
CERN�TH/98-282

CPHT�S639-0898

hep-th/9809039

U-duality and M-Theory

N.A. Obers
a∗

and B. Pioline
b‡

aTheory Division, CERN, CH-1211 Geneva 23,
bCentre de Physique Théorique, Ecole Polytechnique†, F-91128 Palaiseau

to appear in Physics Reports

This work is intended as a pedagogical introduction to M-theory and to its maximally
supersymmetric toroidal compacti�cations, in the frameworks of 11D supergravity, type

II string theory and M(atrix) theory. U-duality is used as the main tool and guideline
in uncovering the spectrum of BPS states. We review the 11D supergravity algebra and
elementary 1/2-BPS solutions, discuss T-duality in the perturbative and non-perturbative

sectors from an algebraic point of view, and apply the same tools to the analysis of U-
duality at the level of the e�ective action and of the BPS spectrum, with a particular

emphasis onWeyl and Borel generators. We derive the U-duality multiplets of BPS particles
and strings, U-duality invariant mass formulae for 1/2- and 1/4-BPS states for general
toroidal compacti�cations on skew tori with gauge backgrounds, and U-duality multiplets of

constraints for states to preserve a given fraction of supersymmetry. A number of mysterious
states are encountered in D ≤ 3, whose existence is implied by T-duality and 11D Lorentz

invariance. We then move to the M(atrix) theory point of view, give an introduction to

Discrete Light-Cone Quantization (DLCQ) in general and DLCQ of M-theory in particular.
We discuss the realization of U-duality as electric�magnetic dualities of the Matrix gauge

theory, display the Matrix gauge theory BPS spectrum in detail, and discuss the conjectured

extended U-duality group in this scheme.

CERN�TH/98-282, CPHT�S639-0798,

September 1998

†Unité mixte CNRS UMR 7644
∗obers@nordita.dk; Address after Sept. 15: Nordita, Blegdamsvej 17, DK-2100 Copenhagen.
‡ pioline@cpht.polytechnique.fr



Contents

1 Introduction 4

1.1 Setting the scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Sources and omissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 M-theory and BPS states 9

2.1 M-theory and type IIA string theory . . . . . . . . . . . . . . . . . . . . . 9

2.2 M-theory superalgebra and BPS states . . . . . . . . . . . . . . . . . . . . 11

2.3 BPS solutions of 11D SUGRA . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Reduction to type IIA BPS solutions . . . . . . . . . . . . . . . . . . . . . 16

2.5 T-duality and type IIA/B string theory . . . . . . . . . . . . . . . . . . . 20

3 T-duality and toroidal compacti�cation 24

3.1 Continuous symmetry of the e�ective action . . . . . . . . . . . . . . . . . 24

3.2 Charge quantization and T-duality symmetry . . . . . . . . . . . . . . . . 25

3.3 Weyl and Borel generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Weyl generators and Weyl re�ections . . . . . . . . . . . . . . . . . . . . . 27

3.5 BPS spectrum and highest weights . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Weyl-invariant e�ective action . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Spectral �ow and Borel generators . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 D-branes and T-duality invariant mass . . . . . . . . . . . . . . . . . . . . 33

4 U-duality in toroidal compacti�cations of M-theory 37

4.1 Continuous R-symmetries of the superalgebra . . . . . . . . . . . . . . . . 37

4.2 Continuous symmetries of the e�ective action . . . . . . . . . . . . . . . . 40

4.3 Charge quantization and U-duality . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Weyl and Borel generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Type IIB BPS states and S-duality . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Weyl generators and Weyl re�ections . . . . . . . . . . . . . . . . . . . . . 48

4.7 BPS spectrum and highest weights . . . . . . . . . . . . . . . . . . . . . . 50

4.8 The particle alias �ux multiplet . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 T-duality decomposition and exotic states . . . . . . . . . . . . . . . . . . 56

4.10 The string alias momentum multiplet . . . . . . . . . . . . . . . . . . . . 58

4.11 Weyl-invariant e�ective action . . . . . . . . . . . . . . . . . . . . . . . . . 59
2
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1 Introduction

1.1 Setting the scene

Since its invention in the late sixties, string theory has grown up in a tumultuous history

of unexpected paradigm shifts and deceptive lulls. Not the least of these storms was the

discovery that the �ve anomaly-free perturbative superstring theories were as many glances

on a single eleven-dimensional theoria incognita, soon baptized M-theory, awaiting a better

name [307, 319]. The genus expansion of each string theory corresponds to a di�erent

perturbative series in a particular limit gs → 0 in the M-theory parameter space, much

in the same way as the genus expansion arises in 't Hooft large-N , �xed-g2
YMN regime of

Yang�Mills theory [302]. M-theory can be de�ned by the superstring expansions on each

patch, and the superstring (perturbative or non-perturbative) dualities allow a translation

from one patch to another, in a way analogous to the de�nition of a di�erential manifold

by charts and transition functions. This analogy overlooks the fact that string theories are

only de�ned as asymptotic series in gs → 0, and some analyticity is therefore required to
move into the bulk of parameter space.

This de�nition has been e�ective in uncovering a number of features of M-theory, or
rather its BPS sector, which behaves in a controlled way under analytic continuation at

�nite-gs. In particular, M-theory is required to contain Cremmer, Julia and Scherk's eleven-
dimensional supergravity [76] in order to account for the Kaluza�Klein-like tower of type

IIA D0-branes as excitations carrying momentum along the eleventh dimension of radius

Rs ∼ g
2/3
s , as shown by Townsend and Witten [307, 319]; it should also contain membrane

and �vebrane states, in order to reproduce the D2- and D4-brane, as well as the NS5-brane

and the type IIA �fundamental� string. Which of these states is elementary is not decided
yet, although M2-branes and D0-branes are favourite candidates [86, 24]. It may even

turn out that none of them may be required, and that 11D SUGRA may emerge as the
low-energy limit of a non-gravitational theory [163].

While the dualities between string theories relate di�erent languages for the same
physics, the symmetries of string theory provide a powerful guide into M-theory, which

is believed to hold beyond the BPS sector. The best established of them is certainly

T-duality, which identi�es seemingly distinct string backgrounds with isometries (see for

instance Refs. [135, 3] and references therein). Throughout this review, we shall restrict

ourselves to maximally supersymmetric type II or M theories, and accordingly T-duality

will reduce to the inversion of a radius on a d-dimensional torus. To be more precise, a
T-duality maps to each other type IIA and type IIB string theories compacti�ed on cir-

cles with inverse radii, while a T-symmetry consists of an even number of such inversions
(together with Kalb�Ramond spectral �ows to which we shall return), and therefore cor-

responds to a symmetry of type II string theories and of their M-theory extension‡1. As

we shall recall, such T-symmetries on a torus T d generate a SO(d, d,Z) discrete symmetry

group, the continuous version of which SO(d, d,R) appears as a symmetry of the low-energy

‡1Having emphasized this point, we shall henceforth omit the distinction between dualities and symme-
tries.
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e�ective action.

On the other hand, the action of 11D or type IIA supergravity compacti�ed on a torus T d

as well as of the equations of motion of uncompacti�ed type IIB supergravity have for long

been known to exhibit continuous non-compact global symmetries, namely the exceptional

symmetry Ed(d)(R) of Cremmer and Julia and the Sl(2,R) symmetry of Schwarz and West

respectively [72, 182, 185, 277]. These symmetries transform the scalar �elds and in general

do not preserve the weak coupling regime, which puts them out of reach of perturbation

theory, in contrast to the well established target-space T-duality.

In analogy with the electric�magnetic Sl(2,Z) Montonen-Olive-Sen duality of four-

dimensional N = 4 super Yang�Mills theory [231, 281], Hull and Townsend have proposed

[175] that a discrete subgroup Ed(d)(Z) (resp. Sl(2,Z)B) remains as an exact quantum

symmetry of M-theory compacti�ed on a torus T d (resp. of ten-dimensional type IIB string

theory and compacti�cations thereof)‡2. The two statements are actually equivalent, since

after compacti�cation on a circle the type IIB string theory becomes equivalent under T-

duality on the (say) tenth direction to type IIA, and the symmetry Ed(d)(Z) can be obtained
by intertwining the Sl(2,Z)B non-perturbative symmetry with the T-duality SO(d−1, d−
1,Z). Conversely, the Sl(2,Z)B symmetry of type IIB theory can be obtained from the M-
theory description as the modular group of the 2-torus in the tenth and eleventh directions

[273, 16], and is a particular subgroup of the modular group Sl(d,Z) of the d-torus. This,
being a remnant of eleven-dimensional di�eomorphism invariance after compacti�cation on
the torus T d, has to be an exact symmetry as soon as M-theory contains the graviton. The

T-duality symmetry SO(d− 1, d − 1,Z) is however not manifest in the M-theory picture.
All in all, the U-duality group reads

Ed(d)(Z) = Sl(d,Z) ./ SO(d− 1, d− 1,Z) , (1.1)

where the symbol ./ denotes the group generated by the two non-commuting subgroups.

The structure of the group (1.1) will be discussed at length in this review, and a set

of Weyl and Borel generators will be identi�ed. The former preserve the rectangularity
of the torus and the vanishing of the gauge background, while the latter allow a move to

arbitrary tori. States are classi�ed into representations of the U-duality group Ed(d)(Z),
whether BPS or not, and we will derive U-duality invariant mass and tension formulae for

1/2- and 1/4-BPS states, as well as conditions for a state to preserve a given fraction of
the supersymmetries. Besides the entertaining encounter with discrete exceptional groups,

this will actually teach us about the spectrum of M-theory, since the more M-theory is
compacti�ed, the more degrees of freedom come into play. In particular, we will show the

need to include states with masses that behave as 1/gn
s , n ≥ 3, which are unconventional in

perturbative string theory. An important application of these results is the exact determi-
nation of certain physical amplitudes in M-theory, such as the four-graviton R4 coupling,

which can be interpreted as traces over M-theory BPS states [21, 142, 253]. The weak

coupling analysis of these exact couplings provides a very useful insight into the rules of
semi-classical calculus in string theory [34, 246, 140, 146, 20, 199, 255].

‡2The �rst example of string duality actually appeared in the context of heterotic string theory [119].
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A proposal has recently been put forward by Banks, Fischler, Shenker and Susskind to

de�ne M-theory ab initio on the (discrete) light front, as the large-N limit of a supersym-

metric matrix model given by the dimensional reduction of 10D U(N) super Yang�Mills

(SYM) theory to 0 + 1 dimension [24, 300]. This model also describes low-energy inter-

actions of D0-branes induced by open string �uctuations [82, 186, 100], and, as shown

by Seiberg, arises from considering M-theory on the light front as a particular limit of M-

theory compacti�ed on a circle, i.e. type IIA theory [278]. D0-branes are therefore identi�ed

as the partons of M-theory in this framework. This proposal has passed numerous tests,

and has been shown to incorporate membrane and (transverse) �vebrane solutions, and to

reproduce 11D SUGRA computations. The invariance under eleven-dimensional Lorentz

invariance remains, however, to be demonstrated (see [217] for a step in that direction).

Upon compacti�cation of d dimensions, the D0-branes interact by open strings wrapped

many times around the compacti�cation manifold, and the in�nite-dimensional quantum

mechanics can be rephrased as a gauge theory in d+1 dimensions [305, 127]. This dramatic

increase of degrees of freedom certainly removes part of the appeal of the proposal, but

becomes even more serious for d ≥ 4, where the gauge theory loses its asymptotic freedom
and becomes ill-de�ned at small distances. We will brie�y discuss the proposals for ex-

tending this de�nition to d = 4, 5. We will also discuss the interpretation of M-theory BPS
states in the gauge theory, and show the occurrence of unconventional states with energy

1/g2n
YM, n ≥ 2. Despite these di�culties, the Matrix gauge theory gives a nice understand-

ing of U-duality as the electric�magnetic duality of the gauge theory, together with the
modular group of the torus on which it lives [299, 127, 110]. The interpretation of �nite-N
matrix theory as the compacti�cation of M-theory on a light-like circle implies that the
U-duality group Ed(d)(Z) be enlarged to Ed+1(d+1)(Z) [172, 54, 244, 173]; we will show that
this extra symmetry mixes the rank N of the gauge group with charges in a way reminiscent

of Nahm duality. All these features are guidelines for a hypothetical fundamental de�nition
of Matrix gauge theory.

1.2 Sources and omissions

This review is intended as a pedagogical introduction to M-theory, from the point of view
of its 11D SUGRA low-energy limit, its strongly coupled type II string description, and

its purported M(atrix) theory de�nition. It is restricted to maximally supersymmetric

toroidally compacti�ed M-theory, and uses U-duality as the main tool to uncover the part
of the spectrum that is annihilated by half or a quarter of the 32 supersymmetries. The

exposition mainly follows [110, 255, 244], but relies heavily on [318, 319, 310, 278, 91]. It
is usefully supplemented by other presentations on supergravity solutions [296, 309, 310],

M(atrix) theory [22, 51, 94], D-branes [257, 267, 306, 19], string dualities [98, 275, 316, 87,

238, 284] and perturbative string theory [247, 198] and general introductions [254, 14, 276].
The following topics are beyond the scope of this work:

• Black hole entropy: the modelisation of extremal black-holes by D-brane bound states

has allowed a description of their microscopic degrees of freedom and a derivation of
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their Bekenstein�Hawking entropy [297] (see [224, 252] for reviews). The latter can

be related to a U-duality invariant of the black hole charges [167, 79, 189, 5, 9], and

U-duality can even allow the control of non-extremal states [294].

• Gauge dynamics: the study of D-brane con�gurations has also led to a qualitative

understanding of gauge theories dynamics as world-volume dynamics of these objects;

see [133] for a thorough review. We will mainly consider con�gurations of parallel

branes, as describing the Matrix gauge theory description of M-theory on the light

cone.

• BPS-saturated amplitudes: A special class of terms in the e�ective actions of M-

theory and string theory receives contributions from BPS states only. We will brie�y

discuss an application of the M-theory mass formulae that we derived to the com-

putation of exact R4 couplings in Subsection 5.8, and refer to the existing liter-

ature for more details on the exact non-perturbative computation of these cou-

plings, and their interpretation at weak coupling as a sum of instanton e�ects.

Relevant references include [34, 246, 280] for two-derivative terms in N = 2 type

II strings, [156, 157, 147, 12] for four-derivative terms in type II/heterotic the-
ories, [21, 20, 199], for F 4 (and related) terms in type I/heterotic theories, and
[140, 146, 142, 200, 12, 48, 192, 255, 253, 141, 145] for R4 (and related) terms in

type IIB/M-theory. In�nite series of higher-derivative BPS-saturated R2F 2g−2 or
R4H4g−4, and Rn terms have also been computed or conjectured in Refs. [11, 226]
and [49, 268, 180, 191].

• Scattering amplitudes: in order to validate the M(atrix) theory conjecture of BFSS,
a number of scattering computations have been carried out both in the Matrix model

and in 11D supergravity; they have shown agreement up to two loops, see for instance
[32, 33, 258, 66, 96, 193, 317, 245, 229, 112]. This agreement is better than naively
expected, and indicates the existence of non-renormalization theorems [248] for these

interactions.

• D-instanton matrix model: an alternative formulation of M-theory as a statistical

matrix model has been proposed by Ishibashi, Kawai, Kitazawa and Tsuchiya [179].
It has so far not been developed to the same extent as the BFSS proposal, and in

particular the origin of U-duality has not been explicited. See Refs. [64, 114, 160,

113, 270, 203, 63, 65, 123, 201, 53, 225, 301, 13, 4, 124] for further discussion.

• Twelve dimensions and beyond: the structure of U-duality symmetry has led to specu-

late on the existence of a 12D [313, 27, 30, 242] or higher [28, 29, 26, 241, 293, 266, 240]

dimensional parent of M-theory, with extra time directions. The N = 2 heterotic
strings suggest an appealing construction of this theory (see [227] for a review).

However, the full higher-dimensional Lorentz symmetry is partially reduced to its
U-duality subgroup, and its usefulness remains unclear at present. We shall, how-

ever, encounter in Subsection 4.6 a tantalizing hint for an extra time-like direction

with �length� l3p.
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• String networks: a construction of 1/4-BPS states based on three-string junctions

[275, 60, 83] has been suggested [288], that reproduces the U-duality invariant mass

formula in 8 dimensions [50, 50, 208]. These solutions have been constructed from the

M2-brane [206, 228] and their dynamics discussed in [264, 61], but their supergravity

description is still unclear.

• Non-commutative geometry: it has been argued that non-commutative geometry [69]

is the appropriate framework to discuss D-brane dynamics, and is even required in

the presence of Kalb�Ramond two-form background [70, 99, 67]. This description

incorporates T-duality [261, 271] and even U-duality in its Born�Infeld generaliza-

tion [162]. It should in particular (see Subsection 7.8) extend Nahm's duality of

ordinary two-dimensional Maxwell theory to higher-dimensional cases [237]. Related

discussions can be found in Refs. [161, 213, 190, 44, 233, 211, 71].

• Gauged supergravity: 11D SUGRA possesses maximally supersymmetric backgrounds

other than tori, namely compacti�cations on products of spheres and anti-deSitter

spaces [120]. These correspond to the near-horizon geometry of M2- and M5-branes,
and have been argued to provide a dual description to the gauge theory on these
extended objects [223]. They will be ignored in this review.

• String theories with non maximal supersymmetry: the E8 × E8 heterotic string and
type I string can be obtained from M-theory by orbifold compacti�cation [165, 166],

while the SO(32) heterotic string is related to E8 × E8 by a T-duality, or to type
I string theory by a non-perturbative duality [259]. M(atrix) theory descriptions
have been proposed both in the heterotic [25, 235, 215, 194, 262, 164, 137, 187, 216,

205, 204, 90] and the type II [117, 197, 46, 138, 195, 89, 90] cases, as well as on
non-orientable surfaces [196, 322], and will not be treated here.

• Non-BPS states: The study of stable non-BPS states has been iniated in [287] and
further examined [286, 289, 285, 36]. It would be interesting to investigate the impli-
cations of U-duality symmetry on the spectrum of non-BPS states.

1.3 Outline

Section 2 introduces the superalgebra and fundamental BPS states of M-theory in the con-

text of 11D SUGRA and type IIA/B superstring theories. T-duality is recalled and revisited
in Section 3 from an algebraic point of view, at the level of the e�ective action and of the

perturbative and non-perturbative BPS spectrum. The same techniques are used in Section
4 to introduce U-duality and its action on the spectrum of particles and strings, restrict-

ing to Weyl generators. Borel generators are incorporated in Section 5, where U-duality

invariant mass and tension formulae for general toroidal compacti�cation with arbitrary
gauge backgrounds are derived, as well as U-duality multiplets of BPS constraints. Section

6 introduces Matrix gauge theory as the Discrete Light-Cone Quantization of M-theory fol-

lowing an argument by Seiberg, and discusses the dictionary between M-theory and Matrix
gauge theory. The U-duality symmetry is �nally discussed in Section 7 from the perspective

of the Matrix gauge theory, as well as the extended U-duality symmetry arising from the

extra light-like direction. 11



2 M-theory and BPS states

2.1 M-theory and type IIA string theory

M-theory was originally introduced as the strong coupling limit of type IIA superstring

theory. The latter has been argued [318, 307] to dynamically generate an extra compact

dimension at �nite coupling of radius Rs ∼ g
2/3
s in units of an eleven-dimensional Planck

length lp:

Rs/lp = g2/3
s , l3p = gsl

3
s (2.1)

where 1/l2s = α′ denotes the string tension and gs its coupling constant. The strong coupling

limit gs →∞ should therefore exhibit eleven-dimensional N = 1 super-Poincaré invariance.

While a consistent eleven-dimensional theory of quantum gravity is still missing, it has

been known for a long time that type IIA supergravity can be obtained from the eleven-

dimensional N = 1 supergravity of Cremmer, Julia and Scherk, by dimensional reduction
on a circle. M-theory is therefore required to reduce at energies much smaller than 1/lp
to 11D SUGRA, in the same way as type IIA (or type IIB) superstring theory reduces to

type IIA [62, 178, 131] (or type IIB [277, 168, 272]) supergravity at energies much smaller

than 1/ls (which is also smaller than both the ten-dimensional Planck mass g
−1/4
s /ls and

the eleven-dimensional Planck mass g
−1/3
s /ls at weak coupling). This is summarized in the

following diagram:

M-theory −→
S1

type IIA string theory

↓ ↓
11D supergravity −→

S1
10D type IIA supergravity

where compacti�cation on a circle occurs from left to right and the energy decreases from
top to bottom.

The matching relations (2.1) can be easily obtained by studying the Kaluza�Klein re-

duction of 11D SUGRA, described by the action

S11 =
1

l9p

∫
d11x

√
−g
(
R−

l6p
48

(dC)2

)
+

√
2

27 · 32

∫
C ∧ dC ∧ dC (2.2)

up to fermionic terms that we will ignore in the following. In addition to the usual Einstein�

Hilbert term involving the scalar curvature R of the metric gMN , the action contains a

kinetic term for the 3�form gauge potential CMNR (which we shall often denote by C3) as
well as a topological Wess�Zumino term required by supersymmetry. The action (2.2) does

not contain any dimensionless parameter, and the normalization of the Wess�Zumino term

with respect to the Einstein term is �xed by supersymmetry. The dependence on the Planck
length lp has been reinstated by dimensional analysis, with the following conventions:

[dx] = 0, [gMN ] = 2, [
√
−g] = 11, [R] = −2, [CMNR] = 0, [d] = 0 , (2.3)

12



relegating the dimension to the metric only. In particular, the relation between the eleven-

dimensional Planck length and Newton's constant is given by κ2
11 = l9p/(2(2π)8). We will

generally ignore all numerical factors.

Dimensional reduction is carried out by substituting an ansatz

ds2
11 = R2

s(dx
s +Aµdx

µ)2 + ds2
10 (2.4)

for the metric, where Rs stands for the �uctuating radius of compacti�cation (as measured

in the eleven-dimensional metric) and A describes the Kaluza�Klein U(1) gauge �eld arising
from the isometry along xs ‡3, and splitting the three-form CMNR in a two-form Bµν = Cµνs

and a 3-form Cµνρ. Only the zero Fourier component (i.e. the zero Kaluza�Klein momentum

part) of these �elds along xs is kept. On dimensional grounds the scalar curvature becomes

R(gMN) = R(gµν) +

(
∂Rs

Rs

)2

+R2
s(dA)2 , (2.5)

so that the reduced action reads

S10 =
1

l9p

∫
d10xRs

√
−g
[
R +

(
∂Rs

Rs

)2

+R2
s(dA)2 + l6p(dC)2 +

l6p
R2

s

(dB)2

]

+

∫
B ∧ dC ∧ dC . (2.6)

On the other hand, the low-energy limit of type IIA string theory is given (in the string
frame) by the action

SIIA =
1

l8s

∫
d10x

√
−g
[
e−2φ

(
R + 4(∂φ)2 − l4s

12
(dB)2

)
− l2s

4
(dA)2 − l6s

48
(dC)2

]
+

∫
B ∧ dC ∧ dC , (2.7)

which describes the dynamics of the (bosonic) massless sector

NS-NS : gµν , Bµν , φ (2.8a)

R-R : Aµ , Cµνρ (2.8b)

denoting the metric, antisymmetric tensor and dilaton from the Neveu�Schwarz square
sector, and the one- and three-form gauge potentials from the Ramond square sector (indices

µ run over 1 . . . 10). Ramond p-form gauge �elds will be generically denoted by Rp. The
dependence on the string length ls is again instated on dimensional grounds, while the
dependence on the coupling

g2
s = e2φ (2.9)

‡3The subscript s is used to indicate that string theory is obtained in this way.
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stems from the fact that the two-derivative action originates from string tree level (hence

the e−2φ factor), with each Ramond �eld coming with an additional power of eφ, ensuring

the correct Maxwell and Bianchi identities (see [260] for a recent discussion). In particular,

the ten-dimensional Newton's constant is given by κ2
10 = g2

s l
8
s . Identifying the dilaton φ

with the scalar modulus lnRs up to a numerical factor, and matching the two actions (2.6)

and (2.7) leads to the relations

Rs

l9p
=

1

g2
s l

8
s

,
1

Rsl3p
=

1

g2
s l

4
s

,
R3

s

l9p
=

1

l6s
,

Rs

l3p
=

1

l2s
, (2.10)

obtained by comparing the terms R, dB, dA and dC respectively in Eqs. (2.6) and (2.7).

Two of these four relations turn out to be redundant as a consequence of supersymme-

try, and they can be reduced to the matching relations already stated in Eq. (2.1), or

equivalently

Rs = lsgs ,
Rs

l3p
=

1

l2s
, (2.11)

which summarize the relation between the M-theory parameters {lp, Rs} and the string
theory parameters {ls, gs}.

Using (2.11) and (2.9) in the metric (2.4) we �nd the alternative form

ds2
11

l2p
= e4φ/3(dxs +Aµdx

µ)2 + e−2φ/3 ds2
10

l2s
, (2.12)

which will be used to relate low-energy solutions of M-theory and type IIA string theory.

2.2 M-theory superalgebra and BPS states

While M-theory has to reduce to 11D SUGRA in the low-energy limit, little is known about

its microscopic degrees of freedom. It is however postulated that the N = 1 supersymmetry
of 11D SUGRA should be valid at any energy, and the spectrum is therefore organized into

representations of the super-Poincaré algebra [308]:

{Qα, Qβ} = (CΓM)αβZM +
1

2
(CΓMN)αβZ

MN (2.13a)

+
1

5!
(CΓMNPQR)αβZ

MNPQR

[
Qα, Z

M...
]

= 0 . (2.13b)

Here Qα denotes the 32-component Majorana spinor generating the supersymmetry (see

[207] for a general account on spinorial representations), and ΓMN... the antisymmetric

product of Γ matrices, i.e. ΓMΓN . . . for distinct indices and zero otherwise. See Appendix

A.1 for our gamma matrix conventions.
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In addition to the usual translation operator PM , which we denoted by ZM for uni-

formity, the right-hand side of Eq. (2.13a) contains �central charges� ZMN and ZMNRST

in non-trivial representations of the Lorentz group. These charges appear as irreducible

representations (irreps) in the decomposition 528 = 11 + 55 + 462 of the symmetric ten-

sor product {Qα, Qβ}, and the simplest assumption is that they should commute with the

SUSY charges Qα
‡4 (their commutation properties with the Lorentz generators are encoded

in their index structure). They can be identi�ed as the electric and magnetic charges of

extended objects [169, 84] with respect to the gauge potential CMNP and the metric gMN

and their Kaluza�Klein descendants.

The various components of the central charges, their corresponding potentials, as well as

the nature of the solution, are summarized in Table 2.1. Here, E6 denotes the six-form dual

to C3 and KI;IMNPQRST the 7-form‡5 dual to the Kaluza�Klein gauge potential gIM after

compactifying the direction I. This hints toward the existence of extended states charged

under these gauge �elds, namely 2-branes, 5-branes, 6-branes and 9-branes. The 9-branes,

which are not charged under a gauge potential, are not dynamical and correspond to the

�end-of-the-world� branes in compacti�cations of M-theory with lower supersymmetry [165].
They will not be further considered in this review, but we will shortly return to the M2,

M5 and KK6-brane.

Z0 ZI ZIJ ZIJKLM Z0I Z0IJKL

g00 g0I C0IJ E0IJKLM none KM ;MNPQRST0

mass momentum M2-brane M5-brane 9-brane KK6-brane

Table 2.1: M-theory central charges, gauge �elds and extended objects.

The generic representation of the superalgebra (2.13) is generated by the action of 16
fermionic creation operators on a vacuum |0〉 in a given representation of the Lorentz group;
it is therefore 216-dimensional, i.e. contains 32768 bosonic states and 32768 fermionic states.

The positivity of the matrix 〈0|{Qα, Qβ}|0〉 implies a bound on the rest mass Z0 known

as the Bogomolny bound. When this bound is saturated, part of the supersymmetries

annihilate the vacuum |0〉: ∑
Z

ZMN...(CΓMN...)
αβQβ |0〉 = 0 , (2.14)

resulting in a reduced degeneracy. Equation (2.14) requires that the 32 × 32 matrix

ZMN...(ΓMN...)
αβ has at least one zero eigenvalue, and implies in particular the BPS condi-

‡4It is possible to introduce non-Abelian relations while still preserving the Jacobi identity [292], but the
status of this possibility is still unclear.
‡5No antisymmetry is assumed for indices separated by a semi-colon. The peculiar index structure

K1;8 = KI;IMNPQRST ensures that the seven-form indices M, . . . , T are distinct from the compact direction
I, and the double occurrence of I has the same origin as the square radius R2 in Eq. (2.28).
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tion

det
αβ

(∑
Z

(Z · Γ)αβ

)
= 0 , (2.15)

which determines the rest mass Z0 in terms of the other charges.

The dimension can be further reduced if the zero eigenvalue is degenerate, and this

requires more relations between the various charges. Since only Z0 contributes to the trace

on the right-hand side of Eq. (2.13a), the maximum number of zero eigenvalues is 16,

corresponding to a state annihilated by half the supersymmetries, or in short a 1/2-BPS

state. Because of its reduced dimension, a BPS state with smallest charge cannot decay,

except if it can pair up with another state of opposite charge to make a representation twice

as long [321]. These states can therefore be followed at strong coupling (in the M-theory

language, this means for arbitrary geometries of the compacti�cation manifold) and serve

as the basis for many duality checks.

As an illustration, we wish to investigate the case where, besides the mass M = Z0,
only the two-form central charges ZIJ do not vanish. This will be later interpreted as an
arbitrary superposition of M2-branes. We therefore have to solve the eigenvalue equation:

Γε = Mε , Γ ≡ ZIJΓ0IJ (2.16)

Squaring this equation yields

Γ2 = ZIJZIJ + ZIJZKLΓIJKL $ M2 , (2.17)

where the symbol $ denotes the equality when acting on ε. The space of solutions now

depends on the value of kIJKL ≡ Z [IJZKL] = Z ∧ Z. If k = 0, Eq. (2.17) implies
(ZIJ)2 = M2 and Γ2 = M2. Since Tr Γ = 0, the 32 × 32 matrix Γ has 16 eigenvalues M
and 16 eigenvalues −M, and therefore Eq. (2.16) is satis�ed for a dimension-16 space of

vectors ε. The state with charges ZIJ is therefore annihilated by half the supersymmetry
generators Qα, and has a mass

M2
0 = ZIJZIJ . (2.18)

The condition Z ∧Z = 0 means that the antisymmetric charge matrix ZIJ has rank 2, i.e.

that only parallel M2-branes are superposed.

If on the other hand Z ∧ Z 6= 0, we may rewrite Eq. (2.17) as

Γ′ε =
(
M2 −M2

0

)
ε , Γ′ = kIJKLΓIJKL , (2.19)

and we are lead back to an equation similar to Eq. (2.16). Squaring again yields

Γ
′2 = (kIJKL)2 + (k · k)IJKLΓIJKL + (k ∧ k)IJKLMNPQΓIJKLMNPQ

$
(
M2 −M2

0

)2
, (2.20)
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where (k · k)IJKL = kIJMNkKLMN . As before, if k · k = k ∧ k = 0, this equation implies

(kIJKL)2 = (M2 − M2
0)

2 = Γ
′2. Since Tr Γ′ = 0, Eq. (2.19) is satis�ed by half the

supersymmetries, but Eq. (2.16) by a quarter only. We therefore get a 1/4-BPS state with

mass squared:

M2 = ZIJZIJ +
√
kIJKLkIJKL (2.21a)

kIJKL = Z [IJZKL] . (2.21b)

This expression reduces to Eq. (2.18) for a 1/2-BPS state, i.e. when kIJKL = 0. On the

other hand, if k · k or k∧k 6= 0 do not vanish, the state is at most 1/8-BPS and we have to

carry the same analysis one step further. Note that the conditions k ·k 6= 0 (resp. k∧k 6= 0)
can only be satis�ed when d ≥ 6 ( resp. d ≥ 8), in agreement with the absence of 1/8-BPS

states in more than �ve space-time dimensions.

2.3 BPS solutions of 11D SUGRA

In want of a microscopic formulation of M-theory (or of non-perturbative type IIA string
theory), it is certainly di�cult to determine what representations of the eleven-dimensional

Poincaré superalgebra actually occur in the spectrum. However, this is achievable for
BPS states, since supersymmetry protects these from quantum e�ects and in particular
determine their exact mass formula. They can be studied at arbitrarily low energy, and

in particular in the 11D SUGRA limit of M-theory. Instead of describing the equations
implied by the BPS condition on the supergravity con�guration, we refer the reader to
existing reviews in the literature [106, 104, 309, 296, 310], and content ourselves with

recalling the four 1/2-BPS standard solutions: the pp-wave and three extended solutions,
the membrane (or M2-brane), �vebrane (M5-brane) and the Kaluza�Klein monopole, also

known as the KK6-brane.

The eleven-dimensional metric describing the extended solutions splits into two parts:

the world-volume, denoted by E1,p, including the time and p world-volume directions, and

the transverse Euclidean part E10−p. These solutions are given in terms of a harmonic

function H on the transverse space, which we choose as a single pole

H(r) = 1 +
k

r8−p
, (2.22)

although any superposition of such poles would do (this is stating the no-force condition
between static BPS states; the constant shift in Eq. (2.22) ensures the asymptotic �atness

of space-time, required for a soliton interpretation). The constant k depends on Newton's

constant κ11 and on the p-brane tension, and is quantized by the requirement that the
space-time be smooth (we will henceforth choose the smaller quantum).

The pp-wave‡6 and KK6-brane solutions only involve the metric, and read [170, 307]

pp-wave : ds2
11 = −dt2 + dρ2 + (H − 1)(dt+ dρ)2 + ds2(E9) (2.23a)

‡6The name pp-wave stands for plane fronted wave with parallel rays [55]. The solution (2.23) was
generalized in [41] to include excitations of the three-form potential.
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H = 1 +
k

r7
(2.23b)

KK6-brane : ds2
11 = ds2(E1,6) + ds2

TN(y) (2.24a)

ds2
TN = Hdyidyi +H−1

(
dψTN + Vi(y)dy

i
)2

, i = 1, 2, 3 (2.24b)

∇× V = ∇ ·H , H = 1 +
k

|y| . (2.24c)

The KK6-brane solution is analogous to the �ve-dimensional Kaluza�Klein monopole [295],

and is built out from the four-dimensional Taub�NUT gravitational instanton (see Ref.

[109] for a review of this topic), which is asymptotically of the form R3 × S1, where ψTN

is the compact coordinate of S1 with period 2πR. Consequently, this solution only arises

when at least one direction is compact. It is localized in the four Taub�NUT directions,

as should be the case for a 6-brane, and magnetically charged under the graviphoton gµTN.
It can be considered as the electromagnetic dual of a pp-wave, electrically charged under

the graviphoton arising after compacti�cation on a circle of radius R. pp-waves in compact
directions will be called indi�erently Kaluza�Klein excitations or momentum states.

The corresponding solutions for the M2- and M5-brane read [108, 149]:

M2-brane : ds2
11 = H−2/3ds2(E1,2) +H1/3ds2(E8) (2.25a)

dC3 = Vol(E1,2) ∧ dH−1 (2.25b)

H = 1 +
k

r6
, k =

κ2
11T2

3Ω7

(2.25c)

M5-brane : ds2
11 = H−1/3ds2(E1,5) +H2/3ds2(E5) (2.26a)

dC3 = ?5dH (2.26b)

H = 1 +
k

r3
, k =

κ2
11T5

3Ω4

, (2.26c)

which also show that the M2-brane (resp. M5-) is electrically (resp. magnetically) charged

under the 3-form gauge potential. The symbol ?q denotes Hodge duality in q dimensions,

and Ωn the volume of the sphere Sn with unit radius:

Ωn =
2π

n+1
2

Γ
(

n+1
2

) . (2.27)
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The tensions (or mass per unit world-volume) of these four basic BPS con�gurations

can be easily evaluated from ADM boundary integrals and Dirac quantization, or more

easily yet by dimensional analysis:

KK-state : T0 =
1

R
, KK6-brane : T6 =

R2

l9p
,

M2-brane : T2 =
1

l3p
, M5-brane : T5 =

1

l6p
.

(2.28)

The tension (i.e. mass) of the pp-wave with momentum along a compact direction of radius

R (occasionally denoted as RTN) is the one expected for a massless particle in eleven

dimensions; the tension of the KK6-brane is easily obtained from the latter by electric�

magnetic duality, after reading o� from Eq. (2.6) the Kaluza�Klein gauge coupling 1/g2
KK =

R3/l9p:

T6 =
T0

g2
KK

=
R2

l9p
. (2.29)

All these BPS states have been inferred from a classical analysis of 11D supergravity.
They should in principle arise from a microscopic de�nition of M-theory, which would

allow a full account of their interactions. Nevertheless, it is still possible to formulate
their dynamics in terms of their collective coordinates which result from the breaking of
global symmetries in the presence of the soliton [130]. Supersymmetry gives an important

guideline, since (the unbroken) half of the 32 supercharges has to be realized linearly on the
world-volume, while the other half is realized non-linearly. This �xes the dynamics of the

M5-brane to be described in terms of the chiral (2, 0) six-dimensional tensor theory [59],
while the membrane is described by the 2+1 supermembrane action [42, 86]. Unfortunately,
the quantization of these two theories remains a challenge. As for the KK6-brane, the

description of its dynamics is still an unsettled problem [155].

2.4 Reduction to type IIA BPS solutions

Upon compacti�cation on a circle (with periodic boundary conditions on the fermion �elds),
the supersymmetry algebra is una�ected and the generators merely decompose under the
reduced Lorentz group. The 32-component Majorana spinor Qα decomposes into two 16-

component Majorana�Weyl spinors of SO(1, 9) with opposite chiralities, and the N = 1
supersymmetry in 11D gives rise to non-chiral N = 2 supersymmetry in 10D. However, it

is convenient not to separate the two chiralities explicitly, and rewrite the supersymmetry

algebra as

{Qα, Qβ} = (CΓµ)αβPµ + (CΓs)αβZ

+
1

2
(CΓµν)αβZ

µν + (CΓµΓs)αβZ
µ (2.30)

+
1

5!
(CΓµνρστ )αβZ

µνρστ +
1

4!
(CΓµνρσΓs)αβZ

µνρσ ,
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where the eleventh Gammamatrix Γs is identi�ed with the 10D chirality operator Γ0Γ1 . . .Γ9.

The eleven-dimensional central charges give rise to the charges Z, Zµ, Zµν , Zµνρσ, Zµνρστ

whose interpretation is summarized in Table 2.2, where we omitted the momentum charge

Pµ. In this table, Km;mnpqrst denotes the 6-form dual to gµm after compacti�cation of the

direction m.

Z Z ij Z i Z ijklm Z ijkl Z0i Z0 Z0ijkl Z0ijk

A0 C0ij B0i E0ijklm R0ijkl none none Km;mpqrs0 R0lmnpqr

D0 D2 F1 NS5 D4 D8 9-brane KK5 D6

Table 2.2: Type IIA central charges, gauge �elds and extended objects

Under Kaluza�Klein reduction, the BPS solutions of 11D SUGRA yield BPS solutions

of type IIA supergravity. This reduction can, however, be carried out only if the eleventh di-

mension is a Killing vector of the con�guration. This is automatically obeyed if the eleventh
direction is chosen along the world-volume E1,p, and reduces the eleven-dimensional p-brane
to a ten-dimensional (p−1)-brane with tension Tp−1 = RTp; this procedure is called diagonal
or double reduction [105], and we shall call the resulting solutions wrapped or longitudinal

branes. One may also want to choose the eleventh direction transverse to the brane, but
this is not an isometry, since the dependence of the harmonic function H on the transverse
coordinates is non-trivial. However, this can be easily evaded by using the superposition

property of BPS states, and constructing a continuous stack of parallel p-branes along the
eleventh direction. The harmonic function on E10−p turns into an harmonic function on

E9−p: ∫ ∞

−∞

dxs

[(xs)2 + ρ2]
8−p
2

∼ 1

ρ7−p
. (2.31)

We therefore obtain an unwrapped or transverse p-brane in ten dimensions with the same

tension Tp as the one we started with. This procedure is usually called vertical or direct

reduction. It has also been proposed to reduce along the isometry that arises when the
sphere S9−p in the transverse space E10−p is odd-dimensional, hence given as a U(1) Hopf
�bration [107], but the status of the solutions obtained by this angular reduction is still

unclear.

Applying this procedure to the four M-theory BPS con�gurations, with tensions given

in Eq. (2.28), we �nd, after using the relations (2.11), the set of BPS states of type IIA
string theory listed in Table 2.3:

As the table shows, we recover the set of all 1/2 BPS solutions of type IIA string theory,

which include the KK excitations, the fundamental string and the set of solitonic states

comprised by the NS5-brane, KK5-brane and the Dp-branes‡7 with p = 0, 2, 4, 6 ‡8. The

‡7The letter D stands for the Dirichlet boundary conditions in the 9 − p directions orthogonal to the
world-volume of the Dp-brane, which force the open strings to move on this (p+1)-dimensional hyperplane.
‡8There is also an 8-brane coupling to a nine-form, whose expectation value is related to the cosmological

constant [256, 40, 38].

20



M-theory mass/tension type IIA

longitudinal M2-brane T1 = Rs

l3p
= 1

l2s
F-string

transverse M2-brane T2 = 1
l3p

= 1
gsl3s

D2-brane

longitudinal M5-brane T4 = Rs

l6p
= 1

gsl5s
D4-brane

transverse M5-brane T5 = 1
l6p

= 1
g2

s l6s
NS5-brane

longitudinal KK mode T0 = 1
Rs

= 1
gsls

D0-brane

transverse KK mode T0 = 1
Ri

= 1
Ri

KK mode

longitudinal KK6-brane T5 =
RsR2

TN

l9p
=

R2
TN

g2
s l8s

KK5-brane

KK6-brane with RTN = Rs T6 = R2
s

l9p
= 1

gsl7s
D6-brane

transverse KK6-brane T6 =
R2

TN

l9p
=

R2
TN

g3
s l9s

61
3-brane

Table 2.3: Relation between M-theory and type IIA BPS states.

NS5-brane is a solitonic solution that is magnetically charged under the Neveu�Schwarz
B-�eld [59]. The Dp-branes are solitonic solutions, electrically charged under the RR gauge
potentials Rp+1 (or magnetically under R7−p) [256]. The tension of these BPS states does

not receive any quantum corrections perturbative or non-perturbative, which is why these
objects are useful when considering non-perturbative dualities. States electrically (resp.

magnetically) charged under the Neveu�Schwarz gauge �elds have tensions that scale with
the string coupling constant as g0

s (resp. 1/g2
s), whereas states charged under the Ramond

�elds have tensions that scale as 1/gs.

The last line in Table 2.3 is an unconventional solution, which we call a 61
3-brane, ob-

tained by vertical reduction of the KK6-brane in a direction in the R3 part of the Taub�NUT

space [54]. The integration involved in building up the stack is, however, logarithmically

divergent, and, if regularized, yields a non-asymptotically �at space. However, as we will

see in more detail in Subsection 4.9, at the algebraic level this solution is required by U-
duality symmetry. At that point we will also explain our nomenclature for this (and other)

non-conventional solutions. It is also interesting to note that all the tensions obtained

above are not independent, since they follow from the basic relations (2.11). This already
hints at the presence of a larger structure that relates all these states, a fact that we will

establish using the conjectured U-duality symmetry of compacti�ed M-theory.

The dimensional reduction can also be carried out at the level of the supergravity

con�guration itself. For example, using the relation (2.12) between the 11D metric and
10D string metric, one �nds that a solution with 11D metric of the form

ds2
11 = Hκds2(E1,p) +Hλds2(E10−p) (2.32)
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yields two 10D solutions with metric and dilaton

ds2
10 = Hαds2(E1,p′) +Hβds2(E9−p′) , e−2φ = Hγ (2.33a)

where

diagonal : p′ = p− 1 , α =
3κ

2
, β = λ+

κ

2
, γ = −3κ

2
, (2.33b)

vertical : p′ = p , α = κ+
λ

2
, β =

3λ

2
, γ = −3λ

2
, (2.33c)

for diagonal and vertical reduction respectively. As explained in the beginning of this

subsection, in the �rst case the harmonic function is the same as the original one, and in

the second case it is an harmonic function on a transverse space with one dimension less.

The reduction of the gauge potentials can be worked out similarly.

The resulting 10D type IIA con�gurations are then described by the following solutions:

F-string : ds2
10 = H−1ds2(E1,1) + ds2(E8) (2.34a)

B01 = H−1 , e−2φ = H , H = 1 +
k

r6
(2.34b)

NS5-brane : ds2
10 = ds2(E1,5) +Hds2(E4) (2.35a)

dB = ?4dH , e−2φ = H−1 , H = 1 +
k

r2
(2.35b)

Dp-brane : ds2
10 = H−1/2ds2(E1,p) +H1/2ds2(E9−p) (2.36a)

e−2φ = H(p−3)/2 , H = 1 +
k

r7−p
(2.36b)

F (p+2)
e = Vol(E1,p) ∧ dH−1 , p = 0, 1, 2 (2.36c)

F (8−p)
m = ?9−pdH , p = 4, 5, 6 (2.36d)

F (5) = F (5)
e + F (5)

m , p = 3 (2.36e)
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where, for completeness, we have included the Dp-brane solutions for all p = 0 . . . 6, al-
though we note that only even p occurs in type IIA. The subscripts e and m indicate

whether the p-branes are electrically or magnetically charged under the indicated �elds.

One also �nds the ten-dimensional gravitational solutions, consisting of the pp-waves and
KK5-brane, which have a metric analogous to the eleven-dimensional case (see (2.23) and

(2.24)), with harmonic functions on a transverse space with one dimension less. Of course,

one may explicitly verify that all of these solutions are indeed solutions of the tree-level

action (2.7).

In contrast to the M2-brane and M5-brane, the dynamics of Dp-branes has a nice and

tractable description as (p + 1)-dimensional hyperplanes on which open strings can end

and exchange momentum with [256]. The integration of open string �uctuations around a

single D-brane at tree level yields the Born�Infeld action [58, 210, 18],

SBI =
1

lp+1
s

∫
dp+1ξe−φ

√
ĝ + B̂ + l2sF . (2.37)

Here, the hatted �elds ĝ, B̂ stand for the pullbacks of the bulk metric and antisymmetric
tensor to the world-volume of the brane, and F is the �eld strength of the U(1) gauge �eld
living on the brane. The coupling to the RR gauge potentials is given by the topological
term [97, 143]‡9

SRR = i

∫
eB̂+l2sF ∧ R , (2.38)

where R =
∑

pRp denotes the total RR potential.

In the zero-slope limit, the Born�Infeld action becomes the action of a supersymmetric
Maxwell theory with 16 supercharges. In the presence of N coinciding D-branes the world-
volume gauge symmetry gets enhanced from U(1)N to U(N), as a consequence of zero

mass strings stretching between di�erent D-branes [320]. The non-Abelian analogue of the
Born�Infeld action is not known, although some partial Abelianization is available [312],

but its zero-slope limit is still given by U(N) super-Yang�Mills theory.

2.5 T-duality and type IIA/B string theory

So far, we have discussed M-theory and its relation to type IIA string theory. In this

subsection, we turn to type IIB string theory and its relation, via T-duality, to type IIA

[95, 80]. We �rst recall that the massless sector of type IIB consists of the same Neveu�
Schwarz �elds (2.8a) as the type IIA string, but the Ramond gauge potentials of type IIB

now include a 0-form (scalar), a 2-form and a 4-form with self-dual �eld strength,

a , Bµν , Dµνρσ , (2.39)

‡9There is also a gravitational term required for the cancellation of anomalies [139], but it does not
contribute on �at backgrounds.
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with ∗D4 = D4. The low-energy e�ective action has a form similar to that in (2.7), with the

appropriate �eld strengths of the even-form RR potentials in (2.39), as long as the 4-form

is not included‡10. The standard 1/2-BPS solutions of type IIB are the fundamental string,

NS5-brane, Dp-branes with odd p, pp-waves and KK5-brane.

In order to describe the precise T-duality mapping, we again write the ten-dimensional

metric as a U(1) �bration

ds2
10 = R2(dx9 + Aµdx

µ)2 + gµνdx
µdxν , µ, ν = 0 . . . 8 . (2.40)

T-duality on the direction 9 relates the �elds in the type IIA and type IIB theories in the

Neveu�Schwarz sector as

T9 : R↔ l2s
R
, gs ↔ gs

ls
R
, Aµ ↔ B9µ , Bµν ↔ Bµν − AµB9ν + AνB9µ , (2.41)

leaving gµν and the string length ls invariant. The Ramond gauge potentials are furthermore

identi�ed on both sides according to

T9 : R↔ dx9 · R+ dx9 ∧ R , R =
∑

p

Rp , (2.42)

where · and ∧ denote the interior and exterior products respectively. In other words, the 9
index is added to the antisymmetric indices of R when absent, or deleted if it was already
present. These identi�cations actually receive corrections when B 6= 0, and the precise

mapping is [41, 143, 111]

eBR→ dx9 · (eBR) + dx9 ∧ (eBR) (2.43)

in accord with the T-duality covariance of the RR coupling in (2.38). Whereas one T-
duality maps the type IIA string theory to IIB and should be thought of as a change of

variable, an even number of dualities can be performed and correspond to actual global
symmetries of either type IIA or type IIB theories. This symmetry will be discussed in
Section 3, and its non-perturbative extension in Section 4.

The action on the BPS spectrum can again be easily worked out, at the level of tension

formulae or of the supergravity solutions themselves. As implied by the exchange of the
Kaluza�Klein and Kalb�Ramond gauge �elds Aµ and B9µ, states with momentum along the

9th direction are interchanged with fundamental string winding around the same direction.

On the other hand, T-duality exchanges Neumann and Dirichlet boundary conditions on

the open string world-sheet along the 9th direction, mapping Dp-branes to D(p + 1)- or
D(p − 1)-branes, depending on the orientation of the world-volume with respect to x9

[80, 37]. This of course agrees with the mapping of Ramond gauge potentials in Eq. (2.42).
Similarly, NS5-branes are invariant or exchanged with KK5-branes, according to whether

‡10A local covariant action for the self-dual four-form can be written with the help of auxiliary �elds [81],
but for most purposes the equations of motion are su�cient.
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they are wrapped or unwrapped, respectively [111, 249] ‡11. This can also be easily seen

by applying the transformation (2.41) to the tension formulae, as summarized in Table 2.4

for a T-duality Ti on an arbitrary compact dimension with radius Ri.

type IIA (B) tension Ti-dual tension type IIB (A)

KK mode M = 1
Ri

M = Ri

l2s
winding mode

wrapped Dp-brane Tp−1 = Ri

gslp+1
s

Tp−1 = 1
gslps

unwrapped D(p− 1)-brane

wrapped NS5-brane T4 = Ri

g2
s l6s

T4 = Ri

g2
s l6s

wrapped NS5-brane

unwrapped NS5-brane T5 = 1
g2

s l6s
T5 =

R2
i

g2
s l6s

unwrapped KK5-brane

Table 2.4: T-duality of type II BPS states.

T-duality can then be used to translate the relation between strongly coupled type IIA

theory and M-theory in type IIB terms. In this way, it is found that the type IIB string

theory is obtained by compactifying M-theory on a two-torus T 2, with vanishing area, and
a complex structure τ equated to the type IIB complex coupling parameter [273]:

τ = a +
i

gs
. (2.44)

Here, a is the expectation value of the Ramond scalar and gs the type IIB string coupling.

We focus for simplicity on the case where the torus is rectangular, so that τ is purely
imaginary and hence the RR scalar a vanishes. In this case, the relation between the

M-theory parameters and type IIB parameters reads

gs =
Rs

R9

, l2s =
l3p
Rs

, RB =
l3p

RsR9

, (2.45)

where Rs, R9 are the radii of the M-theory torus and RB the radius of the type IIB 9th

direction. The uncompacti�ed type IIB theory is obtained in the limit (Rs, R9) → ∞,

keeping Rs/R9 �xed. From Eq. (2.45), we can then identify the type IIB BPS states to

those of M-theory compacti�ed on T 2. The results are displayed in Table 2.5 for states

still existing in uncompacti�ed type IIB theory, and in Table 2.6 for states existing only
for �nite values of RB.

‡11 Whereas the worldvolume dynamics of type IIB NS5- and D5-branes is described by a non-chiral
(1, 1) vector multiplet, the type IIB KK5-brane is chiral and supports a (2, 0) tensor multiplet. Indeed, it
is T-dual to the chiral type IIA NS5-brane [10]. On the other hand, the type IIA KK5-brane, dual to the
type IIB NS5-brane, is nonchiral.
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M-theory mass/tension type IIB

M2-brane wrapped around xs Rs

l3p
= 1

l2s
fundamental string

M2-brane wrapped around x9 R9

l3p
= 1

gsl2s
D1-brane (D-string)

M5-brane wrapped on xs, x9 RsR9

l6p
= 1

gsl4s
D3-brane

KK6-brane wrapped on x9,

charged under gµs

R2
sR9

l9p
= 1

gsl6s
D5-brane

KK6-brane wrapped on xs,

charged under gµ9

R2
9Rs

l9p
= 1

g2
s l6s

NS5-brane

Table 2.5: Relations between M-theory and type IIB BPS states.

M-theory mass/tension type IIB

M2-brane wrapped on xs, x9 R9Rs

l3p
= 1

RB
KK mode

unwrapped M5-brane
1
l6p

=
R2

B

g2
s l8s

KK5-brane with RTN = Rs

unwrapped M2-brane
1
l3p

= RB

gsl4s
wrapped D3-brane

M5-brane wrapped on xs Rs

l6p
= RB

gsl6s
wrapped D5-brane

M5-brane wrapped on x9 R9

l6p
= RB

g2
s l6s

wrapped NS5-brane

unwrapped KK6-brane,

charged under gµs

R2
s

l9p
= RB

gsl8s
wrapped D7-brane

unwrapped KK6-brane,
charged under gµ9

R2
s

l9p
= RB

g3
s l8s

wrapped 73-brane

Table 2.6: More relations between M-theory and type IIB BPS states.

As in Table 2.3, we see in the last entry of Table 2.6 a non-standard BPS state with
tension scaling as g−3

s , which we have called a 73-brane. As this brane will turn out to be

related to the D7-brane by S-duality (see Subsection 4.5) it may also be referred to as a

(1,0) 7-brane. This and other non-standard solutions will be discussed in more detail in
Subsection 4.9.
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3 T-duality and toroidal compacti�cation

Having discussed how dualities of string theory lead to the idea of a more fundamental

eleven-dimensional M-theory, we now turn to the symmetries that this theory should ex-

hibit, with the hope of getting more insight into its underlying structure. For this purpose,

it is convenient to consider compacti�cations on tori, which have the advantage of preserv-

ing a maximal amount of the original super-Poincaré symmetries, while bringing in degrees

of freedom from extended states in eleven dimensions in a still manageable way.

The approach here is similar to the one that was taken for the perturbative string

itself, where the study of T-duality in toroidal compacti�cations revealed the existence

of spontaneously broken �stringy� gauge symmetries (see [135] for a review). Given the

analogy between the two problems, we shall �rst review in this section how T-duality in

string theory appears at the level of the low-energy e�ective action and of the spectrum,

with a particular emphasis on the brane spectrum. We shall then apply the same techniques

in Sections 4 and 5 in order to discuss U-duality in M-theory.

3.1 Continuous symmetry of the e�ective action

Compacti�cation of string theory on a torus T d can be easily worked out at the level of the

low-energy e�ective action, by substituting an ansatz similar to (2.4)

ds2
10 = gij

(
dxi + Ai

µdx
µ
) (
dxj + Aj

νdx
ν
)

+ gµνdx
µdxν (3.1a)

i, j = 1 . . . d , µ, ν = 0 . . . (9− d) (3.1b)

in the ten-dimensional action

S10 =
1

l8s

∫
d10x

√
−ge−2φ

(
R + 4(∂φ)2 − l4s

12
(dB)2

)
, (3.2)

where we omitted Ramond and fermion terms. We have also split the ten-dimensional
two-form B into d(d− 1)/2 scalars Bij , d vectors Biµ and a two-form Bµν .

Concentrating on the scalar sector, and rede�ning the dilaton as V e−2φ = ldse
−2φd where

V =
√

det g ‡12 is the volume of the internal metric, we obtain

Sscal =
1

l8−d
s

∫
d10−dx

√
−ge−2φd

(
4(∂φd)

2 +
1

4
Tr ∂g∂g−1 +

1

4
Tr g−1∂B g−1∂B

)
. (3.3)

This can be rewritten as

Sscal =
1

l8−d
s

∫
d10−dx

√
−ge−2φd

(
4(∂φd)

2 +
1

8
Tr ∂M∂M−1

)
, (3.4)

‡12g denotes the internal metric gij , except in the space-time volume element
√−g multiplying the action

density.
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where M is the 2d× 2d symmetric matrix

M =

(
g−1 g−1B

−Bg−1 g −Bg−1B

)
, M tηM = η , η =

(
Id

Id

)
, (3.5)

orthogonal for the signature (d, d) metric η. The scalars gij and Bij therefore parametrize

a symmetric manifold

H =
SO(d, d,R)

SO(d)× SO(d)
3M , (3.6)

where SO(d) × SO(d) is the maximal compact subgroup of SO(d, d,R). The matrix M
is more properly thought of as the SO(d)× SO(d) invariant M = V tV built out from the

vielbein in SO(d, d,R)

V =



1/R1

1/R2

. . .

R1

R2

. . .


.



1 −A1
2 . . . B11 B12 . . .

1
. . . B21 B22 . . .
. . .

...
...

1 A1
2 . . .

1
. . .
. . .


(3.7)

corresponding to the Iwasawa decomposition of SO(d, d,R), as will be discussed in more
detail in Section 4.2. The two-derivative action for the scalars gij, Bij, φd is therefore
invariant [222] under the action M → ΩtMΩ of Ω ∈ O(d, d,R), and so is the entire two-

derivative action in the Neveu�Schwarz sector, if the 2d gauge �elds Ai
µ and Biµ transform

altogether as a vector under O(d, d,R), the dilaton φd, metric gµν and two-form Bµν being

invariant.

The action on the Ramond sector is more complicated, since the Ramond scalars and

one-forms transform as a spinor (resp. conjugate spinor) of SO(d, d,R), with the chiral-

ity depending on whether we consider type IIA or IIB. Elements of O(d, d,R) with (−1)
determinant �ip the chirality of spinors; they therefore are not symmetries of the action
in the Ramond sector, but dualities, exchanging type IIA and type IIB theories. Indeed
it is easy to see that the R → 1/R dualities that we discussed in Subsection 2.5 belong

to this class of transformations. The tree-level e�ective action is therefore invariant under

the continuous symmetry SO(d, d,R), which extends the symmetry Sl(d,R) that would be

present in the dimensional reduction of any Lorentz-invariant �eld theory.

3.2 Charge quantization and T-duality symmetry

Owing to the occurrence of particles charged under the gauge �elds Ai
µ and Biµ, the con-

tinuous symmetry SO(d, d,R) can, however, not exist at the quantum level. For instance,
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perturbative string states have integer momenta mi and winding numbers mi under these

gauge �elds, lying in an even self-dual Lorentzian lattice Γp. The 1/2-BPS states are ob-

tained when the world-sheet oscillators α†µn and ᾱ†µn are not excited, and satisfy the mass

formula and matching condition

M2 = mtMm

= (mi + Bijm
j)gik(mk + Bklm

l) +migijm
j (3.8a)

‖m‖2 = 0 , (3.8b)

where m = (mi, m
i) is the vector of charges, ‖m‖2 = 2mim

i its Lorentzian square-norm

and M is the moduli matrix given in (3.5).

On the other hand, 1/4-BPS states are obtained when the world-sheet oscillators are

excited on the holomorphic (or antiholomorphic) side only, and have mass

M2 = mtMm+
∣∣‖m‖2

∣∣ , (3.9)

where the norm |‖m‖2| is equated to the left or right oscillator number by the matching

conditions. Only the discrete subgroup preserving Γp can be a quantum symmetry, and
this group is O(d, d,Z), the set of integer-valued O(d, d,R) matrices. In particular, the

subgroup Sl(d,R) of SO(d, d,R) is reduced to the modular group of the torus Sl(d,Z), an
obvious consequence of momentum quantization in compact spaces.

In addition to this perturbative spectrum, type II string theory also admits a variety of
D-branes, which are charged under the Ramond gauge potentials. Their charges take value

in another lattice, ΓD, and transform as a spinor under SO(d, d,R). Again, the determinant

(−1) elements of O(d, d,Z) �ip the chirality of spinors, and therefore do not preserve ΓD.
As we shall see shortly, SO(d, d,Z) however does preserve the lattice of D-brane charges.

This is in agreement with the fact that this group can be seen as the Weyl group of the
extended gauge symmetries that appear at particular points in the torus moduli space, and

are spontaneously broken elsewhere [134].

3.3 Weyl and Borel generators

In order to better understand the structure of the T-duality symmetry, it is useful to

isolate a set of generating elements of SO(d, d,Z). We de�ne Weyl elements as the ones

that preserve the conditions

gij = R2
i δij , Bij = 0 , (3.10)

that is square tori with vanishing two-form background, and Borel elements as the ones
that do not. Weyl generators include the exchanges of radii Sij : Ri ↔ Rj , which belong

to the Sl(d,Z) modular group, as well as the simultaneous inversions of two radii Tij :
(Ri, Rj) → (1/Rj, 1/Ri).
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We choose the following minimal set of Weyl generators:

Si : Ri ↔ Ri+1 , i = 1 . . . d− 1 , (3.11a)

T : (gs, R1, R2) ↔
(

gs

R1R2
,

1

R2
,

1

R1

)
. (3.11b)

For convenience, we followed the double T-duality on directions 1 and 2 by an exchange of

the two radii, included the action on the coupling constant and set the string length ls to
1. Altogether, the Weyl group of SO(d, d,Z) is the �nite group

W (SO(d, d)) = Z2 ./ Sd (3.12)

generated by the T-duality transformation T and the permutation group Sd of the d direc-
tions of the torus‡13.

On the other hand, Borel generators include the Borel elements of the modular subgroup,

acting as γi → γi + γj on the homology lattice of the lattice, as well as the integer shifts of

the expectation value of the two-form in the internal directions Bij → Bij +1. Any element
in SO(d, d,Z) can be reached by a sequence of these transformations.

Weyl and Borel generators can be given a more precise de�nition as operators on the
weight space of the Lie group or algebra under consideration (see for instance Ref. [176] for

an introduction to the relevant group theory) ‡14. Weyl generators correspond to orthogonal
re�ections with respect to planes normal to any root and generate a �nite discrete group,

while Borel generators act on the weight lattice by translation by a positive root. Any �nite-
dimensional irreducible representation (of the complex Lie algebra) can then be obtained
by action of the Borel group on a, so called, highest-weight vector, and splits into orbits of

the Weyl group with de�nite lengths.

3.4 Weyl generators and Weyl re�ections

Weyl generators encode the simplest and most interesting part of T-duality. It is very easy

to study the structure of the �nite group they generate, by viewing them as orthogonal
re�ections in a vector space (the weight space) generated by the logarithms of the radii.
More precisely, let us represent the scalar moduli (ln gs, lnR1, . . . , lnRd) as a form ϕ on a

vector space Vd+1 with basis e0, e1, . . . , ed, and associate to any weight vector λ = x0e0 +
x1e1 + · · ·+ xded, its tension

‡15

T = e〈ϕ,λ〉 = gx0

s R
x1

1 R
x2

2 . . . Rxd

d . (3.13)

‡13The Weyl group of SO(d, d) can actually be written as the semi-direct product Sd n (Z2)d−1, where
the commuting Z2's are the double inversions of Ri and, say, R1.
‡14From this point of view, Weyl generators are not properly speaking elements of the group, but can be

lifted to generators thereof, at the cost of introducing Z2 phases in their action on the step operators Eα.
See for instance Appendix B in Ref. [212], for a discussion of this issue in the physics literature.
‡15One could omit the x0 coordinate since gs can be absorbed by a power of the invariant Planck length∏
Ri/g2

s , but we include it for later convenience.
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The vector λ should be seen as labelling a state in the BPS spectrum, with tension T . The
generators (3.11) are then implemented as linear operators on Vd+1 with matrices

Si =


1

1

1

Id−3

 , T =


1

−1 −1

−1 −1

Id−3

 (3.14)

These operators Si and T in (3.14) are easily seen to be orthogonal with respect to the

signature (−+ · · ·+) metric

ds2 = −(dx0)2 + (dxi)2 + dx0(dx1 + · · ·+ dxd) , (3.15)

and correspond to Weyl re�ections

λ→ ρα(λ) = λ− 2
α · λ
α · α α (3.16)

with respect to planes normal to the vectors

αi = ei+1 − ei , i = 1 . . . d− 1 (3.17a)

α0 = e1 + e2 . (3.17b)

The group generated by Si and T is therefore a Coxeter group, familiar from the theory of

Lie algebras (see [176] for an introduction, and [177, 122] for a full account). Its structure
can be characterized by the matrix of scalar products of these roots:

(αi)
2 = (α0)

2 = 2 (3.18a)

αi · αi+1 = α2 · α0 = −1 . (3.18b)

This precisely reproduces the Cartan matrix Dd of the T-duality group SO(d, d,R), sum-
marized in the Dynkin diagram:

©0

�
⊕2 − ⊕3 − · · ·− ⊕d−1

�
+1

(3.19)

The only delicate point is that the signature of the metric (3.15) on Vd+1 is not positive-
de�nite. This can be easily evaded by noting that the invariance of Newton's constant∏
Ri/g

2
s implies that all roots are orthogonal to the vector

δ = e1 + · · ·+ ed − 2e0 (3.20)
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with negative proper length δ2 = −(d + 4), so that the re�ections actually restrict to the

hyperplane Vd normal to δ:

δ · x = x0 = 0 . (3.21)

The Lorentz metric on Vd+1 then restricts to a positive-de�nite metric gij = δij on Vd.

The dualities Si and T therefore generate the Coxeter group Dd, which is the same as the

Weyl group of the Lie algebra of SO(d, d,R). In order to distinguish the various real and

discrete forms of Dd, one needs to take into account the Borel generators, which we defer

to Subsection 3.7.

The Dynkin diagram (3.19) allows a number of simple observations. We may recognize

the Dynkin diagramAd−1 of the Lorentz group Sl(d,R) (denoted with+), extended with the

root© into the Dynkin diagram of the T-duality symmetry SO(d, d,R). T-duality between
type IIA and type IIB corresponds to the outer automorphism acting as a re�ection along

the horizontal axis of the Dynkin diagram. The chain denoted with ©'s represents a dual

Sl(d,R) subgroup, which is nothing but the Lorentz group on the type IIB T-dual torus.
The full T-duality group is generated by these two non-commuting Lorentz groups of the
torus and the dual torus.

Decompacti�cation of the torus T d into T d−1 is achieved by dropping the rightmost

root, which reduces Dd to Dd−1. When the root α2 is reached, the diagram disconnects
into two pieces, corresponding to the identity SO(2, 2,R) = Sl(2,R)× Sl(2,R), or to the
decomposition of the torus moduli space into the T and U upper half-planes‡16. Finally,

for d = 1 the T-duality group SO(1, 1,Z) becomes trivial, while the generator of O(1, 1,Z)
corresponds to the inversion R ↔ 1/R, not a symmetry of either type IIA or type IIB
theories.

3.5 BPS spectrum and highest weights

Having proved that the transformations Si and T indeed generate the Weyl group of

SO(d, d,Z), we can use the same formalism to investigate the orbit of the various BPS

states of string theory. According to (3.13) the mass or tension can be represented as a
weight vector in Vd+1, and one should let Weyl and Borel generators act on it to obtain the

full orbit. Each orbit admits a highest weight from which all other elements can be reached

by a sequence of Weyl and Borel generators (Weyl generators alone are not su�cient,

because they preserve the length of the weight).

All highest weights can be written as linear combinations with positive integer coe�-

‡16The extra Z2 exchanging the two Sl(2, R) factors belongs to O(2, 2, R) but not to SO(2, 2, R).
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cients of the fundamental weights

λ(1) = e1 − e0 → MwD =
R1

gs
(3.22a)

λ(2) = e1 + e2 − 2e0 → MNS =
R1R2

g2
s

(3.22b)

λ(d−2) = e1 + · · ·+ ed−2 − 2e0 → Mw...wNS =
R1 . . . Rd−2

g2
s

(3.22c)

λ(d−1) = e1 + · · ·+ ed−1 − 2e0
.
= −ed → MwF =

1

Rd
(3.22d)

λ(0) = −e0 → MD =
1

gs

(3.22e)

dual to the simple roots, that is λ(i) · αj = −δij ‡17.We used the symbol
.
= for equality

modulo the invariant vector δ in Eq. (3.20), and the notation F ,D and NS for fundamental,

Dirichlet and Neveu�Schwarz states, respectively, depending on the power of the coupling
constant involved, and w for each wrapped direction (the notation wF is justi�ed by the
fact that the Kaluza�Klein states are in the same multiplet as the string winding states).

This is summarized in the Dynkin diagram

1
gs

�
R1R2

g2
s

− R1R2R3

g2
s

− · · ·− 1
Rd

�
R1

gs

(3.23)

which shows the highest weights associated to each node of the Dynkin diagram.

In particular, we see from (3.23) that the type IIA D-particle mass (M = 1/gsls) lies
in the spinor representation dual to α1, just as do the type IIB D-string tension (T1 =
1/gsl

2
s) and D-instanton action (T−1 = 1/gs), whereas the type IIB D-particle mass (M =

Ri/gsl
2
s) and type IIA D-string tension (T1 = Ri/gsl

3
s) and D-instanton action (T = Ri/gsls)

transform in the spinor representation dual to α0, of opposite chirality. On the other hand,
the Kaluza�Klein states lie in a vector representation. All highest-weight representations

can be obtained from the tensor product of these �extreme� (from the point of view of the

Dynkin diagram) representations. T-duality on a single radius exchanges the two spinor
representations, as it should.

‡17The minus sign shows that we are really considering lowest-weight vectors, but we shall keep this abuse
of language.
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3.6 Weyl-invariant e�ective action

In the previous subsections, we have discussed how the Weyl group of SO(d, d) arises as
the �nite group generated by the permutations and double T-duality (3.11), whereas the

low-energy action itself is invariant under the continuous group SO(d, d,R). This has been
checked in the scalar sector in Eq. (3.4), by direct reduction of the 10D e�ective action on

T d. It is however possible to rewrite the full action in a manifestly Weyl-invariant way, by

a step-by-step reduction from 10D, as was originally developed in Ref. [218] in the context

of 11D supergravity. This procedure leads to a clear identi�cation of �dilatonic� scalars,

which appear through exponential factors in the action and include the dilaton gs and the

radii Ri of the torus, versus �Peccei�Quinn� scalars which have constant shift symmetries

and are better thought of as 0-forms with a 1-form �eld strength.

Each �eld strength F (p) gives rise to �eld strengths of lower degree F
(q)
i1...iq

, with internal

indices i1 . . . iq (given by the exterior derivative of a (q − 1)-form up to Chern�Simons

corrections), while the metric gives rise to Kaluza�Klein two-form �eld strengths F (2)i and

one-form �eld strengths F i(1)
j , i < j, of the vielbein components in the upper triangular

gauge

gMN = EP
ME

Q
N ηPQ , (3.24a)

EN
M =



R1

R2

. . .

Rd−1

Rd

Eν
µ


.



1 A1
2 A1

3 . . . A1
d A1

µ

1 A2
3 . . . A2

d A2
µ

. . .
...

1 Ad−1
d Ad−1

µ

1 Ad
µ

I11−d


, (3.24b)

where Eν
µ denotes the vielbein in the uncompacti�ed directions. The action (2.7) in the

Neveu�Schwarz sector then takes the simple form:

SNS,10−d =

∫
d10−dx

√
−g V

g2
s l

8
s

[
R + (∂φ)2 +

∑
i

(
∂Ri

Ri

)2

+
∑
i<j

(
Ri

Rj
F i(1)

j

)2

+
∑

i

(
RiF (2)i

)2
+
(
l2sF

(3)
)2

+
∑

i

(
l2s
Ri
F

(2)
i

)2

+
∑
i<j

(
l2s

RiRj
F

(1)
ij

)2
]
, (3.25)

where the �rst �ve terms come from the reduction of the Einstein�Hilbert term and the
last three terms from the kinetic term of the two-form.

Putting together the forms of the same degree, we see that their coe�cients form the

Weyl orbit Φs, of the string tension (F (3)
λ ), the Weyl orbit ΦKK of the Kaluza�Klein and
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winding states (F (2)
λ ), and the set of positive roots Φ+ = {ei ± ej , i < j} (F (1)

α ). We can

therefore rewrite the action in the Weyl-invariant form:

SNS,10−d =
∫

d10−dx
√−g V

g2
s l8s

[
R + ∂ϕ · ∂ϕ +

∑
α∈Φ+

e−2〈ϕ,α〉
(
F (1)

α

)2

+
∑

λ∈ΦKK
e−2〈ϕ,λ〉

(
F (2)

λ

)2

+
∑

λ∈Φs
e−2〈ϕ,λ〉

(
F (3)

λ

)2
]
, (3.26)

where ϕ = (ln gs, lnR1, . . . , lnRd) is the vector of dilatonic scalars, 〈ϕ, λ〉 the duality bracket
in Eq. (3.13) and ∂ϕ · ∂ϕ the Weyl-invariant kinetic term obtained from the non-diagonal

metric (3.15). A diagonal metric on the dilatonic scalars is recovered upon going to the

Einstein frame.

The Weyl group acts by permuting the various weights appearing in Eq. (3.26), and the

invariance in the gauge sector is therefore manifest. As for the scalars, the set of positive

roots Φ+ is not invariant under Weyl re�ections, but the Peccei�Quinn scalars undergo

non-linear transformations A(0) → e−2〈ϕ,α〉A(0) that compensate the sign change [220]. The

Peccei�Quinn scalars therefore appear as displacements along the positive (non-compact)
roots. Together with the dilatonic (non-compact) scalars ϕ, they generate the solvable Lie
subalgebra that forms the tangent space of the moduli space H [8, 6, 7, 311].

We have so far concentrated on the Neveu�Schwarz sector, but the same reasoning

can be applied to the full type II action. The T-duality Weyl symmetry can, however,
be exhibited only by dualizing the p-form gauge �elds G(p) = dR(p−1) into lower rank

(10 − d − p)-form gauge �elds when possible, and keeping them together when their dual
when the self-duality condition 10 − d − p = p is satis�ed. We then obtain, for the action
of the Ramond �elds

SRR =
∫

d10−dx
√−g V

g2
s l8s

[∑
λ∈ΦDI

e−2〈ϕ,λ〉
(
G(1)

λ

)2

+
∑

λ∈ΦD0
e−2〈ϕ,λ〉

(
G(2)

λ

)2

+
∑

λ∈ΦD1
e−2〈ϕ,λ〉

(
G(3)

λ

)2

+
∑

λ∈ΦD2
e−2〈ϕ,λ〉

(
G(4)

λ

)2
]
, (3.27)

where ΦDI,ΦD0,ΦD1,ΦD2 denote the Weyl orbits with highest weight 1/gsRi, 1/gsls, Ri/gsl
2
s ,

1/gsl
3
s respectively, corresponding in turn to the two spinor representations.

3.7 Spectral �ow and Borel generators

Having discussed the structure of the Weyl group we now want to investigate the full

SO(d, d,Z) symmetry. For this purpose, it is instructive to go back to the perturbative
multiplet of Kaluza�Klein and winding states. The action of the Weyl group on the highest

weight 1/Rd of the vector representation generates an orbit of 2d elements, 1/Ri and Ri.
However, a particle can have any number of momentum excitation along each axis, and

wind along any cycle of the torus T d. It is therefore described by integer momenta mi and

winding numbers mi, so that its mass on an arbitrary torus reads

M2 = mig
ijmj +migijm

j , i, j = 1 . . . d , (3.28)
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when Bij = 0. This mass formula is then invariant under modular transformations γi →
γi + ∆Ai

jγ
j of the torus, i.e. integer shifts Ai

j → Ai
j + ∆Ai

j of the o�-diagonal term of the

metric (no sum on i)

ds2
d = R2

i (dx
i + Ai

jdx
j)2 + gjkdx

jdxk , (3.29)

upon transforming the momenta and winding as

mk → mk −∆Ai
kmi , mk → mk + δk

i ∆A
i
jm

j . (3.30)

This transformation generates a spectral �ow on the lattice of charges mi and m
i.

In addition, being charged under the gauge potential Bµi, the momentum of the particle

shifts according to mi → m̃i = mi +Bijm
j, yielding the mass (3.8). From this, we see that

the Borel generator Bij → Bij + ∆Bij induces a spectral �ow

mk → mk + ∆Bjkm
j , mk → mk . (3.31)

The two spectral �ows (3.30) and (3.31) can be understood in a uni�ed way as transla-
tions on the weight lattice by positive roots. Indeed, the set of all positive roots of SO(d, d)
includes the Sl(d) roots ej−ei, i < j, images of the simple roots αi = ei+1−ei, 1 ≤ i ≤ d−1
under the Weyl group Sd of Sl(d), as well as the roots ei + ej, which are images of the
T-duality simple root α0 = e1 + e2. The translation by a root ej− ei generates in�nitesimal

rotations in the (i, j) plane‡18:

∆| − ek〉 = −∆Ai
k| − ei〉 , ∆|ek〉 = δk

i ∆A
i
j |ej〉 (3.32)

equivalent to the spectral �ow in Eq. (3.30), whereas translations by a root ei +ej generate
an in�nitesimal Bij shift:

∆| − ek〉 = ∆Bjk|ej〉 , ∆|ek〉 = 0 (3.33)

as in Eq. (3.31). The moduli Ai
j and Bij can therefore be identi�ed as displacements on

the moduli space H along the positive roots ei − ej and ei + ej . We note that the two

displacements do not necessarily commute and that only integer shifts are symmetries of

the charge lattice.

3.8 D-branes and T-duality invariant mass

In order to study the analogous properties of the D-brane states, we may try to write down

the moduli matrix MS ∈ SO(d, d,R)/SO(d)× SO(d) in the spinorial representation and

look for the transformations of charges that leave the mass mtMSm invariant, when now m
is a spinor of D-brane charges. It is in fact much easier to study the D-brane con�guration
itself and compute its Born�Infeld mass [255, 152].

‡18The Borel generators Eα actually either translate the weight vectors λ or annihilate them.
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BPS D-brane states are obtained by wrapping Dp-branes on a supersymmetric p-cycle
of the compacti�cation manifold. In the case of a torus T d, this is simply a straight cycle,

and in the static gauge the embedding is speci�ed by a set of integer (winding) numbers
N i

α:

X i = N i
ασ

α , i = 1 . . . d , α = 1 . . . p , (3.34)

where σα and X i are the space-like world-volume and embedding coordinates respectively.

The numbers N i
α can, however, be changed by a world-volume di�eomorphism, and one

should instead look at the invariant

mijkl = εαβγδN i
αN

j
βN

k
γN

l
δ , (3.35)

where we restricted to p = 4 for illustrative purposes. mijkl is a four-form integer charge

that speci�es the four-cycle in T d. In addition, the D-brane supports a U(1) gauge �eld

that can be characterized by the invariants

mij =
1

2
εαβγδN i

αN
j
βFγδ , m =

1

8
εαβγδFαβFγδ , (3.36)

which are again integer-valued, because of the �ux and instanton-number integrality. The
charges N = {m,mij , mijkl, . . . } constitute precisely the right number to make a spinor

representation of SO(d, d,Z) when p = d or p = d + 1 (depending on the type of theory
and dimensionality of the torus); indeed, the spinor representation of SO(d, d) decomposes
under Sl(d) as a sum of even or odd forms, depending on the chirality of the spinor. The

Chern�Simons coupling (2.38) can be rewritten in terms of these charges (up to corrections
when B 6= 0) as ∫

eB̂+α′FR = mR0 +
1

2
mijR0ij +

1

4!
mijklR0ijkl + . . . (3.37)

so that (for p = 4) the instanton number m can be identi�ed as the D0-brane charge, the
�ux mij as the D2-brane charge and mijkl as the D4-brane charge. Con�gurations with

m 6= 0 exist in SYM theory on a torus, even for a U(1) gauge group, and correspond to

torons [303, 150, 151].

The mass of the wrapped D-brane can be evaluated by using the Born�Infeld action

(2.37), and depends only on the parametrization-independent integer chargesm,mij , mijkl, . . .
Explicitly, we obtain, for p = d, the T-duality invariant mass formula:‡19

M2 =
1

g2
s l

2
s

m̃2 +
1

2 g2
s l

6
s

(m̃ij)2 +
1

4! g2
s l

10
s

(m̃ijkl)2 + . . . (3.38a)

m̃ = m+
1

2
mijBij +

1

8
mijklBijBkl + . . . (3.38b)

m̃ij = mij +
1

2
mklijBkl + . . . (3.38c)

m̃ijkl = mijkl + . . . (3.38d)

‡19This expression was originally derived in Ref. [255] by a sequence of T-dualities and covariantizations.
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where the dots stand for the obvious extra terms when d ≥ 4. A similar expression holds

for p = d+ 1 and yields the tension of D-strings:

T 2
1 =

1

g2
s l

6
s

(m̃i)2 +
1

3! g2
s l

10
s

(m̃ijk)2 +
1

5! g2
s l

14
s

(m̃ijkll)2 + . . . (3.39a)

m̃i = mi +
1

2
mjkiBjk +

1

8
mjklmiBjkBlm + . . . (3.39b)

m̃ijk = mijk +
1

2
mlmijkBlm + . . . (3.39c)

m̃ijklm = mijklm + . . . (3.39d)

where the integer charges read, e.g. for p = 5,

mijklm = εαβγδεN i
αN

j
βN

k
γN

l
δN

m
ε (3.40a)

mijk =
1

2
εαβγδεN i

αN
j
βN

k
γFδε (3.40b)

mi =
1

8
εαβγδεN

i
αFβγFδε . (3.40c)

The mass formulae (3.38) and (3.39) hold for 1/2-BPS states only; they are the analogues

of Eq. (3.8) for the two spinor representations of SO(d, d). They can be derived by analysing
the BPS eigenvalue equation in a similar way as in Subsection 2.2. This analysis is carried
out in Appendix A.3, and yields, in addition, the conditions for the state to be 1/2-BPS,

as well as the extra contribution to the mass in the 1/4-BPS case. In the d ≤ 6 case, we
�nd a set of conditions:

kijkl ≡ m[ijmkl] +m mijkl = 0 (3.41a)

ki;jklmn ≡ mi[jmklmn] +m mijklmn = 0 (3.41b)

kij;klmnpq ≡ nijnklmnpq + nij[klnmnpq] = 0 (3.41c)

analogous to the level-matching condition ‖m‖2 = 0 on the perturbative states. In contrast

to the latter, they have a very clear geometric origin, since they can be derived by expressing
the charges m in terms of the integer numbers N i

α (Eq. (3.38)). For d = 6, they transform

in a 15 + 36 + 15 = 66 irrep of the T-duality group SO(6, 6,Z). The last line in (3.41)
drops when d = 5, giving a 5 + 5 = 10 irrep of SO(5, 5,Z). When d = 4, only the

k1234 = m2 ∧m2 +m m4 ≡ 0 component remains, which is a singlet under SO(4, 4,Z).

When the conditions n = 0 in (3.41) are not met, the state is at most 1/4-BPS, and its

mass receives an extra contribution, e.g. for d = 5:

M2 =
1

g2
s l

2
s

[
m̃2 +

1

2l4s

(
m̃ij
)2

+
1

4!l8s

(
m̃ijkl

)2
+

√
1

4!l12s

(
k̃ijkl

)2

+
1

5!l16s

(
k̃i;jklmn

)2
]
, (3.42)
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where the shifted charges are given by

k̃ijkl = kijkl + Bmnk
m;nijkl , k̃i;jklmnp = ki;jklmnp . (3.43)

For d = 6, there are still conditions to be imposed in order for the state to be 1/4-BPS

instead of simply 1/8-BPS, which are now cubic in the charges m and transform as a 32
of SO(6, 6,Z) (see Appendix A and Subsection 5.9).

39



4 U-duality in toroidal compacti�cations of M-theory

T-duality is only a small part of the symmetries of toroidally compacti�ed string theory,

namely the part visible in perturbation theory. We shall now extend the techniques of

Section 3 in order to study the algebraic structure of the non-perturbative symmetries,

which go under the name of U-duality. In this section, we focus on the subgroup of the

U-duality symmetry that preserves compacti�cations on rectangular tori with vanishing

expectation values of the gauge potentials. The most general case of non-rectangular tori

with gauge potentials, for which the full U-duality symmetry can be exhibited, is discussed

in the next section.

4.1 Continuous R-symmetries of the superalgebra

As in our presentation of uncompacti�ed M-theory in Section 2, the superalgebra o�ers a

convenient starting point to discuss the symmetries of M-theory compacti�ed on a torus
T d. The N = 1, 11D supersymmetry algebra is preserved under toroidal compacti�cation:

the generators Qα merely decompose as bispinor representations of the unbroken group
SO(1, 10 − d) × SO(d), and form an N-extended super-Poincaré algebra in dimensions

D = 11 − d. The �rst factor SO(1, 10 − d) corresponds to the Lorentz group in the

uncompacti�ed dimensions and is actually part of the superalgebra, while the second only
acts as an automorphism thereof, and is also known as an R-symmetry‡20. There can be

automorphisms beyond the obvious SO(d) symmetry, however, and these are expected to
be symmetries of the �eld theory.

This symmetry enhancement can be observed at the level of the Cli�ord algebra itself
[181, 220]. The Gamma matrices ΓM ,M = 0, d + 1 . . . 10 of eleven-dimensional super-

symmetry can be kept to form a (reducible) Cli�ord algebra of SO(1, 10 − d), while the
matrices ΓI , I = 1 . . . d form an internal Cli�ord algebra. Note that we have chosen here,

in contrast to the notation of the rest of the review, the internal indices running from 1 to

d. The generators ΓIJ generate the SO(d) R-symmetry, but they can be supplemented by
generators ΓI to form the Lie algebra of a larger R-symmetry group SO(d+ 1) ‡21. It was

the attempt to exhibit the SO(8) symmetry of 11D SUGRA compacti�ed on T 7 that led
to the discovery of hidden symmetries [73].

The R-symmetry group is actually larger still. Consider the algebra generated by
Γ(2),Γ(3),Γ(6),Γ(7), where the subscripts denote the number of antisymmetric internal in-

dices, and the corresponding generators are dropped when the number of internal directions
is insu�cient:

• For d = 2, the only generator ΓIJ = Γ12 generates a U(1) R-symmetry.

‡20The R-symmetry is actually part of the local supersymmetry, but we are only interested in its global
�at limit.
‡21 This is the basis for the twelve-dimensional S-theory proposal [27]. It is important that these generators

commute with the momentum charge CΓµ.
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• For d = 3, Γ(2) and Γ(3) commute, and generate an SO(3)× U(1) symmetry.

• For d = 4, Γ(3) = Γ+Γ(1), where Γ+ is the space-time or internal chirality (see Eq.

(A.1)) and, together with Γ(2), generates an SO(5) symmetry.

• For d = 5, Γ(2) ± Γ+Γ(3) generate two commuting SO(5) subgroups.

• For d = 6, Γ(6) appears in the commutator [Γ(3),Γ(3)] and a USp(8) is generated.

• For d = 7 (resp. d = 8) the generator Γ(7) comes into play and one obtains an

SU(8)× U(1) (resp. SO(16)) R-symmetry group.

The various R-symmetry groups are summarized in the right column of Table 4.1, which

furthermore gives the decomposition of the 528 central charges on the right-hand side of

Eq. (2.13a) under the Lorentz group SO(1, 10−d) in the uncompact directions and the R-

symmetry group. The various columns correspond to distinct SO(1, 10−d) representations,
after dualizing (moving) central charges into charges with less indices when possible. In

all these cases, the superalgebra can be recast in a form manifestly invariant under the
R-symmetry. Here we collect the cases D = 4, 5, 6, including the central charges, which

transform linearly under the R-symmetry:

• ForD = 4 (d = 7), the 32 supercharges split into 8 complexWeyl spinors transforming
as an 8 ⊕ 8̄ of SU(8): {

QαA, Qβ̇B̄

}
= σµ

αβ̇
Pµ δAB̄ (4.1a)

{QαA, QβB} = εαβ ZAB (4.1b){
Qα̇Ā, Qβ̇B̄

}
= εα̇β̇ Z

∗
ĀB̄, (4.1c)

where µ = 0, 1, 2, 3 are SO(3, 1) vector indices, α, α̇ = 1, 2 are Weyl spinor indices,
and A, Ā = 1, · · · , 8 are 8, 8̄ indices of SU(8). The central charges are incorporated
into a complex antisymmetric matrix ZAB.

• For D = 5 (d = 6), the 32 supercharges split into 8 Dirac spinors of SO(4, 1),
transforming in the fundamental representation of USp(8). The N = 8 superalgebra

in a USp(8) basis is

{QαA, QβB} = Pµ (Cγµ)αβ ΩAB + Cαβ ZAB (4.2)

where µ = 0, 1, 2, 3, 4 are SO(4, 1) vector indices, α = 1, 2, 3, 4 are Dirac spinor in-
dices, A = 1, · · · , 8 are indices in the 8 of USp(8), and ΩAB is the invariant symplectic
form and ZAB is the central charge matrix.

• For D = 6 (d = 5), the 32 supercharges form 4 complex spinors transforming in the

(4, 1) + (1, 4) of SO(5)× SO(5) and the superalgbra takes the form{
Qa

α, Q
b
β

}
= ωabγµ

αβpµ, (4.3){
Qa

α, Q̄
b
β

}
= δαβZ

ab, (4.4)
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where a, b = 1, . . . , 4 are SO(5) spinor indices and ωab is an invariant antisymmet-

ric matrix, from the local isomorphism SO(5) = USp(4). The 16 central charges

are incorporated in a matrix Zab transforming as a bispinor under the R-symmetry

SO(5)× SO(5) and satisfying the reality condition Z∗ = ωZωt.

The R-symmetries that we have discussed here will be of use in the next section to determine

the scalar manifold of the compacti�ed 11D SUGRA and hence the global symmetries.

d Qa
α

p = 0
ZI , ZIJ

ZIJKLM

p = 1
Zµ, ZµI

ZµIJKL

p = 2
ZµI

ZµνIJK

p = 3
ZµνρIJ

p = 4
ZµνρσI

p = 5
Zµνρστ H

1 (±, 16)
1 + 0
+0

1 + 1
+0

1
+0

0 1
1+

+1−
1

2 (2, 16)
2 + 1
+0

= 2 + 1

1 + 2
+0

= 2 + 1

1 + 0
= 1

1
[1]
+2

= 2 + 1

(1)

move
SO(2)

3
(2, 8+)

+(2, 8−)

3 + 3
+0

= 3+ + 3−

1 + 3
+0

= 3 + 1

1 + 1
= 1 + 1

3 + [1]
= 3 + 1

3+

+3−

= 3+ + 3−

(1)

move

SO(2)
×U(1)

4 (4, 8)
4 + 6
+0

= 10

1 + 4
+1

= 5 + 1

1 + 4
+[1]

= 5 + 1

6 + [4]
= 10

(4)

move

(1)

move
SO(5)

5
(4, 4̄)

+(4̄, 4)

5 + 10
+1

= (4, 4)

1 + 5
+5 + [1]
= (5, 1)
+(1, 5)
+2(1, 1)

1 + 10
+[5]

= (4, 4)

10+ + 10−

= (10, 1)
+(1, 10)

(5)

move

(1)

move

SO(5)
×SO(5)

6 (8, 4)

6 + 15
+6
+[1]

= 27 + 1

1 + 6
+15 + [6]
= 27 + 1

1 + 20
+[15]
= 36

(15)

move

(6)

move

(1)

move
USp(8)

7
(8+, 2)

+(8−, 2̄)

7 + 21
+21
+[7]

= 28c

1 + 7
+35 + [21]
= 63 + 1

1± + 35±

= 36c

(21)

move

(7)

move
0 SU(8)

8 (16, 2)

8 + 28
+56
+[28]
= 120

1 + 8 + 70
+[1 + 56]
= 135 + 1

(1 + 56)

move

(28)

move
0 0 SO(16)

Table 4.1: Classi�cation of the supercharges and central charges w.r.t the Lorentz/R-

symmetry group SO(1, 10− d)×H . Irreps of H are in bold face. Charges in parenthesis

are Poincaré-dualized (moved) into charges in square brackets. Adapted from Ref. [27].

42



4.2 Continuous symmetries of the e�ective action

In our discussion of the continuous symmetry of the e�ective action of the toroidally com-

pacti�ed type IIA theory in Subsection 3.1, we have intentionnally focused our attention

on the Neveu�Schwarz sector, and have brie�y described how the Ramond �elds would

transform under the symmetries of the Neveu�Schwarz scalar manifold. The distinction

between Neveu�Schwarz and Ramond sectors is however an artefact of perturbation theory

and, as we discussed in Section 2, the two sets of �elds are uni�ed in the 11D SUGRA

description. They mix under the eleven-dimensional Lorentz symmetries unbroken by the

compacti�cation on T d ‡22, namely Sl(d,R). The low-energy e�ective action therefore

admits a continuous symmetry group Gd containing

SO(d− 1, d− 1,R) ./ Sl(d,R) , (4.5)

where the symbol ./ denotes the group generated by the two non-commuting subgroups.

As found by Cremmer and Julia [72, 182], the groups Gd turn out to correspond to the
Ed(d) series, listed in Table 4.2.

D d Gd = Ed(d) Hd

10 1 R+ 1

9 2 Sl(2,R)× R+ U(1)

8 3 Sl(3,R)× Sl(2,R) SO(3)× U(1)

7 4 Sl(5,R) SO(5)

6 5 SO(5, 5,R) SO(5)× SO(5)

5 6 E6(6) USp(8)

4 7 E7(7) SU(8)

3 8 E8(8) SO(16)

Table 4.2: Cremmer�Julia symmetry groups and their maximal compact subgroups.

The notation Ed(d) denotes a particular non-compact form of the exceptional group Ed,

namely its normal real form‡23, and from now on this distinction will be omitted. As ev-

ident from their Dynkin diagrams shown in Table 4.3, the groups Ed form an increasing

family, whose members are related by a process of group disintegration re�ecting the de-
compacti�cation of one compact direction in T d. This is displayed in Table 4.3, and will

be discussed more fully in the next subsection.

The occurrence of these groups can be understood by �tting the number of scalar �elds

(including the duals of forms of higher degree) to the dimension of a coset space Gd/Hd,

‡22 Note that d has been upgraded by one unit with respect to the previous section.
‡23 The normal real form has all its Cartan generators and positive roots non-compact, and is the maximal

non-compact real form of the complex algebra Ed(C) [158, 132].
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E9 = Ê8

g g g g g g g w
2 4 6 5 4 3 2 1

g3

E8

g g g g g g g
2 4 6 5 4 3 2

g3

E7

g g g g g g
2 3 4 3 2 1

g2

E6

g g g g g
1 2 3 2 1

g2

E5 = D5

g g g g
1 2 2 1

g1

E4 = A4

g g g
1 1 1

g1

E3 = A2 ⊕A1

g g
1 1

g

E2 = A1

g

Table 4.3: Dynkin diagrams of the Ed series. The group disintegration proceeds by omitting
the rightmost node. The integers shown are the Coxeter labels, that is the coordinates of

the highest root on all simple roots.
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where Hd is the R-symmetry of the superalgebra described in the previous section. In

order to have a positive metric for the scalars, it is necessary that Hd be the maximal

compact subgroup of Gd. Together with the dimension of the scalar manifold, this su�ces

to determine Gd.

Scalar �elds arise from the internal components of the metric gIJ of the torus T d, and

from the expectation value of the three-form gauge �eld CIJK on T d; they also arise from

the expectation value EIJKLMN on T d of the six-form dual to CMNP in eleven dimensions,

or equivalently the expectation value of the scalar dual to the three-form Cµνρ in D = 5,
the axion scalar dual to the two-form CµνI in D = 4, or to the one-form CµIJ in D = 3;
similarly, the Kaluza�Klein gauge potentials gµI can be dualized in D = 3 into scalars KI ,

which can be interpreted as the expectation value KI;JKLMNPQR on T d of the magnetic

gauge potential dual to gMN in eleven dimensions. The counting is summarized in Table

4.4. The factor R+ appearing in D = 10 and D = 9 corresponds to the type IIA dilaton,

and generates a scaling symmetry of the e�ective action, called trombonne symmetry in

Ref. [78]. Note that a quite di�erent U-duality group would be inferred if one did not

dualize the Ramond �elds into �elds with less indices [219, 74], or if one would considerer
Euclidean supergravities [174, 77].

An analogous counting has been performed in Tables 4.5 and 4.6 for one-form and two-

form potentials, inducing particle and string electric charges, respectively. The latter can
be put in one-to-one correspondence to the central charges of the supersymmetry algebra
discussed in the previous section, with two exceptions. Firstly, the Lorentz-invariant central

charge Z01234 in �ve dimensions, where 0 . . . 4 denote the �ve space-time dimensions, does
not correspond to any one-form potential [31, 27]‡24. This truncation of the superalgebra

is consistent with U-duality and is of no concern, except for the twelve-dimensional origin
of M-theory. Secondly, there are only 120 Lorentz singlet central charges in D = 3 for 128
gauge potentials (equivalently, there are only 64 Lorentz vector charges inD = 4 for 70 two-
form gauge �elds). As we shall see shortly, U-duality implies that there should in fact be
248 electric charges in D = 3 (133 string charges in D = 4), yielding a linear representation
of the duality group E8 (resp. E7). Of course, the notion of electric charge is ill-de�ned in
D = 3, where a one-form (or a two-form in D = 4) is Poincaré-dual to a zero-form and a
particle (or a string) to an instanton. Another manifestation of the pathology of the D = 3
case is the non-asymptotic �atness of the point-like solitons (or string-like in D = 4), and
the logarithmic divergence of the kernel of the Laplacian in the transverse directions. In
spite of these di�culties, we shall pursue the algebraic analysis of these cases in the hope

that they can be resolved.

If the charges m under the gauge �elds can be put in one-to-one correspondence with the

central charges Z, they are nevertheless not equal: the gauge charges are integer-quantized,
as we will discuss in the next subsection, whereas the central charges are moduli-dependent

‡24Equivalently, the central charges Z01234,Z02345 . . . transform as a vector in six space-time dimensions.
These charges could be attributed to a KK6-brane, if only the KK6-brane did not need six compact
directions to yield a string, and seven to yield a particle state.
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linear combinations of the latter:

Z = V ·m , (4.6)

where V is an element in the group Gd containing the moduli dependence; it is de�ned up to

the left action of the compact subgroup K = Hd, inducing an R-symmetry transformation

on Z.

The local Hd gauge invariance can be conveniently gauge-�xed thanks to the Iwasawa

decomposition (see for instance [202, 232])

V = k · a · n ∈ K · A ·N (4.7)

ofGd into the maximal compactK, AbelianA and nilpotentN . A natural gauge is obtained

by taking K = 1, in which case the �vielbein� V becomes a (generalized) upper triangular

matrix V = a·n. The Abelian factor A is parametrized by the �dilatonic scalars�, namely the

radii of the internal torus, whereas the nilpotent factor N incorporates the �gauge scalars�,

namely the expectation values of the gauge �elds (including the o�-diagonal metric, three-
form and their duals) on the torus. Gd acts on the charges m from the left and on V from

the right. The transformed V can then be brought back into an upper triangular form by
a moduli-dependent R-symmetry compensating transformation on the left. This implies

that the central charges Z transform non-linearly under the continuous U-duality group

Gd. For the case of T-duality in type II string theory this decomposition is given in Eq.
(3.7). In Section 5, we shall obtain an explicit parametrization of V in terms of the shape

of the torus and the various gauge backgrounds.

D d g C3 E6 K1;8 total scalar manifold

10 1 1 1 R+

9 2 3 3 Sl(2,R)/U(1)× R+

8 3 6 1 7 Sl(3,R)/SO(3)× Sl(2,R)/U(1)

7 4 10 4 14 Sl(5,R)/SO(5)

6 5 15 10 25 SO(5, 5,R)/SO(5)× SO(5)

5 6 21 20 1 42 E6(6)/USp(8)

4 7 28 35 7 70 E7(7)/SU(8)

3 8 36 56 28 8 128 E8(8)/SO(16)

Table 4.4: Scalar counting and scalar manifolds in compacti�ed M-theory.

4.3 Charge quantization and U-duality

As in the case of T-duality, the continuous symmetry Ed(d)(R) of the two-derivative e�ec-
tive action cannot be a symmetry of the quantum theory: the gauge potentials transform
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D d g C3 E6 K1;8 total charge representation

10 1 1 1 1

9 2 2 1 3 3 of Sl(2)

8 3 3 3 6 (3, 2) of Sl(3)× Sl(2)

7 4 4 6 10 10 of Sl(5)

6 5 5 10 1 16 16 of SO(5, 5)

5 6 6 15 6 27 27 of E6(6)

4 7 7 21 21 7 56 56 of E7(7)

3 8 8 28 56 36 128 248 of E8(8)

Table 4.5: Vectors and particle charge representations in compacti�ed M-theory.

D d g C3 E6 K1;8 total charge representation

10 1 1 1 1

9 2 2 2 2 of Sl(2)

8 3 3 3 (3, 1) of Sl(3)× Sl(2)

7 4 4 1 5 5 of Sl(5)

6 5 5 5 10 10 of SO(5, 5)

5 6 6 15 6 27 2̄7 of E6(6)

4 7 7 35 28 70 133 of E7(7)

Table 4.6: Two-forms and string charge representations in compacti�ed M-theory.

non-trivially under Ed, and the continuous symmetry is therefore broken by the existence

of states charged under these potentials. At best there can remain a discrete subgroup

Ed(d)(Z), which leaves the lattice of charges invariant. For one thing, a subset of the
charges corresponds to the Kaluza�Klein momentum along the internal torus, and are

therefore constrained to lie in the reciprocal lattice of the torus. Another subset of charges
corresponds to the wrapping numbers of extended objects around cycles of T d, and are

then constrained to lie in the homology lattice of T d.

A way to determine the remaining discrete subgroup is to consider M-theory compact-

i�ed to D = 4 dimensions, in which case Poincaré duality exchanges gauge one-forms with
their magnetic duals [175]. In this dimension, Dirac�Zwanziger charge quantization takes

the usual form

min′i −m
′ini ∈ Z (4.8)

for two particles of electric and magnetic charges mi and ni respectively, and i runs from
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1 to 28, as read o� from Table 4.5. This condition is invariant under the electric�magnetic

duality Sp(56,Z), under which (mi, ni) transforms as a vector. The exact symmetry group

is therefore at most

E7(7)(Z) ⊂ E7(7)(R) ∩ Sp(56,Z) , (4.9)

This translates into a condition on Ed(d)(Z) for d ≤ 7 by the embedding Ed(d)(Z) ⊂ E7(7)(Z).
A similar condition can be obtained in D = 3, where all one-forms are dual to scalars.

The condition (4.9) requires a precise knowledge of the embedding ofE7(7)(R) in Sp(46,R).
Instead, we shall take another approach, and postulate that the U-duality group of M-theory

compacti�ed on a torus T d is generated by the T-duality SO(d − 1, d − 1,Z) of type IIA
string theory compacti�ed on T d−1, and by the modular group Sl(d,Z) of the torus T d:

Ed(d)(Z) = SO(d− 1, d− 1,Z) ./ Sl(d,Z) . (4.10)

The former was argued to be a non-perturbative symmetry of type IIA string theory, as
discussed in the previous section, while the latter is the remnant of eleven-dimensional

general reparametrization invariance, after compacti�cation on a torus T d: it is therefore
guaranteed to hold, as long as M-theory, whatever its formulation may be, contains the

graviton in its spectrum. The above construct is therefore the minimal U-duality group,
and since it preserves the symplectic condition (4.8)‡25 also the maximal one.

In the d = 2 case, the U-duality group (4.10) is the modular group Sl(2,Z) of the M-
theory torus, which in particular contains the exchange of Rs and R9; translated in type IIB

variables, this is simply the Sl(2,Z) S-duality of type IIB theory (in 9 or 10 dimensions),
which contains the strong-weak coupling duality gs → 1/gs, as can be seen from Eq. (2.45).
Note that we do not expect any quantum symmetry from the trombonne symmetry factor

R+. For d = 3, the T-duality group splits into two factors Sl(2,Z)×Sl(2,Z), one of which
is a subgroup of the modular group Sl(3,Z) of the M-theory torus T 3. The de�nition

(4.10) therefore yields E3(3)(Z) = Sl(3,Z) × Sl(2,Z) and is the natural discrete group of

E3. For d = 4, SO(3, 3,Z) is isomorphic to a Sl(4,Z) (in the same way as SO(6) ∼ SU(4))
which does not commute with the modular group Sl(4,Z) of M-theory on a torus T 4.

Altogether, they make the Sl(5,Z) subgroup of E4(4)(R) = Sl(5,R). For d = 5, we obtain
the SO(5, 5,Z) subgroup of E5(5)(R) = SO(5, 5,R). For d ≥ 6, this provides a de�nition of
the discrete subgroups of the exceptional groups Ed(d)(R)‡26. These groups are summarized

in the rather tautological Table 4.7. We note that it is crucial that the groups Ed(d)(R)
be non-compact in order for an in�nite discrete group to exist. The maximal non-compact

form is also required in order that all representations be real (i.e. that the mass of a particle
and its anti-particle be equal, see Section 4.8).

‡25A veri�cation of this statement requires a precise knowledge of the branching functions of Sp(56) into
E7.
‡26This is particularly interesting in the d ≥ 9 case, where we obtain discrete versions of a�ne and

hyperbolic groups, see Section 4.6.
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D d Ed(d)(R) Ed(d)(Z)

10 1 1 1

9 2 Sl(2,R) Sl(2,Z)

8 3 Sl(3,R)× Sl(2,R) Sl(3,Z)× Sl(2,Z)

7 4 Sl(5,R) Sl(5,Z)

6 5 SO(5, 5,R) SO(5, 5,Z)

5 6 E6(6)(R) E6(6)(Z)

4 7 E7(7)(R) E7(7)(Z)

3 8 E8(8)(R) E8(8)(Z)

Table 4.7: Discrete subgroups of Ed.

4.4 Weyl and Borel generators

A set of generators of the U-duality group can easily be obtained by conjugating the T-
duality generators under Sl(d,Z). The Weyl generators now include the exchange of the
eleven-dimensional radius Rs with any radius of the string-theory torus T d−1, in addition

to the exchange of the string-theory torus directions among themselves and T-duality on
two directions thereof. It is interesting to rephrase the latter in M-theory variables, using

relations (2.1) and (3.11):

Tij : Ri →
l3p

RjRs
, Rj →

l3p
RsRi

, Rs →
l3p

RiRj
, l3p →

l6p
RiRjRs

(4.11)

These relations are symmetric under permutation of i, j, s indices, and using an Rk ↔ Rs

transformation, we are free to choose i, j, s along any direction of the M-theory torus T d.
The M-theory T-duality therefore reads

TIJK : RI →
l3p

RJRK
, RJ →

l3p
RKRI

, RK →
l3p

RIRJ
, l3p →

l6p
RIRJRK

(4.12)

and in particular involves three directions, contrary to the naive expectation. We em-

phasize that the above equation summarizes the non-trivial part of U-duality, and arises
as a mixture of T-duality and S-duality transformations. It can in particular be used to

derive [Antoniadis:1999rm] the duality between the heterotic string compacti�ed on T 4

and type IIA compacti�ed on K3 in the Horava-Witten picture [Horava:1996ma], and thus
unify all vacua with 16 supersymmetries. We however restrict ourselves to the maximally

supersymmetric case in this review.

The Weyl group can be written in a way, similar to Eq. (3.12)‡27:

W (Ed) = Z2 ./ Sd (4.13)

‡27This equation holds for d ≥ 3 only; when d < 3 the Z2 symmetry (4.12) collapses and only the
permutation group Sd remains.
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but it should be borne in mind that the algebraic relations between the Z2 symmetry T123

and the permutations SIJ are di�erent from those of the T-duality generators T12 and

Sij ; in addition d di�ers by one unit from the one we used there. We also note that the

transformations TIJK and SIJ preserve the Newton's constant

1

κ2
d

=

∏
RI

l9p
=
VR

l9p
, (4.14)

where we have de�ned VR to be the volume of the M-theory compacti�cation torus.

On the other hand, the Borel generators now include a generator γi → γi+γs that mixes

the eleven-dimensional direction with the other ones, as well as the T-duality spectral �ow
Bij → Bij + 1, from which, by an Rs ↔ Ri conjugation, we can reach the more general

M-theory spectral �ow‡28

CIJK : CIJK → CIJK + 1 . (4.15)

We should also include a set of generators shifting the other scalars from the dual gauge
potentials, as explained in Section 4.2:

EIJKLMN : EIJKLMN → EIJKLMN + 1 (4.16a)

KI;JKLMNPQR : KI;JKLMNPQR → KI;JKLMNPQR + 1 . (4.16b)

These scalars and corresponding shifts are needed for d ≥ 6 and d ≥ 8 respectively. For
d ≥ 9, as will become clear in Section 4.6, the enlargement of the symmetry group to an
a�ne or Kac-Moody symmetry requires an in�nite number of such Borel generators. As we

shall see in Subsection 5.4, the Borel generators (4.16) can be obtained from commutators
of CIJK transformations.

4.5 Type IIB BPS states and S-duality

Before studying the structure of the U-duality group, we shall pause and brie�y discuss the
action of the extra Weyl generator Rs ↔ R9 on the type IIB side. Using the identi�cation

(2.45) to convert to type IIB variables, this action inverts the coupling constant and rescales

the string length as

gs ↔
1

gs
, l2s ↔ l2sgs , (4.17)

in such a way that Newton's constant 1/(g2
s l

8
s) is invariant. Its action on the BPS spectrum

can be straightforwardly obtained by working out the action on the masses or tensions, and

is summarized in Table 4.8.

In this table, we have displayed the action of the Z2 Weyl element only. Under more

general duality transformations, the fundamental string and the NS5-brane generate orbits

‡28As discussed in Subsection 5.4, the C shift actually has to be accompanied by E and K shifts to be a
symmetry of the equations of motion.
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state tension S-dual dual state

D1-brane 1
gsl2s

1
l2s

F-string

D3-brane 1
gsl4s

1
gsl4s

D3-brane

D5-brane 1
gsl6s

1
g2

s l6s
NS5-brane

KK5-brane R2

g2
s l8s

R2

g2
s l8s

KK5-brane

D7-brane 1
gsl8s

1
g3

s l8s
73-brane

D9-brane 1
gsl10s

1
g4

s l10s
94-brane

Table 4.8: S-dual type IIB BPS states.

of so called (p, q) strings and (p, q) �ve-branes. The former can be seen as a bound state of p
fundamental strings and q D1-branes, or (in the Euclidean case) as a coherent superposition
of q D1-branes with p instantons [200]. The (p, q) �ve-branes similarly correspond to bound

states of p NS5-branes and q D5-branes.

On the other hand, the action of S-duality on the D7 and D9-brane yields states with

tension 1/g3
s and 1/g4

s respectively. These exotic states will be discussed in Subsection
4.9, where our nomenclature will be explained as well. Again, such states have less than

three transverse dimensions, and do not preserve the asymptotic �atness of space-time and
the asymptotic constant value of the scalar �elds. In particular, the D7-brane generates a
monodromy τ → τ + 1 in the complex scalar τ at in�nity. Its images under S-duality then

generate a more general Sl(2,Z)B monodromy

M =

(
1− pq p2

−q2 1 + pq

)
(4.18)

ascribable to a (p, q) 7-brane‡29. We �nally remark that the relations in Table 4.8 can
also be veri�ed directly using the Rs ↔ R9 �ip and the M-theory/IIB identi�cations as
(un)wrapped M-theory branes, given in Tables 2.5 and 2.6.

4.6 Weyl generators and Weyl re�ections

In order to understand the occurrence of the Ed(d) U-duality group, we shall now apply
the same technique as in the T-duality case and investigate the group generated by the

Weyl generators. We choose as a minimal set of Weyl generators the exchange of the M-

theory torus directions SI : RI ↔ RI+1, where I = 1 . . . d − 1, as well as the T-duality

T = T123 on directions 1,2,3 of the M-theory torus. Adapting the construction of Ref.

‡29It has also been proposed that the IIB 7-branes transform as a triplet of Sl(2, Z) [230].
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[110]‡30and Subsection 3.4, we represent the monomials ϕ = (ln l3p, lnR1, lnR2, . . . , lnRd)
as a form on a vector space Vd+1 with basis e0, e1, e2, . . . , ed, and associate to any weight

vector λ = x0e0 + x1e1 + · · ·+ xded its �tension�‡31

T = e〈ϕ,λ〉 = l3x0

p Rx1

1 R
x2

2 . . . Rxd

d . (4.19)

The generators SI and T can then be implemented as linear operators on Vd+1, with matrix

SI =


1

1

1

Id−3

 , T =



2 1 1 1

−1 −1 −1

−1 −1 −1

−1 −1 −1

Id−3


. (4.20)

The operators SI and T in (4.20) are easily seen to be orthogonal with respect to the
Lorentz metric

ds2 = −(dx0)2 + (dxI)2 , (4.21)

and correspond to Weyl re�ections

λ→ ρα(λ) = λ− 2
α · λ
α · αα (4.22)

along planes orthogonal to the vectors

αI = eI+1 − eI , I = 1 . . . d− 1 , α0 = e1 + e2 + e3 − e0 . (4.23)

It is very striking that l3p appears on the same footing as the other radii RI , but with a

minus sign in the metric: it can be interpreted as the radius of an extra time-like direction,

much in the spirit of certain proposals about F-theory [313, 27]. The only non-vanishing

(Lorentzian) scalar products of these roots turn out to be

(αI)
2 = (α0)

2 = 2 , αI · αI+1 = α3 · α0 = −1 (4.24)

summarized in the Dynkin diagram:

©0

|
+1 − ⊕2 − ⊕3 − ⊕4 − · · ·− ⊕d−1

(4.25)

‡30In Ref. [110], the discussion was carried out from the gauge theory side, and the U-duality invariant
(4.14) was used to eliminate the vector e0, except when d = 9. This vector can, however, be kept for any
d, and, as we shall momentarily see, appears as an extra time-like direction.
‡31T actually has the dimension of a p-brane tension Tp, with p = −(3x0 + x1 + · · ·+ xd + 1).
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This is precisely the Dynkin diagram of Ed as shown in Table 4.3, in agreement with the

analysis based on moduli counting.

In Eq. (4.25) it is easy to recognize the diagrams of the SO(d−1, d−1,Z) (denoted by
©'s) and Sl(d,Z) (denoted by +'s) subgroups. The branching of the Sl(d) diagram on the

third root re�ects the action of T-duality on three directions. The full diagram can be built

from the M-theory Lorentz group Sl(d,Z) denoted by +'s, and from the type IIB Lorentz

group Sl(d − 1,Z) generated by the roots α0, α3, . . . , αd−1
‡32. Under decompacti�cation,

the rightmost root has to be dropped, so that Ed disintegrates into Ed−1
‡33. When the

root at the intersection is reached, the diagram falls into two pieces, corresponding to the

two Sl(2) and Sl(3) subgroups in D = 8. The root α0 itself disappears for d = 2, leaving
only the root α1 of Sl(2,R).

Again, the action of the Weyl group on Vd+1 is reducible, at least for d ≤ 8. Indeed,

the invariance of Newton's constant
∏
RI/l

9
p implies that the roots are all orthogonal to

the vector

δ = e1 + · · ·+ ed − 3e0 , (4.26)

with proper length δ2 = d− 9, so that the re�ections actually restrict to the hyperplane Vd

normal to δ:

x1 + · · ·+ xd + 3x0 = 0 . (4.27)

The Lorentz metric on Vd+1 restricts to a metric gIJ = δIJ − 1/9 on Vd, which is positive-
de�nite for d ≤ 8, so that SI and T indeed generate the Weyl group of the Lie algebra
Ed(R). The order and number of roots of these groups are recalled in Table 4.9 [177].

When d = 9, however, the invariant vector δ becomes null, so that Vd+1 no longer

splits into δ and its orthogonal space; the generators act on the entire Lorentzian vector
space Vd+1, and the generators SI and T no longer span a �nite group. Instead, they
correspond to the Weyl group of the a�ne Lie algebra E9 = Ê8. This is in agreement

with the occurrence of in�nitely many conserved currents in D = 2 space-time dimensions.

This case requires a speci�c treatment and will be discussed in Subsection 4.12. For d > 9,
that is compacti�cation to a line or a point, the situation is even more dramatic, with the

occurrence of the hyperbolic Kac�Moody algebras E10 and E11, about which very little is
known. The reader should go to [184, 183, 239, 129] for further discussion and references.

4.7 BPS spectrum and highest weights

Pursuing the parallel with our presentation on T-duality, we now discuss the representations

of the U-duality Weyl group. The fundamental weights dual to the roots α1, . . . , αd−1, α0

‡32From this point of view, the U-duality is a consequence of general coordinate invariance in M and type
IIB theories [209].
‡33There is a notable exception for d = 8, where E8 disintegrates into E7 × Sl(2). This is because the

extended Dynkin diagram of E8 has an extra root connected to α8. Only Sl(2) singlets remain in the
spectrum, however. The same happens in d = 4, where E3 = Sl(3)×Sl(2) in E4 = Sl(5) is not a maximal
embedding.
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d 2 3 4 5 6 7 8 9

Ed A1 A2 × A1 A4 D5 E6 E7 E8 Ê8

order 2 6× 2 5! 245! 27345 210345 7 21435527 ∞
roots 2 6 + 2 20 40 72 126 240 ∞

Table 4.9: Order and number of roots of Ed Weyl groups.

are easily computed:

λ(1) = e1 − e0 → T1 =
R1

l3p
(4.28a)

λ(2) = e1 + e2 − 2e0 → T3 =
R1R2

l6p
(4.28b)

λ(3) = e1 + e2 + e3 − 3e0 → T ′
5 =

R1R2R3

l9p
(4.28c)

λ(4) = e1 + · · ·+ e4 − 3e0 → T ′
4 =

R1R2R3R4

l9p
(4.28d)

. . .

λ(d−2) = e1 + · · ·+ ed−2 − 3e0 → T ′
10−d =

R1 . . . Rd−2

l9p
(4.28e)

λ(d−1) = e1 + · · ·+ ed−1 − 3e0
.
= −ed → M =

1

Rd

(4.28f)

λ(0) = −e0 → T2 =
1

l3p
(4.28g)

where the symbol
.
= in Eq. (4.28f) denotes equality modulo δ, that is up to a power of the

invariant Planck length. In the above equations, we have translated the weight vectors into

monomials, and interpreted it as the tension Tp+1 of a p-brane:

• The weight λ(d−1) corresponds to the Kaluza�Klein states, with mass 1/RI , as well

as its U-duality descendants. We shall name its orbit the particle multiplet, or �ux
multiplet, for reasons that will become apparent in Subsection 6.9.

• The weight λ(1) on the other hand has dimension 1/L2, and corresponds to the tension

of a membrane wrapped on the direction 1: it will go under the name of string mul-
tiplet, or momentum multiplet. The latter name will also become clear in Subsection

6.9.

• The weight λ(0) is the highest weight of the membrane multiplet containing the fun-

damental membrane with tension 1/l3p, together with its descendants.
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• The weights λ(2) and λ(5) both correspond to threebrane tensions T3 and T ′
3 . Even

though they are inequivalent under the Weyl group, it turns out that λ(5) is a de-

scendant of λ(3) under the full U-duality group. The U-duality orbit of the state with

tension T ′
3 is therefore a subset of the orbit of the state with tension T3, and λ

(3) is

the true highest-weight vector of the threebrane multiplet.

• The same holds for λ(6) associated to a membrane tension T ′
2 and descendant of the

highest weight λ(0) of the membrane multiplet under U-duality, as well as for λ(7) and

λ(1).

• The weight λ(3) corresponds to a �vebrane tension T ′
5 , but is again not the highest

weight of the �vebrane multiplet, which is instead a non-fundamental weight:

T5 =
1

l6p
→ λ = −2e6 = 2λ(0) . (4.29)

Similarly, the weight λ(4) corresponds to a fourbrane tension T ′
4 , and is not the highest

weight of the fourbrane multiplet, which is instead a non-fundamental weight:

T4 =
R1

l6p
→ λ = e1 − 2e6 = λ(1) + λ(0) . (4.30)

• Finally, the instanton multiplet does not appear in Eq. (4.28). An instanton con�gu-
ration can be obtained by wrapping a membrane on a three-cycle‡34, and corresponds
to a weight vector

T−1 =
R1R2R3

l3p
→ λ = α0 . (4.31)

Since this vector is a simple root, it corresponds to a multiplet in the adjoint rep-
resentation. It is, however, not the highest weight of the U-duality multiplet, which

is instead the highest root ψ whose expansion coe�cients on the base of the simple
roots are given by the Coxeter labels in Table 4.3. An explicit computation gives

d = 4 : ψ = δ − λ(1) − λ(0) (4.32a)

d = 5 : ψ = δ − λ(2) (4.32b)

d = 6 : ψ = δ − λ(0) (4.32c)

d = 7 : ψ = δ − λ(1) (4.32d)

d = 8 : ψ = δ − λ(7) . (4.32e)

Since the fundamental weights λ(i) are dual to the simple roots αI , it is clear that

ψ · αI = δi,I , where I is the index appearing on λ in Eq. (4.32) at a given d, and
moreover it can be easily checked that ψ2 = 2. The highest root can therefore be
added as an extra root in the Dynkin diagrams in Table 4.3, and turns them into

extended Dynkin diagrams.

‡34We should, however, warn the reader that it is not the representation arising in non-perturbative
couplings, as we shall discuss in Subsection 5.8.
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The previous considerations are summarized in the diagram

1
l3p

|
R1

l3p
− R1R2

l6p
− R1R2R3

l9p
− R1R2R3R4

l9p
− · · ·− 1

Rd

(4.33)

where we have indicated the highest weight associated to each node of the Dynkin diagram.

For simplicity, we shall henceforth focus our attention on the particle and string multiplets,

corresponding to the rightmost node with weight λ(d−1) and leftmost node with weight λ(1)

respectively.

4.8 The particle alias �ux multiplet

The full particle multiplet can be obtained by acting with Weyl and Borel transformations
on the Kaluza�Klein state with mass 1/RI . Instead of working out the precise transfor-

mation of the supergravity con�gurations‡35, we can restrict ourselves to considering the
masses of the various states in the multiplet. We note that the action of SIJ and TIJK on

the dilatonic scalars RI is independent of the dimension d of the torus, so that we can work
out the maximally compacti�ed case D = 3, and obtain the higher-dimensional cases by
simply deleting states that require too many di�erent directions on T d to exist.

The results are displayed in Table 4.10, where distinct letters stand for distinct indices.

The states are organized in representations of the Sl(8,Z) modular group of the torus T 8.
These representations arrange themselves in shells with increasing power of l3p; since lp is
invariant under Sl(8,Z), this corresponds to the grading with respect to the simple root α0.

Generalized T-duality TIJK may move from one shell to the next or previous one, whereas

SIJ acts within each shell. Eight states with mass VR/l
9
p have been added in the middle

line, corresponding to zero-length weights that cannot be reached from the length-2 highest

state. These states are, however, necessary in order to get a complete representation of the
modular group Sl(8,Z), and can be reached by a Borel transformation in Sl(8,Z). They

can be thought of as the eight ways to resolve the radius that appears square in the mass of

the other states on the same line, into a product of two distinct radii. This is not required
for the other lines, since all squares can be absorbed with a power of Newton's constant.

In the last column of Table 4.10, we have indicated the representation of Sl(8,Z) that
yields the same dimension. The superscripts denote the number of antisymmetric indices,

and no symmetry property is assumed across a semicolon. In other words, m1;7 correspond
to the V ⊗ ∧7V where V is the de�ning representation of Sl(d). These representations

are precisely dual to those under which the various gauge vectors transform (see Table
4.5); they actually correspond to the charges of the BPS state under these U(1) gauge

symmetries (see also Subsection 4.2). They generalize the D-brane charges we discussed in

Section 3. Altogether, these states sum up to 248, the adjoint representation of E8, which

‡35See Ref. [221] for the construction of U-duality multiplets of p-brane solutions, and Ref. [115] for a
discussion of the continuous U-duality orbits of p-brane solutions.
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indeed decomposes in the indicated way under the branching Sl(8) ⊂ E8. The occurrence

of the adjoint representation simply follows from the last equality of Eq. (4.32) identifying

the fundamental weight λ(7) with the highest root of E8.

mass M Sl(8) irrep charge

1
RI

8 m1

RIRJ

l3p
28 m2

RIRJRKRLRM

l6p
56 m5

R2
IRJRKRLRMRN RP

l9p
, 8 VR

l9p
1+63 m1;7

R2
IR2

JR2
KRLRM RN RP RQ

l12p
56 m3;8

R2
IR2

JR2
KR2

LR2
M R2

N RP RQ

l15p
28 m6;8

R3
IR2

JR2
KR2

LR2
M R2

N R2
P R2

Q

l18p
8 m1;8;8

Table 4.10: Particle/�ux multiplet 248 of E8.

The �rst three lines in Table 4.10 have an obvious interpretation. The state with mass
1

RI
is simply the Kaluza�Klein excitation on the dimension I, and mI denotes the vector of

integer momentum charges. The state with mass RIRJ/l
3
p is the membrane wrapped on a

two-cycle T 2 of the compacti�cation torus T d, and the two-form mIJ labels the precise two-
cycle, just as in the D-brane case of the previous section. The third line corresponds to the
�vebrane wrapped on the �ve-cycle labelled by mIJKLM . The states on the fourth line are

more interesting. The �rst of them involves one square radius, and therefore does not exist
in uncompacti�ed eleven dimensions. It is simply the KK6-brane with Taub�NUT direction
along RI and wrapped along the directions J to P . The second state with mass VR/l

9
p,

however, does exist in eleven uncompacti�ed directions, and has the tension of a would-be
8-brane. Its asymptotic space-time is however not �at, but logarithmically divergent. The

status of this solution is unclear at present, together with that of the following lines of the

table. These states only appear as particles in D = 3, with the peculiarities that we have

already mentioned.

Upon decompacti�cation, the last two lines in Table 4.10 disappear since they require

eight distinct radii, and the particle multiplet reduces to a representation of the corre-

sponding U-duality group, as indicated in Table 4.11. When d ≥ 4, the representation
remains the one dual to the rightmost root. For d = 3, the U-duality group disconnects

into Sl(3) and Sl(2), and −ed becomes equal to λ(2) +λ(3) instead of being equal to λ(3), as
in other cases. Consequently, the particle multiplet transforms as a (3, 2) representation

of U-duality.

The full particle multiplet on T d can be easily decomposed in representations of the

U-duality group Ed−1(Z) in one dimension higher by separating the states in Table 4.10
according to their dependence on the decompacti�ed radius Rd (which gives a gradation
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with respect to the simple root αd−1). We obtain the general decomposition‡36

M(d) = 1|−1 ⊕M|0 ⊕ (T1 ⊕ T ′
1 )|1 ⊕ T ′

2 |2 ⊕ (T ′
1 )2|3 , (4.34)

where we have denoted the multiplets as in Eq. (4.28) and speci�ed the power of Rd in

subscript. The notation (T ′
1 )2 means twice the fundamental weight associated to T ′

1 . The

multiplets on the right-hand side of (4.34) become empty as d decreases. In particular,

we note that the particle multiplet on T d decomposes into a singlet, corresponding to the

Kaluza�Klein excitation around the decompacti�ed direction xd, as well as a particle and

a string multiplet on T d−1, depending on whether the state was wrapped around xd. There

are also a number of additional states that appear for d ≥ 6, to which we shall come back

in Subsection 7.7.

D d U-duality group irrep Sl(d) content

10 1 1 1 1

9 2 Sl(2,Z) 3 2 + 1

8 3 Sl(3,Z)× Sl(2,Z) (3, 2) 3 + 3

7 4 Sl(5,Z) 10 4 + 6

6 5 SO(5, 5,Z) 16 5 + 10 + 1

5 6 E6(6)(Z) 27 6 + 15 + 6

4 7 E7(7)(Z) 56 7 + 21 + 21 +7

3 8 E8(8)(Z) 248 2(8 + 28 + 56) + 63 + 1

Table 4.11: Particle/�ux multiplets of Ed.

As a side remark, we note that Table 4.10 is symmetric under re�ection with respect to
the middle line: for each state with mass M there is a state with mass M′ satisfying

MM′ =

(
VR

l9p

)2

, (4.35)

where VR is the volume of the eight-torus. In particular, the lowest weight is equal to

minus the highest weight, modulo the invariant vector δ. This is a general property of
real representations of compact group, and indeed 248 is the adjoint representation of E8,

therefore real. The same also holds for the 56 representation of E7 in the d = 7 case.
However, whether real or not with respect to the compact real form of the group Ed(C), all
the representations appearing in Table 4.11 are real as representations of the non-compact

group Ed(d), as is required by the existence of an anti-particle for each particle. This is
obvious for d ≤ 4; for d = 5, it is equivalent to the statement that the spinor of SO(8) is
real, since the reality properties of spinors of SO(p, q) depend only on p− q mod 8. This
property is a characteristic feature of the representations of the maximally non compact

real form.
‡36For d = 8, this is 248 = 1⊕ 56⊕ (133⊕ 1)⊕ 56⊕ 1.
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4.9 T-duality decomposition and exotic states

In order to make contact with string theory solutions, it is useful to decompose the particle

multiplet into irreducible representations of the T-duality group SO(d−1, d−1,Z). This can
be simply carried out by distinguishing whether the indices lie along the eleventh dimension

or not, and substituting the matching relations (2.1). Since T-duality commutes with the

grading in powers of the string coupling gs, the various irreps are then sorted out according

to the dependence of the mass of the states on gs. Table 4.12 summarizes the decomposition

of the particle/�ux multiplet for M-theory on T 8 into irreducible representations of the

SO(7, 7) T-duality symmetry group of type IIA string theory on T 7, as well as the Sl(8)
(resp. Sl(7)) modular group of the M-theory (resp. string theory) torus.

The masses of the states in the a-th column depend on the string coupling constant as

1/ga−1
s , and are given by

V : 1
Ri
, Ri

l2s
(4.36a)

SA : 1
gs

(
1
ls
,

RiRj

l3s
,

RiRjRkRl

l5s
,

RiRjRkRlRmRn

l7s

)
(4.36b)

S + AS : 1
g2

s

(
RiRjRkRlRm

l6s
,

V ′
R

l8s
,

R2
i RjRkRlRmRn

l8s
,

V ′
RRiRj

l10s

)
(4.36c)

SB :
V ′

R

g3
s l8s

(
Ri

ls
,

RiRjRk

l3s
,

RiRjRkRlRm

l5s
,

V ′
R

l7s

)
(4.36d)

V ′ :
(

V ′
R

g2
s l8s

)2 (
l2s
Ri
, Ri

)
(4.36e)

where V ′
R denotes the volume of the string-theory seven-torus. At level 1/g0

s we observe
the usual KK and winding states of the string and the level 1/gs reproduces the D0-,D2-

,D4- and D6-branes. At level 1/g2
s , the NS5 and KK5-brane appear together with two new

types of state, a 72-brane and a 52
2-brane. Our nomenclature displays on-line the number of

spatial world-volume directions, i.e. the number of radii appearing linearly in the mass; the

superscript speci�es the number of directions (if non-zero) that appear quadratic, cubic,

etc., listed from the right to the left. the subscript denotes the inverse power of the string
coupling appearing in the mass formula; for example, in this convention the KK5-brane is

a 51
2-brane. According to this notation, we �nd at level 1/g3

s a 61
3-, 43

3-, 25
3- and 07

3-brane.
Their masses are related to those of the even Dp-branes, by the type IIA (on T 7) mirror

symmetry

MM′ =

(
V ′

R

g2
s l

8
s

)2

, (4.37)

which follows from the M-theory mirror symmetry relation (4.35). Finally, at level 1/g4
s ,

a 16
4- and a 0

(1,6)
4 -brane are obtained, whose masses are related to those of the KK and

winding states by (4.37).

At this point a few remarks are in order about the new type IIA states that appear

in (4.36). The 72- and 52
2-brane, with mass proportional to 1/g2

s have a conventional
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dependence on the string coupling, but no supergravity solutions are known for these

states. In addition, a variety of states with exotic dependence on the string coupling, 1/g3
s

and 1/g4
s , are observed. They arise from M-theory states with mass diverging as 1/l9p or

faster. It is not clear what the meaning of these new states in M-theory and type IIA string

theory is. These states cannot be accommodated in weakly coupled string theory where the

most singular behaviour is expected to be 1/g2
s , corresponding to Neveu�Schwarz solitons.

A higher power would imply a contribution of a Riemann surface with Euler characteristic
χ > 2. Another way to see this is by considering the gravitational �eld created by these

objects, which scales asMκ2
10: since κ

2
10 ∼ g2

s , states whose mass goes like gn
s , n ≤ 2 create

a vanishing or at most �nite gravitational �eld in the weak coupling limit, allowing for a �at

space description in the spirit of D-branes. On the other hand, when n > 2, the surrounding
space becomes in�nitely curved at weak coupling, and these states do not correspond to

solitons anymore. In fact, the simplest of these states, namely 61
3, can be obtained by

constructing an array of Kaluza-Klein along a non-compact direction of the Taub-NUT

space ‡37, and wrapping the worldvolume directions on the string theory torus T 6 [54]. The

summation of the poles in the harmonic function is logarithmically divergent, implying
that the asymptotic space-time is logarithmically divergent as well. This is the rule and
not the exception for a pointlike state in 3 space-time dimensions (since the Laplacian in

the two transverse coordinates has a logarithmic kernel), and the conventional states with
an asymptotically �at space-time are simply con�gurations with a vanishing charge. The
same issue arises for p-branes in p+3 dimensions (or less). We emphasize, though, that our

present purpose is to examine the consequences at the algebraic level of the presence of the
conjectured U-duality, which does require these exotic states. The supergravity solutions

describing these states can in principle by computed using the known duality relations,
which indeed do not preserve the asymptotic �atness of the metric.

248(E8)⊃ SO(7,7)
∪

Sl(8)
14 (V ) 64 (SA) 1 + 91 (S ⊕ AS) 64 (SB) 14 (V ′)

8 (m1) 7 (m1) 1 (ms)

28 (m2) 7 (ms1) 21 (m2)

56 (m5) 35 (ms4) 21 (m5)

1+ 63 (m1;7) 7 (ms;s6) 1 + 1+ 48 (ms;7, m1;s6) 7 (m1;7)

56 (m3;8) 21 (ms2;s7) 35 (m3;s7)

28 (m6;8) 21 (ms5;s7) 7 (m6;s7)

8 (m1;8;8) 1 (ms;s7;s7) 7 (m1;s7;s7)

Table 4.12: Branching of the d = 8 particle multiplet into irreps of Sl(8) and SO(7, 7).
The entries in the table denote the irreps under the common Sl(7) subgroup of Sl(8) and
SO(7, 7).

‡37This construction �rst appeared in the context of the conifold singularity in the hypermultiplet moduli
space [246].
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4.10 The string alias momentum multiplet

The same analysis can be carried out for the string multiplet, by applying a sequence

of Weyl re�ections on the highest weight RI/l
3
p describing the wrapped membrane. After

adding a multiplet of length 2 and 35 zero-weights for Sl(8,Z) invariance, we obtain a 3875
representation of E8(8). The precise content of this representation is displayed in Appendix

B; instead, we display in Table 4.13 the more manageable result for the d = 7 case, where

the string multiplet transforms as a 133 adjoint representation of E7(7). The occurrence of

the adjoint representation is again understood from Eq. (4.32) relating the fundamental

weight λ(1) to the highest root ψ.

tension T mass Sl(7) irrep charge

RI

l3p
7 n1

RIRJRKRL

l6p
35 n4

R2
IRJRKRLRM RN

l9p
, 7VR

l9p
1+48 n1;6

R2
IR2

JR2
KRLRMRN RP

l12p
35 n3;7

R2
IR2

JR2
KR2

LR2
MR2

N RP

l15p
7 n6;7

Table 4.13: String/momentum multiplet 133 of E7.

D d U-duality group irrep Sl(d) content

10 1 1 1 1

9 2 Sl(2,Z) 2 2

8 3 Sl(3,Z)× Sl(2,Z) (3, 1) 3

7 4 Sl(5,Z) 5 4 + 1

6 5 SO(5, 5,Z) 10 5 + 5

5 6 E6(6)(Z) 2̄7 6 + 15 + 6

4 7 E7(7)(Z) 133 7 + 35 + 49 + 35 + 7

3 8 E8(8)(Z) 3875 8 + 70 + . . .

Table 4.14: String/momentum multiplets of Ed.

These states have the same interpretation as the states in the particle multiplet, but

for wrapping one dimension less of the world-volume. In other words, the states in the

particle multiplet can be obtained by wrapping strings on one dimension more� except for

the Kaluza�Klein state, which is a genuine point-like (or wave-like, rather) object. We
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note again that Table 4.13 is symmetric under re�ection with respect to its middle line, in

agreement with the reality of the 133 adjoint representation of E7.

The string multiplet in higher dimensions is simply obtained by dropping the states that

require too many di�erent radii, as displayed in Table 4.14; in all cases, it corresponds to the

representation dual to the leftmost root α1. We note that in d = 6 the 2̄7 string multiplet

is distinct from the 27 particle multiplet, but is related to it by an outer automorphism of

E6 corresponding to the Z2 symmetry of its Dynkin diagram. We also note, for later use,

that in all cases the string multiplet representation arises in the symmetric tensor product

of two particle multiplets, i.e. (M⊗s M)⊗ T always contains a singlet.

Like the particle multiplet, the full string multiplet on T d can be easily decomposed in

representations of the U-duality group Ed−1(d−1)(Z) in one dimension higher by using the

gradation in powers of the decompacti�ed radius Rd
‡38

T (d)
1 = T1|0 ⊕ (T2 ⊕ T ′

2 )|1 ⊕ T ′
3 |2 , (4.38)

where we have denoted the multiplets as in Eq. (4.28) and again speci�ed the power of
Rd in subscripts. In particular, we note that the string multiplet on T d decomposes into

a string and a membrane multiplet on T d−1, depending whether the state was wrapped
around xd. There are also a number of additional states that disappear for d ≤ 6.

133(E7)⊃ SO(6,6)
∪

Sl(7)
1 (S) 32 (SB) 1 + 66 (S ′ ⊕AS) 32 (S ′B) 1 (S ′′)

7 (n1) 1 (ns) 6 (n1)

35 (n4) 20 (ns3) 15 (n4)

1+ 48 (n1;6) 6 (ns;s5) 1 + 1+ 35 (ns;6, n1;s5) 6 (n1;6)

35 (n3;7) 15 (ns2;s6) 20 (n3;s6)

7 (n6;7) 6 (ns5;s6) 1 (n6;s6)

Table 4.15: Branching of the d = 7 string multiplet into irreps of Sl(7) and SO(6, 6).
The entries in the table denote the irreps under the common Sl(6) subgroup of Sl(7) and
SO(6, 6).

As in the previous subsection, we give the branching of the d = 7 string multiplet in
terms of irreps of the T-duality SO(6, 6,Z) as well as the modular groups Sl(7,Z) and

Sl(6,Z) of the M-theory and string theory tori in Table 4.15.

4.11 Weyl-invariant e�ective action

As in our discussion of T-duality, we would now like to write the supergravity action (2.2)

in a manifestly Weyl-invariant form. This has been carried out in Refs. [218, 220], a

‡38For d = 7, this is 133 = 27⊕ (78⊕ 1)⊕ 2̄7.
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simpli�ed version of which will be presented here. As in Eq. (3.25), we decompose the

eleven-dimensional �eld strength F (4) and metric in lower-degree forms. The action then

takes the simple form:

S11−d =

∫
d11−dx

√
−g V

l9p

[
R +

∑
i

(
∂Ri

Ri

)2

+
∑
i<j

(
Ri

Rj
F i(1)

j

)2

+
∑

i

(
RiF (2)i

)2
+
(
l3pF

(4)
)2

+
∑

i

(
l3p
Ri
F

(3)
i

)2

+
∑
i<j

(
l3p

RiRj
F

(2)
ij

)2

+
∑

i<j<k

(
l3p

RiRjRk
F

(1)
i

)2
]
, (4.39)

where the �rst line comes from the reduction of the Einstein�Hilbert term and the second

from the kinetic term of the three-form.

In Eq. (4.39) we again recognize in front of the one-form �eld strength F (1) and F (1)

the positive roots ei − ej and ei + ej + ek − e0, in front of the two-form �eld strength F (2)

the weights −ei of the particle multiplet, in front of the three-form �eld strength F (3) the
weights ei − e0 of the string multiplet, and in front of the four-form �eld strength F (4)

the weight −e0 of the membrane multiplet. However, these weights do not form complete

orbits: it is necessary to dualize the �eld strengths F (p) into lower-degree �eld strengths
F (11−d−p) so as to display the Weyl symmetry. In the 2p = 11 − d case, both the �eld

strength and its dual should be kept. Alternatively, all �eld strengths may be doubled with
their duals, and display an even larger symmetry [74, 75].

We then obtain a manifestly Weyl-invariant action:

S11−d =

∫
d11−dx

√
−g V

l9p
[R + ∂ϕ · ∂ϕ

+
∑

α∈Φ+

e−2〈ϕ,α〉 (F (1)
α

)2
+
∑

λ∈Φpart

e−2〈ϕ,λ〉
(
F (2)

λ

)2

+
∑

λ∈Φstring

e−2〈ϕ,λ〉
(
F (3)

λ

)2

+
∑

λ∈Φmembrane

e−2〈ϕ,λ〉
(
F (4)

λ

)2

+ . . .

 , (4.40)

where ϕ = (ln l3p, lnR1, . . . , lnRd) is the vector of dilatonic scalars (whose �rst component

is non-dynamical), 〈ϕ, λ〉 = x0 ln l3p +x1 lnR1 + . . . is the duality bracket (4.19) and ∂ϕ ·∂ϕ
the Weyl-invariant kinetic term (∂l3p = 0) obtained from the metric (4.21). In addition

to the equations of motion from (4.40), the duality equations F (p) = ∗F (11−d−p) should

also be imposed. As in the case of T-duality, the set of positive roots Φ+ is not invariant

under Weyl re�ections, but the Peccei�Quinn scalars undergo non-linear transformations
A(0) → e−2〈ϕ,α〉A(0) that compensate for the sign change [220].
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4.12 Compacti�cation on T 9 and a�ne Ê8 symmetry

As we pointed out in Subsection 4.6, the compacti�cation on a nine-torus T 9 to two space-

time dimensions gives rise to a qualitative change in the U-duality group: the invariant

vector δ in (4.26) corresponding to the dimensionless Newton constant becomes light-like

in the Lorentzian metric −(dx0)2 +(dx1)2 + · · ·+(dx9)2, so that the action of the U-duality

group generated by SI and T in Eq. (4.20) cannot be restricted to its orthogonal subspace.

Instead, it generates the Weyl group of the Ê8 a�ne algebra, as was shown in Ref. [110];

we shall recast their construction in the notation of this review, at the same time settling

several issues.

In order to see the a�ne symmetry Ê8 arise, we simply note that the Dynkin diagram of

E9 (see Table 4.3) is nothing but the extended Dynkin diagram of E8, where the additional

root with Coxeter label 1 corresponds to α8 = e9−e8. The roots α0, α1, . . . , α7 generate the
E8 horizontal Lie algebra, whereas α8 and δ =

∑9
I=1 eI−3e0 are the extra dimensions needed

to represent the central charge K and degree D generators of the standard construction of

a�ne Lie algebras (see e.g. Ref. [121]). To make the identi�cation precise, we recall that

the simple roots of an a�ne Lie algebra Ĝ can be chosen as ‡39

α̂I = (αI , 0, 0) , I = 1 . . . r , α̂0 = (−ψ, 0, 1) (4.41)

in the basis (µ, k, d) of the Minkovskian weight space Vr+2 = Rr +R1,1 with norm µ2 +2kd.
Here, ψ is the highest root of G, r is the rank of G, k is the a�ne level, and d the L0

eigenvalue. In the case at hand, we have G = E8 so r = 8 and want to �nd the change of
basis between the roots αI , I = 0 . . . 8 and null vector δ of our formalism and the standard
roots α̂I , I = 0 . . . 8 and vectors γ = (0, 0, 1), κ = (0, 1, 0). From Eq. (4.32) we have,

ψ = e1 + · · ·+ e7 + 2e8 − 3e0 = δ − α8 , (4.42)

so that, comparing with Eq. (4.41), we can identify δ with γ = (0, 0, 1) and

α̂I = αI , I = 1 . . . 7 , (4.43a)

α̂8 = α0 , (4.43b)

α̂0 = α8 . (4.43c)

The vector κ = (0, 1, 0) can be easily calculated from the requirements that κ2 = κ · α̂I =
0, I = 1 . . . 8 and κ · δ = 1:

κ =
1

2
(−e1 − · · · − e8 + e9 + 3e0) = e9 −

δ

2
. (4.44)

The level k and degree d of any weight vector λ ∈ V10 can now be obtained from the

products δ · λ and δ · κ respectively, and they both have a simple interpretation:

k = δ · λ = x1 + · · ·+ x9 + 3x0 (4.45)

‡39In order to keep with the standard notation, the simple roots of the Lie algebra are now labelled by
subscripts ranging from 1 to r, as opposed to our notation for the simple roots of the U-duality groups Er,
which carry labels 0 to r − 1.
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is simply the length dimension of the associated monomial
∏
RxI

I l
3x0

p , and

d = κ · λ = x9 − k/2 (4.46)

counts the power of R9 appearing in the same monomial, up to a shift k/2. This was

expected, since the horizontal subalgebra E8 ⊂ Ê8 does not a�ect R9 and by de�nition

commutes with L0. L−n generators, on the other hand, bring additional powers of R9 and

increase the degree d. In particular, the L0 eigenvalues are integer-spaced, as they should.

We proceed by considering the particle/�ux and string/momentum multiplets intro-

duced in Subsections 4.8 and 4.10, with highest weights λ(d−1) = −e9 and λ(1) = e1 − e0
respectively (see Eq. (4.28)). The particle multiplet is therefore a level −1 representation

with trivial ground state µ = 0 (that is, in the chiral block of the identity). A bit of

experimentation reveals the �rst Sl(9) representations occurring in the particle multiplet:

m1;1;9, m1;4;9, m2;6;9, m4;7;9, m7;7;9, m2;3;9;9, . . . (4.47)

with tensions scaling from 1/l12p to 1/l24p , in addition to the representations already present

in d = 8, given in Table 4.10. However, the full orbit is in�nite. On the other hand,
the string multiplet is a level −2 representation with ground state in the 3875 of E8. In
both cases, the representations are in�nite-dimensional, and need to be supplemented with

weights of smaller length as in the E7 and E8 cases. The instanton multiplet, on the other
hand, is a level-0 representation of Ê8, with a non-singlet ground state in the adjoint of E8,
making it obvious that the usual unitarity restrictions for compact a�ne Lie algebras do

not apply in our case. This concludes our analysis of the d = 9 case, and we now restrict
ourselves to the better understood d ≤ 8 case.
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5 Mass formulae on skew tori with gauge

backgrounds

We would now like to generalize the mass formulae of the U-duality multiplets obtained

so far for rectangular tori and vanishing gauge potentials to the more general case of skew

tori and arbitrary gauge potentials, which will exhibit the full U-duality group. This will

also allow a better understanding of the action of Borel generators on the BPS spectrum.

We will concentrate on the d = 7 �ux multiplet, but the same method applies to the other

multiplets.

5.1 Skew tori and Sl(d,Z) invariance

We have already argued that BPS states could be labelled by a set of tensors of integer

charges describing their various momenta and wrappings. In particular, for the case of the
d = 7 �ux multiplet, the charges

m1, m
2, m5, m1;7 (5.1)

describe the Kaluza�Klein momentum, membrane, �vebrane and KK6-brane wrappings.

The position of the index has been chosen in such a way that we obtain the correct mass
by contracting each of them with the vector of radii RI or inverse radii 1/RI . Note that
for d = 7 the tensor m1;7 is really a tensor m1, but the extra seven indices account for an

extra factor of the volume in the tension. Of course, a BPS state with generic charges m
will not be 1/2-BPS state in general (for d ≥ 5): some quadratic conditions on m have to

be imposed, as already discussed in Subsections 2.2 and 3.8. We shall henceforth assume
these conditions ful�lled, deferring the study of the latter to Subsection 5.9.

The 1/2-BPS state mass formula for a non-diagonal metric gIJ can be straightforwardly
obtained by replacing contractions with the vector of radii by contractions with the metric,

and inserting the proper symmetry factor and power of the Planck length on dimensional
grounds:

M2 = (m1)
2 + (m2)2 + (m5)2 + (m1;7)2

= mIg
IJmJ + 1

2! l6p
mIJgIKgJLm

KL

+ 1
5! l12p

mIJKLMgINgJPgKQgLRgMSm
NPQRS + . . .

(5.2)

This formula is invariant under Sl(d,Z), but not yet under the T-duality subgroup SO(d−
1, d− 1,Z) of the U-duality group. It only holds when the expectation value of the various

gauge �elds on the torus vanish. To reinstate the dependence on the three-form CIJK , we

apply the following strategy.

• Decompose the �ux multiplet as a sum of T-duality irreps.

• Include the correct coupling to the NS two-form �eld Bij using the T-duality invariant

mass formulae.
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• Study the T-duality spectral �ow B → B + ∆B.

• Covariantize this �ow under Sl(d,Z) into a C → C + ∆C �ow.

• Integrate the C → C + ∆C �ow to obtain the U-duality invariant mass formula.

5.2 T-duality decomposition and invariant mass formula

We have already discussed the �rst step in Subsection 4.9, and we only need to restrict

ourselves to the case d = 7. Table 4.12 then truncates to its upper left-hand corner displayed
in Table 5.1, as can be read from the d = 7 particle multiplet mass formula (5.2) written

with s and i indices:

M2 =
[

m2
s

g2
s

+ (m1)
2
]

+
[
(ms1)2 + (m2)2

g2
s

]
+
[

(ms4)2

g2
s

+ (m5)2

g4
s

]
+
[

(ms;s6)2

g2
s

+ m1;s6)2

g4
s

]
(5.3)

corresponding to three SO(6, 6) irreps,

V = (m1, m
s1) momentum and winding (5.4a)

S = (ms, m
2, ms4, ms;s6) D0-,D2-,D4-,D6-brane (5.4b)

V ′ = (m5, m1;s6) NS5-brane and KK5-brane (5.4c)

56(E7)⊃ SO(6,6)
∪

Sl(7)
12 (V ) 32 (SA) 12 (V ′)

7 (m1) 6 (m1) 1 (ms)

21 (m2) 6 (ms1) 15 (m2)

21 (m5) 15 (ms4) 6 (m5)

7 (m1;7) 1 (ms;s6) 6 (m1;s6)

Table 5.1: Branching of the d = 7 particle multiplet into irreps of Sl(7) and SO(6, 6).
The entries in the table denote the irreps under the common Sl(6) subgroup of Sl(7) and
SO(6, 6).

We can now use the T-duality invariant mass formulae for the T-duality irreps that we

obtained in Section 3. In terms of the present charges, they schematically read (in units of
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ls)

M2
V =

(
mi + Bijm

sj
)
gik
(
mk + Bklm

sl
)

+msigijm
sj (5.5a)

M2
SB

=
1

g2
s

[(
ms +m2B2 +ms4B2

2 +ms;s6B3
2

)2
+
(
m2 +ms4B2 +ms;s6B2

2

)2
+
(
ms4 +ms;s6B2

)2
+
(
ms;s6

)2]
(5.5b)

M2
V ′ =

1

g4
s

[(
m5 +m1;s6B2

)2
+
(
m1;s6

)2]
, (5.5c)

where we used the vector and spinor representation mass formulae (3.8) and (3.38). Adding

the three contributionsM2
{V,SB,V ′} together, we now obtain the �ux multiplet mass formula

for vanishing values of the Ramond �elds and arbitrary B-�eld:

M2 =
[

m̃2
s

g2
s

+ (m̃1)
2
]

+
[
(m̃s1)2 + (m̃2)2

g2
s

]
(5.6a)

+
[

(m̃s4)2

g2
s

+ (m̃5)2

g4
s

]
+
[

(m̃s;s6)2

g2
s

+ m̃1;s6)2

g4
s

]
, (5.6b)

where the tilded charges are shifted to incorporate the e�ect of the two-form as in (5.5), so
that for instance

m̃s = ms +
1

2
B2m

2 +
1

8
B2

2m
s4 +

1

48
B3

2m
s;s6 (5.7)

is the shift in the D0-brane charge.

5.3 T-duality spectral �ow

In Subsections 3.7 and 3.8 we have already discussed the spectral �ow Bij → Bij + ∆Bij

in the vectorial and spinorial representations. We only need to rephrase this �ow in terms

of the present charges:

V : mi → mi + ∆Bjim
sj , msi → msi

SB : ms → ms + 1
2
∆Bijm

ij , mij → mij + 1
2
∆Bklm

sklij

msijkl → msijkl + 1
2
∆Bmnm

s;smnijkl , ms;s6 → ms;s6

V ′ : mijklm → mijklm −∆Bnpm
n;spijklm

m1;s6 → m1;s6 .

(5.8)

The �ow indeed acts as an automorphism on the charge lattice, and in particular the

charges cannot be restricted to positive integers (except for m1;7). This fact will be of use

in Subsection 7.8.
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Alternatively, the above spectral �ow can be recast into a system of di�erential equations

for the shifted charges m̃, e.g. for the spinor representation we have

SB :
∂m̃s

∂Bij
= 1

2
m̃ij , ∂m̃ij

∂Bkl
= 1

2
m̃sijkl

∂m̃sijkl

∂Bmn
= 1

2
m̃s;sijklmn , ∂m̃s;sijklmn

∂Bpq
= 0 .

(5.9)

This system can be integrated to yield the spinor representation mass formula; the constants

of integration correspond to the integer charges m. The integrability of this system of

di�erential equations follows from the commutativity of the spectral �ow.

5.4 U-duality spectral �ows

The mass formula (5.6) obtained so far is invariant under T-duality and holds for vanishing

values of Ramond gauge backgrounds. In order to obtain a U-duality invariant mass for-

mula, we have to allow expectation values of the M-theory gauge three-form CIJK , which
extends the Neveu-Schwarz two-form Bij = Csij ; the expectation value of the Ramond one-

form is already incorporated as the o�-diagonal metric component Ai = gsi/R
2
s 6= 0. For

d ≥ 6, one should also allow expectation values of the six-form EIJKLMN (Poincaré-dual
to CIJK in eleven dimensions). In string-theory language, this corresponds to the Ramond

�ve-form Es5 and the Neveu-Schwarz six-form dual to Bµν in ten dimensions ‡40.

In order to reinstate the CIJK dependence in mass formula we covariantize the Bij = Csij

spectral �ow (5.8) under Sl(d,Z), with the result that

mI → mI + 1
2
∆CJKI m

JK

mIJ → mIJ + 1
6
∆CKLM mKLMIJ

mIJKLM → mIJKLM + 1
2
∆CNPQ mN ;PQIJKLM

m1;7 → m1;7 .

(5.10)

Here, however, the C spectral �ow turns out to be non-integrable. De�ning ∇IJK as the
�ow induced by the shift CIJK → CIJK + ∆CIJK , we have the commutator[

∇IJK , ∇LMN
]

= 20∇IJKLMN , (5.11)

where ∇IJKLMN is the �ow induced by the shift EIJKLMN → EIJKLMN + ∆EIJKLMN :

mI → mI + 1
5!

∆EJKLMNI m
JKLMN

mIJ → mIJ + 1
5!

∆EKLMNPQ mK;LMNPQIJ

m5 → m5

m1;7 → m1;7 .

(5.12)

‡40For d = 8, we also need to include the form K1;8, which in string-theory language includes the Ramond
seven-form Ks;s7, along with a K1;s7 form.
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The non-integrability (5.11) of the C-�ow can be understood as a consequence of the

Chern�Simons interaction in the 11D supergravity action Eq. (2.2) [74, 75]: the equation

of motion for C reads

d ∗ F4 +
1

2
F4 ∧ F4 = 0 , (5.13)

so that the dual �eld strength of F4 has a Chern�Simons term

F7 ≡ ∗F4 = dE6 −
1

2
C3 ∧ F4 . (5.14)

The equation of motion (5.14) is invariant under the gauge transformations

δC3 = Λ3 , δE6 = Λ6 −
1

2
Λ3 ∧ C3 , (5.15)

for closed Λ3 and Λ6. Restricting to constant shifts, this reproduces the commutation

relations (5.11). An equivalent statement holds in D = 3, where the C3 and E6 shifts close
on a K1;8 shift.

The non-integrability of the system (5.10) can therefore be evaded by combining the
∆C3 shift with a ∆E6 shift

1

5!
∆EIJKLMN =

1

12
C[IJK∆CLMN ] , (5.16)

upon which the resulting �ow

∇′IJK = ∇IJK − 10CKLM∇KLMIJK (5.17)

becomes integrable ‡41. The extra shift is invisible in the type IIA picture for zero Ramond
potentials since it does not contribute to the T-duality spectral �ow. We emphasize again
that these extra terms are generated as a consequence of the integrability of the �ow, which

we take as a guiding principle for reconstructing the invariant mass formula. The explicit

form of the resulting �ow equations that follow from (5.17) is then given by [244]

∇′JKLm̃I =
1

2
m̃JKδL

I (5.18a)

∇′KLMm̃IJ =
1

6
m̃KLMIJ (5.18b)

∇′NPQm̃IJKLM =
1

2
m̃N ;PQIJKLM (5.18c)

∇′RST m̃I;JKLMNPQ = 0 , (5.18d)

‡41For d = 8 there is also a non-trivial commutator [74] between the C3 and E6 �ow, closing onto the K1;8

�ow, which induces further shifts.
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∇JKLMNP m̃I =
1

5!
m̃JKLMNδP

I (5.19a)

∇KLMNPQm̃IJ =
1

5!
m̃K;LMNPQIJ (5.19b)

∇NPQRST m̃IJKLM = 0 (5.19c)

∇RSTUV W m̃I;JKLMNPQ = 0 , (5.19d)

which now can be integrated, as will be shown in Subsection 5.6.

5.5 A digression on Iwasawa decomposition

In order to understand the non-commutativity of the spectral �ow from another perspective,

it is worthwhile coming back to a simpler example of a non-compact group, namely the
prototypical G(R) = Sl(n,R) group. The Iwasawa decomposition (4.7) then takes the form

g = k · a · n ∈ K ·A ·N , (5.20)

where K = SO(n,R) is the maximal compact subgroup of G(R), A is the Abelian group

of diagonal matrices with determinant 1 and N is the nilpotent group of upper triangular
matrices. The factor k is absorbed in the coset G(R)/K, and the coset space is really

parametrized by A ·N .

Now the subgroup of G(Z) leaving A invariant is nothing but the Weyl group Sn of
permutations of entries of A, whereas that leaving N invariant is the Borel group of integer-
valued upper triangular matrices with 1's on the diagonal. The latter is graded by the

distance away from the diagonal, in the sense that

[Bp, Bp′] ⊂ Bp+p′ , (5.21)

where Bp is the subset of upper triangular matrices with 1's on the diagonal and other non
zero entries on the p-th diagonal only. In particular, Bp is a non-compact Abelian subgroup
when p > n/2.

Returning to the case at hand, we see that ∇3, ∇6 (and ∇1;8 in the d = 8 case) are

analogous to the B1, B2 (and B3) Borel generators of Sl(3) (or Sl(4)). More precisely,

they correspond to the grading of the root lattice of Ed with respect to the simple root α0

extending the Sl(d,Z) Lorentz subgroup to the full Ed(d)(Z) subgroup, or in other words the
grading of the adjoint representation in powers of l3p. This can be seen from Table 4.10 for

d = 8 since, in this case, the particle multiplet happens to be in the adjoint representation

248 of E8. For d < 8, this can also be seen from the Coxeter label a0 of α0 in Table 4.3,
i.e. the α0 component of the highest root of Ed: the degree p of all the positive roots then
runs from 0 (corresponding to the gIJ Borel generators) to a0, with intermediate values 1
for the C3 �ow, 2 for E6 and 3 for K1;8.
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We �nally note that, in the notation of Eq. (5.20), the mass formula we are seeking

takes the form,

M2 = mt Rt(a · n)R(a · n) m , (5.22)

where m is the vector of integer charges transforming in the appropriate linear representa-

tion R of Ed(d)(R).

5.6 Particle multiplet and U-duality invariant mass formula

The �ow (5.18) can be integrated to obtain the E7(7)(Z)-invariant mass formula for the

particle multiplet of M-theory compacti�ed on a torus T 7 with arbitrary shape and gauge

background. The result is:

M2 = (m̃1)
2 +

1

2! l6p

(
m̃2
)2

+
1

5! l12p

(
m̃5
)2

+
1

7! l18p

(
m̃1;7

)2
, (5.23)

where the shifted charges depend on the gauge potentials as

m̃I = mI +
1

2
CJKIm

JK +

(
1

4!
CJKLCMNI +

1

5!
EJKLMNI

)
mJKLMN

+

(
1

3!4!
CJKLCMNPCQRI +

1

2 · 5!
CJKLEMNPQRI

)
mJ ;KLMNPQR

(5.24a)

m̃IJ = mIJ +
1

3!
CKLMm

KLMIJ

+

(
1

4!
CKLMCNPQ +

1

5!
EKLMNPQ

)
mK;LMNPQIJ

(5.24b)

m̃IJKLM = mIJKLM +
1

2
CNPQm

N ;PQIJKLM (5.24c)

m̃I;JKLMNPQ = mI;JKLMNPQ . (5.24d)

The shifts induced by the expectation values of C3 and E6 give an explicit parametrization

of the upper triangular‡42 vielbein V in terms of the physical compacti�cation parameters

(see Eq. (4.6)). The mass formula (5.23) is now invariant under T-duality, besides the

manifest Sl(d,Z) symmetry.

As an illustration, we can look at the shift in T-duality vector charge ms1 implied by

the above equation:

m̃s1 +A1m̃
2 = ms1

+A1m
2 + (C3 +A1B2)m

s4 + (Es5 + C3B2 +A1B2B2)m
s;s6

+ (A1C3)m
5 +

(
E6 + C3

3 +A1Es5 +A1B2C3

)
m1;s6 . (5.25)

‡42V is actually upper triangular in blocks, because we did not decompose the metric gIJ in a product of
upper triangular vielbeins.
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The second line precisely involves the tensor product of the charge spinor representation S
with the spinor representation made up by the Ramond moduli. In fact, to see that the set

(A1,C3 +A1B2, Es5 + C3B2 +A1B2B2) transforms as a spinor, one may simply note that it

is precisely the combination that appears in the expansion in powers of F of the T-duality

invariant D-brane coupling
∫
eB+l2sF ∧R. Formula (5.23) reduces to the d = 5 result of Ref.

[91] for vanishing expectation values of the gauge backgrounds (see also [298]).

5.7 String multiplet and U-duality invariant tension formula

Exactly the same analysis can be done for the momentum multiplet. We give here the

result for d = 6. The contributing charges n1, n4, n1;6 decompose into SO(6, 6) T-duality
multiplets

I = (ns) , S ′ = (n1, ns3, ns;s5) , V = (n4, n1;s5) , (5.26)

and we obtain the E6(6)(Z)-invariant tension formula for the d = 6 string multiplet:

T 2 =

[
1

l6p

(
ñ1
)2

+
1

l12p

(
ñ4
)2

+
1

l18p

(
ñ1;6
)2]

, (5.27)

where the shifted charges are

ñ1 = n1 + C3n
4 + (C3C3 + E6)n

1;6

ñ4 = n4 + C3n
1;6

ñ1;6 = n1;6

(5.28)

The combinatorial factors and explicit index contractions are easily reinstated in this equa-
tion by comparison with (5.24a). This yields the parametrization of the vielbein V of Eq.

(4.6) in the representation appropriate to the string multiplet.

5.8 Application to R4 couplings

As an illustration of the result (5.27), we display the d ≤ 5 string multiplet invariant

tension formula. Because of antisymmetry, only the charges n1 and n4 contribute, so that
the tension of the string multiplet is given by

T 2 =
1

l6p

(
nI +

1

3!
nIJKLCJKL

)
gIM

(
nM +

1

3!
nMNPQCNPQ

)
+

1

4! l12p

nIJKLgIMgJNgKPgLQn
MNPQ . (5.29)

This is precisely the U-duality invariant quantity that was obtained in the study of instanton

corrections to R4 corrections in type II theories in Ref. [200], where it was conjectured that
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the coupling for d = 5 is given by the SO(5, 5,Z) Eisenstein series

A =
V

l9p

∑̂
nI ,nIJKL

[
T 2
]−3/2

=
2πV

l9p

∫ ∞

0

dt

t5/2

∑̂
nI ,nIJKL

e−πT 2/t , (5.30)

where T is given by the tension formula (5.29), and V denotes the volume of the M-theory

torus T d. As will become clear in the next Subsection (see Eq. (5.38a)), the sum has to

be restricted to integers such that n[InJKLM ] = 0, in order to pick up the contribution

of half-BPS states only. The generalization of this construction to compacti�cations of

M-theory to lower dimensions was addressed in Ref. [243].

Under Poisson resummation on the charge ns, the U-duality invariant function (5.30)

exhibits a sum of instanton e�ects of order e−1/gs , corresponding to the D0-branes (with

charge n1) and D2-branes (with charge ns3), but there is also a contribution of the extra

charge n4 super�cially of order e−1/g2
s . The NS5-brane does not yield any instanton on T 4,

so these e�ects seem rather mysterious. On the other hand, we may interpret Eq. (5.30)

as a sum of loops from all perturbative and non-perturbative strings. The occurrence

of the NS5-brane of the string multiplet is then no longer surprising. This soliton loop
interpretation should, however, be taken with care, since in any case we have not succeeded

yet in recovering the one-loop R4 coupling from the SO(5, 5,Z) Eisenstein series.

5.9 Half-BPS conditions and Quarter-BPS states

The U-duality mass formulae (5.23) and (5.27) that we have obtained only hold for 1/2-BPS
states, and require particular conditions on the various integer charges. These conditions

can be obtained from a precise analysis of the BPS eigenvalue equation, as in Subsection 2.2,
or from a sequence of U-dualities from the perturbative level-matching condition ‖m‖2 = 0
in Eq. (3.8). In analogy to the latter condition, they should be quadratic in the integer
charges, be moduli-independent, and constitute a representation of the U-duality group
Ed(d)(Z), appearing in the symmetric tensor product of two charge multiplets.

We have already noticed in Subsection 4.10 that the string multiplet always appears

in the symmetric product of two particle multiplets, and indeed all the computations in
Appendix A point to the fact ‡43 that the 1/2-BPS condition on the particle multiplet is the

string multiplet constructed out of the particle charges. This has also been observed in Ref.

[115], where it was shown that for d = 7 the 1/2-BPS conditions on the 56 particle multiplet

were transforming in a 133 adjoint representation of E7, which is the corresponding string

multiplet.

In order to extract the precise conditions, it is convenient to consider the branching

‡43The naive inclusion of the KK6-brane as an extra ΓIJKLMNZ0IJKLMN term does not seem, however,
to yield a U-duality invariant mass formula by this method.
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under the ST-duality group:

E7(7) ⊃ SO(6, 6)× Sl(2) (5.31)

56 = (12, 2) + (32, 1)

133 = (1, 3) + (3̄2, 2) + (66, 1),

where the 32 correspond to the D-brane charges ms, m
2, ms4, ms;s6 and the two 12's to

the Kaluza�Klein and winding charges m1, m
1s and the NS5-brane/KK5-brane charges

m5, m1;s6 respectively (see also Tables 5.1 and 4.15). The 133 in the symmetric tensor

product 56⊗s 56 of two particle multiplets is therefore

(1 ∈ 12⊗s 12, 3) + (3̄2 ∈ 12⊗ 32, 2) + (66 ∈ 32⊗s 32 + 12 ∧ 12, 1) . (5.32)

So as to work out the tensor products in Eq. (5.32), it is advisable to consider the

further branching

SO(6, 6) ⊃ Sl(6)× O(1, 1) (5.33)

12 = 61 + 6̄−1

32 = 13 + 1̄51 + 15−1 + 1−3

66 = 152 + 10 + 350 + 1̄5−2 .

The decomposition of the 133 conditions in terms of the various Sl(6) ⊂ SO(6, 6) charges
is therefore

12 : ks ≡ m1m
s1 (5.34a)

321 :


k1 ≡ m1m

2 +msm
s1

k3s ≡ m1m
s4 +ms1m2

ks;s5 ≡ m1m
s;s6 +ms1ms4

(5.34b)

660 :


k4 ≡ msm

s4 +m2m2 +m1m
5

k1;s5 ≡ m2ms4 +msm
s;s6 +ms1m5 +m1m

1;s6

ks2;s6 ≡ m2ms;s6 +ms4ms4 +ms1m1;s6

(5.34c)

10 : ks;6 ≡ ms1m5 +msm
s;s6 (5.34d)

32−1 :


k1;6 ≡ m5m2 +m1;s6ms

k3;s6 ≡ m5ms4 +m1;s6m2

ks5;s6 ≡ m5ms;s6 +m1;s6ms4

(5.34e)

1−2 : k6;s6 ≡ m5m1;s6 (5.34f)

where the subindex denotes the SO(1, 1) ⊂ Sl(2) charge, and the contractions are the

obvious ones. In particular, for D-brane charges only, the condition 660 reduces to the one
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introduced in Subsection 3.8. The condition 12 is the familiar perturbative level-matching

condition, whereas 1−2 is the analogous condition on NS5�KK5 bound states. The other

conditions mix di�erent T-duality multiplets. For example, the spinor constraints (5.34b)

and (5.34e) are composed of products of D-brane charges with either KK- and winding

charges or NS5- and KK5-brane charges.

As suggested by the index structure of the conditions k in (5.34), the constraints combine
in a string or momentum multiplet as‡44

k1 = m1m
2 (5.35a)

k4 = m1m
5 +m2m2 (5.35b)

k1;6 = m1m
1;7 +m2m5 (5.35c)

k3;7 = m2m1;7 +m5m5 (5.35d)

k6;7 = m5m1;7 (5.35e)

If these composite charges do not vanish, the state is at most 1/4-BPS, in which case its

mass formula is given by

M2 = M2
0(m) +

√
[T (k)]2 , (5.36)

where M0(m) and T (k) are given by the half-BPS mass and tension formulae (5.23) and
(5.27).

Noting from Eq. (4.34) that the string multiplet T1 appears in the decompacti�cation

of the particle multiplet M, we can obtain the half-BPS condition on the string multiplet
by allowing non-zero ms1, ms4, m1;s6 charges only, where s denotes a �xed direction on the
torus:

ks;s5 = ms1ms4 (5.37a)

ks2;s6 = ms1m1;s6 +ms4ms4 (5.37b)

ks5;s6 = ms4m1;s6 (5.37c)

and identifying these charges with the n1, n4, n1;6 charges of the string multiplet in one
dimension lower. We therefore obtain a multiplet of half-BPS conditions

k5 = n1n4 (5.38a)

k2;6 = n1n1;6 + n4n4 (5.38b)

k5;6 = n4n1;6 (5.38c)

This is easily seen to transform as a T ′
3 multiplet, as can also be inferred from the decom-

position (4.38) at level 2 of the string multiplet under decompacti�cation. For d = 6, this is

‡44One could have alternatively derived these conditions from the branching E7 ⊃ Sl(7), but the one we
used is more constrained and more convenient.
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a 2̄7 quadratic condition on the 2̄7 string multiplet of E6, whereas for d = 5 only the �rst

condition remains, giving a singlet condition on the 10 multiplet of SO(5, 5). For d < 5, a
BPS string state is automatically 1/2-BPS, while for d = 7 the T ′

3 condition transform as

a 1539 of E7. The tension of a 1/4-BPS string can also be obtained by decompactifying

one direction in Eq. (5.36), and has an analogous structure

T 2 = T 2
0 (n) +

√
[T ′

3 (k)]2 (5.39)

where T0(n) and T ′
3 (k) are given by the half-BPS tension (5.27) and the half-BPS 3-brane

tension, which can be worked out easily.

For d ≥ 6 (resp d ≥ 5), there still remain conditions to be imposed on the particle

multiplet (resp. string multiplet) in order for the state to be 1/4-BPS and not 1/8. In

the d = 7 case, it should be required that the 56 in the third symmetric tensor power of

the 56 particle charges vanishes [115]. For d = 6, this reduces to the statement that the

singlet in 273 should vanish. This condition is empty for d ≤ 5. We shall however not
investigate the 1/8-BPS case any further, and refer to Appendix A.4 for the 1/8-BPS mass

formula of a NS5�KK-winding bound state in d = 6 (D = 5). In contrast to 1/2-BPS
states, 1/4-BPS and 1/8-BPS states in general have a non-trivial degeneracy and therefore
entropy, which still has to be a U-duality invariant quantity depending on the charges m
[167, 189, 79, 92, 5]. This allows non-trivial checks on U-duality and predictions on BPS
bound states, which we shall only mention here [314, 315, 282].
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6 Matrix gauge theory

The de�nition of M-theory as the strong-coupling limit of type IIA string theory and the

�nite energy extension of the eleven-dimensional SUGRA does not allow the systematic

computation of S-matrix elements, since type IIA theory is only de�ned through its per-

turbative expansion and 11D SUGRA is severely non-renormalizable. In Ref. [24], Banks,

Fischler, Susskind and Shenker (BFSS) formulated a proposal for a non-perturbative def-

inition of M-theory, in which M-theory in the in�nite momentum frame (IMF) with IMF

momentum P = N/R, is related to the supersymmetric quantum mechanics ‡45 of N ×N
Hermitian matrices in the large-N limit, the same as the one describing the interactions

of N D0-branes induced by �uctuations of open strings. Despite the powerful constraints

of supersymmetry, it is still a formidable problem to solve this quantum mechanics in the

large-N limit.

As was argued by Susskind [300], sense can however be made of the �nite-N Matrix

gauge theory, as describing the Discrete Light-Cone Quantization (DLCQ) of M-theory, that

is quantization on a light-like circle. This stronger conjecture has been further motivated
in Ref. [278], relating through an in�nite Lorentz boost the compacti�cation of M-theory

on a light-like circle to compacti�cation on a vanishing space-like circle, i.e. to type IIA
string theory in the presence of D0-branes. This argument gives a general prescription for
compacti�cation of M-theory (see also Sen's argument Ref. [283]), and we shall brie�y go

through it in this Section.

Upon toroidal compacti�cation on T d, the extra degrees of freedom brought in by the
wrapping modes of the open strings extend this quantum mechanics to a quantum �eld
theory, namely a U(N) Yang�Mills theory with 16 supersymmetries on the T-dual torus

T̃ d in the large-N limit [127, 305]. This prescription is consistent up to d ≤ 3, but breaks
down for compacti�cation on higher-dimensional tori, owing to the ill-de�nition of SYM

theory at short distances. Several proposals have been made as to how to supplement
the SYM theory with additional degrees of freedom while still avoiding the coupling to
gravity, which will be brie�y discussed in this section. Besides their relevance for M-theory

compacti�cation, these theories are also interesting theories in their own right, as non-trivial

interacting �eld theories in higher dimensions.

Our aim is to provide the background to discuss in Section 7 the implications of U-

duality for the Matrix gauge theory describing toroidal compacti�cation of M-theory. The

relation between the M-theory compacti�cation moduli, including gauge backgrounds, and
Matrix gauge-theory parameters will be obtained, as well as the spectrum of excitations

that Matrix gauge theory should exhibit in order to describe compacti�ed M-theory. This

will leave open the issue of what is the correct Matrix gauge theory reproducing these

features.

‡45This model was �rst introduced in Ref. [68, 118, 17].
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6.1 Discrete Light-Cone Quantization

The �nite-N conjecture of Ref. [300] is formulated in the framework of the DLCQ, the es-

sentials of which we review �rst. In �eld theory, it is customary to use equal-time (t = x0)

quantization, which breaks Poincaré invariance, but preserves invariance under the kine-

matical generators consisting of spatial rotations and translations. However, an alternative

quantization procedure exists, in which the theory is quantized with respect to the proper

time x+ = (x0 + x1)/
√

2, which is referred to as light-cone quantization. In this case, the

transverse translations P i and rotations Lij , as well as the longitudinal momentum P+ and

the boosts L−i, L+− do not depend on the dynamics, while the generator P− generates

the translations in the x+ direction and plays the role of the Hamiltonian. The usual dis-

persion relation H =
√
P iPi +M2 in equal-time quantization, is replaced in the light-cone

quantization by

P− =
P iPi +M2

2P+
, (6.1)

exhibiting Galilean invariance on the transverse space. Particles, with positive energy
P− > 0, necessarily have positive longitudinal momentum P+, while antiparticles will have

negative P+. The vacuum of P− is hence reduced to the Fock-space state |0〉, and the
negative-norm ghost states are decoupled as well. This simpli�cation of the theory is at
the expense of instantaneous non-local interactions due to the P+ = 0 pole in (6.1).

Discrete light-cone quantization proceeds by compactifying the longitudinal direction

x− on a circle of radius Rl:

x− ' x− + 2πRl . (6.2)

This results into a quantization of the longitudinal momentum of any particle i according
to

P+
i =

ni

Rl
. (6.3)

Because the total momentum is conserved, the Hilbert space decomposes into �nite-dimensional

superselection sectors labelled by N =
∑
ni. Note that the �nite dimension does not re-

quire imposing any ultraviolet cut-o� on the eigenvalues ni, but follows from the condition

ni > 0.

It is important to note that, because the x− direction is a light-like direction, the length

Rl of the radius is not invariant, but can be modi�ed by a Lorentz boost L+−,(
x0

x1

)
→
(

cosh β − sinh β

− sinh β cosh β

)(
x0

x1

)
, (6.4a)

which amounts to

Rl → eβRl , P− → eβP− , P+ → e−βP+ . (6.5)

This implies that the Hamiltonian P+ depends on the radius Rl through an over-all factor

P+ = RlHN , (6.6)

so that the mass M2 = 2P+P− is independent of Rl.
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6.2 Why is Matrix theory correct ?

Following Ref. [278], we will now derive the Hamiltonian HN describing the DLCQ of

M-theory, and obtain the BFSS Matrix-theory conjecture. The basic idea is to consider the

compacti�cation on the light-like circle as Lorentz-equivalent to a limit of a compacti�cation

on a space-like circle. Acting with a boost (6.4) on an ordinary space-like circle, we �nd(
cosh β − sinh β

− sinh β cosh β

)(
0

Rs

)
=

Rl√
2

(
−1 + e−2β

1 + e2β

)
→ 1√

2

(
−Rl

Rl

)
(6.7)

where Rs = Rle
−β. Sending β →∞ while keeping Rl �nite, we see that the light-like circle

is Lorentz-equivalent to a space-like circle of radius Rs → 0.

In order to keep the energy �nite, which from Eq. (6.6) and on dimensional ground scales

as Rl/l
2
p, we should also rescale the Planck length (and any other length) as lp,s = e−β/2lp.

Altogether, M-theory with Planck length lp on the light-like circle of radius Rl in the

momentum P+ = N
Rl

sector is equivalent to M-theory with Planck length lp,s on the space-

like circle of radius Rs in the momentum P = N
Rs

sector, with

Rs = Rle
−β , lp,s = e−β/2lp (6.8)

in the limit β →∞. Eliminating β, we obtain the following scaling limit:

Rs → 0 , M =
Rs

l2p,s

=
Rl

l2p
= fixed . (6.9)

Following Ref. [278], we shall denote the latter theory as M̃ theory.

Since the space-like circle Rs shrinks to zero in lp,s units, this relates the DLCQ of M-
theory to weakly coupled type IIA string theory in the presence of N D0-branes carrying

the momentum along the vanishing compact dimension. Using Eq. (2.1), the scaling limit
becomes

gs = (RsM)3/4 , α′ = l2s =
R

1/2
s

M3/2
, Rs → 0 , M = �xed . (6.10)

In particular, gs and α
′ go to zero, so that the bulk degrees of freedom decouple, and only

the leading-order Yang�Mills interactions between D0-branes remain. This validates the
BFSS conjecture, up to the possible ambiguities in the light-like limit β → ∞ [159, 52].

Several di�culties have also been shown to arise for compacti�cation on curved manifolds
[103, 102], but since we are only concerned with toroidal compacti�cations, we will ignore

these issues.

6.3 Compacti�cation and Matrix gauge theory

For toroidal compacti�cations of M-theory, we consider the same scaling limit as in (6.9),

and keep the torus size constant in Planck length units, that is

RI = rI

(
Rs

M

)1/2

, rI =
RI

lp,s
= fixed . (6.11)
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However, comparing (6.9) and (6.11), we �nd that the size of the torus goes to zero in the

scaling limit. To avoid this it is convenient to consider the theory on the T-dual torus T̃ d,

obtained by a maximal T-duality in all d directions. From Eq. (2.5), this has the e�ect

that,

IIA with N D0-branes→
{

IIA with N Dd-branes d = even

IIB with N Dd-branes d = odd
(6.12)

Using the maximal T-duality transformation
∏d

I=1 TI , with TI given in (2.5), the type II

parameters then become

gs =
(RsM)(3−d)/4∏

rI
, α′ = l2s =

R
1/2
s

M3/2
, R̃I =

1

rIM
, (6.13a)

Rs → 0 , M =
Rs

l2p,s

= fixed , rI =
RI

lp,s
= fixed , (6.13b)

so that, in particular, the size of the dual torus is �xed in the scaling limit. We will
sometimes refer to the type II theory in this T-dual picture as the ĨI-theory.

The behaviour of the string coupling in the scaling limit is now di�erent according to
the dimension of the torus:

gs →


0 d < 3

finite d = 3

∞ d > 3

(6.14)

In particular for d < 3 we still have weakly coupled type IIA or IIB string theory in
the presence of N Dd-branes, so that M-theory is described by the SYM theory with 16

supercharges living on the world-volume of the N Dd-branes. The gauge coupling constant
of this Matrix gauge theory and the radii sI of the torus on which the D-branes are wrapped

read

g2
YM = gsl

d−3
s =

M3−d

Vr

, Vr ≡
∏

I

rI , sI = R̃I =
1

rIM
(6.15)

showing, in particular, that g2
Y M is �nite in the scaling limit.

The special case of Matrix theory on a circle (d = 1) yields (after an S-duality transform-

ing the background D1-strings into fundamental strings) Matrix string theory [234, 93, 94],

in which an identi�cation between the large-N limit of two-dimensional N=8 supersym-
metric YM theory and type IIA string theory is established. We will not further discuss

this topic here, and refer to Ref. [116, 291] for the next case d = 2 and its relation to type

IIB string theory. Moving on to the case d = 3, the same conclusion as in the d < 3 case

continues to hold, since although the string coupling is �nite, the string length goes to zero
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so that loop corrections are suppressed in the α′ → 0 limit. Consequently, the d = 3 Matrix

gauge theory is N=4 supersymmetric Yang Mills theory.

For d > 3, however, the coupling gs blows up, and the weakly coupled string description

of the D-branes is no longer valid. This coincides with the fact that the Yang�Mills theory

becomes non-renormalizable and strongly coupled in the UV. Hence, in order to de�ne a

consistent quantum theory, one needs to supplement the theory with additional degrees of

freedom. In the following we brie�y review the proposals for d = 4 and d = 5, and show

the complication that arises for d = 6. These proposals follow from the above prescription,

using further duality symmetries, which will be examined in more detail in Section 7. Other

decoupling limits have been considered in [171].

6.4 Matrix gauge theory on T 4

In the case d = 4, it follows from (6.12) that the e�ective theory is 4+1 SYM coming from

the type IIA D4-brane world-volume theory. In the scaling limit the type IIA theory be-
comes strongly coupled and using the correspondence between strongly coupled IIA theory

and M-theory a new eleventh dimension is generated, which plays the role of a �fth space
dimension in the gauge theory [265, 47, 45]. Using Eqs. (2.11) and (6.13a), the radius and
11D Planck length are

R̃ = gsls =
1

MVr
, l̃p = g1/3

s ls = R1/6
s M−5/6V −1/3

r . (6.16)

Moreover, comparing with (6.15) we �nd that the radius R̃ is in fact equal to the YM
coupling constant

R̃ = g2
YM . (6.17)

Hence, in the scaling limit (6.9), the Planck length l̃p goes to zero so that the bulk

degrees of freedom decouple, while the radius R̃ remains �nite. The N type IIA D4-branes
become N M5-branes wrapped around the extra radius R̃, and M-theory on T 4 × S1 is
then described by the (2,0) world-volume theory of N M5-branes, wrapped on T 4 and the

extra radius R̃, related to the Yang�Mills coupling constant by Eq. (6.17). The proper

formulation of this theory is still unclear, but Matrix light-cone descriptions have been

proposed in Refs. [56, 279, 214, 15, 2, 188, 128] and the low-energy formulation studied in
Refs. [125, 148]. In particular, at energies of order 1/g2

YM the Kaluza�Klein states along

the extra circle come into play. They can be identi�ed as instantons of 4D SYM lifted as

particles in the (4+1)-dimensional gauge theory. Additional evidence for this conjecture

that follows from the U-duality symmetry will be discussed in Section 7.

6.5 Matrix gauge theory on T 5

In the case d = 5, we have N type IIB D5-branes at strong string coupling, so that it is

useful to perform an S-duality that maps the D5-branes to NS5-branes. Using Eqs. (4.17))
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and (6.13a), we �nd that the string coupling and length become

ĝs =
1

gs
= (RsM)1/2Vr , l̂2s = gsl

2
s =

1

M2Vr
, R̂I = R̃I . (6.18)

Moreover, comparing with Eq. (6.15), we �nd that the string tension is related to the gauge

coupling constant by

l̂2s = g2
YM . (6.19)

The string coupling ĝs goes to zero in the scaling limit, so that the bulk modes are

decoupled from those localized on the NS5-branes. However, the string theory on the NS5-

branes is still non-trivial, and has a �nite string tension in the scaling limit [47]. As a

consequence, we �nd that M-theory on T 5 × S1 is described by a theory of non-critical

strings propagating on the NS5-brane world-volume with a tension related to the gauge

coupling by Eq. (6.19). The proper formulation of this theory is still unclear, but light-cone

Matrix formulations have been proposed [279, 290]. The string can be identi�ed with a 4D
Yang�Mills instanton lifted to 1+5 dimensions. This description is close but not identical

to the proposal in Refs. [92, 91] according to which the (1/4-) BPS sector of M-theory
should be described by the (1/2-) BPS excitations of the M5-brane, whose dynamics would

be described by a (ground-state) non-critical �micro-string� theory on its six-dimensional
world-volume. In particular, the theory on the type IIB NS5-brane is non-chiral, whereas
that on the M5-brane is chiral. We refer the reader to the work of [94] for a discussion of

these two approaches.

6.6 Matrix gauge theory on T 6

Finally, we discuss the problems that arise for d = 6, in which case we have N type IIA

D6-branes at strong coupling. As in the d = 4 case, an eleventh dimension opens up, and
we �nd M-theory compacti�ed on a circle of radius R̃ with

R̃ = gsls =
1

R
1/2
s M3/2Vr

, l̃p = g1/3
s ls =

1

MV
1/3

r

. (6.20)

The N D6-branes actually correspond to N coinciding Kaluza�Klein monopoles with Taub�

NUT direction along the eleventh direction, and as R̃→∞, the monopoles shrink to zero
size and reduce to an AN singularity in the eleven-dimensional metric. It was suggested in

Ref. [155] that the bulk dynamics still decouples from the (6+1)-dimensional world-volume,
and that the latter can be described in the IMF by the m(atrix) quantum mechanics of N1

D0-branes inside N ten-dimensional Kaluza�Klein monopole, in the large-N1 limit. This

is very reminiscent to the BFSS description of M-theory, but the quantum mechanics is
now a matrix model with eight supersymmetries and corresponds to the Coulomb phase

of the quiver gauge theory in 0+1 dimensions associated to the Dynkin diagram AN [101].

In other words, this is a sigma model with vector multiplets in the adjoint representation
of [U(N1)]

⊗N and hypermultiplets in bifundamental representations (N1, N̄1) of U(N1)k ×
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U(N1)k+1 for k = 1 . . .N , with U(N1)k denoting the k-th copy of U(N1) and U(N1)1

identi�ed with U(N1)N ; this model is restricted to its Coulomb phase, where the hypers

have no expectation value. In the low-energy limit, it is expected to reduce to SYM in 1+6

dimensions, with gauge coupling

l̃3p = g2
YM . (6.21)

Other approaches have been proposed in Refs. [57, 126]. We shall come back to the d = 6
case in Section 7 when we display the BPS states in terms of the low-energy SYM theory.

6.7 Dictionary between M-theory and Matrix gauge theory

We �nally give the dictionary that allows us to go from M-theory on T d × S1 (with S1

a light-like circle) in the sector P+ = N/Rl and Matrix gauge theory on T̃ d. This can

be obtained by solving (6.13a) and (6.15), for the parameters (sI , N, gYM) of the U(N)
Matrix gauge theory in terms of the parameters (RI , Rl, lp) of M-theory compacti�cation
on T d × S1:

sI =
l3p

RlRI
(6.22a)

g2
YM =

l
3(d−2)
p

Rd−3
l

∏
RI

. (6.22b)

For completeness we also give the inverse relations

RI =
1

sI

(
RlVs

g2
YM

)1/2

, l3p =

(
R3

l Vs

g2
YM

)1/2

, P+ =
N

Rl

, (6.23)

where we have de�ned Vs =
∏

I sI as the volume of the dual torus on which the Matrix
gauge theory lives.

6.8 Comparison of M-theory and Matrix gauge theory SUSY

In order to describe the M-theory BPS states from the point of view of the gauge the-

ory, we need to understand how the space-time supersymmetry translates to the brane

world-volume. This is in complete analogy with the perturbative string in the Ramond�

Neveu�Schwarz formalism, in which space-time supersymmetry emerges from world-sheet
supersymmetry (see [144], Section 5.2), and the case of the M5-brane has been thoroughly

discussed in Ref. [91]. We will abstract their argument and discuss the case of a general

1/2-BPS brane, whether D, M, KK or otherwise, referring to that work for computational

details.

In the presence of a p-brane, the breaking of the 11D N = 1 space-time supersymmetry

is only spontaneous. The unbroken SUSY charges generate a superalgebra on the world-
volume of the brane, whereas the broken ones generate fermionic zero modes. The �xing of
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the reparametrization invariance on the world-volume is most easily done in the light-cone

gauge. The 32-component supercharge Qα then decomposes as a‡46 (spinor,spinor,spinor)

of the unbroken Lorentz group SO(1, 1)×SO(p−1)×SO(10−p). The algebra is graded by
the eigenvalue ±1/2 of the generator of SO(1, 1), so that the unbroken generators Q+

aα have

charge +1/2 and the broken ones Q−
aα charge −1/2, where a is the spinorial index of the

SO(10− p) R-symmetry and α the spinorial index of the SO(p− 1) Lorentz world-volume

symmetry. The anticommutation relations then take the form

{Q+, Q+} = H + P + Z++ (6.24a)

{Q+, Q−} = p+ Z0 (6.24b)

{Q−, Q−} = Z−− . (6.24c)

In this expression, H and P are the world-volume Hamiltonian and momentum, Z++, Z0,
Z−− some possible central charges and p is the transverse momentum. A contraction of the

central charges with the appropriate Gamma matrices is also assumed. In the following,
we absorb the momentum in the charges Z++, and set p = 0 by considering a particle at

rest in the transverse directions.

The central charges Z0 and Z±± are simply a renaming of the ZMN , ZMNPQR central

charges of the 11D superalgebra (2.13a). As their indices show, Z0 is a singlet of SO(1, 1),
whereas Z++ and Z−− combine in a vector of SO(1, 1); Z0 is therefore identi�ed with

the ZIJ , ZIJKLM charges, whereas Z±± correspond to the Z1I , Z1IJKLM charges, where
as usual I, J, . . . , are directions on the torus and 1 is the space-time direction combined
with the time direction on the light cone. In other words, Z0 is identi�ed with the particle

charges, whereas Z±± correspond to the string charges. In order for the superalgebra
(6.24a) to reproduce the space-time superalgebra (2.13a) with particle charges only, we
therefore need to impose Z±± = 0 on the physical states. This is the analogue of the

L0 = L̄0 level-matching condition.

The broken generators Q− and the central charges Z0 are given by the fermionic and

bosonic zero modes only. On the other hand, the unbroken generators as well as the central

charges Z±± have a non-zero-mode contribution:

Q+ = Q+
0 + Q̂+ , Z±± = Z±±

0 + Ẑ±± , H = H0 + Ĥ . (6.25)

The zero-mode part of the generators Q+
0 is built out of the bosonic and fermionic zero

modes Z0 and Q−, and anticommutes with the oscillator part Q̂+. It generates the same

algebra as in Eq. (6.24a), while the oscillator parts generate the same algebra on their own
and anticommute with the zero-mode broken generators Q− = Q−

0 . The level-matching

conditions Z±± = 0 are achieved through a cancellation of the zero-mode part, quadratic

in the particle charges Z0, and the oscillator parts.

Let us now consider the Hamiltonian H . Because of supersymmetry, both H0 and Ĥ
are positive operators and for given zero modes Z0, the supersymmetric ground state is

given by the condition Ĥ = 0, or Q̂+|0〉 = 0. This state is therefore annihilated by all the

‡46or a sum of, depending on the parity of p.
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Q̂+ supersymmetries, that is half the space-time supersymmetries, and must have vanishing

Ẑ±± charge, that is from the level-matching conditions Z±±
0 = (Z0)2 = 0. This condition is,

in less detail, the 1/2-BPS condition k = 0 with k de�ned as in Eq. (2.21b). The energy of

this state is given by the zero-mode part H0 = {Q+
0 , Q

+
0 } quadratic in the particle charges

Z0. This is equivalent to the mass formula Eq. (2.18) for 1/2-BPS states in space-time.

On the other hand, BPS states preserving 1/4 of the space-time supersymmetry are

only annihilated by half the world-volume supercharges Q̂+, and their energy is shifted by

the non-zero-mode contribution Ĥ . The latter is quadratic in the non-zero-mode part of

the string charges Ẑ±± = −Z±±
0 = −(Z0)2, therefore quartic in the particle charge. This

is precisely what was found in Eq. (2.21a):

E = M2(Z) +

√
[T (K)]2 . (6.26)

This equation has a simple interpretation: the quadratic term corresponds to the 1/2-BPS

bound state between the heavy mass Mp p-brane and the mass M particle, with binding
energy

E =
√
M2

p +M2 −Mp '
M2

Mp
, (6.27)

whereas the second corresponds to a 1/4-BPS bound state between the p-brane and the
mass M = RT of the string with tension T wrapped on the circle R:

E = (Mp +M)−Mp = RT . (6.28)

There is therefore a complete identity between i) the space-time supersymmetry algebra

and particle spectrum in the absence of the p-brane, ii) the p-brane world-volume gauge
theory and iii) the bound states of the p-brane with other particles. This also holds at

the level of space-time �eld con�gurations, which can be seen as con�gurations on the
world-volume [60, 39].

6.9 SYM masses from M-theory masses

We shall now explicit the correspondence of the previous subsection in the D-brane case,

relevant for Matrix gauge theory, and relate the energies in the Yang�Mills theory to the
masses in space-time. This has been discussed in particular in Refs. [299, 127, 116, 136].

Based on the last interpretation as bound states of the N background D-branes with other

particles, we identify R = Rl andMp = P+ = N/Rl, where Rl is the radius of the light-like

direction, and �x the normalization of the Yang�Mills energies as

EYM =
Rl

N
M2(Z) +Rl

√
[T (K)]2 . (6.29)

We then proceed by using the dictionary (6.22) to obtain the Yang�Mills energy of the

BPS states we discussed previously.
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We now apply these considerations to the highest-weight states of the two U-duality

multiplets of Subsections 4.8 and 4.10. The highest-weight state of the particle multiplet

is a Kaluza�Klein excitation on the I-th direction, which becomes, after the maximal T-

duality, an NS-winding state bound to the background Dd-brane. Hence, it is a bound

state with non-zero binding energy, and using Eq. (6.27) we �nd

EYM =
(1/RI)

2

N/Rl
=
g2

YMs
2
I

NVs
, (6.30)

where in the second step we used the dictionary (6.22) to translate to Matrix gauge theory

variables. This is the energy of a state in the gauge theory carrying electric �ux in the I-th
direction. For this reason, the particle multiplet is also called the �ux multiplet.

Next we turn to the highest-weight state of the string multiplet, wrapped on the light-

like direction Rl. The highest weight is a membrane wrapped on RI and Rl, which becomes,

after the maximal T-duality, a Kaluza�Klein state bound to the background Dd-brane.
These two states form a bound state at threshold and according to (6.28) we have

EYM =
RlRI

l3p
=

1

sI
, (6.31)

where Eq. (6.22) was used again in the second step. This is the energy of a massless particle
with momentum along the I-th direction in the gauge theory, so that we may alternatively

call the string multiplet the momentum multiplet from the point of view of Matrix gauge
theory.

This translation can be carried out for all other members of the U-duality multiplets,
and since U-duality preserves the supersymmetry properties of the bound state, one �nds

the following general relation between SYM masses and M-theory masses:

particle/�ux multiplet : EYM =
Rl

N
M , (6.32a)

string/momentum multiplet : EYM = RlT1 . (6.32b)

In Subsection 7.2, we will explicitly see for the cases d = 3, 4, 5 that indeed all non-zero bind-
ing energy and threshold bound states appear in the particle/�ux and string/momentum

multiplets respectively. Finally, we remark that the equalities in the two equations (6.30)
and (6.31) can be solved to yield the dictionary (6.22), so that the comparison of these two

types of energy quanta gives a convenient short-cut to (6.22).
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7 U-duality symmetry of Matrix gauge theory

If any of the previously discussed Matrix gauge theories purports to describe compacti�ed

Matrix gauge theory, it should certainly exhibit U-duality invariance. In this section, we

wish to investigate the implications of U-duality on the Matrix gauge theory at the algebraic

level, irrespective of its precise realization.

To this end we use the dictionary (6.22) between compacti�ed M-theory and Matrix

gauge theory. We �rst recast the Weyl transformations of the U-duality group (see Subsec-

tion 4.4) in the gauge-theory language and interpret them as generalized electric�magnetic

dualities of the gauge theory. Then, we translate the U-duality multiplets of Subsections

4.8 and 4.10 in Matrix gauge theory and discuss the interpretation of the states. Finally,

we use the results of Subsection 5.4 to discuss the realization of the full U-duality group

in Matrix gauge theory and in particular the couplings induced by non-vanishing gauge

potentials.

At the end of this section a more speculative aspect of �nite-N matrix gauge theory is
discussed. By promoting the rank N to an ordinary charge, we show the existence of an

Ed+1(d+1)(Z) action on the spectrum of BPS states. In this way, we �nd that the conjectured
extended U-duality symmetry of matrix theory on T d in DLCQ has an implementation as
action of Ed+1(d+1)(Z) on the BPS spectrum, as demanded by eleven-dimensional Lorentz

invariance.

7.1 Weyl transformations in Matrix gauge theory

The discussion of Matrix gauge theory from M-theory in Section 6 has been restricted to

rectangular tori with vanishing gauge potentials, so that we �rst focus on the transforma-
tions in the Weyl subgroup of the U-duality group ‡47

W(Ed(d)(Z)) = Z2 ./ Sd . (7.1)

The permutation group Sd that interchanges the radii RI of the M-theory torus obviously

still permutes the radii sI of the Matrix gauge theory T-dual torus. On the other hand,

the generalized T-duality TIJK in (4.12), using the dictionary (6.22), translates into the
following transformation of the Matrix gauge theory parameters:

SIJK :


g2
YM → g

2(d−4)
YM

W d−5 W ≡
∏

a6=I,J,K sa

sα → sα α = I, J,K

sa → g2
YM

W
sa a 6= I, J,K

(7.2)

For d = 3 the transformation (7.2) is precisely the (Weyl subgroup of) S-duality sym-
metry of N = 4 SYM in 3+1 dimensions [299, 127]:

g2
YM → 1/g2

YM , (7.3)

‡47We restrict to the case d ≥ 3; the case d = 1 has trivial Weyl group, while for the case d = 2 there is
only the permutation symmetry S2.
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obtained for zero theta angle. The transformation (7.2) generalizes this symmetry to the

case d > 3, by acting as S-duality in the (3+1)-dimensional theory obtained by reducing

the Matrix gauge theory in d + 1 dimensions to the directions I, J,K and the time only

[110]. Indeed, the coupling constant for the e�ective (3+1)-dimensional gauge theory reads

1

g2
eff

=
W

g2
YM

, (7.4)

and the transformation (7.2) becomes

(g2
eff , sα, sa) → (1/g2

eff , sα, g
2
effsa) . (7.5)

To summarize, we see that from the point of view of the Matrix gauge theory the U-

dualities are accounted for by the modular group of the torus on which the gauge theory

lives (yielding the Sl(d,Z) subgroup) as well as by generalized electric�magnetic dualities

(implementing the T-dualities of type IIA string) ‡48.

We now discuss in more detail the d = 4, 5, 6 cases, in order to give more support to
the proposals discussed in Section 6. Explicitly, one obtains

d = 4 : SIJK

{
g2
YM ↔ sa a 6= I, J,K

sα → sα α = I, J,K
(7.6a)

d = 5 : SIJK


g2
YM → g2

YM

sa → g2
YM

sb
a, b 6= I, J,K

sα → sα α = I, J,K

(7.6b)

d = 6 : SIJK


g2
YM → g4

YM

sasbsc
a, b, c 6= I, J,K

sa → g2
YM

sbsc

sα → sα α = I, J,K

(7.6c)

For d = 4 we see that (7.6a) induces a permutation of the YM coupling constant with the

radii, in accordance with the interpretation (6.17) of the YM coupling constant as an extra
radius. For d = 5, Eq. (7.6b) takes the form of a T-duality symmetry (2.41) of the non-

critical string theory living on the type IIB NS5-brane world-volume with the YM coupling
related to the string length as in (6.19). Finally, for d = 6, we see by comparing (7.6c) with

the U-duality transformation in (4.12) that we recover the symmetry transformation TIJK

in M-theory with the YM coupling constant related to the Planck length by (6.21).

At this point, it is also instructive to recall the full U-duality groups for toroidal
compacti�cations of M-theory, as summarized in Table 4.2, and discuss their interpre-

tation in view of the Matrix gauge theories for d = 3, 4, 5 (see Table 7.1). For d = 3,

‡48From the point of view of type IIB theory, it can be shown that the latter also account for the restoration
of the transverse Lorentz invariance [291].
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D d U-duality origin

8 3 Sl(3,Z)× Sl(2,Z) S-duality × symmetry of T 3

7 4 Sl(5,Z) symmetry of T 5 of M5-brane

6 5 SO(5, 5,Z) T-duality symmetry on NS5-brane

D ≤ 5 d ≥ 6 Ed(d)(Z) unclear

Table 7.1: Interpretation of U-duality in Matrix gauge theory.

the Sl(3,Z) × Sl(2,Z) U-duality symmetry is the product of the (full) S-duality and the

reparametrization group of the three-torus. For d = 4, the Sl(5,Z) symmetry is the modu-

lar group of the �ve-torus, corroborating the interpretation of this case as the (2,0) theory

on the M5-brane [265]. Finally, for d = 5 the SO(5, 5,Z) symmetry should be interpreted

as the T-duality symmetry of the string theory living on the NS5-brane [91, 47]. The

E6(6)(Z) symmetry is by no means obvious in the IMF description discussed in Subsection
6.6, but this is expected since part of it are Lorentz transformations broken by the IMF

quantization. The interpretation of the exceptional groups Ed(d)(Z), d = 7, 8 is not obvious
either, since a consistent quantum description for these cases is lacking as well.

In Subsections 7.4�7.6, the precise identi�cation of the full U-duality groups for d =
3, 4, 5 will be discussed in further detail. Note also that as we are considering M-theory

compacti�ed on a torus times a light-like circle, it has been conjectured that the Ed(d)(Z)
U-duality symmetry should be extended to Ed+1(d+1)(Z), as a consequence of Lorentz in-
variance. This extended U-duality symmetry will be discussed in Subsection 7.7.

Finally, we can translate the U-duality invariant Newton constant (4.14) in the Matrix

gauge theory language. The most convenient form is obtained by writing

Id =
V d−5

s

g
2(d−3)
YM

=

(
VR

l9p

)2

R9−d
l , (7.7)

which depends on the invariant D-dimensional Planck length and the radius of the light-

like circle, invariant under the Ed(d)(Z) transformations acting on the transverse space.

Again, in agreement with the Matrix gauge theory descriptions, we see that for d = 3 the

invariant I3 = 1/V 2
s is related to the volume Vs of the three-torus; for d = 4 the invariant

I4 = 1/(Vsg
2
YM) is related to the total volume of the �ve-torus, constructed from the four-

torus and the extra radius R̃ = g2
YM; for d = 5 the invariant I5 = 1/g4

YM is related to the
�nite string tension T = 1/g2

YM of the string theory. Finally, note also that for d = 6 the

U-duality invariant I6 = Vs/g
6
YM is related to the 5-D Planck length, when using l3p = g2

YM.

7.2 U-duality multiplets of Matrix gauge theory

We now turn to the translation of the U-duality multiplets of Subsections 4.8 and 4.10

in the Matrix gauge theory picture. To this end we use the dictionary (6.22) and the
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mass relations in Eq. (6.32). Equivalently, one may start with the highest-weight states

corresponding to electric �ux (6.30) and momentum states (6.31) in the Matrix gauge theory

and subsequently act with the transformations (7.2) of the Weyl subgroup. Of course these

two methods lead to the same result, which are summarized in Tables 7.2 and 7.3, for

the particle/�ux and string/momentum multiplet respectively. As a compromise between

explicitness and complexity, we have chosen to write down the content for d = 7 in the �rst

case, and for d = 6 in the latter case. The tables list the mass M in M-theory variables,

the corresponding gauge theory energy EYM and their associated charges, obtained from

the M-theory charges by raising lower indices or lowering upper indices.

M EYM charge

1
RI

g2
YMs2

I

NVs
m1

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

m2

RIRJRKRLRM

l6p

V 3
s

Ng6
YM(sIsJsKsLsM )2

m5

RI ;RJRKRLRMRN RP RQ

l9p

V 5
s

Ng10
YM(sI ;sJsKsLsMsNsP sQ)2

m1;7

Table 7.2: Flux multiplet (56 of E7) for Matrix gauge theory on T 7.

M EYM charge

RlRI

l3p

1
sI

n1

RlRIRJRKRL

l6p

Vs

g2
YMsIsJsKsL

n4

RlRI ;RJRKRLRMRN RP

l9p

V 2
s

g4
YMsI ;sJsKsLsMsNsP

n1;6

RlRIRJRK ;RLRM RN RP RQRRRS

l12p

V 3
s

g6
YMsIsJsK ;sLsMsN sP sQsRsS

n3;7

RlRIRJRKRLRM RN ;RP RQRRRSRT RURV

l15p

V 4
s

g8
YMsIsJsKsLsMsN ;sP sQsRsSsT sUsV

n6;7

Table 7.3: Momentum multiplet (133 of E7) for Matrix gauge theory on T 7.

In Table 7.2, the �rst entry corresponds to a state with electric �ux in the I-th direction,
while the second one carries magnetic �ux in the I, J direction. The �rst entry in Table 7.3
is a KK state of the gauge theory, while the second one is a YM instanton in 3+1 dimensions,

lifted to d+ 1 dimensions. For d ≥ 5, new states appear. As a further illustration, we take
a closer look at the special cases d = 3, 4, 5, 6, which can be obtained from the tables by

omitting those states that have too many compacti�ed dimensions. The Tables 7.4�7.7

list the content of each of the two multiplets for these cases [110, 244, 269], including the
M-theory mass, the YM energy, the multiplicity of each type of state and its interpretation

both in the Matrix gauge theory and as a bound state with the N background type ĨI
Dd-branes. For d = 4, 5 we have also added a column giving the bound-state interpretation

in the M5- and NS5-brane theories respectively.
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M EYM # YM state b.s. of N D3

1
RI

g2
YMs2

I

NVs
3 electric �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2 3 magnetic �ux D1

RlRI

l3p

1
sI

3 momentum KK

Table 7.4: Flux and momentum multiplet for d = 3: (3, 2) and (3, 1) of Sl(3)× Sl(2).

M EYM # YM state b.s. of N D4 b.s. of N M5

1
RI

g2
YMs2

I

NVs
4 electric �ux NS-w

M2
RIRJ

l3p

Vs

Ng2
YM(sIsJ)2 6 magnetic �ux D2

RlRI

l3p

1
sI

4 momentum KK
KK

RlVR

l6p

1
g2
YM

1 YM particle D0

Table 7.5: Flux and momentum multiplet for d = 4: 10 and 5 of Sl(5).

M EYM # YM state b.s. of N D6

1
RI

g2
YMs2

I

NVs
6 electric �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2 15 magnetic �ux D4

VR

RI l6p

Vss
2
I

Ng6
YM

6 new sector KK5

RlRI

l3p

1
sI

6 momentum KK

RlVR

RIRJ l6p

sIsJ

g2
YM

15 YM membrane D2

RlRIVR

l9p

Vs

g4
YMsI

6 new sector NS5

Table 7.7: Flux and momentum multiplet for d = 6: 27 and 2̄7 of E6.

A few comments on these tables are in order.

• A number of states in the Matrix gauge theory have a uniformly valid interpretation

as bound states with the background Dd-branes, namely, for the �ux multiplet,

electric �ux = Dd�NS-winding bound state (7.8a)

magnetic �ux = Dd�D(d− 2) bound state (7.8b)
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M EYM # YM state b.s. of N D5 b.s. of N NS5

1
RI

g2
YMs2

I

NVs
5 electric �ux NS-w D1

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2 10 magnetic �ux D3 D3

VR

l6p

Vs

Ng6
YM

1 new sector NS5 D5

RlRI

l3p

1
sI

5 momentum KK KK

RlVR

RI l6p

sI

g2
YM

5 YM string D1 NS-w

Table 7.6: Flux and momentum multiplet for d = 5: 16 and 10 of SO(5, 5).

and for the momentum multiplet,

KK momentum = Dd�KK bound state (7.9a)

YM state = Dd�D(d− 4) bound state (7.9b)

where the YM state denote the 4D Yang�Mills instanton lifted to d + 1 dimensions.
The correspondences in Eq. (7.8) and (7.9) were noted in Refs. [250, 97, 320].

• In the d = 3 case, only perturbative states are observed in Table 7.4.

• For d = 4 one non-perturbative state occurs in Table 7.5, which corresponds precisely
to momentum along the dynamically generated �fth direction, i.e. to a Yang�Mills

instanton lifted to 4+1 dimensions [265]. From the M5-brane point of view, the
�ux multiplet describes the M2-brane excitations, while the momentum multiplet

comprises the KK states, as indicated in the last column.

• For the case d = 5 in Table 7.6, we focus on the last column obtained by S-duality from
the D5-brane picture of the ĨI theory. The YM string in the momentum multiplet

arises in this case from the wound strings on the NS5-brane. The wrapped transverse

�vebrane on T 5 appears as a bound state of D5-branes with the background NS5-

branes, with non-zero binding energy (since it is related by electric�magnetic duality
to the D1�NS1 bound state). It corresponds to a new sector in the Matrix gauge

theory Hilbert space, with energy scaling as 1/g6
YM. This state does not correspond

to any known con�guration of the 1+5 gauge theory, but may be understood as a
magnetic �ux along one ordinary dimension together with the dynamically generated

dimension in a 1+4 gauge theory obtained by reducing the original one on a circle

[154].

For the d = 6 case, we see from Table 7.7 that all BPS states of type IIA theory on T 6 are

involved in the bound states of the �ux and momentum multiplet, except for the D6�D0
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�bound state�. It has been argued that the latter forms a non-supersymmetric resonance

with the unconventional mass relation [88, 304]:

M =
(
M2/3

D6 +M2/3
D0

)3/2

. (7.10)

As a consequence we expect to �nd a state in the gauge theory with energy

EYM =
(
M2/3

ND6 +M2/3
D0

)3/2

−MND6 'M2/3
D0M

1/3
ND6 . (7.11)

Using the corresponding D-brane masses and the relation g2
YM = gsl

3
s we then obtain

EYM = N1/3V
1/3
s

g2
YM

= N1/3I
1/3
6 . (7.12)

In the last step we have expressed the mass in terms of the U-duality invariant (7.7),

explicitly showing that this extra state transforms as a singlet under the U-duality group
E6(6)(Z). Since the D0-brane is mapped onto a D6-brane under the maximal T-duality,

the space-time interpretation of this extra U-duality multiplet follows from the M-theory
origin of the D6-brane, i.e. the state is KK6-brane with the TN direction along the light-

like direction. The corresponding data of this extra singlet are summarized in Table 7.8.
The d = 7 case is discussed in Appendix C, and exhibits a number of similar states (with
M-theory masses depending on multiple factors of Rl) as the extra singlet in d = 6.

M EYM # YM state b.s. of N D6

R2
l VR

l9p

N1/3V
1/3
s

g2
YM

1 new sector D0

Table 7.8: Additional multiplet for d = 6: 1 of E6.

7.3 Gauge backgrounds in Matrix gauge theory

Our discussion of the Matrix gauge theory U-duality symmetries and mass formulae has

so far been restricted to the rectangular-torus case, with zero expectation values for the
M-theory gauge potentials. However, gauge backgrounds in M-theory yield moduli, and

should have a counterpart as couplings in the Matrix gauge theory.

As a simple example, consider �rst M-theory on T 3, in which case we can switch on an

expectation value for the component C123 of the three-form. Together with the volume V
of T 3, it forms a complex scalar

τ = C123 + i
V

l3p
, (7.13)
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which transforms as a modular parameter under the subgroup Sl(2,Z) of the U-duality

group Sl(3,Z) × Sl(2,Z) [146]. On the other hand, according to Eq. (6.22a) the volume

is identi�ed in the Matrix gauge theory with 1/g2
YM, which together with the theta angle

forms a complex scalar

S =
θ

2π
+ i

4π

g2
YM

, (7.14)

transforming as a modular parameter under the electric�magnetic duality group Sl(2,Z).
One should therefore identify C123 with θ, or in other words the three-form background

induces a topological coupling
∫
F ∧ F on the D3-brane world-volume.

This can be derived more generally for any d by making use of Seiberg's argument and

the well-known coupling of Ramond gauge �elds to the D-brane world-volume. Details of

the derivation can be found in Ref. [244] and we only quote the result which is that the

expectation value of the three-form induces the following topological coupling in Matrix

gauge theory:

SC = CIJK

∫
dt

∫
T̃ d

F0IFJK . (7.15)

This coupling reduces to the θ term (7.14) for d = 3 and was conjectured in Ref. [35]. As
we now show, the coupling (7.15) can also be inferred from the U-duality invariant mass
formulae.

To see this, we �rst translate the general U-duality invariant mass formulae (5.23) into

the gauge theory language using (6.22) and (6.32), restricting to d ≤ 6 for simplicity:

EYM =
g2
YM

NVs

[(
m̃1
)2

+

(
Vs

g2
YM

)2

(m̃2)
2 +

(
Vs

g2
YM

)4

(m̃5)
2

]

+

√
(ñ1)

2 +

(
Vs

g2
YM

)2

(ñ4)
2 +

(
Vs

g2
YM

)4

(ñ1;6)
2

(7.16)

in which we have added the �ux multiplet and momentum multiplet together, as was argued

in Subsection 6.8. Index contractions are performed with the dual metric g̃IJ = gIJ l6p/R
2
l ,

and upper (lower) indices in the M-theory picture have become lower (upper) indices in the
Matrix gauge theory picture. We also recall that Vs is the volume of the dual torus T̃ d on
which the Matrix gauge theory lives. The expression of shifted charges is then given by

m̃1 = m1 + C3m2 +
(
C3C3 + E6

)
m5 (7.17a)

m̃2 = m2 + C3m5 (7.17b)

m̃5 = m5 (7.17c)

ñ1 = n1 + C3n4 +
(
C3C3 + E6

)
n1;6 (7.17d)

ñ4 = n4 + C3n1;6 (7.17e)

ñ1;6 = n1;6 . (7.17f)
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As we will see below, the linear shift in C3 is in agreement with the coupling obtained in

Eq. (7.15). As a preview, the interpretation of the C3 coupling in the various Matrix gauge

theories is summarized in Table 7.9. We will discuss these formulae in further detail for
d = 3, 4, 5 below. There is as yet no derivation of the coupling of the E6 gauge potential to

the Matrix gauge theory.

D d CIJK interpretation

8 3 1 θ-parameter

7 4 4 o�-diagonal component AI of T
5-metric

6 5 10 BIJ -background �eld of string theory on 5-brane

D ≤ 5 d ≥ 6
(

d
3

)
unclear

Table 7.9: Matrix gauge theory interpretation of three-form potential.

7.4 Sl(3,Z)× Sl(2,Z)-invariant mass formula for N=4 SYM

in 3+1 dimensions

As a �rst case, we consider the mass formula (7.16) for d = 3,

EYM =
g2

YM

NVs

(
mI +

1

2
CIJKmJK

)
g̃IL

(
mL +

1

2
CLMNmMN

)
(7.18)

+
Vs

Ng2
YM

(
mIJ g̃

IK g̃JLmKL

)
+
√
nI g̃IJnJ .

This includes the energy of the electric �ux mI (i.e. the momentum conjugate to
∫
F0I)

and the magnetic �ux mIJ =
∫
FIJ in the diagonal Abelian subgroup of U(N), together

with the energy of a massless excitation with quantized momentum nI . We observe that
the e�ect of the M-theory background value of the three-form C3 is to shift the electric �ux

mI , which is a manifestation of the Witten e�ect and indicates that the coupling of C3 to
gauge theory occurs through the topological term (7.15). Indeed, the only e�ect of such a

coupling is to shift the momentum conjugate to ∂0AI by a quantity CIJK
∫
FJK .

Moreover, introducing the dual magnetic charge mI
∗ = 1

2
εIJKmJK and setting CIJK =

θεIJK , the mass formula (7.18) can be written in the alternative form

EYM =
1

NVs
(g2

YM(mI + θmI
∗)g̃IJ(mJ + θmJ

∗ ) +
1

g2
YM

mI
∗g̃IJm

J
∗ )

+
√
nI g̃IJnJ ,

(7.19)

which manifestly exhibits the Sl(2,Z) S-duality symmetry as well as the Sl(3,Z) modular

group of the three-torus.
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7.5 Sl(5,Z)-invariant mass formula for (2,0) theory on the M5-

brane

Moving on to the case d = 4, an extra momentum charge n4 appears in (7.16), which

corresponds to the momentum along the dynamically generated 5th dimension. After some

algebra, the total mass (7.16) can be rewritten in a manifestly U-duality (Sl(5,Z))-invariant
form:

EYM =
1

NV5
mABg̃AC g̃BDm

CD +
√
nAg̃ABnB (7.20)

where A,B, · · · = 1 . . . 5 and V5 = Vsg
2
YM is the volume of the �ve-dimensional torus. Here,

the two-form and vector charges mAB, nA on the �ve-torus are related to the original set

on the four-torus by

mI5 = mI , mIJ =
1

2
εIJKLmKL (7.21a)

nI = nI , n5 =
1

4!
εIJKLnIJKL I, J, · · · = 1, . . . , 4 (7.21b)

where the charge mAB is the quantized �ux (in the diagonal Abelian group) conjugate
to the two-form gauge �eld that lives on the (5+1)-dimensional world-volume, and nA is
simply the momentum along the direction A. The gauge potential CIJK combines with the

gauge coupling and the T 4 metric to make the metric on T 5:

ds2
5 = R̃2(dx5 +AIdxI)

2 + ds2
4 (7.22a)

R̃ = g2
YM , AI =

1

3!
εIJKLCJKL . (7.22b)

In particular, it is seen that the three-form potential plays the role of the o�-diagonal
component of the �ve-dimensional metric relevant to the M5-brane.

As a check, we recall that the bosonic part of the M5-brane action can be written in a

non-covariant form by solving the self-duality condition after singling out a special (�fth)

space-like direction and integrating the resulting equations of motion [274, 251, 1]. In

particular, it contains the coupling

L = −1

4
εµνλρσ

G5λ

G55
H̃µνH̃ρσ (7.23a)

H̃µν =
1

6
εµνρλσHρλσ , µ, ν = 0 . . . 4 , (7.23b)

which precisely reproduces, upon the identi�cations in (7.22), the topological coupling

(7.15) in the e�ective (4+1)-dimensional SYM theory, where the �eld strength Fµν is iden-

ti�ed with the dual �eld strength H̃µν . Finally, we note that EYM in (7.20) depends on the

volume of T 5 through an over-all factor V
−1/5
5 , in agreement with the scale invariance of

the conjectured (5+1)-dimensional (2,0) theory.
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7.6 SO(5, 5,Z)-invariant mass formula for non-critical string
theory on the NS5-brane

Finally, we consider the case d = 5, for which according to the reasoning in Subsection

6.5 the Matrix gauge theory should correspond to a non-critical string theory on the type

IIB NS5-brane with vanishing string coupling ĝs
‡49 and �nite string tension l̂2s = g2

YM.

After some algebra, the mass formula (7.16) can be rewritten in the manifestly U-duality

(SO(5, 5)) invariant form

EYM =
1

NMNS5

M2(D1,D3,D5) +
√
M2(KK,F1) , (7.24)

where MNS5 = Vs

ĝ2
s l̂6s

is the mass of the background NS5-brane.

The second part of (7.24) involves the momentum (n1) and winding (n1, dual to n4)

excitations of the strings living on the world-volume, which form the vector representation
10 of the SO(5, 5) T-duality group. The corresponding invariant mass

M2(KK,F1) = (n1 + B2n
1)2 +

1

l̂2s
(n1)2 (7.25)

directly follows from the second part of (7.16), using the identi�cation

BIJ =
1

3!
εIJKLMCKLM (7.26)

for the background antisymmetric tensor �eld in terms of the components of the three-form
gauge potential on the �ve-torus.

The �rst term in (7.24) involves the D-brane excitations arising from the charges
(m1, m2, m5) that can be dualized into (m1, m3, m5). It exhibits the correct invariant mass

Eq. (3.39) for a spinor representation of SO(5, 5):

M2(D1,D3,D5) =

(
m̃1

ĝsl̂2s

)2

+

(
m̃3

ĝsl̂4s

)2

+

(
m5

ĝs l̂6s

)2

(7.27a)

m̃1 = m1 + B2m
3 + B2

2m
5 , m̃3 = m3 + B2m

5 (7.27b)

where we again used the identi�cation (7.26).

As a further check, let us note that the Green�Schwarz term
∫

d6xB ∧ F ∧ F in the

e�ective action of the six-dimensional string theory, correctly gives the topological term
(7.15) after using the relation (7.26) between the background string theory B-�eld and the

vacuum expectation values of the M-theory three-form.

‡49ĝs cancels out in the following formulae.
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7.7 Extended U-duality symmetry and Lorentz invariance

M(atrix) theory still lacks a proof of eleven-dimensional Lorentz covariance to shorten its

name to M-theory. In the original conjecture, this feature was credited to the large-N
in�nite-momentum limit. The much stronger Discrete Light Cone (DLC) conjecture, if

correct, allows Lorentz invariance to be checked at �nite N � or rather at �nite N 's, since

the non-manifest Lorentz generators mix distinct N superselection sectors. In particular,

M(atrix) theory on T d in the DLC should exhibit a U-duality Ed+1(d+1)(Z), if it is assumed

that U-duality is una�ected by light-like compacti�cations [172, 54, 244]. In this section,

we show that an action of Ed+1(Z) on the M-theory BPS spectrum can be de�ned when

we include the light-like circle S1 on an equal footing with the space-like torus T d.

particle multiplet charge string multiplet charge missing charges ext. part.

1
RI

m1(7) N(1) M1(8)

RIRJ

l3p
m2(21) RlRJ

l3p
n1(7) M2(28)

RIRJRKRLRM

l6p
m5(21) RlRIRJRKRL

l6p
n4(35) M5(56)

R2
IRJRKRLRMRN RP

l9p
m1;7(7)

RlR
2
IRKRLRMRN RP

l9p
n1;6(49) N6(7), N7(1) M1;7(64)

RlR
2
IR2

JR2
KRLRMRN RP

l12p
n3;7(35) N2;7(21) M3;8(56)

RlR
2
IR2

JR2
KR2

LR2
MR2

N RP

l15p
n6;7(7) N5;7(21) M6;8(28)

N1;7;7(7), N7;7(1) M1;8;8(8)

Table 7.10: Particle multiplet and string multiplet wrapped on Rl for d = 7. Together with
the rank multiplets, they form the d = 8 particle multiplet.

In the presence of an extra (light-like) compact direction of radius Rl, the states from
the string multiplet in Table 4.13 can be wrapped to yield extra particles in the spectrum

that join the already existing states from the particle multiplet in Table 4.10. We have
summarized in Table 7.10 the various particles obtained in the case d = 7. It clearly
appears that altogether, the d = 7 particle and string multiplets build a particle multiplet

of the d = 8 U-duality group, whose charges M are obtained from the particle m and string

n charges through the relations

m1 = M1 m1;7 = M1;7 , n1;6 = M1;l6

m2 = M2 , n1 = M l1 m3,8 = M3;8 , n3,7 = M3;l7

m5 = M5 , n4 = M l4 m6,8 = M6,8 , n6,7 = M6;l7

(7.28)

where we have denoted the light-cone direction by an index l ‡50. This is not quite correct,
however, since in particular there is no candidate for the Ml state, which would correspond

‡50As usual, the same relations hold for d < 7 by dropping the tensors with too many antisymmetric
indices.

99



to a Kaluza�Klein excitation along the light-like direction. Obviously, this missing charge

is nothing but the rank of the gauge group

N = Ml , (7.29)

which indeed denotes the momentum along the light-like direction, and should therefore

be considered as a charge on the same footing as the others. labelling the vacuum of some

M(eta) theory on which the eleven-dimensional Lorentz group is represented. This charge

has to be invariant under the U-duality group Ed(d)(Z), but it gets mixed with other charges

under Ed+1(d+1)(Z).

While N is the only missing charge for d ≤ 5, there is still, for d ≥ 6, an extra missing

U-duality singlet

N6 = M l;l6 (7.30)

which can be interpreted as the D6�D0 bound state of Eq. (7.12). For d = 7, one needs
even more extra charges, namely

N2;7 ≡M l2;l7 , N6 ≡M l;l6 , N5;7 ≡M l5;l7 , N1;7;7 ≡M1;l7;l7 , (7.31)

which form the 56 of E7, isomorphic to the particle multiplet of Table 5.1, as well as the
two singlets

N7 = M l;7 , N7;7 = M l;l7;l7 , (7.32)

for which Table C.2 gives the bound-state interpretation as well. These extra charges along
with N were referred to in [244] as the rank multiplet. The results are summarized in

the Table 7.11, which lists, for all d's, the dimensions of the particle and string multiplet,
as well as the rank multiplets that are needed to complete the �rst two into the particle

multiplet of the d+ 1 case.

We note that the above discussion follows immediately from the decomposition (4.34)

of the particle multiplet of Ed(d) into the particle and string multiplet of Ed−1(d−1) plus

extra irreps for d ≥ 6. In particular, the extra representations that appear are nothing

but the extra charges forming the rank multiplet. If we omit the light-like direction, we
indeed see an extra T ′

1 |1 for d = 6; for d = 7 we have the extra representations T ′
1 |1, T ′

2 |2
and (T ′

1 )2|3, whose subscripts are in precise correspondence with the number of times the

light-like direction appears in the charges of (7.30) and (7.31),(7.32).

7.8 Nahm-type duality and interpretation of rank

To see the physical signi�cance of the U-duality enhancement, we discuss the extra genera-

tors in Ed+1(d+1)(Z). First there is the Weyl generator, exchanging the light-cone direction
with a chosen direction I on T d:

Rl ↔ RI . (7.33)
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U-duality Flux Mom. Rank Total

D d Ed(d)(Z) {m} {n} {N} {M}

10 1 1 1 1 1 3

9 2 Sl(2) 3 2 1 6

8 3 Sl(3)× Sl(2) (3, 2) (3, 1) 1 10

7 4 Sl(5) 10 5 1 16

6 5 SO(5, 5) 16 10 1 27

5 6 E6 27 2̄7 1+1 56

4 7 E7 56 133 56 + 1 248

+1+1

3 8 E8 248 3875 ∞ ∞

Table 7.11: Flux, momentum and rank multiplets.

The action of this Weyl transformation leaves the other RJ 's and lp invariant. In particular,
Newton's constant in 11− (d+ 1) dimensions

1

κ2
=
VRRl

l9p
= R

(d−7)/2
l

V
(d−5)/2
s

gd−3
(7.34)

is invariant under U-duality. In terms of Matrix gauge theory, this means

g2
YM →

(
Rl

RI

)d−4

g2
YM , sI → sI , sJ 6=I →

(
Rl

RI

)
sJ . (7.35)

Note that the transformed parameters depend on the original ones and on Rl. On the other
hand, the only dependence of the gauge theory on Rl should be through a multiplicative
factor in the Hamiltonian, since Rl can be rescaled by a Lorentz boost (see Eq. (6.4)). This

leaves open the question of how the M(eta) theory itself depends on Rl.

The action on the charges follows from the exchange of the I and l indices, so that
restricting to d = 6 for simplicity, we have

N ↔ mI

n1 ↔ mI1

n4 ↔ mI4

n1;6 ↔ m1;I6 .

(7.36)

In particular, the rank N of the gauge group is exchanged with the electric �ux mI , whereas

the momenta are exchanged with magnetic �uxes. This is reminiscent of Nahm duality,
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relating (at the classical level) a U(N) gauge theory on T 2 with background �ux m to a

U(m) gauge theory on the dual torus with background �ux N [236]. In the context of

higher-dimensional Yang-Mills theories, this symmetry was �rst observed at the level of

the multiplicities of the BPS spectrum of SYM in 1 + 3 dimensions [153], and extended in

the context of Matrix theory on T d in Refs. [173, 54, 244, 85]. Non-commutative geometry

may provide the correct framework for this duality [237].

The other generator is the Borel generator,

ClJK → ClJK ,+∆ClJK (7.37)

which is obtained from the usual Ed(d)(Z) shifts by conjugation under Nahm-type duality.

It is therefore not an independent generator, but still gives a spectral �ow on the BPS

spectrum

N → N + ∆Cl2 m
2

m1 → m1 + ∆Cl2 n
1

m2 → m2 + ∆Cl2 n
4

m5 → m5 + ∆Cl2 n
1;6 .

(7.38)

In particular, this implies that states with negative N need to be incorporated in the M(eta)
theory if it is to be Ed+1(d+1)(Z)-invariant. This is somewhat surprising since the DLC

quantization selects N > 0, and it seems to require a revision both of the interpretation
of N as the rank of a gauge theory and of the relation between N and the light-cone

momentum P+ ‡51.

Finally, let us comment in some more generality on the occurrence of this extended
U-duality group. At least at low energies, the Matrix gauge theory describing the DLCQ of
M-theory compacti�ed on T d is nothing but the gauge theory on the N Dd-brane wrapped
on T d. The latter is certainly invariant under the T-duality SO(d, d,Z), and not only

SO(d − 1, d − 1,Z) ./ Sl(d). Its spectrum of excitations, or equivalently bound states, is
therefore invariant under SO(d, d,Z), and very plausibly under the extended duality group

Ed+1(d+1)(Z). On the other hand, we have expanded the bound-state mass in the limit

where the N Dd-branes are much heavier than their bound partners, whereas T-duality can

exchange the Dd-branes with some of their excitations. SO(d, d,Z) is therefore explicitly
broken, and Ed+1(d+1)(Z) is broken to Ed(d)(Z). The invariance of the mass spectrum can
be restored by using the full non-commutative Born�Infeld dynamics instead of its small α′

Yang�Mills limit [70]. While not relevant for M(atrix) theory anymore, interesting insights
can certainly be obtained by studying these truly stringy gauge theories.
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Note added in proof :

Boundaries of M-theory moduli space

As we discussed in Section 2, M-theory arises in the strong coupling regime of type II string

theory, and reduces at low energy to 11D supergravity. It is important to determine what
portion of the M-theory moduli space are covered by these weakly coupled descriptions,
and thus what room is left for truly M-theoretic dynamics. The techniques we developed

in Section 4 allow us to easily answer this question, �rst addressed in Ref. [319] for com-
pacti�cations down to D ≥ 4, and recently for D = 2 in Ref. [23]. We �rst consider

the case D > 2, and consider an asymptotic direction in the moduli space, represented
by an arbitrarily large weight vector λ in the weight space Vd+1, see Section 4.6. Modulo
U-duality, λ can be chosen in the fundamental Weyl chamber λ ·α > 0 for all positive roots

α. This corresponds to choosing

R1 < R2 < · · · < Rd , R1R2R3 > l3p , (7.39)

where the inequalities are understood to be large inequalities, in order to have a maximal

degeneration in the moduli space [319]. The 11D supergravity description is valid provided

all radii are larger than the Planck length, i.e.

11D SUGRA : lp < R1 . (7.40)

On the other hand, when the radius R1 is much smaller than lp, we can have a type IIA

description with weak coupling g2
s = (R1/lp)

3, provided all radii are larger than the string

length l2s = l3p/R1 :

IIA : R1 < lp , R1R
2
2 > l3p . (7.41)

If this is not the case, then we may instead try a type IIB description with weak coupling

gs = R1/R2, same string length l2s = l3p/R1 and 10-th radius RB = l3p/(R1R2). The IIB radii

RB and R3, . . . , Rd are larger than the string length provided R1R
2
2 < l3p and R1R

2
3 > l3p,

and it is not di�cult to see that, using Eq. (7.39), the �rst implies R1 < lp, and the second

is automatically satis�ed. The type IIB description thus hold in the region

IIB : R1 < lp , R1R
2
2 < l3p . (7.42)
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The weakly coupled 11D supergravity, type IIA and type IIB descriptions therefore cover,

up to U-duality, the entire asymptotic moduli space of M-theory on T d, d > 2. Of course,
these descriptions fail when any of the large inequalities above become approximate equali-

ties, hence the need for a more fundamental de�nition of M-theory. On the contrary, when
D ≤ 2, there are asymptotic sectors of the moduli space where no perturbative descrip-

tion is possible. Indeed, the weight space Vd+1 is now intrinsically Minkovskian, and the

light-cone λ · λ = −(x0)2 +
∑

(xi)2 = 0 separates the moduli space into three sectors that

can never be related to each other by U-duality. For instance, the 11D supergravity region

(7.39) has xi > x0/3 for all i, so that λ ·λ > 0. It therefore sits in the interior of the future

light-cone if x0 > 0, or past light-cone if x0 < 0 (one may choose x0 = 0 by working in

lp units). In fact, the time-like region can be shown to have a weakly coupled 11D super-

gravity, type IIA or type IIB description, whereas the spacelike region can be argued to be

cosmologically forbidden by the holographic principle [23].

Appendices

A BPS mass formulae

In this Appendix, we analyse the BPS eigenvalue equation (2.14) for various choices of
non-vanishing central charges. This gives a check on the mass formulae obtained on the

basis of duality, and yields the conditions on the charges for a state to preserve a given
fraction of supersymmetry.

A.1 Gamma Matrix theory

In order to maintain manifest eleven-dimensional Lorentz invariance, we use the 11D Clif-
ford algebra [ΓM ,ΓN ] = 2ηMN , with signature (−,+, . . . ), even after compacti�cation. The
matrices ΓM are then 32 × 32 real symmetric except for the charge conjugation matrix

C = Γ0, which is real antisymmetric. All products of Gamma matrices are traceless except

for

Γ0Γ1 . . .Γ9Γs = 1 , (A.1)

where we denote by s the eleventh direction. We de�ne ΓMN... = ΓMΓN . . . if the p indices
M,N, . . . are distinct, zero otherwise, and abbreviate it as Γ(p). We have

(Γ(p))
2 = (−1)[

p
2 ] , (Γ0Γ(p))

2 = (−1)[
p−1
2 ] , (A.2)
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where the p indices are non-zero and the square brackets denote the integer part. Further-

more,

Γ(p)Γ(q) + (−)pqΓ(q)Γ(p) =

∞∑
k=0

p+q−4k≥|p−q|

Γ(p+q−4k) (A.3a)

Γ(p)Γ(q) − (−)pqΓ(q)Γ(p) =
∞∑

k=0
p+q−2−4k≥|p−q|

Γ(p+q−2−4k) , (A.3b)

with no restrictions on the p + q indices. On the right-hand side of Eq. (A.3a) (resp.

(A.3b)), a contraction between the �rst 2k (resp. 2k + 1) indices of Γ(p) and the �rst 2k
(resp. 2k + 1) indices of Γ(p) is implied. In particular,

[Γ(2),Γ(p)] = Γ(p) , (A.4)

since Γ(2) generates Lorentz rotations.

A.2 A general con�guration of KK-M2-M5 on T 5

Here we consider M-theory compacti�ed on T 5, and allow for non-vanishing central charges

ZI , ZIJ , ZIJKLM , where the indices I, J, . . . are internal indices on T 5. We therefore look

for solutions to the eigenvalue equation

Γε = Mε (A.5)

Γ ≡ ZIΓ
0I + ZIJΓ0IJ + ZIJKLMΓ0IJKLM .

Squaring this equation, we obtain

ZIZJ{ΓI ,ΓJ} − ZIJZKL{ΓIJ ,ΓKL}+ ZIJKLMZNPQRS{ΓIJKLM ,ΓNPQRS}

+ 2ZIZ
JK
[
ΓI ,ΓJK

]
+ 2ZIZ

JKLMN
{
ΓI ,ΓJKLMN

}
− 2ZIJZKLMNP [ΓIJ ,ΓKLMNP ] $ M2 , (A.6)

where the symbol$ denotes the equality when acting on ε. Using the identities (A.3a),(A.3b),
this reduces to

(ZI)
2 + (ZIJ)2 + (ZIJKLM)2 + +ZJZ

IJΓI +
(
ZMZ

MIJKL + ZIJZKL
)
ΓIJKL $ 1 (A.7)

A 1/2-BPS state is obtained under the conditions

kI ≡ ZJZ
IJ = 0 (A.8a)

kIJKL ≡ ZMZ
MIJKL + ZIJZKL = 0 , (A.8b)
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which indeed form a string multiplet (10) of E5 = SO(5, 5), and has a mass given by

M2
0 = (ZI)

2 + (ZIJ)2 + (ZIJKLM)2 . (A.9)

If the conditions are not satis�ed, we can de�ne kI = εIJKLMk
IJKL/4!, Γ6 = Γ12345 and

rewrite Eq. (A.7) as

kIΓI + kIΓ6Γ
I $ M2 −M2

0 . (A.10)

Note that the SO(5, 5) vector (kI , k
I) is null: kIk

I = 0. Squaring again yields the 1/4-BPS

state mass formula

M2 = (ZI)
2 + (ZIJ)2 + (ZIJKLM)2 +

√
(kI)2 + (kI)2 . (A.11)

This result can be straightforwardly made invariant under the full U-duality group by

including the couplings to the gauge potentials through the lower charges as found for the

particle and string multiplet in (5.23) and (5.27).

A.3 A general con�guration of D0,D2,D4-branes on T 5

We now consider the D-brane sector of M-theory on T 6, that is a general con�guration of

D0,D2,D4-branes. The eigenvalue equation becomes

Γε = Mε (A.12a)

Γ ≡ ZΓ0s + Z ijΓ0ij + Z ijklΓ0ijkls , (A.12b)

where Z, Z ij, Z ijkl denote the D0,D2,D4-brane charges respectively, and i, j, . . . run from

1 to 5. Squaring this equation, we obtain

2Z2 + Z ijZkl{Γij,Γkl}+ ZijklZmnpq{ΓijklΓmnpq}

+ 4Z Z ijklΓijkl + 2Z ijZklmn [Γij,Γklmn] Γs $ M2 . (A.13)

Using identities (A.3a),(A.3b), this becomes

Z2 + (Z ij)2 + (Z ijkl)2 + kijklΓijkl + (k′)ijklΓijkls $ M2 , (A.14)

where we de�ned

kijkl ≡ Z [ijZkl] + Z Z ijkl (A.15a)

k
′ijkl ≡ Zm[iZjkl]m . (A.15b)

The second combination can be rewritten on T 5 as a form ki;jklmn = Z i[jZklmn]. Then, k4

and k1;5 can be dualized into a 10 null vector (ki, k
i) of the T-duality group SO(5, 5). A

state with k = k′ = 0 is 1/2-BPS with mass

M2
0 = (Z)2 + (Z ij)2 + (Z ijkl)2 . (A.16)
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If these conditions are not met, we can rewrite Eq. (A.14) as

kiΓ
iΓ6 + k′iΓ

iΓ6Γs $ M2 −M2
0 , (A.17)

implying a mass formula

M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2
√

(ki)2 + (ki)2 (A.18)

or, in terms of the natural undualized charges,

M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2
√

(kijkl)2 + (ki;jklmn)2 . (A.19)

A.4 A general con�guration of KK�w�NS5 on T 5

Finally, we consider the Neveu�Schwarz sector of the theory considered in the Appendix

A.3, namely the bound states of NS5-branes, winding and Kaluza�Klein states. The eigen-

value equation then reads(
ziΓ

0i + ziΓ0si + zijklmΓ0ijklm

)
ε = Mε . (A.20)

Taking the square gives

z2 + (zi)2 + (zi)
2 + 2zziΓ6i + 2zziΓ6si − 2Γsz

izi $ M2 , (A.21)

so the 1/2-BPS conditions appear to be

z zi = z zi = zizi = 0 . (A.22)

This agrees with the vanishing of the entropy zzizi and its �rst derivatives, as obtained in
Ref. [115]. We can go further and �nd the complete 1/8-BPS mass formula: multiply Eq.
(A.20) by zΓ06:

−z ziΓ6i − z ziΓ6si − z2ε $ zMΓ06 (A.23)

and combine with Eq. (A.21) to obtain:(
−z2 + (zi)2 + (zi)

2 + 2zMΓ60 − 2ziziΓs

)
$ M2 . (A.24)

Now Γs and Γ06 commute, are traceless and square to 1, so this is a second-order equation:

−z2 + (zi)2 + (zi)
2 ± 2zM± 2zizi $ M2 , (A.25)

with solutions

M = ±z ±
√

(zi ± zi)2 (A.26)

or, equivalently:

M2 = z2 + (zi)
2 + (zi)2 + 2|ziz

i|+ 2|z|
√

(zi)2 + (zi)2 + 2|zizi| . (A.27)

This reduces to the usual mass formula for perturbative string states (z = 0) and for KK�

NS5 or w�NS5 bound states. For momentum and winding charges along a single direction,

this reduces toM = ±z±z1±z1, in agreement with the identi�cation of central charges in

Ref. [115]. The U-duality invariant generalization of this mass formula is however unclear.
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B The d = 8 string/momentum multiplet

For completeness, we give in Table B.1 the content of the string/momentum multiplet for

d = 8 in the 3875 of E8(8). It comprises the 2160 states in the Weyl orbit of the highest

weight Ri/l
3
p of length 4, together with 7 copies of the 240 weights of length 2 with tension

T =
VR

l9p
× (d = 8 particle multiplet) , (B.1)

as well as 35 zero weights with tension

T =

(
VR

l9p

)2

. (B.2)

As in d = 7, the resulting multiplet exhibits a mirror symmetry, which relates each state

with tension R3a−2/l3a
p , a = 1 . . . 6 to another state with tension R34−3a/l

3(12−a)
p through

the relation

MM′ =

(
VR

l9p

)4

, (B.3)

where VR is the volume of the eight-torus. For this reason, Table B.1 only gives the explicit

form of the tensions for the lower half a = 1 . . . 5 and the self-mirror part a = 6. The
second column gives the Sl(8) irreps at each level graded by 1/l3a

p , while the last column
lists the corresponding charges. Here the notation is as follows: a semicolon denotes an

ordinary tensor product as before (so in general contains more than one Sl(8) irrep); two
superscripts (p; q) grouped within parentheses and separated by a semicolon denote the
irrep, whose Young tableau is formed by juxtaposition of a column with p rows and one

with q rows.

As an aid to the reader, we give the charges of the dual states at level l
3(12−a)
p :

a = 1 : n7;8;8;8 , a = 2 : n4;8;8;8 , a = 3 : n2;7;8;8 (B.4)

a = 4 : n1;5;8;8, n(7;7);8;8 , a = 5 : n(1;2);8;8, n4;7;8;8

Finally, we display the decomposition of the d = 8 string multiplet under the T-duality

subgroup group SO(7, 7,Z). Here, we may again restrict to those states with (type IIA)
tensions M ∼ 1/ga

s , a = 0 . . . 4, for each of which there is a dual state with tension M′

related to it by

MM′ =

(
V ′

R

g2
s l

8
s

)4

, (B.5)

where V ′
R stands for the seven-dimensional type IIA torus. The type IIA mirror symmetry

(B.5) easily follows from (B.3) using the M-theory/type IIA connection in (2.11). The
results are summarized in Table B.2.
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mass Sl(8) irrep charge

RI

l3p
8 n1

RIRJRKRL

l6p
70 n4

R2
IRJRKRLRMRN

l9p
, 7 VR

RI l9p
8 + 216 n1;6

R2
IR2

JR2
KRLRM RN RP

l12p

VRR2
I

l12p
, 7VRRIRJ

l12p
28 + 36 + 420 n3;7, n(1;1);8

R2
IR2

JR2
KR2

LR2
M R2

N RP

l15p

VRR2
IRJRKRL

l15p
, 7VRRIRJRKRLRM

l15p
56 + 168 + 404 n(6;7), n1;4;8

VRR2
IR2

JRKRLRM RN

l18p
, 7

VRR2
IRJRKRLRM RN RP

l18p
, 35

V 2
R

l18p
1 + 63 + 720 n(1;7);8, n2;6;8

Table B.1: String/momentum multiplet 3875 of E8.

Here the type IIA states in the a-th column, have a tension proportional to 1/ga−1
s .

The �rst column is the singlet irrep formed by the fundamental string. The second column

is the spinor irrep consisting of Dp=0-,2-,4-,6-branes, with one unwrapped world-volume
direction. The third column can be decomposed into the SO(7, 7) irreps 378 = 1 ⊕ 3 ×
91⊕ 104, and contains, together with NS5 and KK5 with one unwrapped direction, many

non-standard states with tension ∼ 1/g2
s . The fourth column contains the representation

896 = 14⊗64 formed by tensor product of vector and spinor representation, and has states

with tension ∼ 1/g3
s . The �fth column consists of 1197 states with tension ∼ 1/g4

s . The set
of duals of these states includes states with tension up to 1/g8

s , all of which are at present
far from understood.

We note that the string state with tension
VRR2

I

l12p
is presumably related to the conjectured

M9-brane [38, 43], which should more properly be called M8-brane. In fact, for d = 9 there

will be a corresponding particle with mass
VRR2

I

l12p
, where VR is now the volume of the nine-

torus. Taking RI = Rs = lsgs, this reduces to the mass of the type IIA D8-brane, while

taking Rs in one of the other world-volume directions gives an 8-brane with exotic mass
V ′

RR2
i

l11s g3
s
. Vertical reduction, on the other hand, would give a type IIA 9-brane.

C Matrix gauge theory on T 7

In this appendix we discuss in some detail the Matrix gauge theory on T 7, performing the

analysis of Subsection 7.2 for the case d = 7.

For our discussion, it will be useful to �rst consider the type IIB states obtained from

the set of type IIA states in (4.36), by performing a maximal T-duality on the seven-

torus. Using (2.41), we �nd the following T-duality multiplets for type IIB string theory
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3875(E8)⊃ SO(7,7)
∪

Sl(8)
1 64 378 896 1197 896 . . .

8 1 7

70 35 35

224 21 154 49

484 1 154 294 35

728 35 292 294 7

847 154 539 154

728 7 294 292 . . .

484 35 294 . . .
...

...
. . .

Table B.2: Branching of the d = 8 string multiplet into representations of Sl(8) and
SO(7, 7). The entries in the table denote the common Sl(7) reps. The full table can be

reconstructed using mirror symmetry in the point with Sl(7) representation 539.

compacti�ed on T 7

V : Ri

l2s
, 1

Ri
(C.1a)

SB : 1
gs

(
VR

l8s
,

RiRjRkRlRm

l6s
,

RiRjRk

l4s
, Ri

l2s

)
(C.1b)

S + AS : 1
g2

s

(
VRRiRj

l10s
, 8VR

l8s
,

R2
i RjRkRlRmRn

l8s
,

RiRjRkRlRm

l6s

)
(C.1c)

SA : VR

g3
s l8s

(
RiRjRkRlRmRn

l6s
,

RiRjRkRl

l4s
,

RiRj

l2s
, 1
)

(C.1d)

V ′ :
(

VR

g2
s l8s

)2 (
Ri,

l2s
Ri

)
. (C.1e)

Here we have given the states in each multiplet in the order in which they are obtained

from the corresponding type IIA states. At the levels 1/ga
s , with a even, we obtain the

same set of states as in type IIA. At odd level, however, the spinor representations are
interchanged, so that at level 1/gs we obtain the odd Dp branes, while at level 1/g3

s we �nd

the set of p7−p
3 branes with p = 1, 3, 5, 7.

We also give the S-duality structure of the type IIB states (C.1). Using (4.17), the

following list of S-duality singlets (appearing at each level) is found:

KK , D3 , 72 , KK5 , 34
3 , 0

(1,6)
4 . (C.2)

The remaining states pair up into S-duality doublets

F1�D1 , D5�NS5 , D7�73 , 52
2�5

2
3 , 16

3�1
6
4 . (C.3)
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The M-theory mass, gauge-theory energy and bound-state interpretation of the �ux and

momentum multiplets is given in Table C.1.

M EYM # YM state b.s. of N D7

1
RI

g2
YMs2

I

NVs
7 electric �ux NS�w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2 21 magnetic �ux D5

VR

RIRJ l6p

Vs(sIsJ)2

Ng6
YM

21 new sector 52
2

VRRI

l9p

V 3
s

Ng10
YMs2

I
7 new sector 16

3

RlRI

l3p

1
sI

7 KK momentum KK

RlVR

RIRJRK l6p

sIsJsK

g2
YM

35 YM threebrane D3

RlRIVR

RJ l9p

VssJ

g4
YMsI

49 new sector KK5, 72

RlRIRJRKVR

l12p

V 2
s

g6
YMsIsJsK

35 new sector 34
3

RlV
2
R

RI l15p

V 2
s sI

g8
YM

7 new sector 0
(1,6)
4

Table C.1: Flux and momentum multiplet for d = 7: 56 and 133 of E7.

Comparing the states in the last column of this table with the total set of 1/2 BPS

states (C.1) for type IIB on T 7, we note that there is a large number of states that do not
appear. In analogy with the extra D6�D0 multiplet (a singlet) that appeared for d = 6,
we can construct in this case an extra multiplet that contains the D7�D1 bound state, for

which we conjecture (by T-duality) the same bound-state mass formula as in Eq. (7.10),
so that

EYM = M2/3
D1M

1/3
ND7 = N1/3V

1/3
s s

2/3
I

g2
YM

, (C.4)

where we used g2
YM = gsl

4
s . The relevant data of the corresponding U-duality multiplet,

which forms the 56 of E7(7)(Z), is given in Table C.2. The easiest way to obtain this
table, starting with the gauge-theory mass (C.4) obtained for the D7�D1 bound state, is

by noticing that this state is, up to a multiplicative U-duality invariant factor I
1/3
7 (see Eq.

(7.7)) and up to a power of 1/3, exactly analogous to the �ux multiplet of Table C.1. Note
that the 56 states are precisely the S-dual states of those involved in the �ux multiplet
bound states. The bound states relevant to the momentum multiplet, on the other hand,

involve S-duality singlets.

Besides the D7 itself, this leaves two more possible states left in the type IIB, which

can form a bound state with the D7, namely the two 7-branes with mass

Vs

g2
s l

8
s

,
Vs

g3
s l

8
s

. (C.5)
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For the �rst one, we know already from the momentum multiplet that the mass relation is

EYM = M =
Vs

g4
YM

= I
1/2
7 (C.6)

and hence a U-duality singlet. For the second state in (C.5), we deduce the mass relation

by the requirement that the bound-state energy be such that

EYM = [Ma
ND7 +Ma]1/a −MND7 'MaM1−a

ND7 (C.7)

i) can be written in gauge-theory variables, and ii) is a U-duality singlet. Either of these

requirements yields a = 1/2, and we are left with a gauge-theory state with energy

EYM = M1/2
73
M1/2

ND7 = N1/2 Vs

g4
YM

= N1/2I
1/2
7 . (C.8)

The singlets in Eqs. (C.6) and (C.8) are also given in Table C.2.

M EYM # YM state b.s. of N D7

R2
l VR

RI l9p

N1/3V
1/3
s s

2/3
I

g2
YM

7 new sector D1

R2
l RIRJVR

l12p

N1/3Vs

g
8/3
YM(sIsJ)2/3

21 new sector NS5

R2
l V

2
R

RIRJ l15p

N1/3Vs(sIsJ)2/3

g
14/3
YM

21 new sector 52
3

R2
l RIV

2
R

l18p

N1/3V
5/3
s

g6
YMs

2/3
I

7 new sector 16
4

RlVR

l9p

Vs

g4
YM

1 new sector 72

R3
l V

2
R

l18p

N1/2Vs

g4
YM

1 new sector 73

Table C.2: Additional multiplets for d = 7: 56, 1 and 1 of E7.
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