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Abstract

A search for the lightest neutral scalar and neutral pseudoscalar Higgs bosons in the
Minimal Supersymmetric Standard Model is performed on data collected at LEP by the
L3 detector at center-of-mass energies130 GeV ≤

p
s ≤ 183 GeV. No significant excess

of events is observed. Limits on the masses of the lightest neutral and pseudoscalar Higgs
bosons are given as a function of tanβ . Lower mass limits at the 95% confidence level
are set atmh > 70.7 GeV andmA > 71.0 GeV.
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Introduction

In the Standard Model [1] (SM), one Higgs doublet [2] gives rise to one neutral, scalar particle, the
Higgs boson. A lower limit on its mass has been set by L3 at 87.6 GeV, mainly from a search for the
process e+e− →Z∗ →HZ [3]. In contrast to the SM, the Minimal Supersymmetric Standard Model [4]
(MSSM) requires two Higgs doublets, which give rise to a charged scalar pair, two neutral scalars,
the lightest of which is called h, and a neutral pseudoscalar, A. We consider the two production
mechanisms most important at these LEP center-of-mass energies:

e+e− →Z∗ →hZ (1)

e+e− →Z∗ →hA. (2)

The rate for the Higgs-strahlung process (1) is, in general, reduced compared to the similar Standard
Model reaction, but this is compensated by the additional pair-production process (2).

Previous searches for the h and A bosons have been reported by L3 [5] and other experiments [6].
In this letter, we present the results of the search for the production of h and A using a data sample with
an integrated luminosity of 88.3 pb−1collected at center-of-mass energies130 GeV ≤

p
s ≤ 183 GeV.

Data and Monte Carlo Samples

The data were collected using the L3 detector [7] at LEP from 1995 to 1997. The integrated lumi-
nosities are 6.1, 5.9, 10.8, 10.2 and 55.3 pb−1 at the average center-of-mass energies of 130.3, 136.3,
161.3, 172.3 and 182.7 GeV, respectively.

The signal cross sections and branching ratios are calculated using the HZHA generator [8]. For
the efficiency studies, Monte Carlo samples of Higgs events are generated using PYTHIA [9]. For
the background studies, the following Monte Carlo programs are used: PYTHIA (e+e− → qq̄), KO-
RALW [10] (e+e− → W+W−), KORALZ [11] (e+e− → τ+τ−), PYTHIA and PHOJET [12] (e+e− →
e+e−qq̄), and EXCALIBUR [13] (e+e− → ƒƒ̄0ƒƒ̄0). The number of simulated background events for
the most important background channels is typically 100 times the number of collected data events.
The Monte Carlo signals are 300 times the number of events expected to be observed with these
luminosities.

The L3 detector response is simulated using the GEANT 3.15 program [14], which takes into
account the effects of energy loss, multiple scattering and showering in the detector. The GHEISHA
program [15] is used to simulate hadronic interactions in the detector.

Analysis Procedures

The search for hA and hZ production is carried out using three different sets of MSSM parameters,
as suggested in Reference [16]. This choice of parameters makes use of the Grand Unification as-
sumption [17]. This assumption has little impact on the masses of the Higgs bosons, but it reduces
the number of free parameters in the MSSM. The free parameters are chosen to be the ratio of the
two Higgs vacuum expectation values, tanβ ; the pseudoscalar Higgs mass,mA; the gaugino mass
parameter,M2; the scalar fermion mass,m0; the scalar quark mixing mass,A; and the Higgs mass
parameter,µ. The three sets of MSSM parameters used in this letter are called “minimal mixing”,
whereA is zero andµ = −0.1 TeV; “typical mixing”, A = 1 TeV andµ = −1 TeV; and “maximal
mixing”, A =

p
6 TeV andµ = −0.1 TeV. For all three mixing scenariosM2 = m0 = 1 TeV and the
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mass of the top quark,mt, is taken to bemt = 175 GeV [18]. Finally, a scan over the two remaining
independent parameters, tanβ andmA, is performed in each mixing scheme for the ranges

1 ≤ tanβ ≤ 50
30 GeV ≤ mA ≤ 1000 GeV .

Values of tanβ andmA outside of these ranges are not considered since the sensitivity to the signal
drops for tanβ < 1 and for values ofmA < 30 GeV the analysis is complicated by the possibility of
h→AA decays. In addition, these low masses have been previously excluded [5,6] for these choices
of MSSM parameters.

Because the relative production rate of the two complementary processes, e+e− → Z∗ → hA and
e+e− → Z∗ → hZ, varies over the range of MSSM parameters considered, it is important to devise
an analysis scheme that has good sensitivity to both channels for a broad range of these parame-
ters. In the case of hZ decay, four event topologies representing approximately98% of the decay
modes are considered: q¯qqq̄, qq̄νν̄, qq̄`+

`
− (` = e, µ, τ) andτ+τ−qq̄. The analyses of the q¯qνν̄ and

qq̄`+
`

− (` = e, µ) channels were taken from the Standard Model Higgs search [3]. The hZ analyses are
optimized for h→bb̄, but the efficiencies for the small contributions from the decay modes h→cc̄, gg
are also considered. The hZ→bb̄qq̄ and hZ→bb̄τ+τ− (τ+τ−qq̄) analyses used in this letter achieve
similar performances to the corresponding analyses used in the Standard Model Higgs search, which
are described in detail in Reference [19].

There are two event topologies considered for the hA channel, which generally make up approx-
imately 97% of the available decay modes for these ranges of MSSM parameters: hA→bb̄bb̄ and
hA→bb̄τ+τ− (τ+τ−bb̄). These topologies are very similar to their hZ counterparts, but the Z-mass
constraint cannot be used and, on average, the hA events are more likely to contain b hadrons.

The analyses of the hA and hZ channels are performed in three stages. First, a high-multiplicity
hadronic event selection is applied. This greatly reduces background events with large missing energy
and low multiplicity while maintaining a high signal efficiency over a broad range of possible Higgs
masses. Second, a set of cuts tailored to the specific Higgs decay in question is chosen using an
automated optimization procedure [19,20]. These cuts are optimized for each center-of-mass energy.
Third, a discriminating variable is built for each analysis, which depends on the mass hypothesis and
relative production rates of hA and hZ. The spectrum of this discriminant is recomputed for each
point in the(tanβ, mA) scan and it is used in the likelihood calculation which tests for the presence of
a signal.

The b-tagging variable plays a large role in the calculation of this discriminant. The neural net-
work b-tag [21] for each hadronic jet is calculated from inputs including the measured decay lengths of
particles in three dimensions, information about prompt leptons and jet shape variables. The event b-
tag variable,Bevent

tag , is then defined to be the negative-logarithm of the probability that all the hadronic
jets in the event are consistent with jets containing no b hadrons.

The hA→bb̄bb̄ and hZ →bb̄qq̄ Channels

The signature of both the hA→bb̄bb̄ and hZ→bb̄qq̄ decay modes is four high-multiplicity hadronic
jets and the presence of b hadron decay products. The dominant backgrounds come from q¯q produc-
tion and hadronic decays of W-pairs. In the case of hA→bb̄bb̄, the identification of b hadrons plays
an especially important role. Both analyses proceed in three stages.

First, a high-multiplicity hadronic event preselection common to both channels is made at all
center-of-mass energies. At least 15 tracks and 45 calorimetric clusters are required, the visible
energy,Evis, must exceed0.6

p
sand radiative returns to the Z-resonance are rejected. Events passing
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the preselection are then forced to have four jets using the DURHAM [22] clustering algorithm and a
kinematic fit requiring 4-momentum conservation (4C) is performed.

The second stage of the analyses optimizes the signal sensitivity by automatically adjusting a set
of cuts to maximize the average confidence level using the technique described in Reference [19].
The values of the optimized cuts for all the center-of-mass energies are discussed in detail in Refer-
ence [23]. As an example, we describe the cuts for

p
s = 183 GeV since these data contribute the most

to the sensitivity of the search due to the high center-of-mass energy and large integrated luminosity.
The optimized cuts at the lower center-of-mass energies are similar to those of the

p
s = 183 GeV, but

take into account the different background conditions and signal cross sections.
For the hZ→bb̄qq̄ and hA→bb̄bb̄ analyses, the following mass variables are defined:

χhZ = log
�
Prob

�
min

�
(Σi − (mZ + mh))2wΣ + (∆i − |mZ − mh|)2w∆

���
(3)

χhA = log
�
Prob

�
min

�
(Σi − (mA + mh))2wΣ + (∆i − |mA − mh|)2w∆

���
,

whereΣi and∆i are the sum and difference, respectively, of thei th dijet masses of one the three jet
pairings. The weightswΣ andw∆ are respectively1/(4 GeV)2 and1/(6 GeV)2 reflecting the typical
mass resolutions, and Prob is the probability of aχ2 with two degrees of freedom. In the hZ→bb̄qq̄
selection, the mass variable,χhZ, must beχhZ > −13.3 and in the hA→bb̄bb̄ selection,χhA > −6.1.
This rejects events with dijet mass combinations far away from the Higgs mass hypothesis. TheYcut

parameter in the DURHAM scheme,YD
34, ensures the four-jet nature of the selected events and must

be YD
34 > 0.0044 in the hZ→bb̄qq̄ analysis andYD

34 > 0.0030 in the hA→bb̄bb̄ analysis. A cut on
the maximum energy difference between any two jets rejects events with gluonic jets and is chosen
to be max(∆Ejet) < 0.22

p
s for hZ→bb̄qq̄ and max(∆Ejet) < 0.32

p
s for hA→bb̄bb̄. To further reject

qq̄ background, the minimum dijet mass is required to be inside a window of0.14
p

s < min(Mi) <
0.66

p
s for the hZ→bb̄qq̄ selection and0.09

p
s < min(Mi) < 0.78

p
s for the hA→bb̄bb̄ selection.

The final and most important optimized cut is onBevent
tag , which mainly rejects W-pair decays. In the

hZ→bb̄qq̄ analysis,Bevent
tag needs to beBevent

tag > 0.06 and in the hA→bb̄bb̄ analysisBevent
tag > 0.67.

The most discriminating of these variables are shown in Figure 1 for the data and Monte Carlo atp
s = 183 GeV after the preselection but before the optimized cuts have been applied. The signal

efficiencies and the number of accepted events after the preselection and after passing either set of
the optimized cuts (except the cut on the mass variable) for hZ→bb̄qq̄ or hA→bb̄bb̄ are shown in
Table 1 for the data and Monte Carlo background.

Events passing the optimized cuts are then categorized: 1) those that pass only the hZ cuts; 2) those
that pass only the hA cuts; and 3) those that pass both sets of cuts. Category (1) is called the hZbb̄qq̄

analysis and category (2) the hAbb̄bb̄ analysis. Events in category (3) are split into two separate samples
by choosing the most likely production hypothesis based on the probability of theχ2 of the mass hy-
pothesis and the relative production rates. IfσhA→bb̄bb̄Prob(χ2(mA , mh)) > σhZ→bb̄qq̄Prob(χ2(mZ, mh)),
then the event is classified as hA→bb̄bb̄ and this analysis is called hA0bb̄bb̄, otherwise it is classified
as hZ→bb̄qq̄ and called hZ0bb̄qq̄.

In the last stage of the hZbb̄qq̄, hAbb̄bb̄, hZ0

bb̄qq̄ and hA0

bb̄bb̄ analyses, the discriminating variables,
F(mZ, mh) andF(mA , mh), are computed. These variables are the weighted combination of theBevent

tag

andχ probabilities:

F(mx, mh) = − log

 
ωP1/ω

B Pχ − PBPω
χ

ω − 1

!
, (4)

wheremx is eithermZ or mA, PB andPχ are the probabilities ofBevent
tag andχ each being consistent

with their respective background distributions, andω is a weighting parameter that is optimized for
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each analysis. For the hZbb̄qq̄ and hZ0bb̄qq̄ analyses, the mass variableχ = χhZ is used andF is a
function of themh hypothesis,F(mZ, mh). Conversely, for hAbb̄bb̄ and hA0

bb̄bb̄, χ = χhA is used andF
depends on themA andmh mass hypothesis,F(mA , mh). Spectra ofF(mA , mh) for the

p
s = 183 GeV

data can be seen in Figures 2a and 2b, for the hAbb̄bb̄ and hA0

bb̄bb̄ analyses with a mass hypothesis of
mA = mh = 70 GeV for typical mixing. In Figures 2c and 2d, we show the spectra forF(mZ, mh) in the
hZbb̄qq̄ and hZ0bb̄qq̄ analyses for themh = 85 GeV mass hypothesis in the typical mixing scheme.

The discriminant variable,F, is recomputed at each(tanβ, mA) point in the scan for the mixing
scenario under consideration. Because of the cut on theχ variables, the number of accepted data,
Monte Carlo background and signal events is different at each scanned point.

hA →bb̄τττ+τττ −(τττ+τττ −bb̄), hZ →bb̄τττ+τττ − and hZ→τττ+τττ −qq̄ Channels

The signatures of these events are a pair of high-energy taus accompanied by two hadronic jets.
The main backgrounds are q¯q production and four-jet W-pair decays. The identification criteria of
hadronically and leptonically decaying taus are given in Reference [24]. As in the hA→bb̄bb̄ and
hZ→bb̄qq̄ selection, the analysis proceeds in three stages.

First, a preselection is made for high-multiplicity events with tau leptons. At least 5 tracks are
required, the number of calorimetric clusters must be greater than 15 and at least two taus must be
present. Then, in the same spirit as the hA→bb̄bb̄ and hZ→bb̄qq̄ analyses, an automated proce-
dure [20] is used to optimize cuts on visible energy, visible mass, effective center-of-mass energy, and
cuts devoted to tau isolation for each center-of-mass energy.

The isolation and energy requirements for the taus are optimized to reduce contributions from
semileptonic and hadronic decays of W-pairs and q¯q backgrounds. Energy clusters not belonging to
the taus are forced into two jets using the DURHAM scheme and a 4C kinematic fit is performed,
which defines the dijet and ditau invariant masses,Mi andMτ.

Finally, events passing the common set of optimized cuts are classified as either hA→bb̄τ+τ−

(τ+τ−bb̄), hZ→bb̄τ+τ− or hZ→τ+τ−qq̄ by choosing the most likely production hypothesis based on
the massχ2 variables and the relative production rates as in the hA→bb̄bb̄ and hZ→bb̄qq̄ analyses.
The massχ2 variables are defined as in Equation 3 but the weights,wΣ andw∆, are1/(5 GeV)2 and
1/(10 GeV)2, respectively, for the sum and difference ofMi andMτ . The mass-dependent variable,
P = 10−F, is defined using Equation 4 with a weight of unity, which reduces toP = PBPχ(1−ln(PBPχ)).
Here,PB andPχ are the confidence levels that the b-tag from the two hadronic jets and massχ2 are
consistent with their signal distributions. In the case of the hZ→τ+τ−qq̄ analysis, the b-tagging
information is not used andP = Pχ. The event is classified depending on the value of

P 0 = maxfσhA→bb̄τ+τ−(τ+τ−bb̄)P (mA, mh), σhZ→bb̄τ+τ−P (mZ, mh), σhZ→τ+τ−qq̄P (mZ, mh)g/σbτ

whereσbτ is the sum of these cross sections.
Unlike the hA→bb̄bb̄ and hZ→bb̄qq̄ analyses, the events are not split into separate categories

based on this decision, but are instead kept as one inclusive analysis. The discriminant,P 0, is re-
calculated at each(tanβ, mA) point in the scan for each mixing scenario. The spectrum forP 0 at
(tanβ = 50, mA = 70 GeV) is shown in Figure 3 for the

p
s = 183 GeV data, Monte Carlo background

and an inclusive signal of hA→bb̄τ+τ−(τ+τ−bb̄) + hZ→bb̄τ+τ− + hZ→τ+τ−qq̄ in the minimal mixing
scenario.
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Results

No evidence of the production of the h and A bosons is observed in the data. The mass limits are
evaluated by calculating the confidence level (CL) that the expected signal is absent in the observed
data for the plane defined by tanβ andmh. The CL is calculated using the technique described in
References [21, 25]. The results of the analyses for all the physics processes and decay channels are
combined into bins of one distribution, ordered in the logarithm of signal-over-background. The CL
is then calculated from this signal-over-background distribution.

Systematic and statistical errors on the signal and background are considered using the same pro-
cedure as in the Standard Model Higgs search [3] taking into account detector uncertainties in the
energy scale of the individual sub-detectors, the global energy scale, the tracking and b-tagging ef-
ficiencies, and experimental uncertainties in the LEP center-of-mass energy [26] and the luminosity
measurement. Theoretical errors on the Higgs boson production cross section due to the uncertain-
ties inαs [27], interference effects [28] and errors on Higgs decay branching fractions due to quark
masses [29] introduce an uncertainty on the predicted number of signal events. The overall systematic
error is estimated to be 4% on the number of signal and 10% on the number of background events.
The statistical error is larger, but completely uncorrelated among the different bins of the individual
channels and is taken into account bin-by-bin [3].

Bins of an analysis with a signal-over-background ratio of less than 0.10 are not considered in the
calculation of CL. This cut is chosen to maximize the average CL in the presence of the systematic
and statistical error, as calculated from a large set of Monte Carlo experiments. The inclusive signal
efficiency for hZ+ hA production and the number of selected data and expected background events
are shown in Figures 4a and 4b formh at the average 95% CL limit as a function of tanβ , before and
after the signal-over-background cut. Two examples of the distribution used to calculate the CL are
given in Figures 4c and 4d, for low and high tanβ for themh point where the CL crosses 95%. No
significant excess is observed at any point in the(mh, tanβ) plane for the three mixing scenarios.

Lower limits on the Higgs boson masses as a function of tanβ are shown in Figure 5 for the
different mixing hypotheses. The 95% CL lower mass limits onmA andmh, as well as the probability
to obtain a limit onmh larger than the one observed, are shown in Table 3 at the two extrema of the
scan over tanβ . In Table 3 we also list the average and median mass limits at the95% CL, calculated
from Monte Carlo, as an indication of the sensitivity of this search. The lowest value ofmh excluded
is at tanβ = 20.3 for typical mixing, and the lowest value ofmA excluded is at tanβ = 22.4 for
minimal mixing. For the MSSM parameters considered, this results in lower mass limits at the 95%
CL of

mh > 70.7 GeV, mA > 71.0 GeV.

Acknowledgments

We acknowledge the efforts of all the engineers and technicians who have participated in the con-
struction and maintenance of L3 and express our gratitude to the CERN accelerator divisions for the
superb performance of LEP.



REFERENCES 7

References

[1] S. L. Glashow, Nucl. Phys.22 (1961) 579;
S. Weinberg, Phys. Rev. Lett.19 (1967) 1264;
A. Salam, in Elementary Particle Theory, ed. N. Svartholm, (Almqvist and Wiksell, Stockholm,
1968), p. 367.

[2] P. W. Higgs, Phys. Lett.12 (1964) 132;
F. Englert and R. Brout, Phys. Rev. Lett.13 (1964) 321;
G. S. Guralniket al., Phys. Rev. Lett.13 (1964) 585.

[3] L3 Collaboration, M. Acciarriet al., “Search for the Standard Model Higgs Boson in e+e−

Interactions at
p

s = 183 GeV”, Preprint EP/98-052, CERN, 1998, Submitted to Phys. Lett. B.

[4] H. P. Nilles, Phys. Rep.110(1984) 1;
H. E. Haber and G. L. Kane, Phys. Rep.117(1985) 75;
R. Barbieri, Riv. Nuovo Cim.11 n�4 (1988) 1.

[5] L3 Collaboration, O. Adrianiet al., Phys. Lett.B 294(1992) 457;
O. Adrianiet al., Z. Phys.C 57 (1993) 355.

[6] ALEPH Collaboration, D. Buskulicet al., Phys. Lett.B 313(1993) 312;
ALEPH Collaboration, R. Barateet al., Phys. Lett.B 412(1997) 173;
DELPHI Collaboration, P. Abreuet al., Z. Phys.C 67 (1995) 69;
DELPHI Collaboration, P. Abreuet al., E. Phys. J.C 2 (1998) 1;
OPAL Collaboration, R. Akerset al., Z. Phys.C 64 (1994) 1;
OPAL Collaboration, G. Alexanderet al., Z. Phys.C 73 (1997) 189;
OPAL Collaboration, K. Ackerstaffet al., “A Search for Neutral Higgs Bosons in the MSSM
and Models with Two Scalar Field Doublets”, Preprint EP/98-029, CERN, 1998, Submitted to
E. Phys. J.C.

[7] L3 Collaboration, B. Adevaet al., Nucl. Inst. Meth.A 289 (1990) 35;
J. A. Bakkenet al., Nucl. Inst. Meth.A 275 (1989) 81;
O. Adrianiet al., Nucl. Inst. Meth.A 302 (1991) 53;
B. Adevaet al., Nucl. Inst. Meth.A 323 (1992) 109;
K. Deiterset al., Nucl. Inst. Meth.A 323 (1992) 162;
M. Chemarinet al., Nucl. Inst. Meth.A 349 (1994) 345;
B. Acciari et al., Nucl. Inst. Meth.A 351 (1994) 300;
G. Bastiet al., Nucl. Inst. Meth.A 374 (1996) 293;
A. Adamet al., Nucl. Inst. Meth.A 383 (1996) 342.

[8] P. Janot, in Physics at LEP2, ed. G. Altarelli, T. Sj¨ostrand and F. Zwirner, (CERN 96-01, 1996),
volume 2, p. 309.
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TABLES 11

Preselection Optimized Cuts hAbb̄bb̄ or hZbb̄qq̄p
s(GeV) εhA→bb̄bb̄ εhZ→bb̄qq̄ Nbg Ndata εhA→bb̄bb̄ εhZ→bb̄qq̄ Nbg Ndata

130 0.92 – 148.9 148 0.66 – 20.1 19
136 0.92 – 112.0 118 0.70 – 9.5 11
161 0.94 0.95 134.5 128 0.85 0.75 25.2 14
172 0.95 0.97 193.7 186 0.83 0.89 84.0 80
183 0.89 0.91 655.6 652 0.78 0.84 380.5 376

Table 1: The effects of the preselection and optimized cuts at the five center-of-mass en-
ergies. On the left hand side are the signal efficiencies, the number expected background
events, Nbg, and the number of data events, Ndata, passing the common hA and hZ preselec-
tion in the four-jet channel. On the right hand side, the same is shown for events passing
either set of the optimized cuts. The signal efficiencies,εhA→bb̄bb̄, are for the following
center-of-mass energies and signal masses:

p
s = 130 − 136 GeV, mA = mh = 50 GeV;p

s = 161 − 172 GeV, mA = mh = 60 GeV; and
p

s = 183 GeV, mA = mh = 70 GeV. The
efficiencies,εhZ→bb̄qq̄, are for:

p
s = 161 − 172 GeV, mh = 71 GeV; and

p
s = 183 GeV,

mh = 85 GeV. At this stage of the analysis, the acceptances are independent of tanβ .

p
s(GeV) εhA→bb̄τ+τ− εhZ→bb̄τ+τ− εhZ→τ+τ−qq̄ Nbg Ndata

133 0.27 – – 2.7 4
161 0.32 0.30 0.28 1.8 2
172 0.33 0.27 0.28 4.2 3
183 0.32 0.27 0.30 14.0 17

Table 2: Events passing the optimized bb̄τ+τ− selection. The efficiencies,εhA→bb̄τ+τ− ,
are for the following center-of-mass energies and signal masses:

p
s = 133 GeV, mA =

mh = 50 GeV;
p

s = 161 − 172 GeV, mA = mh = 60 GeV; and
p

s = 183 GeV, mA =
mh = 70 GeV. The efficiencies,εhZ→bb̄τ+τ− andεhZ→τ+τ−qq̄, are for signal masses:

p
s =

161 − 172 GeV, mh = 70 GeV; and
p

s = 183 GeV, mh = 85 GeV. The last two columns
are the number of Monte Carlo background events, Nbg, and number of data events, Ndata,
surviving the cuts.



TABLES 12

Neventsat 95% CL Lower mass limits in GeV at 95% CL
Mixing, tanβ Nbg Ndata Nsig mh mA <mh>50 <mA >50 CLb mh mA

minimal, 1 Excluded to theoretical limit
minimal, 50 7.9 7 4.7 69.1 69.1 70.9 70.9 40% 71.5 71.6
typical, 1 10.3 13 6.1 86.6 187 87.2 212 55% 87.0 209
typical, 50 6.9 5 4.2 71.2 72.1 72.2 73.1 36% 72.7 73.6
maximal, 1 10.3 13 6.1 85.6 183 87.2 208 54% 87.0 204
maximal, 50 7.9 7 4.7 68.9 68.9 70.4 70.5 43% 71.4 71.5

Table 3: Higgs mass limits in the MSSM from the data at130 GeV ≤
p

s ≤ 183 GeV.
At the observed 95% CL, Nbg, Ndata and Nsig are respectively the number of events ex-
pected from background, the number of observed events and the number of expected
signal events from hA+ hZ at the tanβ listed. The massesm and<m>50 are respectively
the average and median mass limits for the h and A bosons as calculated from a large set
of Monte Carlo trials. CLb is the probability to obtain a mass limit onmh larger than the
one observed. The masses in boldface are the lower mass limits set at the 95% CL from
the data.
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Figure 1: Distributions of the most important variables in the hA→bb̄bb̄ and hZ→bb̄qq̄
analyses. In the plots, the points are the

p
s = 183 GeV data, the solid histograms

are the Monte Carlo backgrounds and the superimposed hatched histograms are the hA
(mA = mh = 70 GeV) or hZ (mh = 85 GeV) signals normalized to efficiency times 500.
The distributions are shown after preselection, but before optimized cuts:a) Event b-tag,
Bevent

tag , for the hA→bb̄bb̄ analysis;b) Mass variable,χhA, for the hA→bb̄bb̄ analysis;c)
YD

34 for the hZ→bb̄qq̄ analysis; andd) Minimum normalized dijet mass, min(Mi/
p

s), for
the hZ→bb̄qq̄ analysis.
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Figure 2: The discriminant,F(mA , mh) andF(mZ, mh), after the optimized cuts have been
applied. Data are the points, the open histograms are Monte Carlo background and the
superimposed hatched histograms are signal efficiency times 50:a) hAbb̄bb̄ analysis at
tanβ = 50, mA = mh = 70 GeV, typical mixing;b) same as (a) but for the hA0bb̄bb̄ analysis;
c) hZbb̄qq̄ analysis at tanβ = 1, mh = 85 GeV, typical mixing; andd) same as (c) but for
the hZ0bb̄qq̄ analysis.
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Figure 3: Variables used in the calculation of the discriminant,P 0, for the hA→bb̄τ+τ−

(τ+τ−bb̄), hZ→bb̄τ+τ− and hZ→τ+τ−qq̄ analyses at
p

s = 183 GeV for (tanβ = 50, mA =
70 GeV) for minimal mixing. The dots are data, the solid histograms are Monte Carlo and
the hatched histograms are the inclusive signal hA→bb̄τ+τ−(τ+τ−bb̄) + hZ→bb̄τ+τ− +
hZ→τ+τ−qq̄. a) The joint probability of both hadronic jets to be from b-decays.b) The
mass probability to be signal.c) The mass probability for the hZ mass hypothesis.d) The
discriminant,P 0, for the inclusive b̄bτ+τ−analysis.
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Figure 4: Accepted events and signal efficiency near the average 95% CL limit as a func-
tion of tanβ for maximal mixing. a) Inclusive efficiency for hA+ hZ production be-
fore a signal-over-background cut (dotted line) and after a signal-over-background cut
of 0.1 (solid line). b) Upper plot: Number of accepted data events (dots) and expected
background (dotted line) before a signal-over-background cut. Lower plot: Number of
data events (dots) and background (solid line) passing a signal-over-background cut of
0.1. c) Distribution for all analyses combined in bins of log(Signal/Background) for
(tanβ = 1, mA = 207 GeV), where hZ is the dominant production mode (open histogram
is expected background, dots are data, hatched histogram is combined signal).d) Same
as(c), but for (tanβ = 50, mA = 71.6 GeV), where hA is dominant.
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Figure 5: Exclusion plots of the Higgs mass versus tanβ at the 95% CL from the data
collected at

p
s = 130−183 GeV. In all the plots, the area shaded by horizontal lines is the

95% CL exclusion; the white area is the non-excluded region; the cross-hatched area is
disallowed by theory and the area in the lower left hand corner of plots a,b and c between
the 95% exclusion and the theoretically excluded regions represents the lower boundary
of the scan overmA which starts at 30 GeV.a) 95% CL exclusion ofmh versus tanβ in the
minimal mixing scenario.b) Same as (a) but for typical mixing.c) Same as (a,b) but for
maximal mixing.d) 95% CL exclusion ofmA versus tanβ in the three mixing scenarios.
The solid line is the maximal mixing exclusion, the dotted line is typical mixing, and the
dashed lined is minimal mixing.


