. Tseytlin. Higher order graviton sattering

in M(atrix) theory. Phys. Rev., D56:3174�3178, 1997, hep-th/9706072.

114



[34℄ K. Beker, M. Beker, and A. Strominger. Five-branes, membranes and nonpertur-

bative string theory. Nul. Phys., B456:130�152, 1995, hep-th/9507158.

[35℄ D. Berenstein, R. Corrado, and J. Distler. On the moduli spaes of M(atrix) theory

ompati�ations. Nul. Phys., B503:239�255, 1997, hep-th/9704087.

[36℄ O. Bergman and M. R. Gaberdiel. Stable non BPS D partiles. Phys. Lett., B441:133,

1998, hep-th/9806155.

[37℄ E. Bergshoe� and M. de Roo. D-branes and T duality. Phys. Lett., B380:265�272,

1996, hep-th/9603123.

[38℄ E. Bergshoe�, M. de Roo, M. Green, G. Papadopoulos, and P. Townsend. Duality of

type-II 7-branes and 8-branes. Nul. Phys., B470:113�135, 1996.

[39℄ E. Bergshoe�, J. Gomis, and P. K. Townsend. M-brane intersetions from world

volume superalgebras. Phys. Lett., B421:109�118, 1998, hep-th/9711043.

[40℄ E. Bergshoe�, M. B. Green, G. Papadopoulos, and P. K. Townsend. The IIA

supereight-brane. 1995, hep-th/9511079.

[41℄ E. Bergshoe�, C. Hull, and T. Ortin. Duality in the type II superstring e�etive

ation. Nul. Phys., B451:547�578, 1995, hep-th/9504081.

[42℄ E. Bergshoe�, E. Sezgin, and P. K. Townsend. Supermembranes and eleven-

dimensional supergravity. Phys. Lett., B189:75�78, 1987.

[43℄ E. Bergshoe� and J. P. van der Shaar. On m-9-branes. Class. Quant. Grav., 16:23,

1999, hep-th/9806069.

[44℄ M. Berkooz. Nonloal �eld theories and the nonommutative torus. Phys. Lett.,

B430:237�241, 1998, hep-th/9802069.

[45℄ M. Berkooz. String dualities from matrix theory: A summary. Nul. Phys. Pro.

Suppl., 68:374�380, 1998, hep-th/9712012.

[46℄ M. Berkooz and M. Rozali. String dualities from matrix theory. Nul. Phys.,

B516:229, 1998, hep-th/9705175.

[47℄ M. Berkooz, M. Rozali, and N. Seiberg. Matrix desription of M theory on T 4
and

T 5
. Phys. Lett., B408:105�110, 1997, hep-th/9704089.

[48℄ N. Berkovits. Constrution of R4
terms in N = 2, D = 8 superspae. Nul. Phys.,

B514:191�203, 1998, hep-th/9709116.

[49℄ N. Berkovits and C. Vafa. Type IIB R4H4g−4
onjetures. Nul. Phys., B533:181�198,

1998, hep-th/9803145.

[50℄ S. Bhattaharyya, A. Kumar, and S. Mukhopadhyay. String network and U duality.

Phys. Rev. Lett., 81:754�757, 1998, hep-th/9801141.

115



[51℄ D. Bigatti and L. Susskind. Review of matrix theory. 1997, hep-th/9712072.

[52℄ A. Bilal. Dlq of m theory as the light - like limit. Phys. Lett., B435:312, 1998,

hep-th/9805070.

[53℄ A. K. Biswas, A. Kumar, and G. Sengupta. Osillating D strings from IIB matrix

theory. Phys. Rev., D57:5141�5149, 1998, hep-th/9711040.

[54℄ M. Blau and M. O'Loughlin. Aspets of U duality in matrix theory. Nul. Phys.,

B525:182, 1998, hep-th/9712047.

[55℄ H. Brinkmann. Pro. Natl. Aad. Si. (U.S.), 9:1, 1923.

[56℄ J. Brodie and S. Ramgoolam. On matrix models of M �ve-branes. Nul. Phys.,

B521:139�160, 1998, hep-th/9711001.

[57℄ I. Brunner and A. Karh. Matrix desription of M theory on T 6
. Phys. Lett., B416:67�

74, 1998, hep-th/9707259.

[58℄ C. G. Callan, C. Lovelae, C. R. Nappi, and S. A. Yost. Loop orretions to super-

string equations of motion. Nul. Phys., B308:221, 1988.

[59℄ C. G. Callan Jr., J. A. Harvey, and A. Strominger. Worldbrane ations for string

solitons. Nul. Phys., B367:60�82, 1991.

[60℄ C. G. Callan Jr. and J. M. Maldaena. Brane death and dynamis from the Born-

Infeld ation. Nul. Phys., B513:198, 1998, hep-th/9708147.

[61℄ C. G. Callan Jr. and L. Thorlaius. World sheet dynamis of string juntions. Nul.

Phys., B534:121�136, 1998, hep-th/9803097.

[62℄ I. C. G. Campbell and P. C. West. N=2 D=10 nonhiral supergravity and its spon-

taneous ompati�ation. Nul. Phys., B243:112, 1984.

[63℄ L. Chekhov and K. Zarembo. E�etive ation and measure in matrix model of IIB

superstrings. Mod. Phys. Lett., A12:2331�2340, 1997, hep-th/9705014.

[64℄ I. Chepelev, Y. Makeenko, and K. Zarembo. Properties of D-branes in matrix model

of IIB superstring. Phys. Lett., B400:43�51, 1997, hep-th/9701151.

[65℄ I. Chepelev and A. A. Tseytlin. Interations of type IIB D-branes from D instanton

matrix model. Nul. Phys., B511:629�646, 1998, hep-th/9705120.

[66℄ I. Chepelev and A. A. Tseytlin. Long-distane interations of branes: Correspondene

between supergravity and super Yang-Mills desriptions. Nul. Phys., B515:73�113,

1998, hep-th/9709087.

[67℄ Y.-K. E. Cheung and M. Krogh. Nonommutative geometry from 0-branes in a

bakground B �eld. Nul. Phys., B528:185, 1998, hep-th/9803031.

116



[68℄ M. Claudson and M. B. Halpern. Supersymmetri ground state wave funtions. Nul.

Phys., B250:689, 1985.

[69℄ A. Connes. Non ommutative geometry. Aademi Press, New York, 1994.

[70℄ A. Connes, M. R. Douglas, and A. Shwarz. Nonommutative geometry and ma-

trix theory: Compati�ation on tori. J. High Energy Phys., 02:003, 1998, hep-

th/9711162.

[71℄ A. Connes and D. Kreimer. Hopf algebras, renormalization and nonommutative

geometry. Commun. Math. Phys., 199:203�242, 1998, hep-th/9808042.

[72℄ E. Cremmer. `Supergravities in 5 dimensions'. In S. W. Hawking and M. Roek,

editors, Superspae and Supergravity. Cambridge University Press, 1981.

[73℄ E. Cremmer and B. Julia. The SO(8) supergravity. Nul. Phys., B159:141, 1979.

[74℄ E. Cremmer, B. Julia, H. Lu, and C. N. Pope. Dualization of dualities. 1. Nul.

Phys., B523:73�144, 1998, hep-th/9710119.

[75℄ E. Cremmer, B. Julia, H. Lu, and C. N. Pope. Dualization of dualities. 2. Twisted

selfduality of doubled �elds, and superdualities. Nul. Phys., B535:242�292, 1998,

hep-th/9806106.

[76℄ E. Cremmer, B. Julia, and J. Sherk. Supergravity theory in eleven dimensions. Phys.

Lett., 76B:409�412, 1978.

[77℄ E. Cremmer, I. V. Lavrinenko, H. Lu, C. N. Pope, K. S. Stelle, and T. A. Tran.

Eulidean signature supergravities, dualities and instantons. Nul. Phys., B534:40�

82, 1998, hep-th/9803259.

[78℄ E. Cremmer, H. Lu, C. N. Pope, and K. S. Stelle. Spetrum generating symmetries

for BPS solitons. Nul. Phys., B520:132�156, 1998, hep-th/9707207.

[79℄ M. Cveti and C. M. Hull. Blak holes and U duality. Nul. Phys., B480:296�316,

1996, hep-th/9606193.

[80℄ J. Dai, R. G. Leigh, and J. Polhinski. New onnetions between string theories.

Mod. Phys. Lett., A4:2073�2083, 1989.

[81℄ G. Dall'Agata, K. Lehner, and D. Sorokin. Covariant ations for the bosoni setor of

d = 10 IIB supergravity. Class. Quant. Grav., 14:L195�L198, 1997, hep-th/9707044.

[82℄ U. H. Danielsson, G. Ferretti, and B. Sundborg. D partile dynamis and bound

states. Int. J. Mod. Phys., A11:5463�5478, 1996, hep-th/9603081.

[83℄ K. Dasgupta and S. Mukhi. BPS nature of three string juntions. Phys. Lett.,

B423:261, 1998, hep-th/9711094.

117



[84℄ J. A. de Azarraga, J. P. Gauntlett, J. M. Izquierdo, and P. K. Townsend. Topologial

extensions of the supersymmetry algebra for extended objets. Phys. Rev. Lett.,

63:2443, 1989.

[85℄ R. de Mello Koh and J. P. Rodrigues. Duality and symmetries of the equations of

motion. Phys. Lett., B432:83�89, 1998, hep-th/9709089.

[86℄ B. de Wit, J. Hoppe, and H. Niolai. On the quantum mehanis of supermembranes.

Nul. Phys., B305:545, 1988.

[87℄ B. de Wit and J. Louis. Supersymmetry and dualities in various dimensions. In

NATO Advaned Study Institute on Strings, Branes and Dualities, Cargese, May

1997, hep-th/9801132.

[88℄ A. Dhar and G. Mandal. Probing four-dimensional nonsupersymmetri blak holes

arrying D0-brane and D6-brane harges. Nul. Phys., B531:256�274, 1998, hep-

th/9803004.

[89℄ D.-E. Diaonesu and J. Gomis. Matrix desription of heteroti theory on K3. Phys.

Lett., B433:35�42, 1998, hep-th/9711105.

[90℄ D.-E. Diaonesu and J. Gomis. Neveu-Shwarz �ve-branes and matrix string theory

on K3. Phys. Lett., B426:287�293, 1998, hep-th/9710124.

[91℄ R. Dijkgraaf, E. Verlinde, and H. Verlinde. BPS quantization of the �ve-brane. Nul.

Phys., B486:89�113, 1997, hep-th/9604055.

[92℄ R. Dijkgraaf, E. Verlinde, and H. Verlinde. BPS spetrum of the �ve-brane and blak

hole entropy. Nul. Phys., B486:77�88, 1997, hep-th/9603126.

[93℄ R. Dijkgraaf, E. Verlinde, and H. Verlinde. Matrix string theory. Nul. Phys.,

B500:43�61, 1997, hep-th/9703030.

[94℄ R. Dijkgraaf, E. Verlinde, and H. Verlinde. Notes on matrix and miro strings. Nul.

Phys. Pro. Suppl., 62:348�362, 1998, hep-th/9709107.

[95℄ M. Dine, P. Huet, and N. Seiberg. Large and small radius in string theory. Nul.

Phys., B322:301, 1989.

[96℄ M. Dine and A. Rajaraman. Multigraviton sattering in the matrix model. Phys.

Lett., B425:77�85, 1998, hep-th/9710174.

[97℄ M. R. Douglas. Branes within branes. 1995, hep-th/9512077.

[98℄ M. R. Douglas. Superstring dualities, Dirihlet branes and the small sale struture

of spae. In Les Houhes Summer Shool on Theoretial Physis, August 1995, 1996,

hep-th/9610041.

[99℄ M. R. Douglas and C. Hull. D-branes and the nonommutative torus. J. High Energy

Phys., 02:008, 1998, hep-th/9711165.

118



[100℄ M. R. Douglas, D. Kabat, P. Pouliot, and S. H. Shenker. D-branes and short distanes

in string theory. Nul. Phys., B485:85�127, 1997, hep-th/9608024.

[101℄ M. R. Douglas and G. Moore. D-branes, quivers, and ALE instantons. 1996, hep-

th/9603167.

[102℄ M. R. Douglas and H. Ooguri. Why matrix theory is hard. Phys. Lett., B425:71�76,

1998, hep-th/9710178.

[103℄ M. R. Douglas, H. Ooguri, and S. H. Shenker. Issues in (M)atrix model ompati�-

ation. Phys. Lett., B402:36�42, 1997, hep-th/9702203.

[104℄ M. J. Du�. Supermembranes. In TASI 1996 leture, 1996, hep-th/9611203.

[105℄ M. J. Du�, P. S. Howe, T. Inami, and K. S. Stelle. Superstrings in D=10 from

supermembranes in D=11. Phys. Lett., 191B:70, 1987.

[106℄ M. J. Du�, R. R. Khuri, and J. X. Lu. String solitons. Phys. Rept., 259:213�326,

1995, hep-th/9412184.

[107℄ M. J. Du�, H. Lu, and C. N. Pope. AdS5×S5
untwisted. Nul. Phys., B532:181�209,

1998, hep-th/9803061.

[108℄ M. J. Du� and K. S. Stelle. Multimembrane solutions of d = 11 supergravity. Phys.

Lett., B253:113�118, 1991.

[109℄ T. Eguhi, P. B. Gilkey, and A. J. Hanson. Gravitation, gauge theories and di�erential

geometry. Phys. Rept., 66:213, 1980.

[110℄ S. Elitzur, A. Giveon, D. Kutasov, and E. Rabinovii. Algebrai aspets of matrix

theory on T d
. Nul. Phys., B509:122�144, 1998, hep-th/9707217.

[111℄ E. Eyras, B. Janssen, and Y. Lozano. Five-branes, KK monopoles and T duality.

Nul. Phys., B531:275�301, 1998, hep-th/9806169.

[112℄ M. Fabbrihesi, G. Ferretti, and R. Iengo. Supergravity and matrix theory do not

disagree on multigraviton sattering. J. High Energy Phys., 06:002, 1998, hep-

th/9806018.

[113℄ A. Fayyazuddin, Y. Makeenko, P. Olesen, D. J. Smith, and K. Zarembo. Towards

a nonperturbative formulation of IIB superstrings by matrix models. Nul. Phys.,

B499:159�182, 1997, hep-th/9703038.

[114℄ A. Fayyazuddin and D. J. Smith. P-brane solutions in IKKT IIB matrix theory. Mod.

Phys. Lett., A12:1447�1454, 1997, hep-th/9701168.

[115℄ S. Ferrara and J. Maldaena. Branes, entral harges and U duality invariant BPS

onditions. Class. Quant. Grav., 15:749�758, 1998, hep-th/9706097.

119



[116℄ W. Fishler, E. Halyo, A. Rajaraman, and L. Susskind. The inredible shrinking

torus. Nul. Phys., B501:409�426, 1997, hep-th/9703102.

[117℄ W. Fishler and A. Rajaraman. M(atrix) string theory on K3. Phys. Lett., B411:53�

58, 1997, hep-th/9704123.

[118℄ R. Flume. On quantum mehanis with extended supersymmetry and nonabelian

gauge onstraints. Ann. Phys., 164:189, 1985.

[119℄ A. Font, L. E. Ibanez, D. Lust, and F. Quevedo. Strong - weak oupling duality and

nonperturbative e�ets in string theory. Phys. Lett., B249:35�43, 1990.

[120℄ P. G. O. Freund and M. A. Rubin. Dynamis of dimensional redution. Phys. Lett.,

97B:233, 1980.

[121℄ J. Fuhs. A�ne Lie Algebras and Quantum Groups. Cambridge University Press,

1992.

[122℄ J. Fuhs and C. Shweigert. Symmetries, Lie Algebras and Representations. Cam-

bridge University Press, 1997.

[123℄ M. Fukuma, H. Kawai, Y. Kitazawa, and A. Tsuhiya. String �eld theory from IIB

matrix model. Nul. Phys., B510:158�174, 1998, hep-th/9705128.

[124℄ M. Fukuma, H. Kawai, Y. Kitazawa, and A. Tsuhiya. String �eld theory from IIB

matrix model. Nul. Phys. Pro. Suppl., 68:153, 1998.

[125℄ O. Ganor and L. Motl. Equations of the (2,0) theory and knitted �ve-branes. J. High

Energy Phys., 05:009, 1998, hep-th/9803108.

[126℄ O. J. Ganor. On the M(atrix) model for M theory on T 6
. Nul. Phys., B528:133�155,

1998, hep-th/9709139.

[127℄ O. J. Ganor, S. Ramgoolam, and W. Taylor IV. Branes, �uxes and duality in M(atrix)

theory. Nul. Phys., B492:191�204, 1997, hep-th/9611202.

[128℄ O. J. Ganor and S. Sethi. New perspetives on Yang-Mills theories with sixteen

supersymmetries. J. High Energy Phys., 01:007, 1998, hep-th/9712071.

[129℄ R. W. Gebert and H. Niolai. E(10) for beginners. 1994, hep-th/9411188.

[130℄ J. L. Gervais, A. Jeviki, and B. Sakita. Colletive oordinate method for quantization

of extended systems. Phys. Rept., 23:281, 1976.

[131℄ F. Giani and M. Pernii. N=2 supergravity in ten-dimensions. Phys. Rev., D30:325,

1984.

[132℄ R. Gilmore. Lie groups, Lie algebras and some of their appliations. Wiley and Sons,

New York, 1974.

120



[133℄ A. Giveon and D. Kutasov. Brane dynamis and gauge theory. 1998, hep-th/9802067.

[134℄ A. Giveon, N. Malkin, and E. Rabinovii. On disrete symmetries and fundamental

domains of target spae. Phys. Lett., B238:57, 1990.

[135℄ A. Giveon, M. Porrati, and E. Rabinovii. Target spae duality in string theory.

Phys. Rept., 244:77�202, 1994, hep-th/9401139.

[136℄ R. Gopakumar. BPS states in matrix strings. Nul. Phys., B507:609�620, 1997,

hep-th/9704030.

[137℄ S. Govindarajan. Heteroti M(atrix) theory at generi points in narain moduli spae.

Nul. Phys., B507:589, 1997, hep-th/9707164.

[138℄ S. Govindarajan. A note on M(atrix) theory in seven-dimensions with eight super-

harges. Phys. Rev., D56:5276�5278, 1997, hep-th/9705113.

[139℄ M. Green, J. A. Harvey, and G. Moore. I-brane in�ow and anomalous ouplings on

D-branes. Class. Quant. Grav., 14:47�52, 1997, hep-th/9605033.

[140℄ M. B. Green and M. Gutperle. E�ets of D instantons. Nul. Phys., B498:195�227,

1997, hep-th/9701093.

[141℄ M. B. Green, M. Gutperle, and H. Kwon. Sixteen fermion and related terms in M

theory on T 2
. Phys. Lett., B421:149�161, 1998, hep-th/9710151.

[142℄ M. B. Green, M. Gutperle, and P. Vanhove. One loop in eleven-dimensions. Phys.

Lett., B409:177�184, 1997, hep-th/9706175.

[143℄ M. B. Green, C. M. Hull, and P. K. Townsend. D-brane Wess-Zumino ations, T du-

ality and the osmologial onstant. Phys. Lett., B382:65�72, 1996, hep-th/9604119.

[144℄ M. B. Green, J. H. Shwarz, and E. Witten. SUPERSTRING THEORY. VOL. 1:

INTRODUCTION. Cambrigde monographs on mathematial physis. Cambridge

University Press, 1987.

[145℄ M. B. Green and S. Sethi. Supersymmetry onstraints on type IIB supergravity. 1998,

hep-th/9808061.

[146℄ M. B. Green and P. Vanhove. D-instantons, strings and M theory. Phys. Lett.,

B408:122�134, 1997, hep-th/9704145.

[147℄ A. Gregori, E. Kiritsis, C. Kounnas, N. A. Obers, P. M. Petropoulos, and B. Pioline.

R2
orretions and nonperturbative dualities of N = 4 string ground states. Nul.

Phys., B510:423�476, 1998, hep-th/9708062.

[148℄ C. Grojean and J. Mourad. Superonformal 6-d (2,0) theories in superspae. Class.

Quant. Grav., 15:3397�3409, 1998, hep-th/9807055.

121



[149℄ R. Gueven. Blak p-brane solutions of D=11 supergravity theory. Phys. Lett.,

B276:49�55, 1992.

[150℄ Z. Guralnik and S. Ramgoolam. Torons and D-brane bound states. Nul. Phys.,

B499:241�252, 1997, hep-th/9702099.

[151℄ Z. Guralnik and S. Ramgoolam. From 0-branes to torons. Nul. Phys., B521:129�138,

1998, hep-th/9708089.

[152℄ Y. S. H. Ishikawa, Y. Matsuo and K. Sugiyama. BPS mass spetrum from D-brane

ation. Phys. Lett., B388:296�302, 1996, hep-th/9605023.

[153℄ F. Haquebord and H. Verlinde. Duality symmetry of N = 4 Yang-Mills theory on

T 3
. Nul. Phys., B508:609�622, 1997, hep-th/9707179.

[154℄ E. Halyo. A proposal for the wrapped transverse �ve-brane in M(atrix) theory. 1997,

hep-th/9704086.

[155℄ A. Hanany and G. Lifshytz. M(atrix) theory on T 6
and a m(atrix) theory desription

of KK monopoles. Nul. Phys., B519:195�213, 1998, hep-th/9708037.

[156℄ J. A. Harvey and G. Moore. Five-brane instantons and R2
ouplings in N = 4 string

theory. Phys. Rev., D57:2323�2328, 1998, hep-th/9610237.

[157℄ J. A. Harvey and G. Moore. On the algebras of BPS states. Commun. Math. Phys.,

197:489, 1998, hep-th/9609017.

[158℄ S. Helgason. Di�erential geometry and symmetri spaes. Aademi Press, New York,

1962.

[159℄ S. Hellerman and J. Polhinski. Compati�ation in the lightlike limit. 1997, hep-

th/9711037.

[160℄ P.-M. Ho and Y.-S. Wu. IIB/M duality and longitudinal membranes in M(atrix)

theory. Phys. Rev., D57:2571�2579, 1998, hep-th/9703016.

[161℄ P.-M. Ho and Y.-S. Wu. Nonommutative gauge theories in matrix theory. Phys.

Rev., D58:066003, 1998, hep-th/9801147.

[162℄ C. Hofman, E. Verlinde, and G. Zwart. U-duality invariane of the four-dimensional

Born-Infeld theory. J. High Energy Phys., 10:020, 1998, hep-th/9808128.

[163℄ P. Horava. M theory as a holographi �eld theory. 1997, hep-th/9712130.

[164℄ P. Horava. Matrix theory and heteroti strings on tori. Nul. Phys., B505:84�108,

1997, hep-th/9705055.

[165℄ P. Horava and E. Witten. Eleven-dimensional supergravity on a manifold with bound-

ary. Nul. Phys., B475:94�114, 1996, hep-th/9603142.

122



[166℄ P. Horava and E. Witten. Heteroti and type I string dynamis from eleven- dimen-

sions. Nul. Phys., B460:506�524, 1996, hep-th/9510209.

[167℄ G. T. Horowitz, D. A. Lowe, and J. M. Maldaena. Statistial entropy of nonextremal

four-dimensional blak holes and U duality. Phys. Rev. Lett., 77:430�433, 1996, hep-

th/9603195.

[168℄ P. S. Howe and P. C. West. The omplete N=2, D=10 supergravity. Nul. Phys.,

B238:181, 1984.

[169℄ J. Hughes and J. Polhinski. Partially broken global supersymmetry and the super-

string. Nul. Phys., B278:147, 1986.

[170℄ C. M. Hull. Exat pp wave solutions of eleven-dimensional supergravity. Phys. Lett.,

139B:39, 1984.

[171℄ C. M. Hull. Deoupling limits in M theory. Nul. Phys., B529:207�224, 1998, hep-

th/9803124.

[172℄ C. M. Hull. Matrix theory, U duality and toroidal ompati�ations of M theory. J.

High Energy Phys., 10:011, 1998, hep-th/9711179.

[173℄ C. M. Hull. U duality and BPS spetrum of super Yang-Mills theory and M theory.

J. High Energy Phys., 9807:018, 1998, hep-th/9712075.

[174℄ C. M. Hull and B. Julia. Duality and moduli spaes for timelike redutions. Nul.

Phys., B534:250�260, 1998, hep-th/9803239.

[175℄ C. M. Hull and P. K. Townsend. Enhaned gauge symmetries in superstring theories.

Nul. Phys., B451:525�546, 1995, hep-th/9505073.

[176℄ J. E. Humphreys. Introdution to Lie Algebras and Representation Theory. Springer

Verlag, Heidelberg, 1972.

[177℄ J. E. Humphreys. Re�etion groups and Coxeter Groups. Number 29 in Cambridge

Studies in Advaned Mathematis. Cambridge University Press, 1990.

[178℄ M. Huq and M. A. Namazie. Kaluza-klein supergravity in ten-dimensions. Class.

Quant. Grav., 2:293, 1985.

[179℄ N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuhiya. A large N redued model as

superstring. Nul. Phys., B498:467�491, 1997, hep-th/9612115.

[180℄ G. Jorge Russo. An ansatz for a nonperturbative four graviton amplitude in type iib

superstring theory. Phys. Lett., B417:253, 1998, hep-th/9707241.

[181℄ B. Julia. Extra dimensions: Reent progress using old ideas. 1979.

[182℄ B. Julia. `Group disintegrations'. In S. W. Hawking and M. Roek, editors, Superspae

and Supergravity. Cambridge Univ. Press, 1981.

123



[183℄ B. Julia. In�nite Lie algebras in physis. 1981.

[184℄ B. Julia. `Supergeometry and Ka-Moody algebras'. In Publiations of the Mathe-

matial Sienes Researh Institute 3. Springer-Verlag, Heidelberg, 1983.

[185℄ B. L. Julia. Dualities in the lassial supergravity limits: Dualizations, dualities and

a detour via (4k+2)- dimensions. In NATO Advaned Study Institute on Strings,

Branes and Dualities, Cargese, May 1997, hep-th/9805083.

[186℄ D. Kabat and P. Pouliot. A omment on zero-brane quantum mehanis. Phys. Rev.

Lett., 77:1004�1007, 1996, hep-th/9603127.

[187℄ D. Kabat and S.-J. Rey. Wilson lines and T duality in heteroti M(atrix) theory.

Nul. Phys., B508:535�568, 1997, hep-th/9707099.

[188℄ S. Kahru, Y. Oz, and Z. Yin. Matrix desription of interseting M-5 branes. J. High

Energy Phys., 11:004, 1998, hep-th/9803050.

[189℄ R. Kallosh and B. Kol. E7 symmetri area of the blak hole horizon. Phys. Rev.,

D53:5344�5348, 1996, hep-th/9602014.

[190℄ T. Kawano and K. Okuyama. Matrix theory on nonommutative torus. Phys. Lett.,

B433:29�34, 1998, hep-th/9803044.

[191℄ A. Kehagias and H. Partouhe. D instanton orretions as (p, q) string e�ets and non-
renormalization theorems. Int. J. Mod. Phys., A13:5075�5092, 1998, hep-th/9712164.

[192℄ A. Kehagias and H. Partouhe. The exat quarti e�etive ation for the type IIB

superstring. Phys. Lett., B422:109�116, 1998, hep-th/9710023.

[193℄ E. Keski-Vakkuri and P. Kraus. Short distane ontributions to graviton-graviton

sattering: Matrix theory versus supergravity. Nul. Phys., B529:246�258, 1998,

hep-th/9712013.

[194℄ N. Kim and S.-J. Rey. M(atrix) theory on an orbifold and twisted membrane. Nul.

Phys., B504:189�213, 1997, hep-th/9701139.

[195℄ N. Kim and S.-J. Rey. M(atrix) theory on T 9/Z2 orbifold and twisted zero- brane.

1997, hep-th/9710245.

[196℄ N. Kim and S.-J. Rey. Nonorientable m(atrix) theory. 1997, hep-th/9710192.

[197℄ N. Kim and S.-J. Rey. M(atrix) theory on T 5/Z2 orbifold and �ve-branes. Nul.

Phys., B534:155�182, 1998, hep-th/9705132.

[198℄ E. Kiritsis. Introdution to superstring theory. Leuven University Press, 1997, hep-

th/9709062.

[199℄ E. Kiritsis and N. A. Obers. Heteroti type I duality in D < 10-dimensions, threshold

orretions and D instantons. J. High Energy Phys., 10:004, 1997, hep-th/9709058.

124



[200℄ E. Kiritsis and B. Pioline. On R4
threshold orretions in IIB string theory and (p, q)

string instantons. Nul. Phys., B508:509�534, 1997, hep-th/9707018.

[201℄ N. Kitsunezaki and J. Nishimura. Unitary IIB matrix model and the dynamial

generation of the spae-time. Nul. Phys., B526:351�377, 1998, hep-th/9707162.

[202℄ A. W. Knapp. Representation theory of semisimple groups: an overview based on

examples. Number 36 in Prineton Mathematial Series. Prineton University Press,

1986.

[203℄ C. F. Kristjansen and P. Olesen. A possible IIB superstring matrix model with Euler

harateristi and a double saling limit. Phys. Lett., B405:45, 1997, hep-th/9704017.

[204℄ M. Krogh. Heteroti matrix theory with Wilson lines on the lightlike irle. Nul.

Phys., B541:98, 1999, hep-th/9803088.

[205℄ M. Krogh. A Matrix model for heteroti spin(32)/z2 and type I string theory. Nul.

Phys., B541:87, 1999, hep-th/9801034.

[206℄ M. Krogh and S. Lee. String network from M theory. Nul. Phys., B516:241�254,

1998, hep-th/9712050.

[207℄ T. Kugo and P. Townsend. Supersymmetry and the division algebras. Nul. Phys.,

B221:357, 1983.

[208℄ A. Kumar and S. Mukhopadhyay. Supersymmetry and U-brane networks. 1998,

hep-th/9806126.

[209℄ I. V. Lavrinenko, H. Lu, C. N. Pope, and T. A. Tran. U duality as general oordinate

transformations, and spae- time geometry. 1998, hep-th/9807006.

[210℄ R. G. Leigh. Dira-Born-Infeld ation from Dirihlet sigma model. Mod. Phys. Lett.,

A4:2767, 1989.

[211℄ R. G. Leigh and M. Rozali. A note on six-dimensional gauge theories. Phys. Lett.,

B433:43�48, 1998, hep-th/9712168.

[212℄ W. Lerhe, A. N. Shellekens, and N. P. Warner. Latties and strings. Phys. Rept.,

177:1, 1989.

[213℄ M. Li. Comments on supersymmetri Yang-Mills theory on a nonommutative torus.

1998, hep-th/9802052.

[214℄ A. Losev, G. Moore, and S. L. Shatashvili. M & m's. Nul. Phys., B522:105�124,

1998, hep-th/9707250.

[215℄ D. A. Lowe. Heteroti matrix string theory. Phys. Lett., B403:243�249, 1997, hep-

th/9704041.

125



[216℄ D. A. Lowe. E8 ×E8 small instantons in matrix theory. Nul. Phys., B519:180, 1998,

hep-th/9709015.

[217℄ D. A. Lowe. Eleven-dimensional Lorentz symmetry from SUSY quantum mehanis.

J. High Energy Phys., 10:003, 1998, hep-th/9807229.

[218℄ H. Lu and C. N. Pope. p-brane solitons in maximal supergravities. Nul. Phys.,

B465:127�156, 1996, hep-th/9512012.

[219℄ H. Lu and C. N. Pope. T duality and U duality in toroidally ompati�ed strings.

Nul. Phys., B510:139�157, 1998, hep-th/9701177.

[220℄ H. Lu, C. N. Pope, and K. S. Stelle. Weyl group invariane and p-brane multiplets.

Nul. Phys., B476:89�117, 1996, hep-th/9602140.

[221℄ J. X. Lu and S. Roy. U duality p-branes in diverse dimensions. Nul. Phys., B538:149,

1999, hep-th/9805180.

[222℄ J. Maharana and J. H. Shwarz. Nonompat symmetries in string theory. Nul.

Phys., B390:3�32, 1993, hep-th/9207016.

[223℄ J. Maldaena. The large N limit of superonformal �eld theories and supergravity.

Adv. Theor. Math. Phys., 2:231�252, 1998, hep-th/9711200.

[224℄ J. M. Maldaena. Blak holes in string theory. PhD thesis, Prineton University,

1996, hep-th/9607235. hep-th/9607235.

[225℄ B. P. Mandal and S. Mukhopadhyay. D-brane interation in the type IIB matrix

model. Phys. Lett., B419:62�72, 1998, hep-th/9709098.

[226℄ M. Marino and G. Moore. Counting higher genus urves in a Calabi-Yau manifold.

1998, hep-th/9808131.

[227℄ E. Martine. M theory and N=2 strings. In NATO Advaned Study Institute on

Strings, Branes and Dualities, Cargese, May 1997, hep-th/9710122.

[228℄ Y. Matsuo and K. Okuyama. BPS ondition of string juntion from M theory. Phys.

Lett., B426:294�296, 1998, hep-th/9712070.

[229℄ J. MCarthy, L. Susskind, and A. Wilkins. Large N and the Dine-Rajaraman problem.

Phys. Lett., B437:62�68, 1998, hep-th/9806136.

[230℄ P. Meessen and T. Ortin. An sl(2,z) multiplet of nine-dimensional type ii supergravity

theories. Nul. Phys., B541:195, 1999, hep-th/9806120.

[231℄ C. Montonen and D. Olive. Magneti monopoles as gauge partiles ? Phys. Lett.,

72B:117, 1977.

[232℄ G. Moore. Finite in all diretions. 1993, hep-th/9305139.

126



[233℄ B. Morariu and B. Zumino. Super Yang-Mills on the nonommutative torus. In

Proeedings of R. Arnowitt Symposium on Supersymmetry and Gravitation, Texas,

April 1998, 1998, hep-th/9807198.

[234℄ L. Motl. Proposals on nonperturbative superstring interations. 1997, hep-

th/9701025.

[235℄ L. Motl and L. Susskind. Finite N heteroti matrix models and disrete light one

quantization. 1997, hep-th/9708083.

[236℄ W. Nahm. `Monopoles in quantum �eld theory'. In N. Craigie, editor, Monopole

meeting, Trieste, 1982.

[237℄ N. Nekrasov and A. Shwarz. Instantons on nonommutative R4
and (2,0) super-

onformal six-dimensional theory. Commun. Math. Phys., 198:689�703, 1998, hep-

th/9802068.

[238℄ H. Niolai. On M theory. In 31st International Ahrenshoop Symposium on the Theory

of Elementary Partiles, Bükow, Sept 1997, hep-th/9801090.

[239℄ H. Niolai and H. Samtleben. Integrability and anonial struture of d=2, N=16

supergravity. Nul. Phys., B533:210�242, 1998, hep-th/9804152.

[240℄ H. Nishino. Supergravity theories in D greater than or equal to 12 oupled to super

p-branes. 1998, hep-th/9807199.

[241℄ H. Nishino. Supersymmetri Yang-Mills theories in D ≥ 12. Nul. Phys., B523:450�
464, 1998, hep-th/9708064.

[242℄ H. Nishino and E. Sezgin. Supersymmetri Yang-Mills equations in (10+2)-

dimensions. Phys. Lett., B388:569�576, 1996, hep-th/9607185.

[243℄ N. A. Obers and B. Pioline. Eisenstein series and string thresholds. 1999, hep-

th/9903113.

[244℄ N. A. Obers, B. Pioline, and E. Rabinovii. M theory and U duality on T d
with gauge

bakgrounds. Nul. Phys., B525:163�181, 1998, hep-th/9712084.

[245℄ Y. Okawa and T. Yoneya. Multibody interations of D partiles in supergravity and

matrix theory. Nul. Phys., B538:67, 1999, hep-th/9806108.

[246℄ H. Ooguri and C. Vafa. Summing up D instantons. Phys. Rev. Lett., 77:3296�3298,

1996, hep-th/9608079.

[247℄ H. Ooguri and Z. Yin. TASI letures on perturbative string theories. 1996, hep-

th/9612254.

[248℄ S. Paban, S. Sethi, and M. Stern. Supersymmetry and higher derivative terms in

the e�etive ation of Yang-Mills theories. J. High Energy Phys., 06:012, 1998, hep-

th/9806028.

127



[249℄ G. Papadopoulos. T duality and the world volume solitons of �ve-branes and KK

monopoles. Phys. Lett., B434:277�284, 1998, hep-th/9712162.

[250℄ G. Papadopoulos and P. K. Townsend. Kaluza-Klein on the brane. Phys. Lett.,

B393:59�64, 1997, hep-th/9609095.

[251℄ P. Pasti, D. Sorokin, and M. Tonin. Covariant ation for a D = 11 �ve-brane with

the hiral �eld. Phys. Lett., B398:41�46, 1997, hep-th/9701037.

[252℄ A. W. Peet. The Bekenstein formula and string theory (N-brane theory). Class.

Quant. Grav., 15:3291�3338, 1998, hep-th/9712253.

[253℄ B. Pioline. D-e�ets in toroidally ompati�ed type II string theory. In Meeting

on Quantum Aspets of Gauge Theories, Supersymmetry and Uni�ation, Neuhatel,

Sept 1997, hep-th/9712155.

[254℄ B. Pioline. Aspets non perturbatifs de la théorie des superordes. PhD thesis, Uni-

versité Paris 6, 1998, hep-th/9806123. hep-th/9806123.

[255℄ B. Pioline and E. Kiritsis. U duality and D-brane ombinatoris. Phys. Lett., B418:61�

69, 1998, hep-th/9710078.

[256℄ J. Polhinski. Dirihlet branes and Ramond-Ramond harges. Phys. Rev. Lett.,

75:4724�4727, 1995, hep-th/9510017.

[257℄ J. Polhinski. TASI letures on D-branes. 1996, hep-th/9611050.

[258℄ J. Polhinski and P. Pouliot. Membrane sattering with M momentum transfer. Phys.

Rev., D56:6601�6606, 1997, hep-th/9704029.

[259℄ J. Polhinski and E. Witten. Evidene for heteroti-type I string duality. Nul. Phys.,

B460:525�540, 1996, hep-th/9510169.

[260℄ D. Polyakov. RR-Dilaton interation in a type IIB superstring. Nul. Phys.,

B468:155�162, 1996, hep-th/9512028.

[261℄ M. Rei�el and A. Shwarz. Morita equivalene of multidimensional nonommutative

tori. 1998, math.QA/9803057.

[262℄ S.-J. Rey. Heteroti M(atrix) strings and their interations. Nul. Phys., B502:170,

1997, hep-th/9704158.

[263℄ S.-J. Rey. M(atrix) theory on the negative light front. 1997, hep-th/9712055.

[264℄ S.-J. Rey and J.-T. Yee. BPS dynamis of triple (p, q) string juntion. Nul. Phys.,

B526:229�240, 1998, hep-th/9711202.

[265℄ M. Rozali. Matrix theory and U duality in seven-dimensions. Phys. Lett., B400:260�

264, 1997, hep-th/9702136.

128



[266℄ I. Rudyhev, E. Sezgin, and P. Sundell. Supersymmetry in dimensions beyond eleven.

Nul. Phys. Pro. Suppl., 68:285�294, 1998, hep-th/9711127.

[267℄ J. G. Russo. BPS bound states, supermembranes, and T duality in M theory. 1997,

hep-th/9703118.

[268℄ J. G. Russo and A. A. Tseytlin. One loop four graviton amplitude in eleven-

dimensional supergravity. Nul. Phys., B508:245, 1997, hep-th/9707134.

[269℄ S. Ryang. BPS spetrum and Nahm duality of matrix theory ompati�ations. Phys.

Lett., B433:279�286, 1998, hep-th/9803198.

[270℄ B. Sathiapalan. Fundamental strings and D strings in the IIB matrix model. Mod.

Phys. Lett., A12:1301�1315, 1997, hep-th/9703133.

[271℄ A. Shwarz. Morita equivalene and duality. Nul. Phys., B534:720�738, 1998, hep-

th/9805034.

[272℄ J. H. Shwarz. Covariant �eld equations of hiral N=2 D = 10 supergravity. Nul.

Phys., B226:269, 1983.

[273℄ J. H. Shwarz. An Sl(2,Z) multiplet of type IIB superstrings. Phys. Lett., B360:13�

18, 1995, hep-th/9508143.

[274℄ J. H. Shwarz. Coupling a self-dual tensor to gravity in six dimensions. Phys. Lett.,

B395:191�195, 1997, hep-th/9701008.

[275℄ J. H. Shwarz. Letures on superstring and M theory dualities: Given at ICTP

spring shool and at TASI summer shool. Nul. Phys. Pro. Suppl., 55B:1�32, 1997,

hep-th/9607201.

[276℄ J. H. Shwarz. From superstrings to M theory. 1998, hep-th/9807135. to appear in

Phys. Rept.

[277℄ J. H. Shwarz and P. C. West. Symmetries and transformations of hiral N=2 D=10

supergravity. Phys. Lett., 126B:301, 1983.

[278℄ N. Seiberg. Why is the matrix model orret? Phys. Rev. Lett., 79:3577�3580, 1997,

hep-th/9710009.

[279℄ N. Seiberg and S. Sethi. Comments on Neveu-Shwarz �ve-branes. Adv. Theor. Math.

Phys., 1:259, 1998, hep-th/9708085.

[280℄ N. Seiberg and S. Shenker. Hypermultiplet moduli spae and string ompati�ation

to three-dimensions. Phys. Lett., B388:521�523, 1996, hep-th/9608086.

[281℄ A. Sen. Dyon-monopole bound states, selfdual harmoni forms on the multi-monopole

moduli spae, and SL(2,Z) invariane in string theory. Phys. Lett., B329:217�221,

1994, hep-th/9402032.

129



[282℄ A. Sen. U duality and interseting Dirihlet branes. Phys. Rev., D53:2874�2894,

1996, hep-th/9511026.

[283℄ A. Sen. D0-branes on T n
and matrix theory. Adv. Theor. Math. Phys., 2:51�59, 1998,

hep-th/9709220.

[284℄ A. Sen. An introdution to nonperturbative string theory. 1998, hep-th/9802051.

[285℄ A. Sen. SO(32) spinors of type I and other solitons on brane - anti-brane pair. J.

High Energy Phys., 09:023, 1998, hep-th/9808141.

[286℄ A. Sen. Stable non BPS bound states of BPS D-branes. J. High Energy Phys., 08:010,

1998, hep-th/9805019.

[287℄ A. Sen. Stable non BPS states in string theory. J. High Energy Phys., 06:007, 1998,

hep-th/9803194.

[288℄ A. Sen. String network. J. High Energy Phys., 03:005, 1998, hep-th/9711130.

[289℄ A. Sen. Tahyon ondensation on the brane anti-brane system. J. High Energy Phys.,

08:012, 1998, hep-th/9805170.

[290℄ S. Sethi. The matrix formulation of type IIB �ve-branes. Nul. Phys., B523:158�170,

1998, hep-th/9710005.

[291℄ S. Sethi and L. Susskind. Rotational invariane in the M(atrix) formulation of type

IIB theory. Phys. Lett., B400:265�268, 1997, hep-th/9702101.

[292℄ E. Sezgin. The M algebra. Phys. Lett., B392:323�331, 1997, hep-th/9609086.

[293℄ E. Sezgin. Super Yang-Mills in (11,3)-dimensions. Phys. Lett., B403:265�272, 1997,

hep-th/9703123.

[294℄ K. Sfetsos and K. Skenderis. Mirosopi derivation of the Bekenstein-Hawking en-

tropy formula for nonextremal blak holes. Nul. Phys., B517:179�204, 1998, hep-

th/9711138.

[295℄ R. D. Sorkin. Kaluza-Klein monopole. Phys. Rev. Lett., 51:87, 1983.

[296℄ K. S. Stelle. Letures on supergravity p-branes. 1996, hep-th/9701088, hep-

th/9803116.

[297℄ A. Strominger and C. Vafa. Mirosopi origin of the Bekenstein-Hawking entropy.

Phys. Lett., B379:99�104, 1996, hep-th/9601029.

[298℄ Y. Sugawara and K. Sugiyama. D-brane analyses for BPS mass spetra and U duality.

Nul. Phys., B522:158�192, 1998, hep-th/9707205.

[299℄ L. Susskind. T duality in M(atrix) theory and S duality in �eld theory. 1996, hep-

th/9611164.

130



[300℄ L. Susskind. Another onjeture about M(atrix) theory. 1997, hep-th/9704080.

[301℄ T. Suyama and A. Tsuhiya. Exat results in nc = 2 IIB matrix model. Prog. Theor.

Phys., 99:321�325, 1998, hep-th/9711073.

[302℄ G. 't Hooft. A planar diagram theory for strong interations. Nul. Phys., B72:461,

1974.

[303℄ G. 't Hooft. A property of eletri and magneti �ux in non-Abelian gauge theories.

Nul. Phys., B153:141, 1979.

[304℄ W. Taylor IV. Adhering zero-branes to six-branes and eight-branes. Nul. Phys.,

B508:122�132, 1997, hep-th/9705116.

[305℄ W. Taylor IV. D-brane �eld theory on ompat spaes. Phys. Lett., B394:283�287,

1997, hep-th/9611042.

[306℄ W. Taylor IV. Letures on D-branes, gauge theory and M(atries). In 2nd Trieste

Conferene on Duality in String Theory, June 1997, hep-th/9801182.

[307℄ P. K. Townsend. The eleven-dimensional supermembrane revisited. Phys. Lett.,

B350:184�187, 1995, hep-th/9501068.

[308℄ P. K. Townsend. p-brane demoray. In PASCOS 1995, 1995, hep-th/9507048.

[309℄ P. K. Townsend. Four letures on M theory. In Trieste Summer Shool in High

Energy Physis and Cosmology, June 1996, hep-th/9612121.

[310℄ P. K. Townsend. M theory from its superalgebra. In NATO Advaned Study Institute

on Strings, Branes and Dualities, Cargese, May 1997, hep-th/9712004.

[311℄ M. Trigiante. Dualities in supergravity and solvable Lie algebras. PhD thesis, Uni-

versity of Wales, 1998, hep-th/9801144. hep-th/9801144.

[312℄ A. A. Tseytlin. On non-Abelian generalization of Born-Infeld ation in string theory.

Nul. Phys., B501:41�52, 1997, hep-th/9701125.

[313℄ C. Vafa. Evidene for F theory. Nul. Phys., B469:403�418, 1996, hep-th/9602022.

[314℄ C. Vafa. Gas of D-branes and Hagedorn density of BPS states. Nul. Phys., B463:415�

419, 1996, hep-th/9511088.

[315℄ C. Vafa. Instantons on D-branes. Nul. Phys., B463:435�442, 1996, hep-th/9512078.

[316℄ C. Vafa. Letures on strings and dualities. 1997, hep-th/9702201.

[317℄ I. Washington Taylor and M. V. Raamsdonk. Three graviton sattering in matrix

theory revisited. Phys. Lett., B438:248, 1998, hep-th/9806066.

131



[318℄ E. Witten. Some omments on string dynamis. In Strings 1995, Los Angeles, Marh

1995, hep-th/9507121.

[319℄ E. Witten. String theory dynamis in various dimensions. Nul. Phys., B443:85�126,

1995, hep-th/9503124.

[320℄ E. Witten. Bound states of strings and p-branes. Nul. Phys., B460:335�350, 1996,
hep-th/9510135.

[321℄ E. Witten and D. Olive. Supersymmetry algebras that inlude topologial harges.

Phys. Lett., 78B:97, 1978.

[322℄ G. Zwart. Matrix theory on nonorientable surfaes. Phys. Lett., B429:27�34, 1998,

hep-th/9710057.

132


