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1 Introduction

The challenge to understand the physics of CP violation related to the structure of the CKM
mixing matrix in (and beyond) the Standard Model is fuelling an impressive experimental
program for the study of B decays, both exclusive and inclusive. Abundant data in various
exclusive channels are expected to arrive within the next few years from the dedicated B
factories BaBar and Belle, and their potential impact on our understanding of CP violation
at the electroweak scale will depend crucially on our possibility to control the effects of
strong interaction. For exclusive decays with only one hadron in the final state the task is
to calculate various transition form factors; it has already attracted significant attention in
the literature.

In this paper we present the first complete results for the exclusive semileptonic and rare
radiative B decays to light vector mesons in the light-cone sum rule approach. Exclusive
decays which are the principal concern of this work can be grouped as semileptonic decays:

• Bu,d → ρeν,

• Bs → K∗eν,

rare decays corresponding to b→ s transitions which we term CKM-allowed:

• Bu,d → K∗ + γ, Bu,d → K∗ + l+l−,

• Bs → φ+ γ, Bs → φ+ l+l−,

and b→ d transitions which we call CKM-suppressed:

• Bd → (ρ, ω) + γ, Bd → (ρ, ω) + l+l−,

• Bu → ρ+ γ, Bu → ρ+ l+l−,

• Bs → K∗ + γ, Bs → K∗ + l+l−.

Let V be a vector meson, i.e. ρ, ω, K∗ or φ and let pµ, ε
∗
µ and mV be its momentum,

polarization vector and mass, respectively. Let pB (mB) be the momentum (mass) of the B
meson. We define semileptonic form factors by (q = pB − p)

〈V (p)|(V −A)µ|B(pB)〉 = −iε∗µ(mB +mV )AV1 (q2) + i(pB + p)µ(ε
∗pB)

AV2 (q2)

mB +mV

+iqµ(ε
∗pB)

2mV

q2

(
AV3 (q2)−AV0 (q2)

)
+ εµνρσε

∗νpρBp
σ 2V V (q2)

mB +mV

. (1.1)

Note the exact relations

AV3 (q2) =
mB +mV

2mV

AV1 (q2)−
mB −mV

2mV

AV2 (q2),

AV0 (0) = AV3 (0),

〈V |∂µA
µ|B〉 = 2mV (ε∗pB)AV0 (q2). (1.2)
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The second relation in (1.2) ensures that there is no kinematical singularity in the matrix
element at q2 = 0.

Rare decays are described by the above semileptonic form factors and the following
penguin form factors

〈V |ψ̄σµνq
ν(1 + γ5)b|B(pB)〉 = iεµνρσε

∗νpρBp
σ 2T1(q

2)

+ T2(q
2)
{
ε∗µ(m

2
B −m

2
V )− (ε∗pB) (pB + p)µ

}
+ T3(q

2)(ε∗pB)

{
qµ −

q2

m2
B −m

2
V

(pB + p)µ

}
(1.3)

with
T1(0) = T2(0). (1.4)

Here ψ = s, d. All signs are defined in such a way as to render the form factors positive.
The physical range of q2 extends from q2

min = 0 to q2
max = (mB − mV )2 for three-body

decays and q2 ≡ 0 for two-body decays.
The method of light-cone sum rules was first suggested for the study of weak baryon

decays in [1] and later extended to heavy meson decays in [2]. It is a nonperturbative
approach which combines ideas of QCD sum rules [3] with the twist expansion characteristic
for hard exclusive processes in QCD [4] and makes explicit use of the large energy of the
final state vector meson at small values of the momentum transfer to leptons, q2. In this
respect, the light-cone sum rule approach is complementary to lattice calculations [5] which
are mainly restricted to form factors at small recoil (large values of q2). Of course, the light-
cone sum rules lack the rigour of the lattice approach. Nevertheless, they prove to provide
a powerful nonperturbative model which is explicitly consistent with perturbative QCD and
the heavy quark limit.

Early studies of exclusive B decays in the light cone sum rule approach were restricted to
contributions of leading twist and did not take into account radiative corrections, see Refs. [6,
7] for a review and references to original publications. Very recently, these corrections have
been calculated for the semileptonic B → π,Keν decays [8]. In this work we calculate
radiative and higher twist corrections to all form factors involving vector mesons, see above,
making use of new results on distribution amplitudes of vector mesons, reported in [9, 10, 11].
We find that the corrections in question are fairly small in all cases.

The presentation is organized as follows: In Sec. 2 we remind basic ideas of the light-
cone sum rule approach and derive radiative and higher-twist corrections to the form factors
in question in a compact form. Section 3 presents our main results and includes discus-
sion of input parameters as well as error estimates. In Sec. 4 we discuss relations between
semileptonic and penguin form factors in the heavy quark limit. Section 5 is reserved to a
summary and conclusions. The paper has two appendices: In App. A we collect the relevant
loop-integrals for the calculation of radiative corrections. App. B contains a summary of the
results of [9, 10, 11] on vector meson distribution amplitudes.
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2 Method and Calculation

2.1 General Framework

Consider semileptonic Bd → ρeν and rare Bd → K∗`+`− decays as representative examples.
We choose a B meson “interpolating current” jB = d̄iγ5b, so that

〈0|jB|B(pB)〉 =
fBm

2
B

mb

, (2.1)

where fB is the usual B decay constant and mb the b quark mass. In order to obtain
information on the form factors, we study the set of suitable correlation functions:1

i

∫
d4ye−ipBy〈ρ(p)|T (V − A)µ(0)j†B(y)|0〉 = −iΓ0(p2

B, q
2)ε∗µ

+ iΓ+(p2
B, q

2)
ε∗q

pq
(q + 2p)µ + iΓ−(p2

B, q
2)
ε∗q

pq
qµ + ΓV (p2

B, q
2)ε αβγ

µ ε∗αqβpγ , (2.2)

i

∫
d4ye−ipBy〈K∗(p)|T [s̄σµνγ5b](0)j†B(y)|0〉 = A(p2

B, q
2){ε∗µ(2p+ q)ν − ε

∗
ν(2p+ q)µ}

− B(p2
B, q

2){ε∗µqν − ε
∗
νqµ)} − 2C(p2

B, q
2)
ε∗q

pq
{pµqν − qµpν}. (2.3)

The Lorentz-invariant functions Γ0,±,V ,A,B, C can be calculated in QCD for large Euclidian
p2
B. More precisely, if m2

b − p2
B � 0, then the correlation functions in (2.2), (2.3) are

dominated by the region of small y2 and can systematically be expanded in powers of the
deviation from the light-cone y2 = 0. The light-cone expansion presents a modification of
the usual Wilson operator product expansion, such that relevant operators are nonlocal and
are classified in terms of twist rather than dimension. Matrix elements of nonlocal light-
cone operators between the vacuum and the vector meson state define meson distribution
amplitudes [4] which describe the partition of the meson momentum between the constituents
in the infinite momentum frame. In particular, there exist two leading twist distribution
amplitudes for vector mesons, see App. B, corresponding to longitudinal and transverse
polarizations, respectively:

〈ρ|ū(0)γµd(z)|0〉 = fρmρpµ
ε∗z

pz

∫ 1

0

du eiūpz φ‖(u, µ), (2.4)

〈ρ|ū(0)σµνd(z)|0〉 = −ifTρ (µ)(ε∗µpν − pµε
∗
ν)

∫ 1

0

du eiūpz φ⊥(u, µ), (2.5)

1In this work we define invariant functions with respect to the Lorentz-structure ε∗q
pq

instead of ε∗q [12]

in order to remove a kinematical singularity for p→ 0.
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and similarly for K∗ and φ. Here z is an auxiliary light-like vector, u is the momentum frac-
tion carried by the valence quark and the decay constants fρ, f

T
ρ are defined in App. B. µ

specifies the scale: Extraction of the leading asymptotic behaviour in field theories invariably
produces singularities which reflect themselves in the scale-dependence of distribution am-
plitudes. As always, this scale-dependence cancels in physical quantities by a corresponding
dependence of coefficient functions.

The invariant amplitudes in (2.2), (2.3) can be calculated in terms of meson distribution
amplitudes in complete analogy with the calculation of structure functions in deep inelastic
lepton-nucleon scattering in terms of nucleon parton distributions: The off-shellness m2

b−p
2
B

plays the role of photon virtuality Q2. As an illustration, consider the tree-level leading-twist
result for Γ0, adapted from Ref. [12]:

Γ0(p2
B, q

2) =

∫ 1

0

du
1

m2
b − up

2
B − ūq

2
fTV φ⊥(u)

m2
b − q

2

2u
. (2.6)

We want to emphasize that the procedure is rigorous at this point: all corrections can (in
principle) be included in a systematic way and their evaluation is precisely what makes the
subject of this work.

The subtle part concerns the extraction of the B meson contribution to the invariant
amplitudes. The exact amplitude Γ0 (in nature) has a pole at p2

B = m2
B corresponding to

the intermediate B meson state, and this contribution can be written in terms of the form
factor AB→ρ1 defined in (1.1):

Γ0
B meson = (mB +mρ)A

B→ρ
1 (q2) ·

1

m2
B − p

2
B

·
m2
BfB

mb

(2.7)

On the other hand, the QCD calculation at p2
B � m2

b is only approximate and, continued
analytically to “Minkowskian” p2

B > m2
b , produces a smooth imaginary part with no sign

of a pole-behaviour. To proceed, we invoke the concept of duality, assuming that exact
spectral density and the one calculated in QCD coincide on the average, that is integrated
over a sufficient region of energies. In particular, we assume that the B meson contribution
is obtained by the integral of the QCD spectral density over the duality region:

Γ0
B meson =

1

2πi

s0∫
m2
b

ds

s− p2
B

Disc p2
B
Γ0

QCD(s, q2) (2.8)

The parameter s0 ≈ (34− 35) GeV2 is called “continuum threshold” and is fixed from QCD
sum rules for fB, see e.g. [13]. Equating the two above representations, one obtains a light-
cone sum rule for the form factor A1. Sum rules for the other form factors are constructed
in precisely the same manner.

While the accuracy of the QCD calculation can be controlled (and improved), the duality
approximation introduces an irreducible uncertainty in predictions for the form factors, which
is usually believed to be of order (10–15)%. Practical calculations in the sum rule framework
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Figure 1: The leading order diagram (a) and one-loop radiative corrections (b-f).

involve some technical tricks to reduce this uncertainty, e.g. Borel transformation which we
will not discuss here. These techniques are well established and their detailed description in
the particular context of light-cone sum rules can be found e.g. in Refs. [7, 12]. The work
[12] also contains a detailed comparison of the light-cone sum rule approach to traditional
QCD sum rules and can serve as introduction for the more theoretically-minded reader.

2.2 Radiative Corrections

Radiative corrections to the sum rules correspond to one-loop corrections to the coefficient
functions in front of leading twist distribution amplitudes and are given by the diagrams
shown in Fig. 1. The calculation is done in dimensional regularization and it is sufficient
to consider matrix elements over on-shell massless quark and antiquark carrying momentum
fraction up and ūp, respectively. The transversely polarized and longitudinally polarized
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meson states are projected onto by

〈V⊥(p)|ūa(0)db(x)|0〉 = −
i

4
fTV [σµν ]baε

∗µpν
∫
du eiūpxφ⊥(u) (2.9)

≡ −
1

8
fTV [σµνγ5]baεµνρσε

∗ρpσ
∫
du eiūpxφ⊥(u), (2.10)

〈V‖(p)|ūa(0)db(x)|0〉 ≡
1

4
fVmV [/p]ba

ε∗x

px

∫
du eiūpxφ‖(u)

m2
V→0
−→

1

4
fV [/p]ba

∫
du eiūpxφ‖(u), (2.11)

where a, b are spinor indices, respectively. In the last line in (2.11) we made use of the
fact that for ultrarelativistic longitudinal vector mesons εµ → pµ/mV up to O(m2

V /|~p|
2)

corrections. This is a justified approximation for the calculation of radiative corrections
to leading twist accuracy to which end the meson mass can be neglected throughout. For
further use we introduce notations for the projection operators:

P‖ =
1

4
fV /p,

P⊥ = −
i

4
fTV σαβε

∗αpβ or P(5)
⊥ = −

1

8
fTV σαβγ5ε

αβρσε∗ρpσ. (2.12)

These will be treated as D-dimensional objects in what follows.
The calculation in question is in principle straightforward and similar to the existing

calculations of NLO corrections to hard exclusive processes [14, 15, 16, 17]. One has to
consider one-loop diagrams with a heavy quark and two different kinematic invariants q2

and p2
B, which makes formulas rather cumbersome, however. The specific requirement is to

organize the expressions in a form suitable for a dispersion representation in p2
B, cf. Eq. (2.8),

so that continuum subtraction can be made.
Analytic expressions are available since recently for B decays to light pseudoscalar mesons

π,K [8]. For vector mesons the number of form factors is so large that working out (relatively)
compact analytic expressions is not worth the effort. In this work we prefer to give the
formulae in terms of traces and general momentum integrals (see below and App. A) which
can be compiled and evaluated numerically using mathematica programming language2.

A usual subtlety concerns treatment of γ5. The results for the form factors given below
are obtained using “naive dimensional regularization” (NDR) and the same scheme has to
be applied to the calculation of Wilson coefficients for penguin operators.

There are two form factors in whose calculation one encounters an odd number of γ5

in traces, which could cause ambiguities: V and T1. Only transverse mesons contribute

2The computer code is available from P.B. upon request.
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to these form factors. In both cases, a possible ambiguity comes solely from the B vertex
correction in Fig. 1d, whereas in all other diagrams contraction of γ matrices over γ5 can
be avoided. There are several ways out: (a) use a ’t Hooft-Veltman prescription for γ5 and
apply a finite renormalization to restore the Ward identities as in [18]; (b) instead of the
“natural” projection (2.9), use (2.10) which introduces a second γ5 and thus eliminates the
problem; (c) modify the definition of the form factors (1.3) to

〈V |s̄σµνγ5b|B〉 = A(q2)
{
ε∗µ(pB + p)ν − (pB + p)µε

∗
ν

}
− B(q2)

{
ε∗µqν − qµε

∗
ν

}
− C(q2)

ε∗pB

m2
B −m

2
V

{(pB + p)µqν − qµ(pB + p)ν} . (2.13)

Using

σµνγ5 = −
i

2
εµνρσ σ

ρσ

and contracting with qν , one finds

A(q2) = T1(q
2),

B(q2) =
m2
B −m

2
V

q2

[
T1(q

2)− T2(q
2)
]
,

C(q2) = T3(q
2)−

m2
B −m

2
V

q2

[
T1(q

2)− T2(q
2)
]
, (2.14)

from which the relation (1.4) follows. It is thus sufficient to calculate A, B and C instead
of Ti with the premium to avoid any γ5 problem. We have checked that all of the above
prescriptions yield identical results.

After these preliminary remarks, we are now in the position to calculate the diagrams in
Fig. 1. The tree-level contribution of Fig. 1a equals

T (0) =
i

s
Tr(Γ(/pB − ū/p +mb)γ5P), (2.15)

where Γ is the Dirac-structure of the weak vertex, P is one of the projection operators defined
in Eqs. (2.12) and

s = m2
b − up

2
B − ūq

2.

It proves convenient to replace in Eq. (2.15) the running MS b quark mass by the one-loop
pole mass, which is given by

mpole = mMS

{
1 + CF

g2

4π2

(
1−

3

4
ln
m2

µ2

)}
. (2.16)
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This replacement induces the radiative correction

T pole = 2i
m2
b

s2
CF

g2

4π2

(
1−

3

4
ln
m2
b

µ2

)
Tr(PΓ(/pB − ū/p +mb)γ5)

−
i

s
mbCF

g2

4π2

(
1−

3

4
ln
m2
b

µ2

)
Tr(PΓ(/pB − ū/p)γ5). (2.17)

The general strategy is to simplify the traces as much as possible, but to keep P and Γ
arbitrary. Also contraction of γ matrices over γ5 is only allowed in the B vertex correction.

It turns out that all one-loop diagrams can be expressed in terms of the following traces:

Tr1 = Tr (PΓ/qγ5) ≡ Tr (PΓ/pBγ5) ,

Tr2 = Tr (PΓγ5) ,

Tr3 = Tr (P/qΓγ5) ≡ Tr (P/pBΓγ5) ,

Tr4 = Tr(P/qΓ/qγ5). (2.18)

Let us also introduce
aPP := γαPγ

α, aΓΓ := γαΓγ
α. (2.19)

The b quark self-energy diagram in Fig. 1b is

T SE
b = −

g2CF

s2

{[
4m2

b (Y + (1− ε)Z) + 2s(1− ε)(Y − Z)
]
( Tr1 +mb Tr2)

−2mbs (Y + (1− ε)Z) Tr2} , (2.20)

where D = 4−2ε and the expressions for momentum integrals Y, Z are given in App. A. The
self-energy insertions in external light quark legs in Fig. 1c do only contribute logarithmic
terms in dimensional regularization,

T SE
l =

g2CF
s

(Tr1 +mbTr2)

(
ln

m2
b

µ2
UV

− ln
m2
b

µ2
IR

)
, (2.21)

where we distinguish between the ultra-violet scale µUV , which is to be identified with
the renormalization scale of the curent jB and the penguin operators, and the infra-red
renormalization-scale µIR corresponding to the factorization scale in meson distribution am-
plitudes.

For the B vertex correction in Fig. 1d, one obtains:

TB = 2
g2CF
s

{(
−8C̄(1− ε)− 1−m2

bB̄ + ū(p2
B − q

2)Ā
)
( Tr1 +mb Tr2)−mbsB̄Tr2

}
.

(2.22)
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a b

Figure 2: The higher-twist contributions.

For the weak vertex in Fig. 1e we find

TW = −
g2CF
s

{
a2

ΓC ( Tr1 +mb Tr2) + aΓD (q2 Tr3 +mb Tr4) + (p2
B − q

2)uaΓE Tr3

+2(p2
B − q

2)uA( Tr1 +mb Tr2) +mbB
[
2(mb Tr1 + q2 Tr2)− aΓ(mb Tr3 + Tr4)

]}
.(2.23)

Finally, the box-diagram in Fig. 1f can be written as

T box = −g2CFaP
{
aPH( Tr1 +mb Tr2) + I(−mb Tr4 + (s−m2

b) Tr3) +Bu=1 Tr3

}
, (2.24)

where Bu=1 is the limiting value of B for u→ 1
Definitions and explicit expressions for the one-loop integrals A, B, C etc. are given in

App. A.

2.3 Higher Twist Contributions

Higher twist terms generically refer to contributions to the light-cone expansion of the cor-
relation functions (2.2) and (2.3) which are suppressed by powers of 1/(m2

b − p
2
B). In the

sum rules, such corrections are suppressed by powers of the Borel parameter. Higher twist
corrections are usually divided into “kinematical”, originating from nonzero mass of the vec-
tor meson, and “dynamical”, related to contributions of higher Fock states and transverse
quark motion. In this paper we take into account both effects to twist 4 accuracy, making
use of the new results on distribution amplitudes of vector mesons reported in [10, 11] and
summarized in App. B.

The calculation is most conveniently done using the background field approach of [19].
The diagrams of the type shown in Fig. 2a are taken into account within this method by
the expansion of the nonlocal quark-antiquark operator in powers of the deviation from the
light-cone and give rise to contributions of two-particle distribution amplitudes of higher
twist, see Eqs. (B.12) and (B.27). The contribution of the gluon emission from heavy quark
is calculated using the light-cone expansion of the quark propagator [19, 20]:

〈0|T{b(x)b̄(0)}|0〉 =

9



= iSb(x)− ig

∫
d4k

(2π)4
e−ikx

∫ 1

0

dv

[
1

2

/k +mb

(m2
b − k

2)2
Gµν(vx)σµν +

v

m2
b − k

2
xµG

µν(vx)γν

]
,(2.25)

where Sb(x) is the free quark propagator. As in the case of radiative corrections, our strategy
in this work is to derive the most general expression for all form factors in question, suitable
for implementation in analytic/numerical calculations using mathematica. We obtain

CF =
1

4

∫ 1

0

du

{
ifVmV

[(
Φ

(i)
‖ (u)ε∗α

∂

∂Qα

+
ε∗q

pq

1

16
m2
VA(u)

∂2

∂Qρ∂Qρ

)
Tr(ΓSb(Q)γ5/p)

− g(v)
⊥ (u)Tr(ΓSb(Q)γ5/ε

∗)−
ε∗q

pq

1

2
m2
VC(i)(u)

∂

∂Qα

Tr(ΓSb(Q)γ5γα)

−
i

4
εαβγδε

∗βpγg
(a)
⊥ (u)

∂

∂Qδ

Tr(ΓSb(Q)γα)

]
− fTV

[(
φ⊥(u)−

1

16
m2
VAT (u)

∂2

∂Qρ∂Qρ

)

× Tr(ΓSb(Q)γ5σαβ)ε
∗αpβ −

ε∗q

pq
m2
VB

(i)
T (u)pα

∂

∂Qβ

Tr(ΓSb(Q)γ5σαβ)

−
i

2

(
1−

mq +mq̄

mV

fV

fTV

)
m2
V h

(s)
‖ (u)ε∗α

∂

∂Qα

Tr(ΓSb(Q)γ5)

−
1

2
m2
VC

(i)
T (u)ε∗α

∂

∂Qβ

Tr(ΓSb(Q)γ5σαβ)

]}

+
i

4
fVmV

∫ 1

0

dv

∫
Dα

[
m2
b − (q + (α1 + vα3)p)

2
]−2
[
2v(pq) (A(α) + V(α))Tr(Γ/ε ∗/pγ5)

+m2
V

ε∗q

pq

(
2Φ(α) + Ψ(α)− 2Φ̃(α)− Ψ̃(α)

)
Tr(Γ(/q +mb)/pγ5)

+4m2
V v(ε

∗q)
(
Φ̃(α)− Φ(α)

)
Tr(Γγ5)−m

2
V v

ε∗q

pq
Ψ(α)Tr(Γ/q /pγ5)

]

+
i

4
fTVm

2
V

∫ 1

0

dv

∫
Dα
[
m2
b − (q + (α1 + vα3)p)

2
]−2
[
− 2v(ε∗q)T (α)Tr(Γ/pγ5)

+
(
S(α)− S̃(α) + T

(4)
1 (α)− T (4)

2 (α) + T
(4)
3 (α)− T (4)

4 (α)
)
Tr(Γ(/q +mb)/ε

∗/pγ5)

+ 2v
(
T

(4)
2 (α)− T (4)

4 (α)− S(α)− S̃(α)
) [

(ε∗q)Tr(Γ/pγ5)− (pq)Tr(Γ/ε ∗γ5)
]

+ 2v
(
T

(4)
3 (α)− T (4)

4 (α)− S̃(α)
)
Tr(Γ/q /p/ε ∗γ5)

]
, (2.26)
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where Q = q + ūp and CF ∈ {Γ0,±,V ,A,B, C}. Definitions and explicit expressions for the
numerous distribution amplitudes are collected in App. B3. In addition, we use the notation

Φ
(i)
‖ (u) =

∫ u

0

dv
(
φ‖(v)− g

(v)
⊥ (v)

)
. (2.27)

To leading twist accuracy, our result agrees with the expressions available in the literature,
see [21, 12, 22]4.

3 Results

In this section we present results of the numerical analysis of the light-cone sum rules for
the form factors defined in (1.1) and (1.3) for B and Bs decays. The sum rules depend
on several parameters, those needed to describe the B meson on the one hand and those
describing the vector meson on the other hand. The former ones are essentially fB (fBs), the
leptonic decay constant defined in (2.1), the b quark mass mb, the continuum threshold s0

introduced in (2.8) and the Borel parameter M2 mentioned in Sec. 2.1. Lacking experimental
determination of fB and fBs , we determine their values from two-point QCD sum rules to
O(αs) accuracy (see e.g. [13]), which fixes s0 depending on mb and also the “window” in
M2, in which the sum rules are evaluated. We then use the same values for mb, s0 and M2

in both the QCD sum rule for fB and the light-cone sum rules for the form factors,5 which
helps to reduce the systematic uncertainty of the approach. The corresponding parameter
sets and results for the decay constants are given in Tab. 1. The question of the value of
the b quark mass has attracted considerable attention recently; following these developments
[23], we use the value mb = (4.8 ± 0.1) GeV. Our results for fB agree well with new lattice
determinations [24].

The parameters of light mesons are collected in App. B, Tabs. A and B. These parameters
are evaluated at the factorization scale µ2

IR = m2
B − m2

b = 4.8 GeV2, which is the typical
virtuality of the virtual b quark in the process. The penguin form factors also depend on
the ultra-violet renormalization scale of the effective weak Hamiltonian, for which we choose
µUV = mb. Using the central values of all parameters, we obtain the form factors plotted
in Figs. 3 and 4. For their representation in algebraic form, a parametrization in terms of
three parameters proves convenient:

F (q2) =
F (0)

1− aF
q2

m2
B

+ bF

(
q2

m2
B

)2 , (3.1)

3Despite appearance, the number of nonperturbative parameters in the description of higher-twist distri-
butions is small since they are related by exact equations of motion, see [10, 11] and App. B.

4The sum rule for T1 given in [21, 22] misses a contribution of Φ‖; this term can formally be viewed as
part of the kinematic higher twist correction which is included in [21, 22] only partially.

5To be precise, the expansion parameter of the light-cone correlation function is uM2 rather than M2.
Because of this, in the light-cone sum rules we use an “effective” Borel parameter M2

eff defined by 〈u〉M2
eff ≡

M2
2pt, M

2
2pt being the Borel parameter used in the QCD sum rules for fB.
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mb [GeV] 4.7 4.8 4.9

s0 [GeV2] 34.5± 0.5 33.5± 0.5 32.5± 0.5

fB [MeV] 177± 5 150± 5 123± 5

s0 [GeV2] 35.5± 0.5 34.5± 0.5 33.5± 0.5

fBs [MeV] 191± 5 162± 5 135± 5

Table 1: Values for fB and fBs from QCD sum rules in dependence on the b quark mass.
The Borel parameter window is M2 = (4− 8) GeV2.

with the fit parameters F (0), aF and bF . Here mB is the mass of the relevant B meson, i.e.
mBu,d for Bu,d decays and mBs for Bs decays. This parametrization describes all 28 form
factors to an accuracy of 1.8% or better for 0 ≤ q2 ≤ 17 GeV2.

Let us now discuss the dependence of the results on the input parameters and approxi-
mations involved. First we note that the net impact of radiative corrections is very small at
small q2 and at most 5% at q2 = 0. Their effect increases, however, at large q2 and leads to
a decrease of the form factors A2 and T3 at q2 = 17 GeV2 by 20% with respect to their tree-
level values; the impact on the other form factors stays in the 5% range. The small effect of
radiative corrections was anticipated in the tree-level analysis of Ref. [12] and also observed
in the calculation of O(αs) corrections for B → pseudoscalar decays [8]. It is due to the
fact that the biggest contribution to radiative corrections (in Feynman gauge) comes from
the B vertex correction diagram, which enters both the calculation of fB and the light-cone
correlation functions and cancels in the ratio that gives the form factors. Although literally
we only calculated radiative corrections to the leading twist contribution to the light-cone
expansion, it is unlikely that yet unknown corrections to the higher-twist terms could change
this pattern dramatically. We thus believe that radiative corrections are under good control.

The next question concerns the convergence of the light-cone expansion. The higher-twist
terms have several sources: some depend on the intrinsic properties of the multiparticle Fock-
states of the vector meson and some appear as meson mass corrections to the two-particle
valence state. The latter ones, described in terms of the same parameters as the leading twist
distribution amplitudes, turn out to be numerically dominant, which is very welcome as the
matrix elements describing the multiparticle states are only poorly known. To be specific,
putting all intrinsic higher-twist parameters ζ of Tab. B to zero, the form factors change by
at most 3%. Hence, we conclude that the light-cone expansion is under good control as well.

The dependence of form factors on the sum rule parameters is small, too. Changing mb

by ±100 MeV makes a 5% effect at most and is most pronounced at large q2; at q2 = 0
it is a 0.8% effect. This result means that, like for radiative corrections, there is a strong
cancellation of mb dependence in the ratio of the light-cone correlation function and fB.
The same statement holds for the dependence on the continuum threshold within the limits
specified in Tab. 1. For the dependence on the Borel parameter we find an ∼ 7% effect,

12
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Figure 3: Light-cone sum rule results for Bu,d → vector meson form factors. Renormalization
scale for Ti is µ = mb = 4.8 GeV. Further parameters: mb = 4.8 GeV, s0 = 33.5 GeV2,
M2 = 6 GeV2.
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Figure 4: Light-cone sum rule results for Bs → vector meson form factors. Renormalization
scale for Ti is µ = mb = 4.8 GeV. Further parameters: mb = 4.8 GeV, s0 = 34.5 GeV2,
M2 = 6 GeV2.
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F (0) aF bF F (0) aF bF

Aρ1 0.261 0.29 −0.415 0.337 0.60 −0.023 AK
∗

1

Aρ2 0.223 0.93 −0.092 0.283 1.18 0.281 AK
∗

2

Aρ0 0.372 1.40 0.437 0.470 1.55 0.680 AK
∗

0

V ρ 0.338 1.37 0.315 0.458 1.55 0.575 V K∗

T ρ1 0.285 1.41 0.361 0.379 1.59 0.615 TK
∗

1

T ρ2 0.285 0.28 −0.500 0.379 0.49 −0.241 TK
∗

2

T ρ3 0.202 1.06 −0.076 0.261 1.20 0.098 TK
∗

3

Table 2: Bu,d decay form factors in a three parameter fit. Renormalization scale for Ti is
µ = mb = 4.8 GeV. The theoretical uncertainty is estimated as 15%.

F (0) aF bF F (0) aF bF

AK
∗

1 0.190 1.02 −0.037 0.296 0.87 −0.061 Aφ1

AK
∗

2 0.164 1.77 0.729 0.255 1.55 0.513 Aφ2

AK
∗

0 0.254 1.87 0.887 0.382 1.77 0.856 Aφ0

V K∗ 0.262 1.89 0.846 0.433 1.75 0.736 V φ

TK
∗

1 0.219 1.93 0.904 0.348 1.82 0.825 T φ1

TK
∗

2 0.219 0.85 −0.271 0.348 0.70 −0.315 T φ2

TK
∗

3 0.161 1.69 0.579 0.254 1.52 0.377 T φ3

Table 3: Bs decay form factors in a three parameter fit. Renormalization scale for Ti is
µ = mb = 4.8 GeV. The theoretical uncertainty is estimated as 15%.

15



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16
q2[GeV2]

A1
ρ

asymptotic
term in a2
term in a4

twist 3 and 4 terms

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16
q2[GeV2]

A1
K*

asymptotic
term in a1
term in a2

twist 3 and 4 terms

Figure 5: Separate contributions to the form factors Aρ1 and AK
∗

1 .

increasing with q2, which again reminds us of the fact that the light-cone sum rules become
less reliable for large q2.

Overall normalization of the form factors depends on the vector meson decay constants
fV and fTV , the former one determined experimentally, the latter one calculated from QCD
sum rules (see Tab. A). The corresponding uncertainty is at most 3%.

Adding up all the errors in quadrature, we obtain an uncertainty of the form factors of
ca. 11%.

The shape of leading twist distribution amplitudes, characterized by the the Gegenbauer
moments a

‖,⊥
2,ρ for the ρ and a

‖,⊥
1,K∗, a

‖,⊥
2,K∗ for the K∗, affects most significanly the slope of

the form factors and is illustrated in Fig. 5 on two examples: Aρ1 and AK
∗

1 . The curves
labeled “asymptotic” designate the form factors as obtained by putting the ai to zero in
Eqs. (B.15) and (B.30); the corresponding meson distribution amplitudes are completely
model-independent and dictated by perturbative QCD. The curves labeled “ai” show cor-
rections to this limit which take into account nonperturbative corrections to the distribution
amplitudes; for illustration we assumed in this figure the value a⊥4,ρ = a

‖
4,ρ = 0.1 at µ = 1 GeV

as a ball-park estimate for potential higher-order terms; this contribution is not included in
the final results. The curves labeled “twist 3 and 4 terms” show the contribution induced
by the ζs in Tab. B and for the K∗ also contain terms explicitly proportional to the strange
quark mass. It is obvious that the “asymptotic” contribution grossly dominates, and the re-
maining terms only add marginal corrections. It is also obvious that the twist 3 and 4 terms
do not have much overall influence, whereas the contribution in a2 (for Aρ1) and a1 (for AK

∗

1 )
tend to slow down the increase of the form factors as functions of q2. All involved param-
eters (except for the couplings fV and fTV ) come with considerable theoretical uncertainty.
However, the only important error is that in a2,ρ and a1,K∗. Taken together, they contribute
of order 10% to the uncertainty in our predictions. Adding this number (in quadrature) to
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F A1 A2 V T1 T3

FK∗(0)/F ρ(0) 1.30± 0.13 1.28± 0.13 1.36± 0.14 1.33± 0.13 1.29± 0.13

Table 4: Size of SU(3) breaking for Bu,d decays into ρ or K∗.

the ∼ 11% error from other sources, we end up with a total uncertainty of light-cone sum
rule preductions of order ∼ 15%, which is our final error estimate. An improvement is to be
expected if future lattice calculations achieve an accuracy better than that quoted in Tab. A.

A few remarks are in order on the pattern of SU(3) symmetry breaking. It enters our
calculation at the following places:

• difference in decay constants: fK∗/fρ ≈ fTK∗/f
T
ρ = 1.14, fBs/fB = 1.08;

• different meson masses and continuum thresholds s0 (Tab. 1);

• different vector meson distribution amplitudes (Tab. A).

Fig. 5 also illustrates the relative size of these effects: the difference between the “asymptotic”
curves is almost exclusively due to the difference in fρ and fK∗ and makes a 17% effect. For
K∗, the a2 are small, whereas the a1 are large and thus increase the form factor. For Bs → K̄∗

decays, the sign in a1 is negative and fBs is larger than fB, so that we observe considerably
smaller form factors, see Tab. 3. The total SU(3) breaking corrections amount to ≈ 35%,
half of which comes from the decay constants and half from the bigger momentum carried
by the s quark in the strange hadron. Specifically, for Bu,d decay form factors at q2 = 0 we
obtain the values given in Tab. 4.

In Fig. 6 we present a comparison of our results for B → ρ semileptonic and rare radia-
tive form factors with the lattice calculations by the UKQCD collaboration [25, 26]. The
agreement is very good. We wish to emphasize that the light-cone sum rule approach is
theoretically more sound at small values of q2, and in this sense is complementary to lattice
techniques which work best in the large q2 region. A similar comparison for B → K∗ decays
is presented in Fig. 7. The agreement is somewhat worse in this case; the lattice data favor
smaller SU(3) breaking effects. This question deserves further study.

Finally, in Tab. 5 we present a comparison of the results of this work for the form factor
values at q2 = 0 with earlier sum rule calculations and the lattice results obtained using the
light-cone sum rule constraints.

4 The Heavy Quark Limit

The behaviour of B decay form factors in the limit mb →∞ is interesting for various reasons.
This limit was already discussed in some detail in Refs. [21, 12, 8] so that in this paper we
only summarize the main points.
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Figure 6: Comparison of the light-cone sum rule predictions for the B → ρ form factors with
lattice calculations [25, 26]. Lattice errors are statistical only. The dashed curves show the
15% uncertainty range.
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Figure 7: Comparison of the light-cone sum rule predictions for the B → K∗ form factors
with lattice calculations [25, 26]. Lattice errors are statistical only. The dashed curves show
the 15% uncertainty range.
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this work [21, 12] [22] [26](lattice [27]
(LCSR) (LCSR) (LCSR) +LCSR) (3ptSR)

Aρ1(0) 0.26± 0.04 0.27± 0.05 0.30± 0.05 0.27+0.05
−0.04 0.5± 0.1

Aρ2(0) 0.22± 0.03 0.28± 0.05 0.33± 0.05 0.26+0.05
−0.03 0.4± 0.2

V (0)ρ 0.34± 0.05 0.35± 0.07 0.37± 0.07 0.35+0.06
−0.05 0.6± 0.2

T ρ1 (0) 0.29± 0.04 0.24± 0.07 0.30± 0.10 − −

T ρ3 (0) 0.20± 0.03 − 0.20± 0.10 − −

AK
∗

1 (0) 0.34± 0.05 0.32± 0.06 0.36± 0.05 0.29+0.04
−0.03 0.37± 0.03

AK
∗

2 (0) 0.28± 0.04 − 0.40± 0.05 − 0.40± 0.03

V K∗(0) 0.46± 0.07 0.38± 0.08 0.45± 0.08 − 0.47± 0.03

TK
∗

1 (0) 0.38± 0.06 0.32± 0.05 0.34± 0.10 0.32+0.04
−0.02 0.38± 0.06

TK
∗

3 (0) 0.26± 0.04 − 0.26± 0.10 − 0.6

Table 5: Comparison of results from different works on form factors at q2 = 0.

The first question concerns the scaling behavior of form factors as functions of the b
quark mass. The behavior depends on the momentum transfer and is different for small and
large recoil. For q2 → 0, or, more precisely, for m2

b−q
2 ∼ O(m2

b), all form factors in question

scale as ∼ 1/m
3/2
b . This behavior can be proven in perturbative QCD taking into account

Sudakov suppression of large transverse distances, but is not restricted to this regime and
extends to “soft” terms as well [12, 6]. For m2

b − q
2 ∼ O(mb), on the other hand, the form

factors obtained from light-cone sum rules satisfy the scaling behavior predicted by Heavy
Quark Effective Theory (HQET) [28]. For realistic values of the b quark mass, these two
regimes are not well separated one from another; therefore large corrections to asymptotic
scaling are to be expected. Some estimates of preasymptotic corrections are presented in
Refs. [21, 12]. They have to be considered as indicative only. We do not attempt to further
quantify preasymptotic corrections in this work.

The second question concerns possible relations between different form factors in the
heavy quark limit. Heavy quark symmetry implies exact relations between semileptonic
and penguin form factors at small recoil and renormalization scale µ = mb [28], which can
conveniently be written using the penguin form factor definitions in Eq. (2.13):

A(q2) +B(q2) =
2mB

mB +mV

V (q2), (4.1)

A(q2)− B(q2) =
(mB +mV )

mB

A1(q
2)−

m2
B − q

2 +m2
V

mB

V (q2)

mB +mV

, (4.2)
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C(q2) = −
mB −mV

mB

V (q2) +
mV (m2

B −m
2
V )

mBq2

[
A0(q

2)− A3(q
2)
]

+
mB −mV

2mB

A2(q
2). (4.3)

Writing the relations in this form emphasizes their different behavior in the heavy quark
limit: At small recoil both sides of Eqs. (4.1) and (4.3) are of order

√
mb, while Eq. (4.2)

relates combinations of form factors, which are of order 1/
√
mb. The numerical comparison

for B → ρ transitions is presented in Fig. 8. We note that (a) Eq. (4.1) is satisfied with
high accuracy, (b) the relation (4.2) is violated. However, both sides are numerically small
compared to Eq. (4.1), in agreement with the expected 1/mb suppression. (c) The relation
(4.3) is satisfied very well at q2 → 0 and holds with 20% accuracy at large q2; both sides turn
out to be small at large recoil, which implies significant cancellations between the terms on
the right-hand side.

For phenomenological applications it is more appropriate to rewrite the Isgur-Wise rela-
tions (4.1)–(4.3) in terms of the form factors defined in (1.3):

T1(q
2) =

m2
B + q2 −m2

V

2mB

V (q2)

mB +mV

+
mB +mV

2mB

A1(q
2), (4.4)

m2
B −m

2
V

q2

[
T1(q

2)− T2(q
2)
]

=
3m2

B − q
2 +m2

V

2mB

V (q2)

mB +mV

−
mB +mV

2mB

A1(q
2), (4.5)

T3(q
2) =

m2
B − q

2 + 3m2
V

2mB

V (q2)

mB +mV

+
m2
B −m

2
V

mBq2
mVA0(q

2)

−
m2
B + q2 −m2

V

2mBq2

[
(mB +mV )A1(q

2)− (mB −mV )A2(q
2)
]
.(4.6)

Note that such a rewriting mixes terms of different order in 1/mb in the small recoil region,
and in this sense is not fully consistent with the derivation in [28]. It can be justified,
however, by observing that the hierarchy of contributions is different at large recoil and
all the terms become formally of the same order. The numerical comparison for B → ρ
transitions is presented in Fig. 9. The accuracy proves to be excellent for the relation (4.4),
which is observed to within 3% accuracy, and good for (4.5) with deviations of at most 8%.
Relation (4.6), however, is violated by 20% for q2 > 15 GeV2. Since fidelity of the sum rules
worsens in the high-q2 region, it is not clear whether this disagreement indicates a genuine
1/mb correction or is an artifact. Our results reinforce an earlier observation in [21] that
the relation in (4.4) is satisfied within ≈ (5 − 7)% in the whole region of q2 to leading-
twist accuracy in the light-cone sum rule approach, and strongly support the conjecture
of [29] about the validity of heavy quark symmetry relations in the region of small q2 in
heavy-to-light transitions.
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5 Conclusions

We have given a complete analysis of B decay form factors to light vector mesons in the light-
cone sum rule approach. The principal new contribution of this work are radiative corrections
and higher-twist corrections to the sum rules, which are calculated for the first time. We
observe that the light-cone sum rules turn out to be very robust against corrections in the
light-cone expansion, which numerical impact proves to be minimal. Radiative corrections
seem to be well under control. In cases that higher-twist corrections are important, they
are dominated by meson mass effects which do not involve free parameters. The theoretical
accuracy of the approach is thus restricted entirely by the duality approximation for the
extraction of the B meson state from the continuum and contributions of higher resonances.
The usual “educated guess” is that accuracy of such an extraction is of order 10% which
provides an irreducible error. Effects of yet higher radiative corrections and yet higher twists
are likely to be much less; therefore, the sum rules derived in this work cannot be improved
significantly. The numerical analysis, however, can and should eventually be updated, once
estimates for the meson distributions amplitudes, b quark mass and fB become more precise.
In particular, lattice calculations of the tensor couplings fTV and the parameters a

‖
1,2, a

⊥
1,2 for

meson distribution amplitudes would be most welcome.
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A One-loop Integrals

For the calculation of radiative corrections, we need the following integrals:∫
dDk

(2π)D
kα

(k + up)2k2[(q − k)2 −m2]
= Aupα +Bqα, (A.1)

∫
dDk

(2π)D
kα(q − k)β

(k + up)2k2[(q − k)2 −m2]
= Cgαβ +Dqαqβ + Eqαupβ + Fupαqβ + . . . ,(A.2)

∫
dDk

(2π)D
kαkβ

k2(k − up)2(k + ūp)2[(up+ q − k)2 −m2]
= Hgαβ + Iqαqβ + . . . , (A.3)

∫
dDk

(2π)D
1

k2[(up+ q − k)2 −m2]
= Y, (A.4)
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∫
dDk

(2π)D
kα

k2[(up+ q − k)2 −m2]
= Z (q + up)α, (A.5)

where the dots stand for terms which are irrelevant for the present calculation. The functions
Ā, B̄, C̄ are obtained from A, B and C by the replacement

u→ ū; q → −pB . (A.6)

We shall use the notations

s ≡ m2 − up2
B − ūq

2,
1

ε̂
=

1

ε
− γE + ln 4π. (A.7)

with D = 4− 2ε. In order to perform Borel transformation and continuum subtraction, the
following spectral representations for the above integrals prove the most convenient:

A =
i

(4π)2

∞∫
m2

dt

t− ξ

1

(t− q2)2

{
(m2 − q2)

[
−

1

ε̂
− 1 + log

(t−m2)2

µ2t

]
+ t− q2 −

q2(m2 − t)

t

}

u(p2
B − q

2)A =
i

(4π)2

{
1

ε̂
+ 2− log

s

µ2
+

∫ ∞
m2

dt

t− ξ

×
1

t− q2

[
(m2 − q2)

(
−

1

ε̂
− 1 + log

(m2 − t)2

µ2t

)
−
q2

t
(m2 − t)

] }

ū(q2 − p2
B)Ā =

i

(4π)2

{
1

ε̂
+ 2− log

s

µ2
+

∫ ∞
m2

dt

t− ξ

×

[(
1 +

m2 − t

t− p2
B

)(
−

1

ε̂
− 1 + log

(m2 − t)2

µ2t

)
+

(
1

t
−

1

t− p2
B

)
(m2 − t))

] }

B =
i

(4π)2

∫ ∞
m2

dt

t− ξ

m2 − t

t(t− q2)

B̄ =
i

(4π)2

1

ū

∫ ∞
m2

dt (m2 − t)

t(t− q2)

(
1

t− p2
B

−
u

t− ξ

)

C =
i

(4π)2

1

4

{
−

1

ε̂
− 3 + log

m2 − ξ

µ2
+

∫ ∞
m2

dt

t− ξ

(2m2 − q2)t−m4

t(t− q2)

}

C̄ =
i

(4π)2

1

4

{
−

1

ε̂
− 3 + log

s

µ2
+

∫ ∞
m2

dt

[
1

t− ξ
−

1

ū

(m2 − t)2

t(t− q2)

(
1

t− p2
B

−
u

t− ξ

)]}

D =
i

(4π)2

1

2

∫ ∞
m2

dt

t− ξ

m4 − t2

t2(t− q2)
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E =
i

(4π)2

1

2u(p2
B − q

2)
+

1

u(p2
B − q

2)
(m2B − q2D)

F = A+ E

H =
i

(4π)2

1

2

∫ ∞
m2

dt

{
1

t− ξ

[
1

ε̂
+ 2− log

(t−m2)2

tµ2

] [
u(m2 − q2)

(t− q2)2
+
ū(m2 − t)

(t− p2
B)2

+
ū

t− p2
B

]

−
1

(t− p2
B)(t− q2)

t+m2

t

}

I =
i

(4π)2

∫ ∞
m2

dt

{
m2 − t

(t− ξ)t

[
u

(t− q2)2
+

ū

(t− p2
B)2

]
+

m2

t2(t− p2
B)(t− q2)

}

Y =
i

(4π)2

(
1

ε̂
− ln

s

µ2
+ 2−

m2

m2 − s
ln
m2

s

)

Z =
1

2

i

(4π)2

(
1

ε̂
− ln

m2

µ2
−

m2

m2 − s
+ 2−

s2

(m2 − s)2
ln

s

m2

)
. (A.8)

B Summary of Meson Distribution Amplitudes

The expressions collected in this appendix are principally the result of recent studies reported
in Refs. [9, 10, 11]. We use a simplified version of the set of twist 4 distributions [11] taking
into account contributions of the lowest conformal partial waves only, and for consistency
discard contributions of higher partial waves in twist 3 distributions in cases that they enter
physical amplitudes multiplied by additional powers of mρ. The SU(3) breaking effects are
taken into account in leading twist distributions and partially for twist 3, but neglected
for twist 4. Explicit expressions are given below for a (charged) ρ meson. Distribution
amplitudes for other vector mesons are obtained by trivial substitutions.

Throughout this appendix we denote the meson momentum Pµ and introduce the light-
like vectors p and z such that

pµ = Pµ −
1

2
zµ
m2
ρ

pz
. (B.1)

The meson polarization vector e(λ)µ is decomposed in projections onto the two light-like
vectors and the orthogonal plane as

e(λ)µ =
(e(λ) · z)

pz

(
pµ −

m2
ρ

2pz
zµ

)
+ e

(λ)
⊥µ. (B.2)
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B.1 Chiral-even distributions

Two-particle quark-antiquark distribution amplitudes are defined as matrix elements of non-
local operators on the light-cone [10]

〈0|ū(z)γµd(−z)|ρ
−(P, λ)〉 = fρmρ

[
pµ
e(λ) · z

p · z

∫ 1

0

du eiξp·zφ‖(u, µ
2) + e

(λ)
⊥µ

∫ 1

0

du eiξp·zg
(v)
⊥ (u, µ2)

−
1

2
zµ
e(λ) · z

(p · z)2
m2
ρ

∫ 1

0

du eiξp·zg3(u, µ
2)

]
(B.3)

and

〈0|ū(z)γµγ5d(−z)|ρ
−(P, λ)〉 =

1

2

(
fρ − f

T
ρ

mu +md

mρ

)
mρε

ναβ
µ e

(λ)
⊥νpαzβ

∫ 1

0

du eiξp·zg
(a)
⊥ (u, µ2).

(B.4)
For brevity, here and below we do not show the gauge factors in between the quark and the
antiquark field and use the shorthand notation

ξ = u− (1− u) = 2u− 1.

The vector and tensor decay constants fρ and fTρ are defined as usually as

〈0|ū(0)γµd(0)|ρ−(P, λ)〉 = fρmρe
(λ)
µ , (B.5)

〈0|ū(0)σµνd(0)|ρ−(P, λ)〉 = ifTρ (e(λ)µ Pν − e
(λ)
ν Pµ). (B.6)

The distribution amplitude φ‖ is of twist 2, g
(v)
⊥ and g

(a)
⊥ are twist 3 and g3 is twist 4. All

four functions φ = {φ‖, g
(v)
⊥ , g

(a)
⊥ , g3} are normalized as∫ 1

0

du φ(u) = 1, (B.7)

which can be checked by comparing both sides of the defining equations in the limit zµ → 0
and using the equations of motion. We keep the (tiny) corrections proportional to the u and
d quark masses mu and md to indicate the SU(3) breaking corrections for K∗ and φ mesons.

In addition, we have to define three-particle distributions

〈0|ū(z)gG̃µνγαγ5d(−z)|ρ
−(P, λ)〉 = fρmρpα[pνe

(λ)
⊥µ − pµe

(λ)
⊥ν ]A(v, pz)

+ fρm
3
ρ

e(λ) · z

pz
[pµg

⊥
αν − pνg

⊥
αµ]Φ̃(v, pz)

+ fρm
3
ρ

e(λ) · z

(pz)2
pα[pµzν − pνzµ]Ψ̃(v, pz) (B.8)
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〈0|ū(z)gGµνiγαd(−z)|ρ
−(P )〉 = fρmρpα[pνe

(λ)
⊥µ − pµe

(λ)
⊥νV(v, pz)

+ fρm
3
ρ

e(λ) · z

pz
[pµg

⊥
αν − pνg

⊥
αµ]Φ(v, pz)

+ fρm
3
ρ

e(λ) · z

(pz)2
pα[pµzν − pνzµ]Ψ(v, pz) (B.9)

where

A(v, pz) =

∫
Dαe−ipz(αu−αd+vαg)A(α), (B.10)

etc., and α is the set of three momentum fractions α = {αd, αu, αg}. The integration measure
is defined as ∫

Dα ≡

∫ 1

0

dαd

∫ 1

0

dαu

∫ 1

0

dαg δ(1−
∑

αi). (B.11)

The distribution amplitudes V and A are of twist 3 while the rest is twist 4 and we have not
shown further Lorentz structures corresponding to twist 5 contributions6.

Calculation of exclusive amplitudes involving a large momentum transfer reduces to eval-
uation of meson-to-vacuum transition matrix elements of nonlocal operators which can be
expanded in powers of the deviation from the light-cone (see text). To twist 4 accuracy one
can use the expression for the axial-vector matrix element in (B.4) as it stands, replacing the
light-cone vector zµ by the actual quark-antiquark separation xµ. For the vector operator,
the light-cone expansion to the twist 4 accuracy reads:

〈0|ū(x)γµd(−x)|ρ
−(P, λ)〉 = fρmρ

{
e(λ)x

Px

∫ 1

0

du eiξPx
[
φ‖(u, µ) +

m2
ρx

2

4
A(u, µ)

]

+

(
e(λ)µ − Pµ

e(λ)x

Px

)∫ 1

0

du eiξPx g
(v)
⊥ (u, µ)

−
1

2
xµ

e(λ)x

(Px)2
m2
ρ

∫ 1

0

du eiξPxC(u, µ)

}
(B.12)

where
C(u) = g3(u) + φ‖(u)− 2g

(v)
⊥ (u) (B.13)

and A(u) can be related to integrals of three-particle distributions using equations of motion.
All distribution functions in (B.12) are assumed to be normalized at the scale µ2 ∼ x−2 (to
leading logarithmic accuracy). In practical calculations it is sometimes convenient to use
integrated distributions

C(i)(u) = −

∫ u

0

dvC(v), C(ii)(u) = −

∫ u

0

dvC(i)(v). (B.14)

6We use a different normalization of three-particle twist 3 distributions compared to [10].
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For the leading twist 2 distribution amplitude φ‖ we use

φ‖(u) = 6uū

[
1 + 3a

‖
1 ξ + a

‖
2

3

2
(5ξ2 − 1)

]
(B.15)

with parameter values as specified in Tab. A. The expressions for higher-twist distributions
given below correspond to the simplest self-consistent approximation which satisfies the QCD
equations of motion [10, 11]:

• Three-particle distributions of twist 3:

V(α) = 540 ζ3ω
V
3 (αd − αu)αdαuα

2
g, (B.16)

A(α) = 360 ζ3αdαuα
2
g

[
1 + ωA3

1

2
(7αg − 3)]. (B.17)

• Two-particle distributions of twist 3:

g
(a)
⊥ (u) = 6uū

[
1 + a

‖
1ξ +

{
1

4
a
‖
2 +

5

3
ζ3

(
1−

3

16
ωA3 +

9

16
ωV3

)}
(5ξ2 − 1)

]
+ 6 δ̃+ (3uū+ ū ln ū+ u lnu) + 6 δ̃− (ū ln ū− u lnu), (B.18)

g
(v)
⊥ (u) =

3

4
(1 + ξ2) + a

‖
1

3

2
ξ3 +

(
3

7
a
‖
2 + 5ζ3

)(
3ξ2 − 1

)
+

[
9

112
a
‖
2 +

15

64
ζ3

(
3ωV3 − ω

A
3

)] (
3− 30ξ2 + 35ξ4

)
+

3

2
δ̃+ (2 + lnu+ ln ū) +

3

2
δ̃− (2ξ + ln ū− lnu), (B.19)

• Three-particle distributions of twist 4:

Φ̃(α) =
[
−

1

3
ζ3 +

1

3
ζ4

]
30(1− αg)α

2
g,

Φ(α) =
[
−

1

3
ζ3 +

1

3
ζ4

]
30(αu − αd)α

2
g,

Ψ̃(α) =
[2
3
ζ3 +

1

3
ζ4

]
120αuαdαg,

Ψ(α) = 0. (B.20)
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• Two-particle distributions of twist 4:

A(u) =

[
4

5
+

20

9
ζ4 +

8

9
ζ3

]
30u2(1− u)2,

g3(u) = 6u(1− u) +

[
10

3
ζ4 −

20

3
ζ3

]
(1− 3ξ2),

C(u) =

[
3

2
+

10

3
ζ4 +

10

3
ζ3

]
(1− 3ξ2),

C(ii)(u) =

[
3

2
+

10

3
ζ4 +

10

3
ζ3

]
u2(1− u)2, (B.21)

where the dimensionless couplings ζ3 and ζ4 are defined as local matrix elements

〈0|ūgG̃µνγαγ5d|ρ
−(P, λ)〉 = fρmρζ3

[
e(λ)µ

(
PαPν −

1

3
m2
ρ gαν

)
− e(λ)ν

(
PαPµ −

1

3
m2
ρ gαµ

)]

+
1

3
fρm

3
ρζ4

[
e(λ)µ gαν − e

(λ)
ν gαµ

]
(B.22)

and have been estimated from QCD sum rules [30, 31]. The terms in δ± and δ̃± specify
quark-mass corrections in twist 3 distributions induced by the equations of motion. The
numerical values of these and other coefficients are listed in Tabs. A and B7. Note that
we neglect SU(3) breaking effects in twist 4 distributions and in gluonic parts of twist 3
distributions.

B.2 Chiral-odd distributions

There exist four different two-particle chiral-odd distributions [10] defined as

〈0|ū(z)σµνd(−z)|ρ
−(P, λ)〉 = ifTρ

[
(e

(λ)
⊥µpν − e

(λ)
⊥νpµ)

∫ 1

0

du eiξp·zφ⊥(u, µ2)

+ (pµzν − pνzµ)
e(λ) · z

(p · z)2
m2
ρ

∫ 1

0

du eiξp·zh
(t)
‖ (u, µ2)

+
1

2
(e

(λ)
⊥µzν − e

(λ)
⊥νzµ)

m2
ρ

p · z

∫ 1

0

du eiξp·zh3(u, µ
2)

]
, (B.23)

〈0|ū(z)d(−z)|ρ−(P, λ)〉 = −i

(
fTρ − fρ

mu +md

mρ

)
(e(λ) · z)m2

ρ

∫ 1

0

du eiξp·zh
(s)
‖ (u, µ2). (B.24)

7In the notations of Ref. [10], ωA1,0 ≡ ω
A
3 , ζA3 ≡ ζ3 and ζV3 ≡ (3/28)ζ3ω

V
3 .
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The distribution amplitude φ⊥ is twist 2, h
(s)
‖ and h

(t)
‖ are twist 3 and h3 is twist 4. All four

functions φ = {φ⊥, h
(s)
‖ , h

(t)
‖ , h3} are normalized to

∫ 1

0
du φ(u) = 1.

Three-particle chiral-odd distributions are defined to twist 4 accuracy as

〈0|ū(z)σαβgGµν(vz)d(−z)|ρ
−(P, λ)〉 =

= fTρ m
3
ρ

e(λ) · z

2(p · z)
[pαpµg

⊥
βν − pβpµg

⊥
αν − pαpνg

⊥
βµ + pβpνg

⊥
αµ]T (v, pz)

+ fTρ m
2
ρ[pαe

(λ)
⊥µg

⊥
βν − pβe

(λ)
⊥µg

⊥
αν − pαe

(λ)
⊥νg

⊥
βµ + pβe

(λ)
⊥νg

⊥
αµ]T

(4)
1 (v, pz)

+ fTρ m
2
ρ[pµe

(λ)
⊥αg

⊥
βν − pµe

(λ)
⊥βg

⊥
αν − pνe

(λ)
⊥αg

⊥
βµ + pνe

(λ)
⊥βg

⊥
αµ]T

(4)
2 (v, pz)

+
fTρ m

2
ρ

pz
[pαpµe

(λ)
⊥βzν − pβpµe

(λ)
⊥αzν − pαpνe

(λ)
⊥βzµ + pβpνe

(λ)
⊥αzµ]T

(4)
3 (v, pz)

+
fTρ m

2
ρ

pz
[pαpµe

(λ)
⊥νzβ − pβpµe

(λ)
⊥νzα − pαpνe

(λ)
⊥µzβ + pβpνe

(λ)
⊥µzα]T

(4)
4 (v, pz)

+ . . . (B.25)

and

〈0|ū(z)gGµν(vz)d(−z)|ρ
−(P, λ)〉 = ifTρ m

2
ρ[e

(λ)
⊥µpν − e

(λ)
⊥νpµ]S(v, pz),

〈0|ū(z)igG̃µν(vz)γ5d(−z)|ρ
−(P, λ)〉 = ifTρ m

2
ρ[e

(λ)
⊥µpν − e

(λ)
⊥νpµ]S̃(v, pz). (B.26)

Of these seven amplitudes, T is twist 3 and the other six are twist 4.
The light-cone expansion of the nonlocal tensor operator can be written to twist 4 accu-

racy as

〈0|ū(x)σµνd(−x)|ρ
−(P, λ)〉 =

= ifTρ

[
(e(λ)µ Pν − e

(λ)
ν Pµ)

∫ 1

0

du eiξPx
[
φ⊥(u) +

m2
ρx

2

4
AT (u)

]

+ (Pµxν − Pνxµ)
e(λ) · x

(Px)2
m2
ρ

∫ 1

0

du eiξPxBT (u)

+
1

2
(e(λ)µ xν − e

(λ)
ν xµ)

m2
ρ

Px

∫ 1

0

du eiξPxCT (u)

]
, (B.27)

where BT and CT are expressed in terms of the distribution amplitudes defined above as

BT (u) = h
(t)
‖ (u)−

1

2
φ⊥(u)−

1

2
h3(u),
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CT (u) = h3(u)− φ⊥(u), (B.28)

and AT can be related to integrals of three-particle distribution functions using the equations
of motion.

We introduce notations, similar to Eq. (B.14):

B(i)
T (u) = −

∫ u

0

dvBT (v),

C(i)
T (u) = −

∫ u

0

dvCT (v). (B.29)

For the leading twist 2 distribution amplitude φ⊥ we use

φ⊥(u) = 6uū

[
1 + 3a⊥1 ξ + a⊥2

3

2
(5ξ2 − 1)

]
(B.30)

with parameter values as specified in Tab. A. The expressions for higher-twist distributions
given below correspond to the simplest self-consistent approximation which satisfies all QCD
equations of motion [10, 11]:

• Three-particle distribution of twist 3:

T (α) = 540 ζ3ω
T
3 (αd − αu)αdαuα

2
g. (B.31)

• Two-particle distributions of twist 3:

h
(s)
‖ (u) = 6uū

[
1 + a⊥1 ξ +

(
1

4
a⊥2 +

5

8
ζ3ω

T
3

)
(5ξ2 − 1)

]
+ 3 δ+ (3uū+ ū ln ū+ u lnu) + 3 δ− (ū ln ū− u lnu), (B.32)

h
(t)
‖ (u) = 3ξ2 +

3

2
a⊥1 ξ(3ξ

2 − 1) +
3

2
a⊥2 ξ

2 (5ξ2 − 3) +
15

16
ζ3ω

T
3 (3− 30ξ2 + 35ξ4)

+
3

2
δ+ (1 + ξ ln ū/u) +

3

2
δ− ξ (2 + lnu+ ln ū) (B.33)

• Three-particle distributions of twist 4:

T
(4)
1 (α) = T

(4)
3 (α) = 0,

T
(4)
2 (α) = 30ζ̃T4 (αd − αu)α

2
g,

T
(4)
4 (α) = −30ζT4 (αd − αu)α

2
g,

S(α) = 30ζT4 (1− αg)α
2
g,

S̃(α) = 30ζ̃T4 (1− αg)α
2
g. (B.34)
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V ρ± K∗u,d K̄∗u,d φ

fV [MeV] 198± 7 226± 28 226± 28 254± 3

fTV [MeV]
160± 10

152± 9

185± 10

175± 9

185± 10

175± 9

215± 15

204± 14

a
‖
1 0

0.19± 0.05

0.17± 0.04

−0.19± 0.05

−0.17± 0.04
0

a
‖
2

0.18± 0.10

0.16± 0.09

0.06± 0.06

0.05± 0.05

0.06± 0.06

0.05± 0.05
0± 0.1

a⊥1 0
0.20± 0.05

0.18± 0.05

−0.20± 0.05

−0.18± 0.05
0

a⊥2
0.20± 0.10

0.17± 0.09

0.04± 0.04

0.03± 0.03

0.04± 0.04

0.03± 0.03
0± 0.1

δ+ 0
0.24

0.22

0.24

0.22

0.46

0.41

δ− 0
−0.24

−0.22

0.24

0.22
0

δ̃+ 0
0.16

0.13

0.16

0.13

0.33

0.27

δ̃− 0
−0.16

−0.13

0.16

0.13
0

Table A: Masses and couplings of vector meson distribution amplitudes including SU(3)
breaking. In cases that two values are given, the upper one corresponds to the scale µ2 =
1 GeV2 and the lower one to µ2 = m2

B −m
2
b = 4.8 GeV2, respectively. We use ms(1 GeV) =

150 MeV and put the u and d quark mass zero.

ζ3 ωA3 ωV3 ωT3 ζ4 ζT4 ζ̃T4

V
0.032

0.023

−2.1

−1.8

3.8

3.7

7.0

7.5

0.15

0.13

0.10

0.07

−0.10

−0.07

Table B: Couplings for twist 3 and 4 distribution amplitudes for which we do not include
SU(3) breaking. Renormalization scale as in previous table.
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• Two-particle distributions of twist 4:

h3(u) = 6u(1− u) + 5[ζT4 + ζ̃T4 ](1− 3ξ2),

AT (u) = 30u2(1− u)2

[
2

5
+

4

3
ζT4 −

8

3
ζ̃T4

]
. (B.35)

The constants ζT4 and ζ̃T4 are defined as

〈0|ūgGµνd|ρ
−(P, λ)〉 = ifTρ m

3
ρζ
T
4 (e(λ)µ Pν − e

(λ)
ν Pµ),

〈0|ūgG̃µνiγ5d|ρ
−(P, λ)〉 = ifTρ m

3
ρζ̃
T
4 (e(λ)µ Pν − e

(λ)
ν Pµ) (B.36)

and have been estimated in [1] from QCD sum rules:

ζT4 ' −ζ̃
T
4 ' 0.10. (B.37)

Other parameters are given in Tab. A8. Like in the chiral-even case, we neglect SU(3)
breaking corrections in twist 4 distributions.
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