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Abstract

We investigate the effects of colour-octet contributions to the radiative Υ decay within
the Bodwin, Braaten and Lepage NRQCD factorization framework. Photons coming both
from the coupling to hard processes (‘direct’) and by collinear emission from light quarks
(‘fragmentation’) are consistently included at next-to-leading order (NLO) in αs. An estimate
for the non-perturbative matrix elements which enter in the final result is then obtained. By
comparing the NRQCD prediction at NLO for total decay rates with the experimental data,
it is found that the non-perturbative parameters must be smaller than expected from the
näıve scaling rules of NRQCD. Nevertheless, colour-octet contributions to the shape of the
photon spectrum turn out to be significant.
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1 Introduction

Since the early times of QCD, heavy quarkonia decays have been considered among the most
promising processes to test the perturbative sector of the theory and to extract the value of the
strong coupling at scales of the order of the heavy-quark mass. In addition to the calculation
and comparison of full inclusive decay rates, much attention has been devoted to the decays
in which one photon is emitted, and its energy measured [1]. Experimental data on the direct
photon spectrum in Υ decays have been compared [2, 3], up to now, under the assumption of a
factorization between a short-distance part describing the annihilation of the heavy-quark pair
in a colour-singlet state and a non-perturbative long-distance factor, related to the value of the
non-relativistic wave function at the origin.

Recently Bodwin, Braaten and Lepage (BBL) [4] provided a new framework to study quarko-
nium decay within QCD. Introducing an effective non-relativistic theory (NRQCD), perturbative
and gauge-invariant factorization is obtained by including in the decay intermediate QQ states
with quantum numbers different from those of the physical quarkonium state. The relative im-
portance of various contributions depends on short-distance coefficients which are calculable by
standard perturbative techniques, and on long-distance matrix elements, which can be either ex-
tracted phenomenologically from the data or calculated on the lattice. In the end one is able to
organize all these terms in a double perturbative series in the strong coupling αs and in the relative
velocity v of the heavy quarks, and then to make predictions at any given order of accuracy.

In quarkonia decays, photons arise from electromagnetic coupling to both heavy and light
quarks. While contributions coming from the former, at leading order (LO) in αs in the Colour-
Singlet Model (CSM) –i.e. at the lowest order in v expansion in NQRCD– have been known
for a long time and are one of the first tests of QCD [2, 3], LO contributions coming from
collinear emission from light quarks have surprisingly been considered only recently by Catani
and Hautmann [5]. The inclusion of these ‘fragmentation’ contributions within the CSM was
found to greatly affect the photon spectrum in the Υ decay at low values of the energy fraction
taken away by the photon [5]. Moreover, one finds that at LO such a contribution comes entirely
from the gluon, as the decay into light quarks vanishes.

It then becomes natural to assess to which extent this picture remains unchanged at next-
to-leading order (NLO) in αs and in v. The aim of this work is to investigate the effects of
colour-octet intermediate states on the photon spectrum, at fixed order in αs, αem, v, including
the coupling of the photons to light quarks and gluons. In fact, while the order of magnitude of
octet contributions is predicted using scaling rules, and found to be suppressed by powers of v
with respect to the LO colour-singlet ones, their short-distance coefficients receive contributions
at lower order of αs, and are then numerically enhanced. Furthermore, once leading logarithmic
corrections are included, it is found that, contrary to the colour-singlet case, quark and gluon
fragmentation into a photon appears at the same order in the αs, αem expansion and there is no
signature to distinguish between the two.

The paper is organized as follows. In section 2 we summarize the analysis of quarkonium decay
into photons and hadrons in the framework of NRQCD. Section 3 describes the NLO calculation
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and the technique used to isolate and cancel/subtract IR and collinear divergences. In section 4
we give estimates for the non-perturbative matrix elements by comparing the NLO predictions for
total decay rates with experimental data. Finally, we present a numerical study of the impact of
octet states on the shape of the photon spectrum. The last section is devoted to our conclusions.
Appendix A collects symbols and notation, appendix B collects the results for the Born decay rates
in D dimensions. A summary of the NLO results is provided in appendix C, where differential
decay rates are presented in their final form, after cancellation of all singularities.

2 NRQCD and fragmentation

A consistent description of the photon energy spectrum in Υ → γ +X decay requires the inclusion
of the fragmentation components [5]. The differential photon decay can be expressed in terms of
a convolution between partonic kernels Ca and the fragmentation functions Da→γ:

dΓ

dz
= Cγ(z) +

∑

a=q,q,g

∫ 1

z

dx

x
Ca(x, µF)Da→γ(

z

x
, µF)

≡ Cγ +
∑

a

Ca ⊗ Da→γ , (1)

where z = Eγ/mQ is the rescaled energy of the photon (mQ is the heavy-quark mass). The first
term corresponds to what is usually called the ‘prompt’ or ‘direct’ photon production where the
photon is produced directly in the hard interaction while the second one corresponds to the long-
distance fragmentation process where one of the partons fragments and transfers a fraction of its
momentum to the photon.

Each type of parton, a, contributes according to the process-independent parton-to-photon
fragmentation functions DB

a→γ and the sum runs over all partons. Note that although the frag-
mentation functions are non-perturbative, we can assign a power of coupling constants, based on
naively counting the couplings necessary to radiate a photon: since the photon couples directly
to the quark, Dq→γ is of O(αem), while we might expect that Dg→γ is of O(αemαs). An explicit
calculation at leading order in αs gives:

zDq→γ(z) = e2
q

αem

2π
zPq→γ(z) log

Q2

Λ2
, (2)

zDg→γ(z) = 0 , (3)

where the log(Q2/Λ2) in eq. (2) comes from the integration over the transverse momentum of the
emitted photon and Λ is a collinear cut-off that reveals the breaking of the perturbative approach
and can be chosen of the order of ΛQCD. The photon fragmentation functions evolve with Q2 just
as the usual hadronic fragmentation functions do, as a result of gluon bremsstrahlung and qq pair
production. Such evolution can be derived from a set of coupled equations, which are the usual
Altarelli-Parisi equations but with an added term that takes into account the leading behaviour
in eq. (2). The main result of the evolution is that Dg→γ acquires a non-vanishing contribution so
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that all the Da→γ show the typical logarithmic growth of eq. (2). This leads to using the following
leading-log approximation (LLA) for the fragmentation functions [6]:

Da→γ(z, Q) =
1

b0

αem

αs(Q)
fa(z) , (4)

where fa(z) are to be extracted from the data. This shows explicitly that in general the deter-
mination of the spectrum at O(αemαs

k) requires the knowledge of partonic kernels Ca in eq. (1)
at O(αs

k+1). This observation was first made, in quarkonia decays, by Catani and Hautmann [5]
who evaluated the effects of fragmentation contributions to the photon energy spectrum within
the CSM. They found a strong enhancement in the region of small z, where soft radiation becomes
dominant.

In the NRQCD perspective, a heavy-quarkonium state is represented by a superposition of

infinite QQ pair configurations organized in powers of v; v ≡ 〈
→
v

2
〉1/2 is the average velocity of the

heavy quark in the quarkonium rest frame. Within this framework, the decay width is expanded
in terms of the matrix elements of 4-fermion operators (that create and annihilate a given QQ
pair) times perturbative coefficients associated to each operator. By implementing the NRQCD
factorization formalism within the fragmentation picture, the effects of higher Fock components
in the quarkonium state can therefore be evaluated systematically.

The NRQCD expansion for the coefficients Ci(x) reads:

Ci =
∑

Q

Ci[Q] i = γ, q, q, g , (5)

Ci[Q] = Ĉi[Q](αs(mQ), µΛ)
〈Υ|O(Q, µΛ)|Υ〉

mδQ
, (6)

where µΛ is the NRQCD factorization scale and Ĉi[Q](x, αs(mQ), µΛ) the perturbative coefficients

(here we have dropped the dependence of Ĉi on the fragmentation scale µF). The NRQCD sum
is performed over all the relevant spin, angular momentum and colour configurations Q that
contribute at a given order in v. In the case of a Υ, the structure of the Fock state at order v4 is

|Υ〉 = O(1)|bb[3S
[1]
1 ]〉 +

∑

J

O(v)|bb[3P
[8]
J ]〉 + O(v2)|bb[1S

[8]
0 ]〉 + O(v2)|bb[3S

[1,8]
1 ] 〉 . (7)

As a consequence, eq. (5) can be written in the following explicit form:

Ci = Ĉi[
3S

[1]
1 ]

〈Υ|O1(
3S1)|Υ〉

m2
+ Ĉ ′

i[
3S

[1]
1 ]

〈Υ|P1(
3S1)|Υ〉

m4
+
∑

J

Ĉi[
3P

[8]
J ]

〈Υ|O8(
3PJ)|Υ〉

m4

+ Ĉi[
1S

[8]
0 ]

〈Υ|O8(
1S0)|Υ〉

m2
+ Ĉi[

3S
[8]
1 ]

〈Υ|O8(
3S1)|Υ〉

m2
+ O(v6) . (8)

Let us consider the direct contributions (i = γ). The leading colour-singlet dimension-6 operator
contribution is of O(α2

sαem), and the P1 − operator contribution is suppressed by v2. All the
colour-octet processes start contributing at O(αsαemv4). By naive power counting, and using the
approximate relation αs ∼ v2, one finds therefore that the octet states contribute to the same
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Figure 1: Sample of LO Feynman diagrams: direct and fragmentation.

order as the singlet relativistic corrections and might be comparable in size to these. Moreover
differential quantities are obviously sensitive to the details of the kinematics and so it may happen
that contributions that are suppressed by standard counting rules are actually leading, in some
particular region of the phase space.

LO diagrams are shown in fig. 1. By considering the following perturbative QCD expansions
of the coefficients Ca[Q] and of the fragmentation functions Di→j,

Ca[Q] =
(

Ĉ(0)
a [Q] + Ĉ(1)

a [Q]
) 〈Υ|O(Q)|Υ〉

mδQ
≡ C(0)

a [Q] + C(1)
a [Q] + · · · , (9)

Di→j = D
(0)
i→j + D

(1)
i→j + · · · , (10)

one is able to write the general structure of the LO spectrum:

dΓ(0)

dz
=
∑

Q

{

C(0)
γ [Q] + C(0)

g [Q] ⊗ D(0)
g→γ + 2 C(0)

q [Q] ⊗ D(0)
q→γ

}

. (11)

Since the LO colour-octet contributions have a two particle final state, the kinematics is fixed and
the delta function δ(1 − x) of the short-distance coefficient transforms the convolutions in trivial
products:

dΓ(0)

dz
=

∑

Q

[

ΓBorn(Q → gγ)δ(1 − z) + 2 ΓBorn(Q → gg)D(0)
g→γ(z)

]

+2
∑

q

ΓBorn(
3S

[8]
1 → qq)D(0)

q→γ(z) , (12)

where the first sum is performed over the lowest-order non-zero octet configurations Q = 1S0
[8]

,
3P0

[8]
, 3P2

[8]
, while the second one over the flavours of the light quarks. As eq. (12) shows, at

leading order the colour-octet contributions are proportional to the fragmentation functions and
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Figure 2: Fragmentation functions of a light parton into a photon according to the
reference [8].

to terms proportional to δ(1 − z) which do not contribute for z < 13.

The fragmentation functions of a light parton into a photon have been calculated by several
groups [8, 9]. In this paper we employ the set recently developed by Bourhis, Fontannaz and
Guillet [8]. In fig. 2 functions Dg→γ(z) and

∑

qDq→γ(z) are shown: as was previously stated, the
contribution from quarks is dominant.

3 NLO radiative decays: the calculation technique

In this section we briefly describe the strategy for the calculation of higher-order corrections. A
consistent calculation of these entails the evaluation of the real and virtual emission diagrams,
carried out in D dimensions. The UV divergences present in the virtual diagrams are removed by
the standard renormalization. The IR divergences appearing after the integration over the phase

3Although we did not include these ‘direct’ terms in our analysis, we expect that resummation of higher order
effects for z ∼ 1 will induce an effective smearing of the delta function and ’feed down’ some photons to lower
values of z [7]. This point will be discussed in more detail in the sequel.
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space of the emitted parton are cancelled by similar divergences present in the virtual corrections,
or by higher-order corrections to the long-distance matrix elements [4]. Collinear divergences,
finally, are either cancelled by similar divergences in the virtual corrections or by factorization
into the NLO fragmentation functions. The evaluation of the real emission matrix elements in D
dimensions being particularly complex, we follow in this paper the technique developed in ref. [10]
and already employed in [11, 12], whereby the structure of soft and collinear singularities in D
dimensions is extracted by using universal factorization properties of the amplitudes. Thanks
to these factorization properties, the residues of all IR and collinear poles in D dimensions can
be obtained without an explicit calculation of the full D-dimensional real matrix elements. In
general they only require the knowledge of the D-dimensional Born-level amplitudes, a much
simpler task. The isolation of these residues allows the complete cancellations of the relative
poles in D dimensions to be carried out, leaving residual finite expressions, which can then be
evaluated exactly directly in D = 4 dimensions. In this way one can avoid the calculation of the
full D-dimensional real-emission matrix elements. Furthermore, the four-dimensional real matrix
elements that will be required have been known in the literature for quite some time [13, 14]. The
study of the soft behaviour of the real-emission amplitudes was already presented in [11, 12] and
we made substantial use of those results.

To be more specific, let us consider the three-body decay processes Q[1,8] → k1 +k2 +k3, where

Q[1,8] ≡ QQ[2S+1LJ
[1,8]

]. Using the conservation of energy-momentum and rotational invariance,
it is straightforward to verify that there are only two independent variables, which we chose to be
xi, the fraction of energy of the parton whose spectrum we are interested in, and y , the cosine
of the angle of such parton with one of the other two. Within this choice, the differential decay
width in D dimensions reads :

C
(1)
i [Q] =

Φ(2)

2M

N

K

1

S1

x1−2ǫ
i (1 − xi)

−1−ǫ
∫ 1

0
dy [y(1 − y)]−1−ǫ fR[Q](xi, y)

+
Φ(2)

2MS2
fV [Q] δ(1 − xi) ≡ C

(R)
i [Q] + C

(V )
i [Q] . (13)

The NLO spectrum coefficients are the sum of the virtual and the real (R) and the virtual (V )
QCD corrections. In general both channels ggg and qqg contribute to the real term, the S1,2 are
factors that account for the right counting for identical particles in the final state, and for the
multiplicity of the various corrections, and Φ(2) is the total two-body phase space in D dimensions:

Φ(2) =
1

8π

(

4π

M2

)ǫ Γ(1 − ǫ)

Γ(2 − 2ǫ)
, (14)

while N and K are defined as

N =
M2

(4π)2

(

4π

M2

)ǫ

Γ(1 + ǫ) , K = Γ(1 + ǫ)Γ(1 − ǫ) ∼ 1 + ǫ2 π2

6
. (15)

The function f(x, y) is defined as

fR[Q](xi, y) = (1 − xi)y(1 − y)
∑

|AR[Q](xi, y)|2 (16)

fV [Q] = 2 Re
∑

(ABA∗
V ) . (17)
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Figure 3: Sample of NLO Feynman diagrams: direct and fragmentation.
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Since divergences can appear only at the border of phase space, i.e. y = 0, y = 1, xi = 0, xi = 1,
fR is finite for all values of x and y within the integration domain. Therefore all singularities of
the total decay rates can be easily extracted by isolating the ǫ → 0 poles from those factors in
eq. (13) that explicitly depend on xi and y. It must be noted that an infrared divergence arises
in the limit xi → 0 when i = g, giving a term of the form ∼ log xg in the width. Nevertheless we
are not interested in regularizing such a divergence, since, in this case, the physical resolution of
the detector works as a physical cut-off. For the same reason the virtual gluon emission at xg = 0
has not been included in the account of the multiplicities.

The virtual coefficients can be extracted straightforwardly from ref. [12]. The calculation of
the real coefficients is much more complicated, and it has been carried out by exploiting the soft
properties of the amplitude obtained in refs. [11, 12]. To illustrate the fundamental steps of the
calculation of the real part, we consider here the C(R)

g [Q] coefficients, with Q being one among

the C-even configurations 1S
[8]
0 , 3P

[8]
0 , 3P

[8]
2 . Let also nf = 0 for the time being, so that we neglect

contributions coming from the decay into qqg. In this case we reorganize the first term of eq. (17)
by expanding the structure in powers of ǫ and using the symmetry of the phase space. Considering
the spectrum of the gluon “1”, we find

C(R)
g [Q] =

Φ(2)

2M

N

K

1

S1

[

2
(

1

1 − x

)

+
fR[Q](x, 0)

(

−
1

ǫcoll
+ 2 log x

)

+ 2x

(

log(1 − x)

1 − x

)

+

fR[Q](x, 0) −
1

ǫ
δ(1 − x)

∫ 1

0
dy[y(1 − y)]−1−ǫfR[Q](x, y)

+ 2
(

1

1 − x

)

+

∫ 1

0
dy

(

1

y

)

+

fR[Q](x, y)

]

. (18)

The soft divergences ∼ δ(1 − x) cancel by adding the virtual contribution in the same area
of the phase space. The last piece of eq. (18) is a state-dependent finite contribution. The limit
y → 0 corresponds to gluon 1 and gluon 2 becoming collinear 1||2 and the factor 2 in front
accounts for the case 1||3. Integration over the phase space gives rise to a pole labelled by ǫcoll

and a universal finite part. This divergence is not cancelled by adding the virtual term and
reveals that non-perturbative effects are leading in this case. In fact the residual sensitivity can
be consistently factorized into the fragmentation function of the gluon into the photon. Such
singular residual collinear part corresponds to the first term in eq. (18) plus the collinear piece of
the virtual contribution (∼ δ(1 − x)) that comes from the gluon, ghost self-energy loops of the
gluon we are selecting, so that it reads

C(coll)
g [Q] = −

1

ǫcoll

(

4πµ2

M2

)ǫ

Γ(1 + ǫ)
αs

π
×

{

2 CA

[

x

(1 − x)+
+

1 − x

x
+ x(1 − x)

]

+
11

6
CAδ(1 − x)

}

ΓBorn[Q] . (19)

If we now switch on the light flavours including qqg and gluon vacuum polarization diagrams, then
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Figure 4: Different colour-octet contributions to the photon spectrum in the Υ decay up
to O(v4). The differential decay widths dΓ/dz are reported as a function of z = Eγ/m.
All the distributions displayed are normalized to the respective Born (that is Q → gγ for

C-even and 3S
[8]
1 → qq for the only C-odd contribution).

we obtain the conventional counter-term ∼ Pgg, which has to be subtracted at the factorization
scale µF.

This procedure can be extended to all short-distance terms and may be useful to express the
factorization in a more general way. At NLO the individual terms in eq. (1) may be divergent and
will be denoted by tilded quantities. As we have already mentioned, such divergences correspond
only to two final partons becoming collinear, and their form is dictated by the factorization
theorem. According to this we can reorganize them as follows:

C̃γ = Cγ +
∑

q

Cq ⊗ Gq→γ + Cg ⊗ Gg→γ,

C̃q =
∑

q′
Cq′ ⊗ Gq′→q + Cg ⊗ Gg→q,

C̃g =
∑

q

Cq ⊗ Gq→g + Cg ⊗ Gg→g, (20)

where all of the divergences are now concentrated in the factorization-scale-dependent, transition

9



functions Gi→j :

Ga→b = δab δ(1 − x) +
αs

2π

1

Γ(1 − ǫ)

(

4πµ2

µ2
F

)

[

−
1

ǫ
Pba(x)

]

+ Kab(x) , (21)

Gg→γ = Kgγ(x) , (22)

Gq→γ =

(

αeme2
q

2π

)

1

Γ(1 − ǫ)

(

4πµ2

µ2
F

)ǫ [

−
1

ǫ
Pγq

]

+ Kqγ(x) , (23)

where a = g, q, q and all the coefficients Ci are now finite for ǫ → 0. The functions Pba(x) are the
D = 4 Altarelli-Parisi splitting kernels, collected in appendix A, and the factors Kij are arbitrary
functions, defining the factorization scheme. In this paper we adopt the MS factorization, in which
Kij(x) = 0 for all i, j. The collinear factors Gi→j are usually absorbed into the bare fragmentation
functions by defining

Dq→γ = Gq→γ +
∑

q′
Gq→q′ ⊗ DB

q′→γ + Gq→g ⊗ DB
g→γ ,

Dg→γ = Gg→γ +
∑

q

Gg→q ⊗ DB
q→γ + Gg→g ⊗ DB

g→γ , (24)

so that we can write the physical decay rate in terms of finite quantities,

dΓ

dz
(γ + X) = Cγ +

∑

q

Cq ⊗ Dq→γ + Cg ⊗ Dg→γ . (25)

As illustrated in fig. 3, we write the general structure of the NLO processes as

dΓ(1)

dz
=
∑

Q

[

C(1)
γ [Q] + C(1)

g [Q] ⊗ D(0)
g→γ + C(0)

g [Q] ⊗ D(1)
g→γ

+ 2 C(1)
q [Q] ⊗ D(0)

q→γ + 2 C(0)
q ⊗ D(1)

q→γ

]

. (26)

4 Results

In the previous section we have shown how the short-distance coefficients have been calculated
and all the final-state collinear divergences have been consistently absorbed into fragmentation
functions. Now, in order to investigate the phenomenological applications of colour-octet states,
an estimate of the NRQCD matrix elements (ME) must be given. The long-distance MEs can be
calculated on the lattice, extracted from experiments when enough data are available, or roughly
determined by using scaling rules of NRQCD or by renormalization group (RG) arguments. At
the present time none of the aforementioned techniques is able to give a set of precise values for
MEs and, as we will see below, estimates are affected by large uncertainties.

The velocity-scaling of the MEs is basically determined by the number of derivatives in the
respective operators and by the number of electric or magnetic dipole transitions between the

10



Figure 5: Ratio Γ(Υ → had)/Γ(Υ → µ+µ−) versus renormalization scale µ for differ-
ent values of Λ5. The solid lines include NLO colour-octet contributions with the RG
estimates of the matrix elements. The dotted lines include colour-singlet only.

QQ pair annihilated at short distance and the QQ pair in the asymptotic physical state. This
can nicely be described by a multipole expansion of the non-perturbative transition Υ → Q: an
1S

[8]
0 can be reached by a chromo-magnetic dipole transition, an 3S

[8]
1 by a double chromo-electric

emission and 3P
[8]
J by a simple chromo-electric transition. The first two are of order v4 while the

last only of order v2. Finally, since the hard-production vertex for a P -wave is already suppressed
by v2 relative to the production of an S-state, one realizes that the colour-octet C-even states and
1S

[8]
0 all contribute at the same order in v. Following this approach, we can write:

〈Υ|O8(
3S1)|Υ〉 ≈ v4 〈Υ|O1(

3S1)|Υ〉 〈Υ|O8(
3PJ)|Υ〉 ≈ m2v4 〈Υ|O1(

3S1)|Υ〉 , (27)

where for bottomonium one usually takes v2 ≃ 0.1 and m ≃ 4.8 GeV.

An alternative approach has been considered by Gremm and Kapustin in [15]. They obtain
estimates for the colour-octet operators by solving the RG equations. To order v4 and leading
order in αs, they read:

Λ
d

dΛ
〈Υ|O8(

1S0)|Υ〉 = O(αsv
6), (28)

11



Figure 6: Ratio Γ(Υ → had)/Γ(Υ → µ+µ−) versus colour-octet matrix elements for
different values of Λ5. The dashed lines indicate the 2σ interval of the experimental value
for Rµ.

Λ
d

dΛ
〈Υ|O8(

3S1)|Υ〉 =
24BFαs

πm2
〈Υ|O8(

3P0)|Υ〉, (29)

Λ
d

dΛ
〈Υ|O8(

3P0)|Υ〉 =
8CFαs

81π
(mv2)2〈Υ|O1(

3S1)|Υ〉 , (30)

where we used the heavy quark spin symmetry to reexpress the expectation values of O8(
3P1,2) in

terms of O8(
3P0). We note here that our normalization for the colour-singlet NRQCD operators

differs from the original one introduced by BBL, i.e. O1 = 1
2Nc

OBBL
1 . Equation (29) differs from

the respective equations that appear in ref. [15] because we included the contribution of 3P
[8]
1 to the

evolution of O8(
3S1), which was left out in the previous treatment 4. Assuming that logarithmic

terms of the evolution are dominant [4, 15] over the MEs evaluated at a starting scale Λ ∼ ΛQCD,
we obtain:

4 The authors of ref. [15] agree that it is correct to include the 3P
[8]
1 contribution in the right-hand side of eq.

(29) (private communication).
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Figure 7: Various Fock contributions to the photon spectrum as a function of z = Eγ/m.
The solid line gives the LO singlet contribution. Fragmentation and NLO direct are
summed up for each colour-octet state. The NRQCD MEs are related to the colour-singlet
one through the RG estimate. The colour-singlet matrix element is arbitrarily chosen to
be 〈Υ|O1(

3S1)|Υ〉 = M2/4π, so that comparison with ref. [5] is straightforward.

〈Υ|O8(
3S1)|Υ〉RG ≈

32BF CF

27
v4

(

1

b0

log

(

1

αs(m)

))2

〈Υ|O1(
3S1)|Υ〉 , (31)

〈Υ|O8(
3P0)|Υ〉RG ≈

8CF

81
m2v4 1

b0

log

(

1

αs(m)

)

〈Υ|O1(
3S1)|Υ〉 , (32)

〈Υ|O8(
1S0)|Υ〉RG ≈ 0 . (33)

Once numbers are plugged into the previous expression, one realizes that MEs in eqs. (27)
result larger by more than one order of magnitude with respect to the RG estimates shown in
eqs. (31)-(33). This suggests that the very first assumption, i.e. that the non-perturbative matrix
elements should be dominated by QCD evolution, is doubtful and cannot be justified unless their
input values were accidentally much smaller than the ‘natural’ values given in eqs. (27). In any
case, therefore, the estimates in eqs. (31)-(33) provide a lower limit for the range of all possible
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values.

To obtain an independent test of the RG estimates and possibly find an upper limit for the
matrix elements, we have analysed their impact on the observable Rµ(Υ) = Γ(Υ → had)/Γ(Υ →
µ+µ−). This observable is particularly advantageous because of the cancellation of several sources
of uncertainties: both the colour-singlet NRQCD matrix element and the overall dependence on
the bottom mass cancel in the ratio. As a result the mass enters only in the logarithm of the
renormalization scale and its uncertainties can be naturally associated to the choice of the scale
itself.

In fig. 5, the ratio Rµ is plotted versus the renormalization scale µ (i.e. the NRQCD factoriza-
tion scale is kept equal to the renormalization one); Γµµ includes the P1(

3S1)-operator contribu-
tion [4] and the NLO QCD corrections [16]; Γhad includes the NLO QCD colour-singlet [17] and the

P1(
3S1)-operator contribution [18, 15] (dotted curves) and the NLO colour-octet 3S

[8]
1 ,1S

[8]
0 ,3P

[8]
J

[11] (solid curves). The dashes lines limit the 2σ band of the experimental value of Rµ = 37.3±1.0
[19]. The theoretical curves are drawn according to the following choice of parameters: v2 = 0.1
and αEM(mb) = 1/132. Hence fig. 5 shows that, once the colour-octet RG MEs estimation is
plugged in, the ratio Rµ is consistent with the experiments only for Λ5 ≃ 140 MeV (αs(MZ) ≃
0.110). On the other hand if we drop the colour-octet term, just the NLO colour-singlet contribu-
tion can still reproduce the experimental measure of Rµ by choosing a much higher value of Λ5,
namely Λ5 ≃ 220 MeV (αs(MZ) ≃ 0.118).

Now we fix the renormalization scale µR = 10 GeV. We note that, more than corresponding
to the ‘natural’ choice µR ≃ MΥ, this value also satisfies the so-called ‘minimal sensitivity princi-
ple’ [20], i.e. it is the value at which µR

d
dµR

Rµ(µR) vanishes. Within this choice, we plot the ratio

Rµ versus the variable

x =
〈Υ|O8(

3P0)|Υ〉

〈Υ|O8(3P0)|Υ〉RG

=
〈Υ|O8(

3S1)|Υ〉

〈Υ|O8(3S1)|Υ〉RG

. (34)

The result is shown in fig. 6. The solid lines represent the theoretical calculation of Rµ and the
dashed lines are the 2σ experimental range, as in fig. 5. The larger the colour-octet MEs are, the
smaller Λ5 has to be taken. In particular, already for values of the MEs of the order of twice the
RG estimates, we would find a value of Λ5 ≃ 80 MeV (αs(MZ) ≃ 0.102), well outside the present
world average range.

Following this line one finds that the MEs provided by the velocity scaling rules are strictly
excluded. In an ideal global fit perspective both the value of Λ5 and the colour-octet MEs should
be extracted from the data. Unfortunately the experimental inputs in the Υ decay sector are not
sufficient to perform a fit of such a large number of unknown parameters.

As a confirmation of what we found in fig. 5, fig. 6 shows that the RG estimate reproduces the
experimental value of Rµ for Λ5 ≃ 140 MeV. Such a value of Λ5 corresponds to αs(mb) ≃ 0.190
and αs(MZ) ≃ 0.110. The world average of αs (αs(MZ) = 0.119±0.004) (or equivalently Λ5 ≃ 237
MeV) is actually consistent with a vanishing (or even negative) octet contribution to the Υ decay
into hadrons. Nevertheless the uncertainties involved are still large: NNLO QCD corrections
(reflected in the µ dependence of the NLO correction) might be important as well as higher twist
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effects. A clear indication that higher order effects are not negligible, comes from the two-loop
calculation of the leptonic width recently performed by Beneke et al. [21]: in this case, it is found
that the O(α2

s) corrections (NNLO) are of the same size (or even larger) of the NLO ones.

Summing up, we can say that on the one hand comparison with scaling rules of NRQCD shows
that RG estimates have to be thought of as a lower limit, while on the other hand consistency
between theory and experiment in total decay rates strongly disfavour much larger colour-octet
MEs. We then conclude that the RG estimates of the colour-octet MEs, although sizebly smaller
then expected from NRQCD scaling rules, are the most reasonable at the present stage of our
knowledge.

In fig. 4 we show in detail the contribution of the single colour-octet components. The figure
reports LO, direct, and full NLO contributions for states normalized to their respective Born
decay widths at O(αsαem). Let us consider the C-even states first (1S

[8]
0 , 3P

[8]
0 , 3P

[8]
2 ). It is evident

that they contribute to the spectrum with a very similar shape: there is a strong enhancement
at low values of z due to the fragmentation contribution that is present both at LO and NLO.
Then it is clearly seen that direct photons mainly contribute near the end-point, a zone of the
spectrum where the fixed-order calculation is not reliable: in fact there are clear indications of
a need of resummation both in the short-distance perturbative expansion in αs and in the long-
distance v series. In ref. [7] Rothstein and Wise identified an infinite class of NRQCD operators,
which determine the shape of photonic end-point functions, and introduced the so-called ‘shape
function’, to be extract from data. The overall effect of colour-octet states would be a smearing
of the energy distribution near the end-point on the interval v2 ≈ 0.1. In the case of the 3S

[8]
1

component, the direct amplitude is not divergent in z = 1 and the NLO correction to the LO
fragmentation picture is very small. Indeed the NLO contribution from direct photons is negative
in the MS-renormalization scheme and is almost balanced by the other NLO fragmentation terms.

Finally figs. 7 and 8 show the total contribution to the spectrum, using the RG estimate for the
non-relativistic matrix elements. We notice that the overall effect of octet states is at its minimum
in the central region of the spectrum, exactly where the singlet LO direct contribution dominates.
This indicates that this region of the spectrum is ‘safe’ from colour-octet effects, and therefore
we think that it should be used to make a comparison with experimental data. Moreover this
indicates that relativistic corrections to the singlet (which are indeed important) and higher-order
strong ones should be included to have a consistent theoretical picture at NLO. On the other side,
for small values of z, colour-octet components are not negligible. In this area of the phase space,
the fragmentation components from gluons contribute at the same order in αs as the ones from
quarks, and there is no signature to distinguish between the two. Contrary to LO expectations in
the framework of CSM [5], we conclude that the decay of Υ into a photon would not be useful for
an estimate of the photon fragmentation functions.

As a final remark, we notice that, not surprisingly, many of the aspects of the photon spectrum
in quarkonium decay, resemble those in photoproduction [22, 23]. Cross-sections plotted versus
the inelasticity z of the quarkonium state show a very similar pattern: for z ≈ 1, a divergence,
which is not supported by the available experimental data, reveals the breaking of the NRQCD
expansion in powers of αs and v. On the other side, for low values of z, the resolved contributions,
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Figure 8: Total colour-octet contribution on the LO, colour-singlet photon spectrum.
Notice that neither NLO QCD nor relativistic effects are included in the singlet contri-
bution. Normalization and MEs as in fig. 7.

which corresponds to fragmentation in the decays, are indeed dominated by colour-octet states.

5 Conclusions

We presented the calculation of O(α2
sαem) colour-octet corrections to the decay of Υ into one

photon plus light hadrons. Both direct and fragmentation contributions have been included at
NLO. In order to study the impact of these contributions on the photon spectrum, an estimate
of the non-perturbative MEs was also given. By comparing the available experimental data on
fully inclusive and leptonic decay rates with the NLO theoretical predictions of NRQCD, we
found an unexpected result: estimates based on näıve scaling rules result in large colour-octet
contributions to the total rates which are not consistent with the data. In particular, it turns out
that non-perturbative MEs should be much smaller then expected from NQRCD scaling rules.
Nevertheless, using the above mentioned estimates for the non-perturbative MEs, we showed that
there are sizeable effects at the end-points of the spectrum of the photon. In the case of low values
of z, the possibility of measuring the fragmentation function of a gluon into a photon, which was
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suggested by the LO result in the CSM [5], becomes unfeasible: for the colour-octet states both
quark and gluon fragmentation processes are of the same order in αsαem and there is no signature
to distinguish between the two. Moreover, for values of z near the end-point, breaking of the
fixed-order calculation is manifest, and the resummations of both short-distance coefficient in αs

and non-perturbative MEs in v, are called for. Nevertheless a ‘safe’ region, for 0.3 < z < 0.9, has
been found where octet effects are at their minimum and the perturbative expansion in powers of
αs and v under proper control. Following this point of view, we consider the NLO QCD correction

the colour-singlet differential decay dΓ/dEγ(Υ → 3S1
[1]

→ γgg) worth while to be undertaken.

Acknowledgements. It is a pleasure to thank M.L. Mangano for valuable advice, discussions
and suggestions during all the stages of this work. We thank L. Bourhis for providing us with a
ready-to-use set of photon fragmentation functions. Moreover, we are grateful to M. Beneke and
G.T. Bodwin for reading the manuscript and for their useful suggestions.

A Symbols and notations

This appendix collects the meaning of various symbols, which are used throughout the paper.

Kinematical factors:

M = 2m , v =

√

1 −
M2

s
, (35)

where s is the partonic centre-of-mass energy squared and Shad is the hadronic one; v is the velocity
of the bound (anti)quark in the quarkonium rest frame, 2v then being the relative velocity of the
quark and the antiquark. The following expression is used:

fǫ(Q
2) =

(

4πµ2

Q2

)ǫ

Γ(1 + ǫ) = 1 + ǫ

(

−γE + log(4π) + log
µ2

Q2

)

+ O(ǫ2) . (36)

Altarelli-Parisi splitting functions. Several functions related to the AP splitting kernels enter in
our calculations. We collect here our definitions:

Pqq(x) = CF

[

1 + x2

1 − x
− ǫ(1 − x)

]

, (37)

Pqq(x) = CF

[

1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]

, (38)

Pqg(x) = TF

[

x2 + (1 − x)2 − 2ǫ x(1 − x)
]

, (39)

Pqg(x) = TF

[

x2 + (1 − x)2
]

, (40)

Pγq(x) =
1 + (1 − x)2

x
− ǫ x , (41)
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Pγq(x) =
1 + (1 − x)2

x
, (42)

Pgq(x) = CF

[

1 + (1 − x)2

x
− ǫ x

]

, (43)

Pgq(x) = CF

[

1 + (1 − x)2

x

]

, (44)

Pgg(x) = 2CA

[

x

1 − x
+

1 − x

x
+ x(1 − x)

]

, (45)

Pgg(x) = 2CA

[

x

(1 − x)+
+

1 − x

x
+ x(1 − x)

]

+ b0δ(1 − x) . (46)

The Pij are the D-dimensional splitting functions that appear in the factorization of collinear
singularities from real emission, while the functions Pij are the four-dimensional AP kernels,
which enter in the MS collinear counter-terms. The ‘+’ and ‘a’ distributions are defined by:

∫ 1

0
dx [T (x)]+ φ(x) =

∫ 1

0
dx T (x) [φ(x) − φ(1)] , (47)

∫ 1

a
dx [T (x)]a φ(x) =

∫ 1

a
dx T (x) [φ(x) − φ(1)] , (48)

where T (x) is the function associated to the distributions [T (x)]+,a. We recall a useful weak
distributional identity:

[T (x)]+ = [T (x)]a − δ(1 − x)
∫ a

0
T (x)dx . (49)

In particular it is straightforward to get:

(

1

1 − x

)

+
=

(

1

1 − x

)

a
+ δ(1 − x) log(1 − a) , (50)

(

log(1 − x)

1 − x

)

+

=

(

log(1 − x)

1 − x

)

a

+ δ(1 − x)
1

2
log2(1 − a) . (51)

Colour coefficients

CF =
N2

c − 1

2 Nc
, CA = Nc , BF =

N2
c − 4

4 Nc
, TF =

1

2
. (52)

The following standard symbol is used:

b0 =
11

6
CA −

2

3
TFnf , (53)

with nf the number of flavours lighter than the bound one.
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NRQCD operators. To denote a perturbative QQ state with generic spin and angular momentum
quantum numbers, and in a colour-singlet or colour-octet state, we use the symbol:

Q[1,8] ≡ QQ[2S+1LJ
[1,8]

] . (54)

Notice that, according to the discussion in ref. [11], our conventions differ from the Bodwin,
Braaten and Lepage ones [4] (labelled here as BBL) in the case of a colour-singlet.

O1 =
1

2Nc
OBBL

1 , (55)

O8 = OBBL
8 . (56)

B Summary of lowest order results

B.1 Born widths

The decay rates read

Γ(Υ → Q[1,8] → ab) = Γ̂(Q[1,8] → ab)〈Υ|O[1,8](
2S+1LJ)|Υ〉 , (57)

the short-distance coefficients Γ̂ having been calculated according to the rules of ref. [11]. We shall
use the short-hand notation

Γ(Q[1,8] → ab) ≡ Γ(Υ → Q[1,8] → ab) (58)

to indicate the decay of the physical quarkonium state H through the intermediate QQ state

Q[1,8] = QQ[2S+1LJ
[1,8]

]. The D-dimensional (D = 4 − 2ǫ) O(αsαem) level decay rates read:

ΓBorn(
1S0

[8]
→ gγ) =

32αsαem e2
Q µ4ǫπ2

m2
Φ(2)(1 − ǫ)(1 − 2ǫ)〈Υ|O8(

1S0)|Υ〉 , (59)

ΓBorn(
3S1

[8]
→ gγ) = 0 , (60)

ΓBorn(
3P0

[8]
→ gγ) =

288αsαem e2
Q µ4ǫπ2

m4
Φ(2)

1 − ǫ

3 − 2ǫ
〈Υ|O8(

3P0)|Υ〉 , (61)

ΓBorn(
3P1

[8]
→ gγ) = 0 , (62)

ΓBorn(
3P2

[8]
→ gγ) =

64αsαem e2
Q µ4ǫπ2

m4
Φ(2)

(6 − 13ǫ + 4ǫ2)

(3 − 2ǫ)(5 − 2ǫ)
〈Υ|O8(

3P2)|Υ〉 . (63)

Lowest O(α2
s) contributions:

ΓBorn(
1S0

[8]
→ gg) = BF

16α2
s µ4ǫπ2

m2
Φ(2)(1 − ǫ)(1 − 2ǫ)〈Υ|O8(

1S0)|Υ〉 , (64)

ΓBorn(
3S1

[8]
→ qq) = 8

α2
s µ4ǫπ2

m2
Φ(2)

1 − ǫ

3 − 2ǫ
〈Υ|O8(

3S1)|Υ〉 , (65)
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ΓBorn(
3P0

[8]
→ gg) = BF

144α2
s µ4ǫπ2

m4
Φ(2)

(1 − ǫ)

(3 − 2ǫ)
〈Υ|O8(

3P0)|Υ〉 , (66)

ΓBorn(
3P1

[8]
→ gg) = 0 , (67)

ΓBorn(
3P2

[8]
→ gg) = BF

32α2
s µ4ǫπ2

m4
Φ(2)

(6 − 13ǫ + 4ǫ2)

(3 − 2ǫ)(5 − 2ǫ)
〈Υ|O8(

3P2)|Υ〉 , (68)

where Φ(2) is defined according to eq. (14).

B.2 The LO spectrum coefficients C(0)[Q]

We can now read out the lowest-order coefficients according to eqs. (5)–(11). For Q = 3P
[8]
J , 1S

[8]
0

we have:

C(0)
γ [Q](z) = ΓBorn[Q → gγ]δ(1 − z) , (69)

C(0)
g [Q](x) = 2 ΓBorn[Q → gg]δ(1 − x) , (70)

C(0)
q [Q](x) = 0 , (71)

and for 3S
[8]
1 :

C(0)
γ [3S

[8]
1 ](z) = 0 , (72)

C(0)
g [3S

[8]
1 ](x) = 0 , (73)

C(0)
q [3S

[8]
1 ](x) = ΓBorn[Q → qq]δ(1 − x) . (74)

C Summary of O(α2
sαem) results

C.1 The NLO photonic coefficients C(1)
γ [Q]

We summarize the NLO spectrum coefficient following the convention of eqs. (5)–(26).The photon

energy fraction is z = Eγ/m. Components ∼ δ(z) have been neglected. For Q = 1S
[8]
0 , 3P

[8]
0 , 3P

[8]
2 ,

we have:

C(1)
γ [Q] =

αs

2π
ΓBorn[Q → gγ]

[(

A[Q] + 2 b0 log
µR

2m

)

δ(1 − z)

+
(

1

1 − z

)

+
fγ

1 [Q](z) +

(

log(1 − z)

1 − z

)

+

fγ
2 [Q](z)

]

, (75)

where

A[1S
[8]
0 ] = CF

(

−10 +
π2

2

)

+ CA

(

121

18
−

π2

2

)

−
10

9
nfTF , (76)
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A[3P
[8]
0 ] = CF

(

−
14

3
+

π2

2

)

+ CA

(

85

18
−

π2

2

)

−
10

9
nfTF , (77)

A[3P
[8]
2 ] = −8CF + CA

(

47

9
+ log 2

)

−
8

45
nfTF , (78)

and

fγ
1 [1S

[8]
0 ](z) = CA

(−72 + 144 z − 176 z2 + 104 z3 − 23 z4)

6 (−2 + z)2 z
+ nfTF

2

3
z , (79)

fγ
1 [3P

[8]
0 ](z) = CA

1

54 (−2 + z)4 z3

(

−960 + 3360 z − 6224 z2 + 5312 z3 − 1544 z4 − 520 z5

+496 z6 − 136 z7 + 9 z8
)

+ nfTF
2

27 z
(z + 2)2 , (80)

fγ
1 [3P

[8]
2 ](z) = CA

1

36 (−2 + z)4 z3

(

−240 + 1848 z − 7820 z2 + 13976 z3 − 12710 z4 + 6254 z5

−1628 z6 + 197 z7 − 15 z8
)

+ nfTF
1

9 z

(

10 − 5z + z2
)

, (81)

fγ
2 [1S

[8]
0 ](z) = CA

2 (+12 − 36 z + 56 z2 − 52 z3 + 28 z4 − 8 z5 + z6)

(−2 + z)3 z2
, (82)

fγ
2 [3P

[8]
0 ](z) = CA

2

9 (−2 + z)5 z4

(

+160 − 720 z + 1624 z2 − 2016 z3 + 1360 z4 − 468 z5

+104 z6 − 66 z7 + 40 z8 − 10 z9 + z10
)

, (83)

fγ
2 [3P

[8]
2 ](z) = CA

1

3 (−2 + z)5 z4

(

+40 − 348 z + 1618 z2 − 3684 z3 + 4702 z4 − 3669 z5

+1826 z6 − 582 z7 + 115 z8 − 13 z9 + z10
)

. (84)

For the 3S
[8]
1 component we get:

C(1)
γ [3S

[8]
1 ] =

20αeme2
Qα2

s

9

[

1

z(−2 + z)2

(

8 − 12z + 7z2 − 2z3
)

+
2

(−2 + z)3z2
(−1 + z)(8 − 12z + 5z2) log(1 − z)

]

〈Υ|O8[
3S1]|Υ〉

m2

+ ΓBorn(
3S

[8]
1 → qq)

αem

π
Pγq(z)

(

log
4m2

µ2
F

+ log(1 − z) + 2 log z

)

∑

q

e2
q ,

(85)

and finally for 3P
[8]
1 :

C(1)
γ [3P

[8]
1 ] =

2αeme2
Qα2

s

3

[

1

(−2 + z)4z3
(240 + 312z − 2620z2 + 4204z3 − 3150z4 + 1260z5

− 276z6 + 31z7) +
12

(−2 + z)5z4
(−1 + z)(40 + 52z − 430z2 + 716z3 − 588z4
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+ 275z5 − 74z6 + 11z7 − z8) log(1 − z) +
2

3
nf

2 − x

x

]

〈Υ|O8[
3P1]|Υ〉

m4
. (86)

C.2 The NLO gluonic coefficients C(1)
g [Q]

In this section we present the NLO QCD spectrum of the gluon arising from the colour-octet
components. Contributions ∼ δ(x) have been neglected. The gluon energy fraction is denoted by

x = Eg/m . For Q = 1S
[8]
0 , 3P

[8]
0 , 3P

[8]
2 , we have:

C(1)
g [Q] =

αs

π
ΓBorn[Q → gg]

[

log
4m2

µ2
F

Pgg(x) + 2 log xPgg(x) +

(

log(1 − x)

1 − x

)

+

(1 − x)Pgg(x)

+
(

1

1 − x

)

+
f [Q](x) +

(

B[Q] + 4b0 log
µR

2m

)

δ(1 − x)

]

,

(87)

where:

B[1S
[8]
0 ] = CF

(

−10 +
π2

2

)

+ CA

(

139

18
−

1

12
π2
)

−
10

9
nfTF (88)

B[3P
[8]
0 ] = CF

(

−
14

3
+

π2

2

)

+ CA

(

235

54
+

70

27
log 2 −

1

12
π2
)

−
10

9
nfTF (89)

B[3P
[8]
2 ] = −8CF + CA

(

5 +
14

9
log 2 −

1

6
π2
)

−
8

45
nfTF , (90)

and furthermore

fg[
1S

[8]
0 ](x) =

CA

6 (−2 + x)2 x
(−120 + 336 x − 494 x2 + 410 x3 − 215 x4 + 72 x5 − 12 x6)

+
2 CA (−1 + x)

(2 − x)3 x2
(16 − 40 x + 50 x2 − 26 x3 − 8 x4 + 16 x5 − 7 x6 + x7) log(1 − x)

+ nfTF
2

3
x , (91)

fg[
3P

[8]
0 ](x) =

CA

54 (−2 + x)4 x3
(−1536 + 5376 x− 9632 x2 + 10016 x3 − 9288 x4 + 12976 x5

− 16906 x6 + 13918 x7 − 6623 x8 + 1664 x9 − 172 x10)

+
2 CA (−1 + x)

9 (2 − x)5 x4
(256 − 896 x + 1504 x2 − 1008 x3 − 516 x4 + 1792 x5 − 2276 x6

+ 2011 x7 − 1220 x8 + 464 x9 − 99 x10 + 9 x11) log(1 − x)

+ nfTF
2(2 + x)2

27x
, (92)
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fg[
3P

[8]
2 ](x) =

CA

36 (−2 + x)4 x3
(−384 + 3072 x− 12704 x2 + 25376 x3 − 30738 x4 + 26998 x5

− 19231 x6 + 10924 x7 − 4373 x8 + 1028 x9 − 106 x10)

+
CA (−1 + x)

3 (2 − x)5 x4
(64 − 512 x + 2032 x2 − 3840 x3 + 3747 x4 − 1577 x5 − 515 x6

+ 1162 x7 − 800 x8 + 308 x9 − 66 x10 + 6 x11) log(1 − x)

+ nfTF
1

9x

(

10 − 5x + x2
)

. (93)

For the 3S
[8]
1 component we get:

C(1)
g [3S

[8]
1 ] =

α3
s

18

[

1

(−2 + x)2x
(1168 − 3264x + 3740x2 − 2200x3 + 693x4 − 108x5)

+
4(−1 + x)

(−2 + x)3x2
(584 − 1632x + 1904x4 − 1134x3 + 324x4 − 27x5) log(1 − x)

]

〈Υ|O8[
3S1]|Υ〉

m2

+ nfΓBorn(
3S

[8]
1 → qq)

αs

π

[

−3 + 3 x − x2

x
+

(

log
4m2

µ2
F

+ log(1 − x) + 2 log x

)

Pgq(x)

]

.

(94)

Finally for 3P
[8]
1 :

C(1)
g [3P

[8]
1 ] =

5α3
s

18

[

1

(−2 + x)4x3
(384 + 384x − 4192x2 + 7552x3 − 6446x4 + 2876x5

− 485x6 − 141x7 + 82x8 − 10x9) +
12

(−2 + x)5x4
(−1 + x)(64 + 64x − 688x2 + 1280x3

− 1181x4 + 626x5 − 195x6 + 36x7 − 4x8) log(1 − x) +
2

3
nf

2 − x

x

]

〈Υ|O8[
3P1]|Υ〉

m4
. (95)

C.3 The NLO quark coefficients C(1)
q [Q]

We report in this section the quark energy spectrum in Q → qq g decays. The adimensional energy
of the quark Eq/m is denoted by x.

C(1)
q [1S

[8]
0 ] =

αs

π
ΓBorn[

1S
[8]
0 → gg]

[

Pqg(x) log
4m2

µ2
F

+ 2 x(1 − x)TF + Pqg(x) log[x2(1 − x)] + f [1S
[8]
0 ](x)

]

, (96)

where

fq[
1S

[8]
0 ](x) = x(1 − x)(1 + log(1 − x)) . (97)
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We have

C(1)
q [3S

[8]
1 ] = ΓBorn[

3S
[8]
1 → qq]

αs

π

[

1

2
Pqq(x) log

4m2

µ2
F

+ CF
1 + x2

(1 − x)+

log x +
CF

2
(1 − x) +

1

2
(1 − x)

(

log(1 − x)

1 − x

)

+

Pqq(x)

+
(

1

1 − x

)

+
fq[

3S
[8]
1 ](x) + A[3S

[8]
1 ]δ(1 − x)

]

, (98)

where

A[3S
[8]
1 ] = CF

(

−
25

4
+

π2

3

)

+ CA

(

50

9
+

2

3
log 2 −

π2

4

)

−
10

9
nfTF + 2 log

µR

2m
, (99)

and

fq[
3S

[8]
1 ](x) = CF

x

4
(−4 + x) − CA

x

2

(

5 − 5x + 2x2
)

+ CA(1 − x)(−2 + x) log(1 − x) (100)

C(1)
q [3P

[8]
J ] = BF α3

sδ(1 − x)
[

−
8

9
log

µΛ

2m
+ aJ

]

〈Υ|O8[
3PJ ]|Υ〉

m4

+
αs

π
ΓBorn[

3P
[8]
J → gg]

[

2x(1 − x)TF + log[x2(1 − x)]Pqg(x) +
(

1

1 − x

)

+
f (J)

q (x)

+Pqg(x) log
4m2

µ2
F

]

, [J = 0, 2] . (101)

We also have

C(1)
q [3P

[8]
1 ] = BF α3

sδ(1 − x)
[

−
8

9
log

µΛ

2m
+ a1

]

〈Υ|O8[
3P1]|Υ〉

m4

+α3
sBF

(

1

1 − x

)

+
f (1)

q (x)
〈Υ|O8[

3P1]|Υ〉

m4
, (102)

where

a0 =
2

9
, a1 =

1

9
, a2 =

7

45
, (103)

and finally

f (0)
q (x) =

1

27

[

x(33 − 72 x + 43 x2) − 3(1 − x)(4 − 9x + 9x2) log(1 − x)
]

, (104)

f (1)
q (x) =

2

9

[

x(3 + 6x − 5x2) + 3(1 − x) log(1 − x)
]

, (105)

f (2)
q (x) =

1

36

[

x(57 − 90x + 53x2) − 3(1 − x)(5 − 12x + 12x2) log(1 − x)
]

. (106)
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