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Abstract

We investigate the e�ects of colour-octet contributions to the radiative � decay within

the Bodwin, Braaten and Lepage NRQCD factorization framework. Photons coming both

from the coupling to hard processes (`direct') and by collinear emission from light quarks

(`fragmentation') are consistently included at next-to-leading order (NLO) in �s. An estimate

for the non-perturbative matrix elements which enter in the �nal result is then obtained. By

comparing the NRQCD prediction at NLO for total decay rates with the experimental data,

it is found that the non-perturbative parameters must be smaller than expected from the

na��ve scaling rules of NRQCD. Nevertheless, colour-octet contributions to the shape of the

photon spectrum turn out to be signi�cant.
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1 Introduction

Since the early times of QCD, heavy quarkonia decays have been considered among the most

promising processes to test the perturbative sector of the theory and to extract the value of the

strong coupling at scales of the order of the heavy-quark mass. In addition to the calculation

and comparison of full inclusive decay rates, much attention has been devoted to the decays

in which one photon is emitted, and its energy measured [1]. Experimental data on the direct

photon spectrum in � decays have been compared [2, 3], up to now, under the assumption of a

factorization between a short-distance part describing the annihilation of the heavy-quark pair

in a colour-singlet state and a non-perturbative long-distance factor, related to the value of the

non-relativistic wave function at the origin.

Recently Bodwin, Braaten and Lepage (BBL) [4] provided a new framework to study quarko-

nium decay within QCD. Introducing an e�ective non-relativistic theory (NRQCD), perturbative

and gauge-invariant factorization is obtained by including in the decay intermediate QQ states

with quantum numbers di�erent from those of the physical quarkonium state. The relative im-

portance of various contributions depends on short-distance coe�cients which are calculable by

standard perturbative techniques, and on long-distance matrix elements, which can be either ex-
tracted phenomenologically from the data or calculated on the lattice. In the end one is able to

organize all these terms in a double perturbative series in the strong coupling �s and in the relative
velocity v of the heavy quarks, and then to make predictions at any given order of accuracy.

In quarkonia decays, photons arise from electromagnetic coupling to both heavy and light
quarks. While contributions coming from the former, at leading order (LO) in �s in the Colour-

Singlet Model (CSM) {i.e. at the lowest order in v expansion in NQRCD{ have been known
for a long time and are one of the �rst tests of QCD [2, 3], LO contributions coming from
collinear emission from light quarks have surprisingly been considered only recently by Catani

and Hautmann [5]. The inclusion of these `fragmentation' contributions within the CSM was
found to greatly a�ect the photon spectrum in the � decay at low values of the energy fraction

taken away by the photon [5]. Moreover, one �nds that at LO such a contribution comes entirely
from the gluon, as the decay into light quarks vanishes.

It then becomes natural to assess to which extent this picture remains unchanged at next-

to-leading order (NLO) in �s and in v. The aim of this work is to investigate the e�ects of

colour-octet intermediate states on the photon spectrum, at �xed order in �s; �em; v, including
the coupling of the photons to light quarks and gluons. In fact, while the order of magnitude of
octet contributions is predicted using scaling rules, and found to be suppressed by powers of v

with respect to the LO colour-singlet ones, their short-distance coe�cients receive contributions

at lower order of �s, and are then numerically enhanced. Furthermore, once leading logarithmic
corrections are included, it is found that, contrary to the colour-singlet case, quark and gluon

fragmentation into a photon appears at the same order in the �s; �em expansion and there is no
signature to distinguish between the two.

The paper is organized as follows. In section 2 we summarize the analysis of quarkonium decay

into photons and hadrons in the framework of NRQCD. Section 3 describes the NLO calculation
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and the technique used to isolate and cancel/subtract IR and collinear divergences. In section 4

we give estimates for the non-perturbative matrix elements by comparing the NLO predictions for

total decay rates with experimental data. Finally, we present a numerical study of the impact of

octet states on the shape of the photon spectrum. The last section is devoted to our conclusions.

Appendix A collects symbols and notation, appendix B collects the results for the Born decay rates

in D dimensions. A summary of the NLO results is provided in appendix C, where di�erential

decay rates are presented in their �nal form, after cancellation of all singularities.

2 NRQCD and fragmentation

A consistent description of the photon energy spectrum in �! 
 +X decay requires the inclusion

of the fragmentation components [5]. The di�erential photon decay can be expressed in terms of

a convolution between partonic kernels Ca and the fragmentation functions Da!
:

d�

dz
= C
(z) +

X
a=q;q;g

Z 1

z

dx

x
Ca(x; �F)Da!
(

z

x
; �F)

� C
 +
X
a

Ca 
Da!
 ; (1)

where z = E
=mQ is the rescaled energy of the photon (mQ is the heavy-quark mass). The �rst

term corresponds to what is usually called the `prompt' or `direct' photon production where the
photon is produced directly in the hard interaction while the second one corresponds to the long-
distance fragmentation process where one of the partons fragments and transfers a fraction of its

momentum to the photon.

Each type of parton, a, contributes according to the process-independent parton-to-photon
fragmentation functions DB

a!
 and the sum runs over all partons. Note that although the frag-
mentation functions are non-perturbative, we can assign a power of coupling constants, based on

naively counting the couplings necessary to radiate a photon: since the photon couples directly

to the quark, Dq!
 is of O(�em), while we might expect that Dg!
 is of O(�em�s). An explicit

calculation at leading order in �s gives:

zDq!
(z) = e2q
�em

2�
zPq!
(z) log

Q2

�2
; (2)

zDg!
(z) = 0 ; (3)

where the log(Q2=�2) in eq. (2) comes from the integration over the transverse momentum of the

emitted photon and � is a collinear cut-o� that reveals the breaking of the perturbative approach
and can be chosen of the order of �QCD. The photon fragmentation functions evolve with Q2 just

as the usual hadronic fragmentation functions do, as a result of gluon bremsstrahlung and qq pair

production. Such evolution can be derived from a set of coupled equations, which are the usual
Altarelli-Parisi equations but with an added term that takes into account the leading behaviour

in eq. (2). The main result of the evolution is that Dg!
 acquires a non-vanishing contribution so
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that all the Da!
 show the typical logarithmic growth of eq. (2). This leads to using the following

leading-log approximation (LLA) for the fragmentation functions [6]:

Da!
(z; Q) =
1

b0

�em

�s(Q)
fa(z) ; (4)

where fa(z) are to be extracted from the data. This shows explicitly that in general the deter-

mination of the spectrum at O(�em�s
k) requires the knowledge of partonic kernels Ca in eq. (1)

at O(�s
k+1). This observation was �rst made, in quarkonia decays, by Catani and Hautmann [5]

who evaluated the e�ects of fragmentation contributions to the photon energy spectrum within

the CSM. They found a strong enhancement in the region of small z, where soft radiation becomes

dominant.

In the NRQCD perspective, a heavy-quarkonium state is represented by a superposition of

in�nite QQ pair con�gurations organized in powers of v; v � h
!

v
2
i1=2 is the average velocity of the

heavy quark in the quarkonium rest frame. Within this framework, the decay width is expanded

in terms of the matrix elements of 4-fermion operators (that create and annihilate a given QQ

pair) times perturbative coe�cients associated to each operator. By implementing the NRQCD
factorization formalism within the fragmentation picture, the e�ects of higher Fock components

in the quarkonium state can therefore be evaluated systematically.

The NRQCD expansion for the coe�cients Ci(x) reads:

Ci =
X
Q

Ci[Q] i = 
; q; q; g ; (5)

Ci[Q] = Ĉi[Q](�s(mQ); ��)
h�jO(Q; ��)j�i

m�Q
; (6)

where �� is the NRQCD factorization scale and Ĉi[Q](x; �s(mQ); ��) the perturbative coe�cients

(here we have dropped the dependence of Ĉi on the fragmentation scale �F). The NRQCD sum

is performed over all the relevant spin, angular momentum and colour con�gurations Q that
contribute at a given order in v. In the case of a �, the structure of the Fock state at order v4 is

j�i = O(1)jbb[3S
[1]
1 ]i+

X
J

O(v)jbb[3P
[8]
J ]i+O(v2)jbb[1S

[8]
0 ]i+O(v2)jbb[3S

[1;8]
1 ] i : (7)

As a consequence, eq. (5) can be written in the following explicit form:

Ci = Ĉi[
3S

[1]
1 ]
h�jO1(

3S1)j�i

m2
+ Ĉ 0

i[
3S

[1]
1 ]
h�jP1(

3S1)j�i

m4
+
X
J

Ĉi[
3P

[8]
J ]
h�jO8(

3PJ)j�i

m4

+ Ĉi[
1S

[8]
0 ]
h�jO8(

1S0)j�i

m2
+ Ĉi[

3S
[8]
1 ]
h�jO8(

3S1)j�i

m2
+O(v6) : (8)

Let us consider the direct contributions (i = 
). The leading colour-singlet dimension-6 operator

contribution is of O(�2s�em), and the P1 � operator contribution is suppressed by v2. All the

colour-octet processes start contributing at O(�s�emv
4). By naive power counting, and using the

approximate relation �s � v2, one �nds therefore that the octet states contribute to the same
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Figure 1: Sample of LO Feynman diagrams: direct and fragmentation.

order as the singlet relativistic corrections and might be comparable in size to these. Moreover

di�erential quantities are obviously sensitive to the details of the kinematics and so it may happen

that contributions that are suppressed by standard counting rules are actually leading, in some

particular region of the phase space.

LO diagrams are shown in �g. 1. By considering the following perturbative QCD expansions
of the coe�cients Ca[Q] and of the fragmentation functions Di!j,

Ca[Q] =
�
Ĉ(0)
a [Q] + Ĉ(1)

a [Q]
� h�jO(Q)j�i

m�Q
� C(0)

a [Q] + C(1)
a [Q] + � � � ; (9)

Di!j = D
(0)
i!j +D

(1)
i!j + � � � ; (10)

one is able to write the general structure of the LO spectrum:

d�(0)

dz
=
X
Q

n
C(0)

 [Q] + C(0)

g [Q] 
 D(0)
g!
 + 2C(0)

q [Q] 
 D(0)
q!


o
: (11)

Since the LO colour-octet contributions have a two particle �nal state, the kinematics is �xed and
the delta function �(1� x) of the short-distance coe�cient transforms the convolutions in trivial

products:

d�(0)

dz
=

X
Q

h
�Born(Q ! g
)�(1� z) + 2 �Born(Q ! gg)D(0)

g!
(z)
i

+2
X
q

�Born(
3S

[8]
1 ! qq)D(0)

q!
(z) ; (12)

where the �rst sum is performed over the lowest-order non-zero octet con�gurations Q = 1S0
[8]
,

3P0
[8]
, 3P2

[8]
, while the second one over the 
avours of the light quarks. As eq. (12) shows, at

leading order the colour-octet contributions are proportional to the fragmentation functions and
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Figure 2: Fragmentation functions of a light parton into a photon according to the

reference [8].

to terms proportional to �(1� z) which do not contribute for z < 13.

The fragmentation functions of a light parton into a photon have been calculated by several

groups [8, 9]. In this paper we employ the set recently developed by Bourhis, Fontannaz and
Guillet [8]. In �g. 2 functions Dg!
(z) and

P
qDq!
(z) are shown: as was previously stated, the

contribution from quarks is dominant.

3 NLO radiative decays: the calculation technique

In this section we brie
y describe the strategy for the calculation of higher-order corrections. A

consistent calculation of these entails the evaluation of the real and virtual emission diagrams,

carried out in D dimensions. The UV divergences present in the virtual diagrams are removed by

the standard renormalization. The IR divergences appearing after the integration over the phase

3Although we did not include these `direct' terms in our analysis, we expect that resummation of higher order
e�ects for z � 1 will induce an e�ective smearing of the delta function and 'feed down' some photons to lower
values of z [7]. This point will be discussed in more detail in the sequel.
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space of the emitted parton are cancelled by similar divergences present in the virtual corrections,

or by higher-order corrections to the long-distance matrix elements [4]. Collinear divergences,

�nally, are either cancelled by similar divergences in the virtual corrections or by factorization

into the NLO fragmentation functions. The evaluation of the real emission matrix elements in D

dimensions being particularly complex, we follow in this paper the technique developed in ref. [10]

and already employed in [11, 12], whereby the structure of soft and collinear singularities in D

dimensions is extracted by using universal factorization properties of the amplitudes. Thanks

to these factorization properties, the residues of all IR and collinear poles in D dimensions can

be obtained without an explicit calculation of the full D-dimensional real matrix elements. In

general they only require the knowledge of the D-dimensional Born-level amplitudes, a much

simpler task. The isolation of these residues allows the complete cancellations of the relative

poles in D dimensions to be carried out, leaving residual �nite expressions, which can then be

evaluated exactly directly in D = 4 dimensions. In this way one can avoid the calculation of the

full D-dimensional real-emission matrix elements. Furthermore, the four-dimensional real matrix

elements that will be required have been known in the literature for quite some time [13, 14]. The

study of the soft behaviour of the real-emission amplitudes was already presented in [11, 12] and

we made substantial use of those results.

To be more speci�c, let us consider the three-body decay processes Q[1;8] ! k1+k2+k3, where

Q[1;8] � QQ[2S+1LJ
[1;8]

]. Using the conservation of energy-momentum and rotational invariance,

it is straightforward to verify that there are only two independent variables, which we chose to be
xi, the fraction of energy of the parton whose spectrum we are interested in, and y , the cosine
of the angle of such parton with one of the other two. Within this choice, the di�erential decay

width in D dimensions reads :

C
(1)
i [Q] =

�(2)

2M

N

K

1

S1
x1�2�i (1� xi)

�1��
Z 1

0
dy [y(1� y)]�1�� fR[Q](xi; y)

+
�(2)

2MS2
fV [Q] �(1� xi) � C

(R)
i [Q] + C

(V )
i [Q] : (13)

The NLO spectrum coe�cients are the sum of the virtual and the real (R) and the virtual (V )

QCD corrections. In general both channels ggg and qqg contribute to the real term, the S1;2 are
factors that account for the right counting for identical particles in the �nal state, and for the
multiplicity of the various corrections, and �(2) is the total two-body phase space in D dimensions:

�(2) =
1

8�

�
4�

M2

�� �(1� �)

�(2� 2�)
; (14)

while N and K are de�ned as

N =
M2

(4�)2

�
4�

M2

��
�(1 + �) ; K = �(1 + �)�(1� �) � 1 + �2

�2

6
: (15)

The function f(x; y) is de�ned as

fR[Q](xi; y) = (1� xi)y(1� y)
X

jAR[Q](xi; y)j
2

(16)

fV [Q] = 2Re
X

(ABA
�

V ) : (17)
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Figure 3: Sample of NLO Feynman diagrams: direct and fragmentation.
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Since divergences can appear only at the border of phase space, i.e. y = 0; y = 1; xi = 0; xi = 1,

fR is �nite for all values of x and y within the integration domain. Therefore all singularities of

the total decay rates can be easily extracted by isolating the � ! 0 poles from those factors in

eq. (13) that explicitly depend on xi and y. It must be noted that an infrared divergence arises

in the limit xi ! 0 when i = g, giving a term of the form � logxg in the width. Nevertheless we

are not interested in regularizing such a divergence, since, in this case, the physical resolution of

the detector works as a physical cut-o�. For the same reason the virtual gluon emission at xg = 0

has not been included in the account of the multiplicities.

The virtual coe�cients can be extracted straightforwardly from ref. [12]. The calculation of

the real coe�cients is much more complicated, and it has been carried out by exploiting the soft

properties of the amplitude obtained in refs. [11, 12]. To illustrate the fundamental steps of the

calculation of the real part, we consider here the C(R)
g [Q] coe�cients, with Q being one among

the C-even con�gurations 1S
[8]
0 ; 3P

[8]
0 ; 3P

[8]
2 . Let also nf = 0 for the time being, so that we neglect

contributions coming from the decay into qqg. In this case we reorganize the �rst term of eq. (17)

by expanding the structure in powers of � and using the symmetry of the phase space. Considering

the spectrum of the gluon \1", we �nd

C(R)
g [Q] =

�(2)

2M

N

K

1

S1

"
2

�
1

1� x

�
+

fR[Q](x; 0)

�
�

1

�coll
+ 2 log x

�

+ 2x

 
log(1� x)

1� x

!
+

fR[Q](x; 0)�
1

�
�(1� x)

Z 1

0
dy[y(1� y)]�1��fR[Q](x; y)

+ 2

�
1

1� x

�
+

Z 1

0
dy

 
1

y

!
+

fR[Q](x; y)

#
: (18)

The soft divergences � �(1 � x) cancel by adding the virtual contribution in the same area
of the phase space. The last piece of eq. (18) is a state-dependent �nite contribution. The limit

y ! 0 corresponds to gluon 1 and gluon 2 becoming collinear 1jj2 and the factor 2 in front
accounts for the case 1jj3. Integration over the phase space gives rise to a pole labelled by �coll
and a universal �nite part. This divergence is not cancelled by adding the virtual term and

reveals that non-perturbative e�ects are leading in this case. In fact the residual sensitivity can
be consistently factorized into the fragmentation function of the gluon into the photon. Such

singular residual collinear part corresponds to the �rst term in eq. (18) plus the collinear piece of

the virtual contribution (� �(1 � x)) that comes from the gluon, ghost self-energy loops of the

gluon we are selecting, so that it reads

C(coll)
g [Q] = �

1

�coll

 
4��2

M2

!�
�(1 + �)

�s

�
�

(
2CA

"
x

(1� x)+
+

1� x

x
+ x(1� x)

#
+

11

6
CA�(1� x)

)
�Born[Q] : (19)

If we now switch on the light 
avours including qqg and gluon vacuum polarization diagrams, then
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Figure 4: Di�erent colour-octet contributions to the photon spectrum in the � decay up

to O(v4). The di�erential decay widths d�=dz are reported as a function of z = E
=m.

All the distributions displayed are normalized to the respective Born (that is Q ! g
 for

C-even and 3S
[8]
1 ! qq for the only C-odd contribution).

we obtain the conventional counter-term � Pgg, which has to be subtracted at the factorization

scale �F.

This procedure can be extended to all short-distance terms and may be useful to express the
factorization in a more general way. At NLO the individual terms in eq. (1) may be divergent and
will be denoted by tilded quantities. As we have already mentioned, such divergences correspond

only to two �nal partons becoming collinear, and their form is dictated by the factorization

theorem. According to this we can reorganize them as follows:

~C
 = C
 +
X
q

Cq 
 Gq!
 + Cg 
 Gg!
;

~Cq =
X
q0

Cq0 
 Gq0!q + Cg 
 Gg!q;

~Cg =
X
q

Cq 
 Gq!g + Cg 
 Gg!g; (20)

where all of the divergences are now concentrated in the factorization-scale-dependent, transition
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functions Gi!j:

Ga!b = �ab �(1� x) +
�s

2�

1

�(1� �)

 
4��2

�2F

!�
�
1

�
Pba(x)

�
+Kab(x) ; (21)

Gg!
 = Kg
(x) ; (22)

Gq!
 =

 
�eme

2
q

2�

!
1

�(1� �)

 
4��2

�2F

!� �
�
1

�
P
q

�
+Kq
(x) ; (23)

where a = g; q; q and all the coe�cients Ci are now �nite for �! 0. The functions Pba(x) are the

D = 4 Altarelli-Parisi splitting kernels, collected in appendix A, and the factors Kij are arbitrary

functions, de�ning the factorization scheme. In this paper we adopt the MS factorization, in which

Kij(x) = 0 for all i; j. The collinear factors Gi!j are usually absorbed into the bare fragmentation

functions by de�ning

Dq!
 = Gq!
 +
X
q0

Gq!q0 
DB
q0!
 + Gq!g 
DB

g!
 ;

Dg!
 = Gg!
 +
X
q

Gg!q 
DB
q!
 + Gg!g 
DB

g!
 ; (24)

so that we can write the physical decay rate in terms of �nite quantities,

d�

dz
(
 +X) = C
 +

X
q

Cq 
Dq!
 + Cg 
Dg!
 : (25)

As illustrated in �g. 3, we write the general structure of the NLO processes as

d�(1)

dz
=
X
Q

h
C(1)

 [Q] + C(1)

g [Q] 
 D(0)
g!
 + C(0)

g [Q] 
 D(1)
g!


+ 2C(1)
q [Q] 
 D(0)

q!
 + 2C(0)
q 
 D(1)

q!


i
: (26)

4 Results

In the previous section we have shown how the short-distance coe�cients have been calculated
and all the �nal-state collinear divergences have been consistently absorbed into fragmentation

functions. Now, in order to investigate the phenomenological applications of colour-octet states,

an estimate of the NRQCD matrix elements (ME) must be given. The long-distance MEs can be
calculated on the lattice, extracted from experiments when enough data are available, or roughly

determined by using scaling rules of NRQCD or by renormalization group (RG) arguments. At
the present time none of the aforementioned techniques is able to give a set of precise values for

MEs and, as we will see below, estimates are a�ected by large uncertainties.

The velocity-scaling of the MEs is basically determined by the number of derivatives in the

respective operators and by the number of electric or magnetic dipole transitions between the
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Figure 5: Ratio �(� ! had)=�(� ! �+��) versus renormalization scale � for di�er-

ent values of �5. The solid lines include NLO colour-octet contributions with the RG

estimates of the matrix elements. The dotted lines include colour-singlet only.

QQ pair annihilated at short distance and the QQ pair in the asymptotic physical state. This
can nicely be described by a multipole expansion of the non-perturbative transition � ! Q: an
1S

[8]
0 can be reached by a chromo-magnetic dipole transition, an 3S

[8]
1 by a double chromo-electric

emission and 3P
[8]
J by a simple chromo-electric transition. The �rst two are of order v4 while the

last only of order v2. Finally, since the hard-production vertex for a P -wave is already suppressed

by v2 relative to the production of an S-state, one realizes that the colour-octet C-even states and
1S

[8]
0 all contribute at the same order in v. Following this approach, we can write:

h�jO8(
3S1)j�i � v4 h�jO1(

3S1)j�i h�jO8(
3PJ)j�i � m2v4 h�jO1(

3S1)j�i ; (27)

where for bottomonium one usually takes v2 ' 0:1 and m ' 4:8 GeV.

An alternative approach has been considered by Gremm and Kapustin in [15]. They obtain

estimates for the colour-octet operators by solving the RG equations. To order v4 and leading

order in �s, they read:

�
d

d�
h�jO8(

1S0)j�i = O(�sv
6); (28)
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Figure 6: Ratio �(� ! had)=�(� ! �+��) versus colour-octet matrix elements for

di�erent values of �5. The dashed lines indicate the 2� interval of the experimental value

for R�.

�
d

d�
h�jO8(

3S1)j�i =
24BF�s

�m2
h�jO8(

3P0)j�i; (29)

�
d

d�
h�jO8(

3P0)j�i =
8CF�s

81�
(mv2)2h�jO1(

3S1)j�i ; (30)

where we used the heavy quark spin symmetry to reexpress the expectation values of O8(
3P1;2) in

terms of O8(
3P0). We note here that our normalization for the colour-singlet NRQCD operators

di�ers from the original one introduced by BBL, i.e. O1 =
1

2Nc

OBBL
1 . Equation (29) di�ers from

the respective equations that appear in ref. [15] because we included the contribution of 3P
[8]
1 to the

evolution of O8(
3S1), which was left out in the previous treatment 4. Assuming that logarithmic

terms of the evolution are dominant [4, 15] over the MEs evaluated at a starting scale � � �QCD,
we obtain:

4The authors of ref. [15] agree that it is correct to include the 3P
[8]
1 contribution in the right-hand side of eq.

(29) (private communication).
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Figure 7: Various Fock contributions to the photon spectrum as a function of z = E
=m.

The solid line gives the LO singlet contribution. Fragmentation and NLO direct are

summed up for each colour-octet state. The NRQCD MEs are related to the colour-singlet

one through the RG estimate. The colour-singlet matrix element is arbitrarily chosen to

be h�jO1(
3S1)j�i =M2=4�, so that comparison with ref. [5] is straightforward.

h�jO8(
3S1)j�iRG �

32BFCF

27
v4
 
1

b0
log

 
1

�s(m)

!!2
h�jO1(

3S1)j�i ; (31)

h�jO8(
3P0)j�iRG �

8CF

81
m2v4

1

b0
log

 
1

�s(m)

!
h�jO1(

3S1)j�i ; (32)

h�jO8(
1S0)j�iRG � 0 : (33)

Once numbers are plugged into the previous expression, one realizes that MEs in eqs. (27)

result larger by more than one order of magnitude with respect to the RG estimates shown in
eqs. (31)-(33). This suggests that the very �rst assumption, i.e. that the non-perturbative matrix

elements should be dominated by QCD evolution, is doubtful and cannot be justi�ed unless their

input values were accidentally much smaller than the `natural' values given in eqs. (27). In any

case, therefore, the estimates in eqs. (31)-(33) provide a lower limit for the range of all possible

13



values.

To obtain an independent test of the RG estimates and possibly �nd an upper limit for the

matrix elements, we have analysed their impact on the observable R�(�) = �(�! had)=�(�!

�+��). This observable is particularly advantageous because of the cancellation of several sources

of uncertainties: both the colour-singlet NRQCD matrix element and the overall dependence on

the bottom mass cancel in the ratio. As a result the mass enters only in the logarithm of the

renormalization scale and its uncertainties can be naturally associated to the choice of the scale

itself.

In �g. 5, the ratio R� is plotted versus the renormalization scale � (i.e. the NRQCD factoriza-

tion scale is kept equal to the renormalization one); ��� includes the P1(
3S1)-operator contribu-

tion [4] and the NLO QCD corrections [16]; �had includes the NLO QCD colour-singlet [17] and the

P1(
3S1)-operator contribution [18, 15] (dotted curves) and the NLO colour-octet 3S

[8]
1 ,1S

[8]
0 ,3P

[8]
J

[11] (solid curves). The dashes lines limit the 2� band of the experimental value of R� = 37:3�1:0

[19]. The theoretical curves are drawn according to the following choice of parameters: v2 = 0:1

and �EM(mb) = 1=132. Hence �g. 5 shows that, once the colour-octet RG MEs estimation is

plugged in, the ratio R� is consistent with the experiments only for �5 ' 140 MeV (�s(MZ) '

0:110). On the other hand if we drop the colour-octet term, just the NLO colour-singlet contribu-
tion can still reproduce the experimental measure of R� by choosing a much higher value of �5,

namely �5 ' 220 MeV (�s(MZ) ' 0:118).

Now we �x the renormalization scale �R = 10 GeV. We note that, more than corresponding
to the `natural' choice �R ' M�, this value also satis�es the so-called `minimal sensitivity princi-

ple' [20], i.e. it is the value at which �R
d

d�R
R�(�R) vanishes. Within this choice, we plot the ratio

R� versus the variable

x =
h�jO8(

3P0)j�i

h�jO8(3P0)j�iRG
=

h�jO8(
3S1)j�i

h�jO8(3S1)j�iRG
: (34)

The result is shown in �g. 6. The solid lines represent the theoretical calculation of R� and the

dashed lines are the 2� experimental range, as in �g. 5. The larger the colour-octet MEs are, the

smaller �5 has to be taken. In particular, already for values of the MEs of the order of twice the
RG estimates, we would �nd a value of �5 ' 80 MeV (�s(MZ) ' 0:102), well outside the present

world average range.

Following this line one �nds that the MEs provided by the velocity scaling rules are strictly
excluded. In an ideal global �t perspective both the value of �5 and the colour-octet MEs should
be extracted from the data. Unfortunately the experimental inputs in the � decay sector are not

su�cient to perform a �t of such a large number of unknown parameters.

As a con�rmation of what we found in �g. 5, �g. 6 shows that the RG estimate reproduces the

experimental value of R� for �5 ' 140 MeV. Such a value of �5 corresponds to �s(mb) ' 0:190
and �s(MZ) ' 0:110. The world average of �s (�s(MZ) = 0:119�0:004) (or equivalently �5 ' 237

MeV) is actually consistent with a vanishing (or even negative) octet contribution to the � decay

into hadrons. Nevertheless the uncertainties involved are still large: NNLO QCD corrections

(re
ected in the � dependence of the NLO correction) might be important as well as higher twist
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e�ects. A clear indication that higher order e�ects are not negligible, comes from the two-loop

calculation of the leptonic width recently performed by Beneke et al. [21]: in this case, it is found

that the O(�2s) corrections (NNLO) are of the same size (or even larger) of the NLO ones.

Summing up, we can say that on the one hand comparison with scaling rules of NRQCD shows

that RG estimates have to be thought of as a lower limit, while on the other hand consistency

between theory and experiment in total decay rates strongly disfavour much larger colour-octet

MEs. We then conclude that the RG estimates of the colour-octet MEs, although sizebly smaller

then expected from NRQCD scaling rules, are the most reasonable at the present stage of our

knowledge.

In �g. 4 we show in detail the contribution of the single colour-octet components. The �gure

reports LO, direct, and full NLO contributions for states normalized to their respective Born

decay widths at O(�s�em). Let us consider the C-even states �rst (1S
[8]
0 ; 3P

[8]
0 ; 3P

[8]
2 ). It is evident

that they contribute to the spectrum with a very similar shape: there is a strong enhancement

at low values of z due to the fragmentation contribution that is present both at LO and NLO.

Then it is clearly seen that direct photons mainly contribute near the end-point, a zone of the

spectrum where the �xed-order calculation is not reliable: in fact there are clear indications of

a need of resummation both in the short-distance perturbative expansion in �s and in the long-
distance v series. In ref. [7] Rothstein and Wise identi�ed an in�nite class of NRQCD operators,
which determine the shape of photonic end-point functions, and introduced the so-called `shape

function', to be extract from data. The overall e�ect of colour-octet states would be a smearing
of the energy distribution near the end-point on the interval v2 � 0:1. In the case of the 3S

[8]
1

component, the direct amplitude is not divergent in z = 1 and the NLO correction to the LO

fragmentation picture is very small. Indeed the NLO contribution from direct photons is negative
in the MS-renormalization scheme and is almost balanced by the other NLO fragmentation terms.

Finally �gs. 7 and 8 show the total contribution to the spectrum, using the RG estimate for the
non-relativistic matrix elements. We notice that the overall e�ect of octet states is at its minimum

in the central region of the spectrum, exactly where the singlet LO direct contribution dominates.
This indicates that this region of the spectrum is `safe' from colour-octet e�ects, and therefore

we think that it should be used to make a comparison with experimental data. Moreover this
indicates that relativistic corrections to the singlet (which are indeed important) and higher-order

strong ones should be included to have a consistent theoretical picture at NLO. On the other side,

for small values of z, colour-octet components are not negligible. In this area of the phase space,
the fragmentation components from gluons contribute at the same order in �s as the ones from

quarks, and there is no signature to distinguish between the two. Contrary to LO expectations in

the framework of CSM [5], we conclude that the decay of � into a photon would not be useful for

an estimate of the photon fragmentation functions.

As a �nal remark, we notice that, not surprisingly, many of the aspects of the photon spectrum

in quarkonium decay, resemble those in photoproduction [22, 23]. Cross-sections plotted versus

the inelasticity z of the quarkonium state show a very similar pattern: for z � 1, a divergence,
which is not supported by the available experimental data, reveals the breaking of the NRQCD

expansion in powers of �s and v. On the other side, for low values of z, the resolved contributions,
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Figure 8: Total colour-octet contribution on the LO, colour-singlet photon spectrum.

Notice that neither NLO QCD nor relativistic e�ects are included in the singlet contri-

bution. Normalization and MEs as in �g. 7.

which corresponds to fragmentation in the decays, are indeed dominated by colour-octet states.

5 Conclusions

We presented the calculation of O(�2s�em) colour-octet corrections to the decay of � into one

photon plus light hadrons. Both direct and fragmentation contributions have been included at

NLO. In order to study the impact of these contributions on the photon spectrum, an estimate

of the non-perturbative MEs was also given. By comparing the available experimental data on

fully inclusive and leptonic decay rates with the NLO theoretical predictions of NRQCD, we

found an unexpected result: estimates based on na��ve scaling rules result in large colour-octet

contributions to the total rates which are not consistent with the data. In particular, it turns out

that non-perturbative MEs should be much smaller then expected from NQRCD scaling rules.

Nevertheless, using the above mentioned estimates for the non-perturbative MEs, we showed that

there are sizeable e�ects at the end-points of the spectrum of the photon. In the case of low values

of z, the possibility of measuring the fragmentation function of a gluon into a photon, which was
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suggested by the LO result in the CSM [5], becomes unfeasible: for the colour-octet states both

quark and gluon fragmentation processes are of the same order in �s�em and there is no signature

to distinguish between the two. Moreover, for values of z near the end-point, breaking of the

�xed-order calculation is manifest, and the resummations of both short-distance coe�cient in �s
and non-perturbative MEs in v, are called for. Nevertheless a `safe' region, for 0:3 < z < 0:9, has

been found where octet e�ects are at their minimum and the perturbative expansion in powers of

�s and v under proper control. Following this point of view, we consider the NLO QCD correction

the colour-singlet di�erential decay d�=dE
(�! 3S1
[1]
! 
gg) worth while to be undertaken.
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A Symbols and notations

This appendix collects the meaning of various symbols, which are used throughout the paper.

Kinematical factors:

M = 2m ; v =

s
1�

M2

s
; (35)

where s is the partonic centre-of-mass energy squared and Shad is the hadronic one; v is the velocity

of the bound (anti)quark in the quarkonium rest frame, 2v then being the relative velocity of the
quark and the antiquark. The following expression is used:

f�(Q
2) =

 
4��2

Q2

!�
�(1 + �) = 1 + �

 
�
E + log(4�) + log

�2

Q2

!
+O(�2) : (36)

Altarelli-Parisi splitting functions. Several functions related to the AP splitting kernels enter in

our calculations. We collect here our de�nitions:

Pqq(x) = CF

"
1 + x2

1� x
� �(1� x)

#
; (37)

Pqq(x) = CF

"
1 + x2

(1� x)+
+

3

2
�(1� x)

#
; (38)

Pqg(x) = TF
h
x2 + (1� x)2 � 2� x(1� x)

i
; (39)

Pqg(x) = TF
h
x2 + (1� x)2

i
; (40)

P
q(x) =
1 + (1� x)2

x
� � x ; (41)
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P
q(x) =
1 + (1� x)2

x
; (42)

Pgq(x) = CF

"
1 + (1� x)2

x
� � x

#
; (43)

Pgq(x) = CF

"
1 + (1� x)2

x

#
; (44)

Pgg(x) = 2CA

�
x

1� x
+

1� x

x
+ x(1� x)

�
; (45)

Pgg(x) = 2CA

"
x

(1� x)+
+

1� x

x
+ x(1� x)

#
+ b0�(1� x) : (46)

The Pij are the D-dimensional splitting functions that appear in the factorization of collinear

singularities from real emission, while the functions Pij are the four-dimensional AP kernels,

which enter in the MS collinear counter-terms. The `+' and `a' distributions are de�ned by:

Z 1

0
dx [T (x)]+ �(x) =

Z 1

0
dx T (x) [�(x)� �(1)] ; (47)Z 1

a
dx [T (x)]a �(x) =

Z 1

a
dx T (x) [�(x)� �(1)] ; (48)

where T (x) is the function associated to the distributions [T (x)]+;a. We recall a useful weak
distributional identity:

[T (x)]+ = [T (x)]a � �(1� x)
Z a

0
T (x)dx : (49)

In particular it is straightforward to get:

�
1

1� x

�
+

=

�
1

1� x

�
a

+ �(1� x) log(1� a) ; (50) 
log(1� x)

1� x

!
+

=

 
log(1� x)

1� x

!
a

+ �(1� x)
1

2
log2(1� a) : (51)

Colour coe�cients

CF =
N2
c � 1

2Nc

; CA = Nc ; BF =
N2
c � 4

4Nc

; TF =
1

2
: (52)

The following standard symbol is used:

b0 =
11

6
CA �

2

3
TFnf ; (53)

with nf the number of 
avours lighter than the bound one.
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NRQCD operators. To denote a perturbative QQ state with generic spin and angular momentum

quantum numbers, and in a colour-singlet or colour-octet state, we use the symbol:

Q[1;8] � QQ[2S+1LJ
[1;8]

] : (54)

Notice that, according to the discussion in ref. [11], our conventions di�er from the Bodwin,

Braaten and Lepage ones [4] (labelled here as BBL) in the case of a colour-singlet.

O1 =
1

2Nc

OBBL
1 ; (55)

O8 = OBBL
8 : (56)

B Summary of lowest order results

B.1 Born widths

The decay rates read

�(�! Q[1;8] ! ab) = �̂(Q[1;8] ! ab)h�jO[1;8](
2S+1LJ)j�i ; (57)

the short-distance coe�cients �̂ having been calculated according to the rules of ref. [11]. We shall
use the short-hand notation

�(Q[1;8] ! ab) � �(�!Q[1;8] ! ab) (58)

to indicate the decay of the physical quarkonium state H through the intermediate QQ state

Q[1;8] = QQ[2S+1LJ
[1;8]

]. The D-dimensional (D = 4� 2�) O(�s�em) level decay rates read:

�Born(
1S0

[8]
! g
) =

32�s�em e
2
Q �

4��2

m2
�(2)(1� �)(1� 2�)h�jO8(

1S0)j�i ; (59)

�Born(
3S1

[8]
! g
) = 0 ; (60)

�Born(
3P0

[8]
! g
) =

288�s�em e
2
Q �

4��2

m4
�(2)

1� �

3� 2�
h�jO8(

3P0)j�i ; (61)

�Born(
3P1

[8]
! g
) = 0 ; (62)

�Born(
3P2

[8]
! g
) =

64�s�em e
2
Q �

4��2

m4
�(2)

(6� 13�+ 4�2)

(3� 2�)(5� 2�)
h�jO8(

3P2)j�i : (63)

Lowest O(�2s) contributions:

�Born(
1S0

[8]
! gg) = BF

16�2s �
4��2

m2
�(2)(1� �)(1� 2�)h�jO8(

1S0)j�i ; (64)

�Born(
3S1

[8]
! qq) = 8

�2s �
4��2

m2
�(2)

1� �

3� 2�
h�jO8(

3S1)j�i ; (65)
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�Born(
3P0

[8]
! gg) = BF

144�2s �
4��2

m4
�(2)

(1� �)

(3� 2�)
h�jO8(

3P0)j�i ; (66)

�Born(
3P1

[8]
! gg) = 0 ; (67)

�Born(
3P2

[8]
! gg) = BF

32�2s �
4��2

m4
�(2)

(6� 13�+ 4�2)

(3� 2�)(5� 2�)
h�jO8(

3P2)j�i ; (68)

where �(2) is de�ned according to eq. (14).

B.2 The LO spectrum coe�cients C(0)[Q]

We can now read out the lowest-order coe�cients according to eqs. (5){(11). For Q = 3P
[8]
J ; 1S

[8]
0

we have:

C(0)

 [Q](z) = �Born[Q ! g
]�(1� z) ; (69)

C(0)
g [Q](x) = 2�Born[Q ! gg]�(1� x) ; (70)

C(0)
q [Q](x) = 0 ; (71)

and for 3S
[8]
1 :

C(0)

 [3S

[8]
1 ](z) = 0 ; (72)

C(0)
g [3S

[8]
1 ](x) = 0 ; (73)

C(0)
q [3S

[8]
1 ](x) = �Born[Q ! qq]�(1� x) : (74)

C Summary of O(�2s�em) results

C.1 The NLO photonic coe�cients C(1)

 [Q]

We summarize the NLO spectrum coe�cient following the convention of eqs. (5){(26).The photon

energy fraction is z = E
=m. Components � �(z) have been neglected. For Q = 1S
[8]
0 ; 3P

[8]
0 ; 3P

[8]
2 ,

we have:

C(1)

 [Q] =

�s

2�
�Born[Q ! g
]

��
A[Q] + 2 b0 log

�R

2m

�
�(1� z)

+

�
1

1� z

�
+

f


1 [Q](z) +

 
log(1� z)

1� z

!
+

f


2 [Q](z)

#
; (75)

where

A[1S
[8]
0 ] = CF

 
�10 +

�2

2

!
+ CA

 
121

18
�
�2

2

!
�

10

9
nfTF ; (76)
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A[3P
[8]
0 ] = CF

 
�
14

3
+
�2

2

!
+ CA

 
85

18
�
�2

2

!
�

10

9
nfTF ; (77)

A[3P
[8]
2 ] = �8CF + CA

�
47

9
+ log 2

�
�

8

45
nfTF ; (78)

and

f


1 [

1S
[8]
0 ](z) = CA

(�72 + 144 z � 176 z2 + 104 z3 � 23 z4)

6 (�2 + z)
2
z

+ nfTF
2

3
z ; (79)

f


1 [

3P
[8]
0 ](z) = CA

1

54 (�2 + z)
4
z3

�
�960 + 3360 z � 6224 z2 + 5312 z3 � 1544 z4 � 520 z5

+496 z6 � 136 z7 + 9 z8
�
+ nfTF

2

27 z
(z + 2)2 ; (80)

f


1 [

3P
[8]
2 ](z) = CA

1

36 (�2 + z)
4
z3

�
�240 + 1848 z � 7820 z2 + 13976 z3 � 12710 z4 + 6254 z5

�1628 z6 + 197 z7 � 15 z8
�
+ nfTF

1

9 z

�
10� 5z + z2

�
; (81)

f


2 [

1S
[8]
0 ](z) = CA

2 (+12� 36 z + 56 z2 � 52 z3 + 28 z4 � 8 z5 + z6)

(�2 + z)3 z2
; (82)

f


2 [

3P
[8]
0 ](z) = CA

2

9 (�2 + z)
5
z4

�
+160� 720 z + 1624 z2 � 2016 z3 + 1360 z4 � 468 z5

+104 z6 � 66 z7 + 40 z8 � 10 z9 + z10
�
; (83)

f


2 [

3P
[8]
2 ](z) = CA

1

3 (�2 + z)5 z4

�
+40� 348 z + 1618 z2 � 3684 z3 + 4702 z4 � 3669 z5

+1826 z6 � 582 z7 + 115 z8 � 13 z9 + z10
�
: (84)

For the 3S
[8]
1 component we get:

C(1)

 [3S

[8]
1 ] =

20�eme
2
Q�

2
s

9

"
1

z(�2 + z)2

�
8� 12z + 7z2 � 2z3

�

+
2

(�2 + z)3z2
(�1 + z)(8� 12z + 5z2) log(1� z)

#
h�jO8[

3S1]j�i

m2

+ �Born(
3S

[8]
1 ! qq)

�em

�
P
q(z)

 
log

4m2

�2F
+ log(1� z) + 2 log z

!X
q

e2q ;

(85)

and �nally for 3P
[8]
1 :

C(1)

 [3P

[8]
1 ] =

2�eme
2
Q�

2
s

3

"
1

(�2 + z)4z3
(240 + 312z � 2620z2 + 4204z3 � 3150z4 + 1260z5

� 276z6 + 31z7) +
12

(�2 + z)5z4
(�1 + z)(40 + 52z � 430z2 + 716z3 � 588z4
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+ 275z5 � 74z6 + 11z7 � z8) log(1� z) +
2

3
nf

2� x

x

�
h�jO8[

3P1]j�i

m4
: (86)

C.2 The NLO gluonic coe�cients C(1)
g [Q]

In this section we present the NLO QCD spectrum of the gluon arising from the colour-octet

components. Contributions � �(x) have been neglected. The gluon energy fraction is denoted by

x = Eg=m . For Q = 1S
[8]
0 ; 3P

[8]
0 ; 3P

[8]
2 , we have:

C(1)
g [Q] =

�s

�
�Born[Q ! gg]

"
log

4m2

�2F
Pgg(x) + 2 logxPgg(x) +

 
log(1� x)

1� x

!
+

(1� x)Pgg(x)

+

�
1

1� x

�
+

f [Q](x) +

�
B[Q] + 4b0 log

�R

2m

�
�(1� x)

#
;

(87)

where:

B[1S
[8]
0 ] = CF

 
�10 +

�2

2

!
+ CA

�
139

18
�

1

12
�2
�
�

10

9
nfTF (88)

B[3P
[8]
0 ] = CF

 
�
14

3
+
�2

2

!
+ CA

�
235

54
+

70

27
log 2�

1

12
�2
�
�

10

9
nfTF (89)

B[3P
[8]
2 ] = �8CF + CA

�
5 +

14

9
log 2�

1

6
�2
�
�

8

45
nfTF ; (90)

and furthermore

fg[
1S

[8]
0 ](x) =

CA

6 (�2 + x)
2
x
(�120 + 336 x� 494 x2 + 410 x3 � 215 x4 + 72 x5 � 12 x6)

+
2CA (�1 + x)

(2� x)
3
x2

(16� 40 x+ 50 x2 � 26 x3 � 8 x4 + 16 x5 � 7 x6 + x7) log(1� x)

+ nfTF
2

3
x ; (91)

fg[
3P

[8]
0 ](x) =

CA

54 (�2 + x)
4
x3

(�1536 + 5376 x� 9632 x2 + 10016 x3 � 9288 x4 + 12976 x5

� 16906 x6 + 13918 x7 � 6623 x8 + 1664 x9 � 172 x10)

+
2CA (�1 + x)

9 (2� x)
5
x4

(256� 896 x+ 1504 x2 � 1008 x3 � 516 x4 + 1792 x5 � 2276 x6

+ 2011 x7 � 1220 x8 + 464 x9 � 99 x10 + 9 x11) log(1� x)

+ nfTF
2(2 + x)2

27x
; (92)
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fg[
3P

[8]
2 ](x) =

CA

36 (�2 + x)
4
x3

(�384 + 3072 x� 12704 x2 + 25376 x3 � 30738 x4 + 26998 x5

� 19231 x6 + 10924 x7 � 4373 x8 + 1028 x9 � 106 x10)

+
CA (�1 + x)

3 (2� x)
5
x4

(64� 512 x+ 2032 x2 � 3840 x3 + 3747 x4 � 1577 x5 � 515 x6

+ 1162 x7 � 800 x8 + 308 x9 � 66 x10 + 6 x11) log(1� x)

+ nfTF
1

9x

�
10� 5x+ x2

�
: (93)

For the 3S
[8]
1 component we get:

C(1)
g [3S

[8]
1 ] =

�3s
18

"
1

(�2 + x)2x
(1168� 3264x+ 3740x2 � 2200x3 + 693x4 � 108x5)

+
4(�1 + x)

(�2 + x)3x2
(584� 1632x+ 1904x4 � 1134x3 + 324x4 � 27x5) log(1� x)

#
h�jO8[

3S1]j�i

m2

+ nf�Born(
3S

[8]
1 ! qq)

�s

�

"
�3 + 3 x� x2

x
+

 
log

4m2

�2F
+ log(1� x) + 2 log x

!
Pgq(x)

#
:

(94)

Finally for 3P
[8]
1 :

C(1)
g [3P

[8]
1 ] =

5�3s
18

"
1

(�2 + x)4x3
(384 + 384x� 4192x2 + 7552x3 � 6446x4 + 2876x5

� 485x6 � 141x7 + 82x8 � 10x9) +
12

(�2 + x)5x4
(�1 + x)(64 + 64x� 688x2 + 1280x3

� 1181x4 + 626x5 � 195x6 + 36x7 � 4x8) log(1� x) +
2

3
nf

2� x

x

�
h�jO8[

3P1]j�i

m4
: (95)

C.3 The NLO quark coe�cients C(1)
q [Q]

We report in this section the quark energy spectrum in Q ! qq g decays. The adimensional energy

of the quark Eq=m is denoted by x.

C(1)
q [1S

[8]
0 ] =

�s

�
�Born[

1S
[8]
0 ! gg]

"
Pqg(x) log

4m2

�2F

+ 2 x(1� x)TF + Pqg(x) log[x
2(1� x)] + f [1S

[8]
0 ](x)

i
; (96)

where

fq[
1S

[8]
0 ](x) = x(1� x)(1 + log(1� x)) : (97)
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We have

C(1)
q [3S

[8]
1 ] = �Born[

3S
[8]
1 ! qq]

�s

�

"
1

2
Pqq(x) log

4m2

�2F

+ CF

1 + x2

(1� x)+
log x +

CF

2
(1� x) +

1

2
(1� x)

 
log(1� x)

1� x

!
+

Pqq(x)

+

�
1

1� x

�
+

fq[
3S

[8]
1 ](x) + A[3S

[8]
1 ]�(1� x)

#
; (98)

where

A[3S
[8]
1 ] = CF

 
�
25

4
+
�2

3

!
+ CA

 
50

9
+

2

3
log 2�

�2

4

!
�

10

9
nfTF + 2 log

�R

2m
; (99)

and

fq[
3S

[8]
1 ](x) = CF

x

4
(�4 + x)� CA

x

2

�
5� 5x+ 2x2

�
+ CA(1� x)(�2 + x) log(1� x) (100)

C(1)
q [3P

[8]
J ] = BF�

3
s�(1� x)

�
�
8

9
log

��

2m
+ aJ

�
h�jO8[

3PJ ]j�i

m4

+
�s

�
�Born[

3P
[8]
J ! gg]

"
2x(1� x)TF + log[x2(1� x)]Pqg(x) +

�
1

1� x

�
+

f (J)q (x)

+Pqg(x) log
4m2

�2F

#
; [J = 0; 2] : (101)

We also have

C(1)
q [3P

[8]
1 ] = BF�

3
s�(1� x)

�
�
8

9
log

��

2m
+ a1

�
h�jO8[

3P1]j�i

m4

+�3sBF

�
1

1� x

�
+

f (1)q (x)
h�jO8[

3P1]j�i

m4
; (102)

where

a0 =
2

9
; a1 =

1

9
; a2 =

7

45
; (103)

and �nally

f (0)q (x) =
1

27

h
x(33� 72 x+ 43 x2)� 3(1� x)(4� 9x + 9x2) log(1� x)

i
; (104)

f (1)q (x) =
2

9

h
x(3 + 6x� 5x2) + 3(1� x) log(1� x)

i
; (105)

f (2)q (x) =
1

36

h
x(57� 90x+ 53x2)� 3(1� x)(5� 12x+ 12x2) log(1� x)

i
: (106)
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