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Abstract

The inclusive production rates and differential cross-sections of photons and mesons with a
final state containing photons have been measured with the OPAL detector at LEP. The light
mesons covered by the measurements are the π0, η, ρ(770)±, ω(782), η′(958) and a0(980)±. The
particle multiplicities per hadronic Z0 decay, extrapolated to the full energy range, are:

〈nγ〉 = 20.97 ± 0.02 ± 1.15 ,

〈nπ0〉 = 9.55 ± 0.06 ± 0.75 ,

〈nη〉 = 0.97 ± 0.03 ± 0.11 ,

〈nρ±〉 = 2.40 ± 0.06 ± 0.43 ,

〈nω〉 = 1.04 ± 0.04 ± 0.14 ,

〈nη′〉 = 0.14 ± 0.01 ± 0.02 ,

〈na±
0

〉 = 0.27 ± 0.04 ± 0.10 ,

where the first errors are statistical and the second systematic. In general, the results are in
agreement with the predictions of the JETSET and HERWIG Monte Carlo models.
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K.R.Hossain30, R.Howard29, P.Hüntemeyer27, P. Igo-Kemenes11, D.C. Imrie25, K. Ishii24,
F.R. Jacob20, A. Jawahery17, H. Jeremie18, M. Jimack1, A. Joly18, C.R. Jones5, P. Jovanovic1,

T.R. Junk8, D.Karlen6, V.Kartvelishvili16, K.Kawagoe24, T.Kawamoto24, P.I.Kayal30,
R.K.Keeler28, R.G.Kellogg17, B.W.Kennedy20, A.Klier26, S.Kluth8, T.Kobayashi24,

M.Kobel3,e, D.S.Koetke6, T.P.Kokott3, M.Kolrep10, S.Komamiya24, R.V.Kowalewski28,
T.Kress11, P.Krieger6, J. von Krogh11, P.Kyberd13, G.D. Lafferty16, D. Lanske14, J. Lauber15,

S.R. Lautenschlager31, I. Lawson28, J.G. Layter4, D. Lazic22, A.M.Lee31, E. Lefebvre18,
D. Lellouch26, J. Letts12, L. Levinson26, R. Liebisch11, B. List8, C. Littlewood5, A.W.Lloyd1,

S.L. Lloyd13, F.K. Loebinger16, G.D. Long28, M.J. Losty7, J. Ludwig10, D. Lui12, A.Macchiolo2,
A.Macpherson30, M.Mannelli8, S.Marcellini2, C.Markopoulos13, A.J.Martin13, J.P.Martin18,
G.Martinez17, T.Mashimo24, P.Mättig26, W.J.McDonald30, J.McKenna29, E.A.Mckigney15 ,
T.J.McMahon1, R.A.McPherson28, F.Meijers8, S.Menke3, F.S.Merritt9, H.Mes7, J.Meyer27,
A.Michelini2, S.Mihara24, G.Mikenberg26, D.J.Miller15, R.Mir26, W.Mohr10, A.Montanari2,

T.Mori24, K.Nagai26, I. Nakamura24, H.A.Neal12, B.Nellen3, R.Nisius8, S.W.O’Neale1,
F.G.Oakham7, F.Odorici2, H.O.Ogren12, M.J.Oreglia9, S.Orito24, J. Pálinkás33,d,
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1 Introduction

In high-energy collisions, the transition from quarks and gluons to stable hadrons can only be
described by phenomenological models [1]. Among the basic features that these hadronisation
models attempt to reproduce are the multiplicity and energy spectrum of each hadron species.
The large sample of hadronic Z0 decays collected at LEP is ideal to test these models and
to improve their accuracy, as the initial state in this process is theoretically well understood.
With the versatility of the LEP detectors, these measurements can be extended to most of the
low-lying particle states [2–12].

This paper describes the OPAL measurements of the differential production cross-sections
in hadronic Z0 decays of photons and of light mesons decaying to final states containing at least
one photon. The mesons studied are the π0, η, ρ(770)±, ω(782), η′(958) and a0(980)±. The
measurements require a good understanding of both the detector response to photons and of
the environment in which these particles are produced. For this reason, the results obtained
with photons detected as energy deposits in the electromagnetic calorimeter and as pairs of
tracks from photon conversions to e+e− in the central drift chamber are first compared and
then combined. This comprehensive study of the production of mesons decaying to photons
leads to a better understanding of the systematic effects related to photon detection, making
possible a reliable measurement of the inclusive production of photons in Z0 decays in a wide
energy range1. The production cross-section of each particle is presented as a function of its
scaled energy xE = Eparticle/Ebeam and of log(1/xp), where xp = pparticle/pbeam is the scaled
momentum.

Current measurements of photon and π0, η, ω and η′ meson production at LEP are limited by
experimental systematic errors [6,9–12]. Compared to these studies, the present measurements
cover a larger fraction of the total rate of these particles, and a number of the sources of
systematic error are different. This is the first measurement of the inclusive production of ρ±

and a±0 in high-energy e+e− collisions.

The outline of the paper is the following. The OPAL detector is briefly presented, followed
by the description of the event selection and simulation. The following three sections describe
the three steps in the particle reconstruction. First, photons are detected either as localised
energy deposits in the electromagnetic calorimeter or as two tracks from a γ → e+e− conversion
within the volume of the central drift chambers. In the second step, photons are combined in
pairs to form π0 and η meson candidates. In a final step, the π0 and η meson candidates are
combined with one charged track or two oppositely charged tracks to reconstruct η → π0π+π−,
ρ± → π0π±, ω → π0π+π−, η′ → ηπ+π− and a±0 → ηπ± decays. Each step is described, together
with the corresponding rate measurements and evaluations of systematic errors. The following
section describes the combination of the results for those particles where more than one decay
mode is used. The resulting differential cross-sections for photons and light mesons are then
compared to the predictions of different models and to other measurements at LEP. This is
followed by the conclusion.

1For an inclusive measurement of prompt photons, excluding hadron decays and initial state radiation, see
ref. [13].
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2 The OPAL detector

The OPAL detector and its performance are described in detail elsewhere [14]. Only detector
elements of importance for this analysis are described here. The central tracking system consists
of three drift chambers which surround a silicon microvertex detector [15], all within an axial
magnetic field of 0.435 T. The silicon microvertex detector has two layers, at radii of 6.1 and
7.5 cm from the beam axis, with an intrinsic resolution of 5 µm in the r−φ plane2. A precision
vertex drift chamber with 24 cm outer radius provides space points with a resolution of about
50 µm in r − φ and 1 mm in z. The jet chamber has an outer radius 185 cm and provides
up to 159 measurements of space points per track, with a resolution in the r − φ plane of
about 130 µm. The resolution of the r − φ component of the track momentum (pt) is σpt

/pt ∼
√

(0.02)2 + (0.0015pt)2, where pt is in GeV/c. In addition, charged particles can be identified by

their specific ionisation energy loss (dE/dx) [16]. The jet chamber is surrounded by a system of
z-chambers, thin drift chambers with a resolution of about 300 µm in the z coordinate, which
serves to improve the determination of θ.

The tracking detectors and the magnet coil are surrounded by electromagnetic and hadronic
calorimeters and muon chambers. In this work, the identification of photons is performed within
the acceptance of the barrel electromagnetic calorimeter. This consists of a cylindrical array
of 9440 lead glass blocks of 24.6 radiation lengths thickness that covers the polar angle range
| cos θ| < 0.82. Each block subtends approximately 40×40 mrad2. The energy resolution
is improved by correcting for losses due to showers initiated in the material in front of the
calorimeter. These showers are detected by thin presampler gas detectors covering the front
surface of the electromagnetic calorimeter. Time-of-flight scintillators, situated between the
magnet coil and the presampler in the polar angle range | cos θ| < 0.72 are also used to detect
these showers.

3 Data selection and event simulation

This study is based on a sample of 4.1 million hadronic Z0 decays collected by the OPAL
detector at LEP at centre-of-mass energies within ±2 GeV of the Z0 peak. The hadronic event
selection [17] has an efficiency of 98.4 ± 0.4% with a background of less than 0.2%.

The detection efficiencies for the particles under study are evaluated using 6.4 million
hadronic Z0 decays simulated using the Monte Carlo programs JETSET 7.3 and 7.4 [18] tuned
to reproduce the global features of hadronic events as observed at LEP [19,20]. Samples gener-
ated by the HERWIG 5.9 program [19,21] are also used for comparison. The generated events
are passed through a full simulation of the OPAL detector [22] and are subjected to the same
event reconstruction and selection as the data.

2 The OPAL coordinate system is defined so that z is the coordinate parallel to the e− beam, r is the
coordinate normal to this axis, θ is the polar angle with respect to z and φ is the azimuthal angle about the
z-axis.
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4 Photons

4.1 Photons reconstructed using the electromagnetic calorimeter

The electromagnetic calorimeter provides the largest part of the photon sample. To resolve a
maximum number of photons in the dense environment of hadronic jets, the location and the
energy of the electromagnetic showers are obtained from a fit to the energy deposited in the
individual lead glass blocks. The fit uses a description of the lateral shower profile as the sum
of two exponentials (see for example ref. [23]) and allows a proper treatment of overlapping
showers. The fit can also handle the cases where most of the photon energy is in a single block,
a common occurrence for photons in the energy range from 0.1 to 0.3 GeV.

Not all energy deposits in the electromagnetic calorimeter are due to photons. Many are due
to ionisation or to electromagnetic and hadronic showers caused by charged particles. For this
reason, a block lying close to the extrapolated path of a charged track is given a small weight in
the fit, provided its energy does not significantly exceed the expectation for a hadronic shower.

Photons may lose energy (typically about 0.2 GeV) by initiating an electromagnetic shower
before reaching the calorimeter. The photon energy is therefore corrected using the signal
recorded in the presampler. The efficiency for detecting these showers is further increased by
also using the presence of signals in the time-of-flight detectors.

A shower is retained as a photon candidate if it has at least 0.1 GeV energy in the lead glass
calorimeter and if the energy corrected using the presampler and the time-of-flight detectors is
at least 0.15 GeV. An acceptance cut of | cos θ| < 0.75 is imposed to improve the homogeneity
in the amount of material traversed by the photons before reaching the calorimeter. The
momentum direction of the photon is evaluated assuming that it originates from the primary
event vertex determined as described in [24].

According to the Monte Carlo simulations, the overall efficiency for photons above 0.15 GeV
is 69% within the acceptance | cos θ| < 0.75. The purity of the sample is 52%, with the most
important background being due to energy deposits from charged particles, neutrons and K0

L

mesons. In simulations of hadronic Z0 decays, the photon angular resolution is approximately
10 mrad and the energy resolution varies from 30% at 0.15 GeV to 8% at 20 GeV.

For the rate determination, it is useful to compare results obtained from samples with
different purities. As shown in fig. 1, the purity depends on the photon energy, the energy
deposited in its vicinity, its distance to the closest charged track, the shower shape and the
quality of the shower fit. The seven variables shown in fig. 1 are combined in one variable S:

S =
1

N

N
∑

i=1

(1 + exp((vi − ci)/ti))
−1 , (1)

where the index i runs over the N=7 variables vi and the parameters ci and ti are chosen such
that the power of the variable S to discriminate between signal and background is maximal.
This is achieved by minimising the ratio

R =
σ2

s + σ2
b

(µs − µb)2
, (2)
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where µs and σs are the average and rms values of S for the signal and µb and σb are the
corresponding values for the background. The minimisation is performed using MINUIT [25]
and a sample of simulated events. The contributions to S of the input variables are shown as
inserts in figs. 1a to 1g.

The variable S can be interpreted as the output of a simplified artificial neural network,
where the number of parameters optimised using a reference sample of simulated events is
reduced to two per input variable. In this way, S is forced to depend on the global properties
of the input variables, which should reduce problems due to the imperfection of the detector
simulation. In the present application, the discrimination losses relative to more complex
artificial networks are negligible. In contrast to a likelihood method, correlations between the
input variables are partially taken into account by the simultaneous optimisation of all the ci

and ti parameters.

The purity of the Monte Carlo photon sample, Pγ, has a smooth dependence on S which
is easily parameterized by an analytical function. The distribution of Pγ is shown in fig. 2. It
is well reproduced by the simulation, in particular in the region Pγ > 0.5, where the signal is
expected to dominate. The variable Pγ is used for the systematic studies of photon samples of
varying purity described in section 4.3.

4.2 Reconstruction of photon conversions

According to the Monte Carlo simulation, 7% of the photons in the angular range | cos θ| < 0.75
convert to e+e− pairs in the volume of the central tracking chambers. It is useful to compare the
results obtained using this sample with those obtained from photons detected in the calorimeter,
since they are affected by different systematic uncertainties.

The selection of photon conversions is optimised to have a high efficiency at low momentum
and a good angular resolution, and to be insensitive to details of the detector simulation.
Conversions are observed as two oppositely charged tracks in the central detector. The two
tracks must have impact parameters relative to the primary event vertex greater than 300 µm
in the r − φ plane, and at least one track must have space point measurements inside the
z-chambers. The average of the two points where the tracks are parallel in the r − φ plane
is taken as the point of conversion. The pair topology is required to be consistent with the
expectation for a conversion:

• the distance between the two points where the tracks are parallel in the r − φ plane is
required to be less than 1 cm,

• the radial coordinate of the point of conversion, r, must be greater than 3 cm,

• the reconstructed photon must have an impact parameter relative to the primary event
vertex in the r − φ plane smaller than 5 cm,

• the absolute value of the difference between r and the radial coordinate of the first space
point measurement on either track must be less than 20 cm.

7



According to the Monte Carlo, each of these topological cuts removes less than 2% of the
conversion sample. This loose selection is sufficient to obtain a 90% pure sample for r >
50 cm. For r < 50 cm, the background increases because of the large track density and it
is further required that the dE/dx measurements of the two tracks each have a probability
greater than 1% for the electron hypothesis. According to the simulation, this cut removes 4%
of the conversions, achieving a purity of 85% for the entire conversion sample. No further cuts
are applied since this purity is sufficient to obtain invariant mass spectra of pairs of photon
candidates where the background is dominated by random combinations of genuine photons.

The direction of the photon in θ is computed from the track parameters with the added
constraint that the photon comes from the primary event vertex. The polar angle of the photon
direction is required to be in the same fiducial region used for the calorimetric sample (| cos θ|
< 0.75).

The distribution of the radial coordinate r of the conversion points is shown in figure 3.
The Monte Carlo simulation reproduces the overall shape due to the local concentrations of the
material in the detector. However, the numbers are not reproduced exactly: for example, in
the data 58.0% of the conversions lie below r = 50 cm, while in the simulation this fraction is
59.2%. Such discrepancies are considered in the following estimation of the systematic errors.

According to the simulation, in the energy range from 0.15 to 20 GeV, the angular resolution
on the direction of the photon conversions decreases from 10 to 1 mrad in φ and from 24 to 15
mrad in θ, and the energy resolution is approximately constant at 4%. Approximately two thirds
of the photon conversions in the fiducial region are reconstructed and selected, corresponding
to an average photon efficiency of about 3%.

4.3 Evaluation of the photon yield

As the sizes of the photon candidate samples are large, the precision of the measured yields is
expected to be limited by systematic uncertainties. It is therefore important to compare the
yields derived from samples obtained with different selection procedures, using different Monte
Carlo predictions for the photon efficiencies and different methods to subtract the background.
Here, the size of the final systematic errors is reduced by incorporating these tests in the
determination of the yield itself.

In a first step, the number n(Eγ , ∆Eγ) of photons per hadronic Z0 decay in an energy bin
of width ∆Eγ centred at Eγ is derived using five different data samples (noted by the index i),
three Monte Carlo samples (index j) and two methods to estimate the background (index k):

ni,j,k(Eγ , ∆Eγ) =
N i

candidates(Eγ , ∆Eγ) − N i,j,k
bkg (Eγ , ∆Eγ)

ǫi,j(Eγ , ∆Eγ)NZ0

. (3)

Here N i
candidates is the total number of photon candidates in the data, N i,j,k

bkg is the predicted
number of fake photons, ǫi,j is the efficiency for photons in that energy bin, and NZ0 is the
number of Z0 decays. In the Monte Carlo, the background is defined as those candidates that
are not unambiguously associated to a single photon, or photons coming from bremsstrahlung
radiation or decays of particles produced in interactions with the material of the detector. For
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example, the Monte Carlo predicts that about half of the candidates above 15 GeV result from
the overlap of the two photons from high-energy π0 decays. These unresolved photons cannot
be counted appropriately and are therefore considered as background.

The five data samples are the conversion sample, three calorimetric samples with require-
ments Pγ > 0.0, 0.5 and 0.75, and the calorimetric sample with each entry weighted by Pγ.

The three Monte Carlo samples used for evaluating N i,j,k
bkg and ǫi,j are based on the JETSET

tunes of ref. [19] and [20], and the HERWIG tune of ref. [19]. The two prescriptions for the
determination of N i,j,k

bkg are to take the Monte Carlo prediction and to scale it either accord-
ing to the number of events or the number of photons. In total, 30 energy-dependent yields
ni,j,k(Eγ , ∆Eγ) are obtained.

In a second step, the central value for n(Eγ , ∆Eγ) is obtained from a weighted average of
the 30 analyses. The average is first performed on the background assumptions k, using the
quadratic sums of the statistical errors on the data and on the Monte Carlo as weights. This
results in averaged yields ni,j and the rms deviation around this mean, σi,j

bkg, is taken as the
systematic error on the choice of background assumptions. This error is added in quadrature
to the total error, and the ni,j’s are averaged over the choice of Monte Carlo j, using the
new total error as a weight. This in turn yields new averages, ni, and the error associated
with the choice of Monte Carlo σi

MC , which are again added in quadrature to the total error.
Next, the same procedure is applied to the four calorimetric samples, resulting in an average
for these samples, ncal, and a systematic error associated with the use of Pγ. In the end, two
independent measurements of n(Eγ , ∆Eγ) are obtained, one from the calorimetric sample, and
one from the conversion sample. At the same time, the three systematic errors associated to
the variations of i, j and k have been calculated. The weights used to evaluate the average
yields are also used to calculate the average error associated to each source, assuming that the
samples being combined are fully correlated. For simplicity, this conservative assumption is
also applied to the statistical errors on the data and Monte Carlo samples. This is justified
because the statistical errors represent a small fraction of the total errors and, in general, there
is a large overlap between the samples being combined. A notable exception is the combination
of the calorimetric and conversion samples, which is discussed in section 7.

The averaging procedure is performed separately for each energy bin in order to take into
account the variation with energy of the nature and the size of the systematic uncertainties.
As a check, the order of the averaging procedure is reversed, and the resulting yields and errors
are compared. No significant differences are observed, indicating that the different systematic
tests are largely uncorrelated. However, the variations arising from a given test are assumed to
be fully correlated from one energy bin to another.

Two corrections are applied to the average yields. The first one is for the difference in
energy calibration between the data and the Monte Carlo explained in detail in section 5.2.3.
The second accounts for the difference between the data and the Monte Carlo in the number of
photons initiating a shower before reaching the calorimeter. A study of the fraction of calorime-
ter photons with an associated signal in either the presampler or time-of-flight reveals that the
Monte Carlo underestimates by 2% the probability of initiating a shower before reaching the
calorimeter. The efficiency is corrected for this effect. It is important only for photons with an
energy comparable to the average energy lost before reaching the calorimeter, i.e., about 200
MeV.
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The numbers of photons per hadronic Z0 decay in the energy range xE > 0.003 obtained
from the calorimetric (γ) and conversion (γc) measurements are given in table 1 together with
the values of each systematic uncertainty. The sources of these uncertainties are:

• The statistical error on the Monte Carlo samples used to calculate the efficiency.

• The variations observed using different Monte Carlo samples, obtained from the averaging
procedure.

• The error associated with Pγ, obtained from the averaging procedure.

• The variations observed when using the different background assumptions, obtained from
the averaging procedure.

• Some of the background comes from photons produced in interactions with the material
of the detector. There are indications that this effect is not exactly reproduced by the
Monte Carlo; see for example ref. [2] and the discussion on the electron bremsstrahlung
in section 5.2.3. Therefore, half of the Monte Carlo prediction for this background is
conservatively taken as an uncertainty.

• As the measured yields depend on the exact energy calibration, the analyses are repeated
by shifting the energy scale by 1% and the difference in the rates is taken as a systematic
error. The size of this shift is justified by the calibration studies described in the following
section on π0 and η reconstruction.

The variation of the cuts on Pγ does not cover all sources of systematic uncertainties on the
quality of the simulation. The following systematic errors are considered:

• For the calorimeter data, the error labelled simulation in table 1 is the quadratic sum of
the uncertainty on the correction of the probability of initiating a shower before reaching
the calorimeter and the yield variation observed when the criteria for the association of
charged tracks to energy deposits are varied.

• For the conversion data, the error labelled simulation is obtained by removing each of the
selection cuts in turn. The differences between the number of accepted tracks in the data
and the Monte Carlo obtained when each cut is removed are added in quadrature.

For the calorimetric measurement, the largest source of systematic uncertainty is the dif-
ference between the efficiencies derived from the three simulations (table 1). In contrast to
ref. [10], where the most important error arises from the choice of using either JETSET or
HERWIG for the determination of the efficiencies, here the largest difference is observed be-
tween the two samples generated using the JETSET versions tuned in refs. [19] and [20]. The
efficiencies obtained with the HERWIG 5.9 sample are consistent those obtained with the first
JETSET sample. Notable differences between the two JETSET samples are the inclusion of
L = 1 mesons [19] and consequent changes to the ω and η′ rates by factors of 1.5 and 4.5, re-
spectively. These differences affect the photon efficiencies due to the presence of neighbouring
particles. Another difference between the two samples is the version of the detector simulation
program [22].
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For the conversions, the largest source of uncertainty is that associated with the simulation
of the selection cuts (table 1). The error is 6.8% over most of the energy range and is dominated
by effects related to the inadequacy in describing the distribution of the radial coordinate of
the conversions. At the lowest energy it increases to 10% due to uncertainties in reconstructing
tracks with small curvature radii.

As a consistency check, the photon yields obtained from the calorimetric and the conversion
sample have been compared in 10 data sub-samples corresponding to different data-taking
periods, spanning six years of operation of OPAL at Z0 energies. The calorimeter efficiency
varies by less than 1% and the number of conversions varies with an rms of 2.6%, well within
the systematic errors estimated for those channels.

The differential cross sections of inclusive photon production as a function of xE and
log(1/xp) are presented, interpreted and discussed together with those for the light mesons
in section 8.

5 The channels π
0 → γγ and η → γγ

In this section, π0 and η mesons are reconstructed as pairs of photons. The branching ratios of
the decays π0 → γγ and η → γγ are (98.80 ± 0.03)% and (39.25 ± 0.31)%, respectively [26].
The numbers of π0 and η mesons in the data and Monte Carlo samples are determined from
fits to the invariant mass spectra of the photon pairs. The selection of candidates is presented,
followed by a description of the fits to the invariant mass spectra and the determination of the
meson yields. As in the photon case, the yields and some systematic errors are obtained by
averaging results based on different samples and using various analysis methods.

5.1 π
0 → γγ and η → γγ selection

The π0 and η candidates are obtained by combining in turn all pairs of photon candidates. In
the η selection, the energy of each photon is required to be larger than 0.3 GeV. At this stage,
the combinatorial background is large, and it is not possible to extract the π0 and η yields from
the invariant mass distribution of the photon pairs.

To reduce the background, the probability Pγγ that a photon pair comes from a π0 → γγ
decay as a function of a set of input variables is estimated using the same method as for Pγ

in section 4.1. The input variables for each photon are those shown in fig. 1a, b, d, f, and g,
together with the opening angle θij of the photon pair, the number of additional photons in
cones of opening angle θij around each of the two photons and the helicity angle of the photon
calculated in the γγ rest frame. The invariant mass of the pair is excluded from the input
variables so that it can be used later on for extracting the yields. The same method is applied
to the decays involving conversions3 and the three functions P π0 → γγ

γγ , P π0 → γγc
γγ and P π0 → γcγc

γγ

are determined separately. Similarly, the equivalent functions for the η, P η → γγ
γγ , P η → γγc

γγ and

3For the conversions, the input variables corresponding to fig. 1b, d, f, and g are not relevant and are therefore
not used.
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P η → γcγc
γγ , are evaluated separately. The purity of the π0 Monte Carlo sample is evaluated using

a ∆m=0.1 GeV/c2-wide invariant mass window centred at m0 =0.135 GeV/c2. For the η, the
purity of the Monte Carlo sample is evaluated using ∆m=0.2 GeV/c2 and m0=0.5475 GeV/c2.

The probability that a pair of photons i, j is part of the π0 or η signal depends not only on
the Pγγ value for this pair, but also on the signal probability for any other pair involving either
i or j. Assuming that Pγγ is indeed equal to the signal probability, and assuming that the Pγγ

values of all photon pairs in an event are uncorrelated, the probability that two photons i and
j are not related to any other photon in the event is:

P/γiγj
=

∏

k 6=i,j

[1 − Gik(mik)] ×
∏

l 6=i,j

[1 − Gjl(mjl)] . (4)

Here mik is the invariant mass of the pair of photons i and k, and

Gik(mik) =
Pγiγk

Pγiγk
+ (1 − Pγiγk

)
√

2πσ
∆m

exp(1
2
(mik−m0

σ
)2)

(5)

is the Pγγ variable modified to take into account the mass dependence of the purity of the π0

and η signals, assuming that the invariant mass peaks are normal distributions of width σ,
which are determined from the Monte Carlo. The products in eq. 4 are performed over all pairs
retained by either the π0 or the η selection. If a pair passes both selections, the larger of the
π0 or η signal probability is retained. The combined probability that the photons i and j are
from the same π0 or η decay and that they do not take part in any other decay is taken as
P̃γiγj

= Pγiγj
×P/γiγj

. According to the simulations, cutting on P̃γγ instead of Pγγ reduces the
combinatorial background by approximately 10% in the case of the π0 and by as much as 30%
in the case of the η.

Since the π0 and η yields are determined from fits to the invariant mass spectra, the effect
of a cut on P̃γγ on the shape of the invariant mass distributions has to be studied. The value of
P̃γiγj

has a monotonic correlation with the invariant mass of the pair mij, which arises primarily
from its dependence on the opening angle θij and the number of additional photons in the cones
of opening angle θij around i and j. The shifts in the position of the π0 and η mass peaks
induced by cuts on P̃γγ are of the order of a few MeV/c2 and are well reproduced by the Monte
Carlo. More importantly, it has been verified in the Monte Carlo that the cuts on P̃γγ do not
produce a fake π0 or η peak in the invariant mass distribution of the combinatorial background.

Fig. 4 shows the distributions of P̃γγ for all channels and indicates that their shapes are well
reproduced by the Monte Carlo. A more detailed discussion of possible differences will follow
in section 5.3. The Monte Carlo predictions for the efficiency for detecting π0 and η mesons
using cuts of 0.1 and 0.05 on P̃γγ, respectively, are shown in fig. 5. The efficiencies include all
effects, including the known branching ratios [26], so that the yields obtained from the γγ, γγc

and γcγc samples can be directly compared.

5.2 Analysis of the invariant mass spectra of photon pairs

As in the photon analysis, the determination of the π0 and η yields is repeated using different
data samples and analysis procedures, and the results are averaged to obtain the central values.
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Therefore, the fits to the invariant mass spectra are performed separately for the π0 → γγ,
π0 → γγc, π0 → γcγc, η → γγ and η → γγc samples. The channel η → γcγc is not used because
of low statistics. The fit is systematically repeated using five values of the cut on P̃γγ , two
parameterizations of the background and two parameterizations of the signal peaks. In addition,
three Monte Carlo samples are used for the determination of the π0 and η efficiencies and, for
one of the background parameterization methods, the background shape. These variations are
described below. They amount to a total of 60 different methods to extract the rates for each
channel.

5.2.1 Cut variations

The cut on P̃γγ is varied among the values 0.1, 0.2, 0.3, 0.4 and 0.5 for the π0 analysis, and
0.05, 0.10, 0.20, 0.30 and 0.40 for the η analysis. The variations of the P̃γγ cut are chosen so
as to result in a change in acceptance of at least a factor two, in order to test how well G̃γγ(m)
is simulated by the Monte Carlo, and also to provide a wide variety of background shapes and
levels.

5.2.2 Background parameterization

Figs. 6 and 7 show the invariant mass spectra for all five channels. The two background
estimations are also shown. In the first one, the background shape is taken from a simulation
and is normalised to the number of counts outside the signal region. Possible differences between
the shape in the data and in the Monte Carlo are taken into account by adding a linear
background to the fit. In the second method, the background is fitted using a second-order
polynomial. An additional source of background is considered in the region just above the η
peak. The reflection from ω → γπ0 decays are taken into account using a Gaussian with a
normalisation allowed to vary and a mass and width of 730 and 80 MeV/c2, respectively. This
peak is caused by the kinematic correlation between one of the photons from the π0 and the
direct photon from the ω, and cannot be absorbed by the polynomial background.

The two background parameterizations are complementary; the first one takes into account
all the features of the background shape predicted by the simulations, while the second does not
depend on the details of the Monte Carlo. The area of the signal peaks obtained with the two
methods are in general not identical, as shown in figs. 6 and 7. However both methods should
give the same yields if the efficiency is determined by applying the same parameterization to
the Monte Carlo. As a result, the errors due to the background parameterization are smaller
than is suggested by the difference between the two background estimates in figs. 6 and 7.
Part of this difference comes from an ambiguity in the definition of the background in the
Monte Carlo. In a few percent of the cases, a shower reconstructed in the calorimeter has
contributions from more than one incident particle and cannot be clearly associated to any one
of them. However, the contribution of a photon to this shower might be important enough
that when it is combined with the photon coming from the same π0 decay, the invariant mass
of the pair may be very close to the mass of the π0. Even though such pairs may produce a
small π0 peak, the first method consider them as being part of the background while the second
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will tend to treat them as part of the signal. The averaging procedure takes into account this
ambiguity and the related uncertainty.

5.2.3 Signal parameterization

Fig. 8 shows the shape of the mass peak for the samples π0 → γγ, π0 → γγc, π0 → γcγc and
η → γγ in the data and in the simulation. In all cases the distributions are obtained by sub-
tracting the fitted background from the raw spectrum. In the fits, the shapes are alternatively
parameterized either as a Gaussian function, or as the more complex functions described below.

With high statistics samples such as those in fig. 8, the non-Gaussian structure of the signal
peaks is apparent. The peaks for the π0 → γγ and η → γγ decays are each described by two
Gaussians centred at the same mass. The centroid, widths and amplitudes of the two Gaussians
are determined independently for the data and the Monte Carlo. The centroids and widths are
well described by the simulation (fig. 8a and d). In the case of π0 → γγc and π0 → γcγc decays
(fig. 8b and c), bremsstrahlung from the conversion electrons produces a pronounced tail toward
low invariant masses [27]. In the fit, this tail is described by an exponential convoluted with the
fitted mass resolution. The amplitude and decay constant are determined independently for
the data and the Monte Carlo. In the case of the η → γγc signal, the tail is neglected because
of the low statistics.

The comparison of the centroids of the π0 and η signals in the data with those obtained
in the simulations provides an important check of the energy calibration. The corrections for
all five channels are of order 1% over most of the energy range. This sets the scale for the
uncertainty on the energy calibration.

The quality of the detector simulation and its impact on the analysis can be assessed by
comparing the widths and the tails of the mass peaks in the data and in the Monte Carlo. The
Monte Carlo reproduces well the peak shapes (fig. 8), except for the tail toward low masses
for combinations involving one or two low-energy conversions. Such tails have been noticed
before [27] and they are due mostly to bremsstrahlung of the conversion electrons. The Monte
Carlo simulates correctly the slope of these tails, but underestimates their amplitude by as
much as a factor of two. The analysis should not be affected by an inadequate modelling of
these tails, since they are free parameters of the fit. In addition, the systematic error includes
the effect of neglecting them by assuming Gaussian peak shapes, and the effect is further tested
in section 7 by comparing the results derived from the γ and γc samples, and from the γγ, γγc

and γcγc samples.

5.2.4 Monte Carlo simulations

The three Monte Carlo samples described in section 4.3 are alternatively used to evaluate the
π0 and η efficiencies. When the first background parameterization method is used, the shape
of background is taken from the corresponding simulation for consistency.
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5.3 Determination of the π0 and η yields

The π0 and η yields and their errors are determined separately for the channels π0 → γγ,
π0 → γγc, π0 → γcγc, η → γγ and η → γγc using the averaging method described in section 4.3.
As the numbers of mesons N i

candidates are obtained from fits to the invariant mass spectra, the
background Nbkg entering eq. 3 is the contribution from π0 produced in interactions with the
material of the detector, which is taken from the simulation. As in section 4.3, the yields are
corrected for the difference between the Monte Carlo and the data in the energy calibration
and in the probability that a photon initiates a shower before reaching the calorimeter.

The numbers of π0 and η mesons per hadronic Z0 decay in the energy ranges covered by
the present measurement are given in tables 2 and 3 together with the values of each of the
systematic uncertainties. These are:

• The statistical error on the Monte Carlo samples used to calculate the efficiency.

• The variations observed in the averaging procedure using different Monte Carlo samples.

• The error associated with P̃γγ, obtained from the averaging procedure.

• The variations observed in the averaging procedure when using the different background
parameterizations.

• The variations observed in the averaging procedure when using the different signal pa-
rameterizations.

• The uncertainty associated with the π0 produced in interactions with the material of the
detector, evaluated as in section 4.3.

• The uncertainty associated with the energy calibration, evaluated as in section 4.3.

• The first method to evaluate the background requires the definition of a mass range used
for the normalisation of the Monte Carlo prediction to the data. This procedure is not
exact because of the presence of tails in the invariant mass distributions of the signal.
The bias on the yields resulting from the choice of the normalisation range is estimated
using the Monte Carlo, and its size is taken as the systematic error associated with this
method of evaluating the background.

• The simulation uncertainties not covered by the variations of the cut on P̃γγ, i.e., the errors
labelled simulation in table 1, propagated to the γγ, γγc and γcγc samples according to
the number of calorimetric and conversion photons in the pairs.

As a consistency check, the position of the π0 and η mass peaks has been measured in 10
data sub-samples corresponding to different data-taking periods, spanning six years of operation
of OPAL at Z0 energies. The energy scale varies by less than the 1% systematic uncertainty
ascribed to it. The fluctuations in the extracted π0 and η yields are of the same size as those
observed in section 4.3 for the numbers of calorimetric and conversion photons.

The dominant systematic uncertainties on the π0 → γγ, π0 → γγc and π0 → γcγc yields
(table 2) are those that also affect the corresponding γ and γc measurements (table 1), namely
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the variation of the efficiency in the different Monte Carlos for the calorimetric data, and the
simulation uncertainty associated with reconstruction cuts for the conversion. However, the
size of these uncertainties are approximately the same as those associated with the fits to the
invariant mass distributions.

The largest systematic error for the η → γγ channel comes from the variation of the cut on
P̃γγ (table 3). This is due to the difference between the shape of the P̃γγ distributions in the data
and in the Monte Carlo, which becomes clearly visible above P̃γγ> 0.5 in fig 4b. Several checks
on the η sample were performed in order to understand the origin of this discrepancy. A possible
explanation is that the Monte Carlo simulations underestimate the number of isolated η mesons.
This was verified with η samples selected requiring that there should be no other photons or
charged tracks within a cone of half-angle 15◦ from the η. The simulation underestimates the
number of these isolated η mesons with xE > 0.1 by a factor 2.07 ± 0.11, while the combinatorial
background is well reproduced. The same problem affects π0 mesons, for which this factor is
measured to be 1.99 ± 0.05. The factors are the same for γγ and γγc samples. They are similar
to those observed in ref. [28]. Thus, there is clear evidence that the Monte Carlo simulation
underestimates significantly the number of very isolated π0 and η mesons. These mesons are
systematically associated with large values of P̃γγ . Fortunately, they constitute only a few
percent of the total sample of identified mesons and their impact on the inclusive rate is very
small. However, they are an indication of yet unexplained shortcomings in current Monte Carlo
models, and have to be taken into account in the evaluation of the systematic error. In the
present analysis, the error associated with the variation of P̃γγ corresponds to a decrease of
acceptance by a factor of two and probes the behaviour of mesons with significantly different
environments. An additional check is performed in sect 7 by comparing the γγ and π0π+π−

channels which have different sensitivity to variations of the cut on P̃γγ.

The differential cross sections as a function of xE and log(1/xp) are presented, interpreted
and discussed together with those for the photons and the other mesons in section 8.

6 The decay channels π
±
π

0, π
±
η, π

+
π

−
π

0 and π
+
π

−
η

The reconstruction of π0 and η mesons offer the possibility to reconstruct the dominant ρ± →
π0π± and a±0 → ηπ± decays, the η,ω → π0π+π− decays with branching ratios of (23.2 ± 0.5)%
and (88.8 ± 0.7)% and the η′ → ηπ+π− decay with a branching ratio of (43.7 ± 1.5)% [26].
The method to evaluate the meson yields follows closely that used in section 5. Namely, the
numbers of mesons are obtained from fits to the invariant mass spectra of the meson decay
products and the final results and some systematic errors are calculated by averaging the yields
obtained using different data samples and various analysis methods. Two notable changes with
respect to section 5 are the slight modification of the π0 and η selection described below and
the adaptation of the fit procedure to the properties of the observed signals and backgrounds
presented in sections 6.2 to 6.5.

The decay channels π±π0, π±η, π+π−π0 and π+π−η are reconstructed by combining the
π0 and η candidates with either one charged track or two oppositely charged tracks. The
charged tracks are required to have at least 40 measured space-points in the jet chamber,
a momentum component perpendicular to the beam axis of at least 0.15 GeV/c, an impact
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parameter relative to the primary event vertex of less than 0.5 cm in the r − φ plane and 20
cm along the z direction. In addition, the dE/dx measurement must have a probability greater
than 1% for the pion hypothesis. The π0 and η selections are improved by using

G̃γγ(m) =
P̃γγ

P̃γγ + (1 − P̃γγ)
√

2πσ
∆m

exp(1
2
(m−m0

σ
)2)

(6)

instead of P̃γiγj
as the selection variable, using the same values of m0, σ and ∆m as in eq. 5.

The γγ, γγc and γcγc samples are simply summed because their purities are approximately the
same for a given value of G̃γγ(m). The resolution on the π0 and η momenta and energies are
improved by constraining their invariant masses to their nominal values [26] using a kinematic
fit. The four-momenta of the charged and neutral particles are added, and the invariant mass
of the system is evaluated.

6.1 Determination of the particle yields

As in the previous section, the determination of the meson yields is repeated using different
data samples and analysis procedures and the results are averaged to obtain the central values.
Similarly, the fits are systematically repeated using different values of cuts on G̃γγ(m), different
parameterizations of both the background and the signal and using different Monte Carlo
samples for the determination of the efficiency and, in some cases, the shape of the background.
For channels involving a π0, the cut on G̃γγ(m) is varied among the values 0.1, 0.2, 0.3, 0.5
and 0.7. For channels involving an η in the final state, the cut values are 0.05, 0.1, 0.2, 0.3
and 0.4. Since the largest deviations in the predicted efficiencies observed in the previous two
sections are those obtained when comparing the two JETSET samples, only these two Monte
Carlo samples are used in this section. In the following, the variations in the parameterization
of the signals and the backgrounds are presented channel by channel.

6.2 Analysis of the π0π± invariant mass spectra

Fig. 9 shows the invariant mass spectra of π0π± combinations for the entire energy range for two
different values of the cut on G̃γγ(m). The extraction of the ρ± yield from the π0π± invariant
mass spectra is complicated by the large width of the resonance, by uncertainties regarding
its exact shape and by the reflection from ω → π0π+π− decays. An additional complication
is the presence of partially reconstructed ρ± decays, where only the charged pion and one of
the photons come from the decay of a ρ± meson while the other photon candidate has another
origin. It is therefore particularly useful to compare yields obtained using different cuts on
G̃γγ(m) since this variation produces significant shifts in the position of the maximum of the
background shape (fig. 9) and also changes the relative number of partially reconstructed ρ±

decays.

Two methods are used to evaluate the background. In the first, the background shape is
taken from a simulation. It is normalised to the number of counts outside the signal region.
This method is used to obtain background-subtracted invariant mass spectra. In the second
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method, the background is parameterized as:

f(m) = p1(∆m)p2 × exp(p3∆m + p4∆
2
m) , (7)

where ∆m = m −mπ0 − mπ±, m is the invariant mass of the π0π± system and the parameters
p1 to p4 are determined in the fits to the data. A Gaussian representing the reflection from
ω → π0π+π− decays is added to this shape, with a width fixed to the Monte Carlo prediction.
The amplitude and centroid of the Gaussian are free parameters, in order to absorb possible
imperfections in the modelling of the background in this region close to the π0π± threshold.
The simulation predicts that the reflections from η → π0π+π− and K∗(892)± → K±π0 decays
are small; they are not included in the fit. The background shapes obtained using the two
methods are shown in fig. 9. Also shown are the data before and after the subtraction of the
average of the two background shapes. The ρ± resonance is clearly observed, albeit at a slightly
lower mass than in the Monte Carlo.

The shape of the ρ± resonance may be more complex than a relativistic Breit-Wigner. This
is the case for the ρ0 meson [8, 29], where the observed deviations from this shape may be due
to residual Bose-Einstein correlations, to interference between the amplitudes of the ρ and the
ππ background and to interference with the ω [30]. The first two effects should also affect the
ρ±. The most apparent sign of this distortion is a shift towards low mass of the maximum of
the resonance. For this reason the position of the pole of the resonance is a free parameter in
the fits. Following ref. [30], the modification of the ρ shape is taken into account by multiplying
the relativistic Breit-Wigner by a factor

I(m, C) = 1 + C
m2

0 − m2

mΓ
, (8)

where the parameter C is to be determined from the data. The values of C obtained in fits to
the data in different energy bins vary between 0.2 and 1.0, corresponding to shifts of −10 to −30
MeV/c2 in the position of the maximum of the resonance and consistent with the observations
of ref. [30] for the ρ0.

The ρ± yields are evaluated either from the results of fits to the invariant mass spectra
or by numerical integration of background-subtracted spectra. In the fits, the resonance is
parameterized as a relativistic Breit-Wigner convoluted with the experimental mass resolution
and multiplied by the factor I(m, C). The fits are repeated with the parameter C being either
fixed to zero or left as a free parameter. In addition, the experimental resolution is either fixed
to the Monte Carlo prediction or left as a free parameter. These variations affect the number of
mesons contained in the tails of the resonance. To address this problem in a consistent way, the
numbers of ρ± mesons are obtained by integrating the fitted resonance shapes over the same
range used for the integration of the background-subtracted spectra, from 0.39 to 1.15 GeV/c2.
All numbers in the data are then multiplied by 1.08 ± 0.03, which is the average correction
needed to extrapolate the fitted shapes to the range from the π0π± threshold up to 1.5 GeV/c2.
The integration range corresponds to the mass range to which the resonance is truncated in
JETSET and therefore the yields extracted from the simulations are not multiplied by this
factor. In addition, JETSET uses a non-relativistic Breit-Wigner shape, without any of the
correlations or interference effects just discussed and for this reason the shape of the resonance
is determined separately for the data and the Monte Carlo samples.

Another important consideration in the fits to the invariant mass spectra is the treatment
of partially reconstructed ρ± mesons. If a photon related to the ρ± decay contains most of the
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energy of the π0 and is combined with any low-energy photon, the invariant mass distribution
of the system will form a broad peak under the signal. The height of this “bump” is correlated
with the ρ± yield, but it is wider than the peak of fully reconstructed ρ± mesons. The influence
of partially reconstructed ρ± mesons is taken into account in the analysis and in the systematic
errors in the following ways. The bias in the extracted yields is evaluated by comparing the
results of fits to the invariant mass spectra of Monte Carlo samples where the partially recon-
structed ρ± are included or not. In addition, the simulation predicts that the importance of
partial reconstruction decreases as the cut on G̃γγ(m) (and therefore the quality of the selected
photons) increases. The comparison of the rates measured with different cut values is thus an
additional test of how well this effect is simulated.

6.3 Analysis of the ηπ± invariant mass spectra

Fig. 10 shows the invariant mass spectra of ηπ± combinations for the entire energy range for
two values of the cut on G̃γγ(m). The analyses of the ηπ± and π0π± invariant mass spectra
are similar. The same parameterization for the combinatorial background is used (eq. 7) and
a Gaussian is added to represent the reflection from η′ → ηπ+π− decays. However, because of
the low statistics the description in the fit of the a±0 resonance is not as detailed as for the ρ±.
The a±0 peak is parameterized by a simple Gaussian. The fitted mean and width of the signal
peak are 990 ± 12 and 51 ± 9 MeV/c2, respectively, in agreement with the nominal mass of
983.5 ± 0.9 MeV/c2 [26], and consistent with the expected range of 50 to 90 MeV/c2 for the
width of the resonance in the ηπ± channel [32]. To control possible biases due to the Gaussian
assumption, the fitted yields are used in the averaging procedure together with the integrals of
background-subtracted spectra in the range from 880 to 1120 MeV/c2, where the background
shape is either taken from the simulation or from a fit of the analytical background shape to
the data outside the signal region.

In fig. 10, the data are shown together with two background distributions obtained either
by the fit to the data or by scaling the Monte Carlo prediction. Also shown is the data after the
average of the two background shapes is subtracted. A peak is observed, with a position and a
width comparable to the prediction of the Monte Carlo for the a±0 signal. In the JETSET Monte
Carlo the a±0 resonance is a non-relativistic Breit-Wigner with a pole at m0 = 983 MeV/c2 and
a width Γ = 57 MeV/c2, the distribution being truncated at m0 ± 50 MeV/c2. Due to the
severe truncation and taking into account the experimental mass resolution, the simulated signal
distribution shown in fig. 10 resembles closely that of a Gaussian of width σ ∼ 32 MeV/c2.
According to the simulation, the effect of partially reconstructed η mesons is negligible. This is
because the η selection imposes more stringent requirements on the photon quality than does
the π0 selection.

6.4 Analysis of the π0π+π− invariant mass spectra

Fig. 11a and c show the invariant mass spectra of π0π+π−combinations, for the entire energy
range, in the region close to the η and ω signals. Compared to the π0π± invariant mass spectra,
the π0π+π− analysis benefits from the narrow widths of the η and ω states. However, it suffers
from the reduced meson rates and the additional combinatorial background.
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In the fits to the invariant mass distributions, the peaks from π0π+π− decays of the η and
the ω are each well reproduced by two Gaussians sharing the same centroid, their relative widths
and areas being determined from the simulation. In the case of the ω, this double-Gaussian
also helps to account for the tails of the Breit-Wigner distribution of the resonance. The fitted
parameters of the peak are the area, its centroid and its rms width.

The combinatorial backgrounds for the η and the ω are described by a second- and a
third-order polynomial, respectively. The shape of the fit component representing partially
reconstructed mesons differs from the one used for the ρ±. The η and ω momenta are shared
amongst three daughters instead of two as in the case of the ρ±. Consequently, the cases where
all particles except one of the two photons come from the same decay result in a bump with
a narrower width, lying systematically at masses above the peak of fully-reconstructed decays.
The adopted shape is an exponential tail at high masses convoluted with a Gaussian with a
width equal to that of the signal peak. The exponent of the tail and its area relative to the
signal peak are taken from the Monte Carlo prediction.

Two tests are performed to verify that the bump due to partially reconstructed decays is
properly described by the Monte Carlo. The first is to compare the rates obtained with different
cuts on G̃γγ(m). As the π0 probability increases, the size of the bump relative to the signal
decreases. The second test uses the characteristic matrix elements of the η and ω decays to
produce invariant mass spectra with almost no background. Within an experimental precision
of a few percent [34], the decay transition probabilities λη and λω are proportional to4:

λη ∝ 1 −
T ∗

0

T ∗
0,max

(9)

λω ∝ |~p ∗
− × ~p ∗

+|
2 , (10)

where T ∗
0 is the kinetic energy of the π0 in the π0π+π− rest frame, T ∗

0,max is its maximum possible
value and ~p ∗

+ (~p ∗
−) is the momentum of the positively (negatively) charged pion in the π0π+π−

rest frame. λη and λω are normalised such that they vary from 0 to 1. Random combinations
of three pions distributed according to phase space result in a flat λ distribution. Therefore
the ratio of the λ distributions for the signal and the combinatorial background should be
proportional to λ. Extracting from the invariant mass spectra the component proportional
to λ, one obtains distributions with the combinatorial background subtracted, and where the
shape of the signal and of the bump of partially reconstructed mesons can be evaluated with
more precision.

The method to extract the component proportional to λ in the data does not depend on its
modelling in the Monte Carlo. The λ distribution of the candidates is sampled as a function of
their invariant mass, m. The behaviour of phase space, F (λ, m), including acceptance effects,
is taken from combinations with invariant masses above and below the mass peak. In the
signal region, it is interpolated using a polynomial function. In each invariant mass bin, the
data are fitted with two components, one proportional to the phase space behaviour, F (λ, m),
and the other proportional to λF (λ, m). Figs. 11b and d show the components proportional
to λF (λ, m) extracted from the data in figs. 11a and c, respectively. The distribution for the
ω signal is slightly asymmetric due to a small excess at high mass which is explained in the
Monte Carlo as the bump of partially reconstructed mesons (dashed line in fig. 11b). Tests

4As formulated here, λη must be multiplied by the T ∗

0 phase-space dependence.
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performed on the simulations show that the components proportional to λF (λ, m) are excellent
approximations of the signal distributions. In both data and Monte Carlo, the meson yields
obtained from fits to the total invariant mass distribution or to the component proportional to
λ agree within 3%.

In JETSET, the matrix element of the decay η → π0π+π− is not simulated. To reproduce
the data, the signal events in the Monte Carlo are weighted by a factor5 of 2λη. Due to the
strong correlation of λη with the π0 energy, this correction changes the total efficiency for the
detection of η → π0π+π− decays by as much as 20%.

6.5 Analysis of the ηπ+π− invariant mass spectra

Fits to the ηπ+π− invariant mass spectra for the entire energy range are shown in fig. 12, for
the data and the Monte Carlo. Given the small statistics, a Gaussian is found to describe
adequately the η′ signal. As for the a±0 , the contribution from partially reconstructed η decays
does not need to be parameterized in the fit. In contrast to the three-body decays of the η
and ω, the Dalitz plot for the decay η′ → ηπ+π− is closer to phase space [35] and the matrix
element of the decay cannot be used to obtain background-free distributions.

6.6 Determination of the meson yields

The ρ±, a±0 , η, ω and η′ yields and their systematic errors are determined using the same
averaging method as in sections 4.3 and 5.3. The yields are corrected for the known branching
ratios of the different decay modes [26], except for a±0 → ηπ±, where a branching ratio of
90 ± 10 % is assumed [26, 33].

The numbers of mesons per hadronic Z0 decay in the energy ranges covered by the present
measurement are given in table 4 together with the values of each systematic uncertainty. These
are:

• The statistical error on the Monte Carlo samples used to calculate the efficiency.

• The variations observed using different Monte Carlo samples, obtained from the averaging
procedure.

• The error associated with G̃γγ(m), obtained from the averaging procedure.

• The variations observed when using the different background parameterizations, obtained
from the averaging procedure. In the case of π0π+π− decays, this includes the variations
observed when the matrix elements λη and λω are used.

• The variations observed when the mass resolution is either fixed to the Monte Carlo
prediction or left as a free parameter. In the case of the ρ±, this also includes the
variations observed when C is either fixed to zero or left as a free parameter.

5The normalisation is chosen such that the integral of the signal,
∫ 1

0
F (λ, m)dλ, is 1.
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• For the ρ±, the error associated with the extrapolation of the resonance beyond the mass
range described in section 6.2.

• The simulation uncertainties not covered by the variations of the cut on G̃γγ(m). The
contribution of the π0 and η are the simulation errors quoted in tables 2 and 3. These are
added in quadrature and correspond to a 2% uncertainty on the charged pion selection.

• The uncertainty due to partially reconstructed mesons, evaluated with the Monte Carlo
by comparing the results of fits to mass distributions with and without their contribution.
The yield difference is taken as a systematic error.

• In the case of the decays η → π0π+π−, η′ → ηπ+π− and a±0 → ηπ±, the uncertainty on
the branching ratio is greater than 1%, and is therefore included.

The differential cross sections as a function of xE and log(1/xp) are presented, interpreted
and discussed together with those for the photons and the other mesons in section 8.

7 Combination of channels

The calorimeter and conversion data are compared. The ratio of the total photon rates ob-
tained using identified photon conversions and the calorimeter data is 1.010 ± 0.002 (stat.), in
agreement well within the size of the systematic errors on the two samples (4.7% and 8.3%;
see table 1). Comparison of the π0 rates measured in the energy range common to the three
channels γγ, γγc and γcγc also yields ratios consistent with one. The ratios of the rates γγc/γγ
and γcγc/γγ are 0.97 ± 0.02 (stat.) and 0.96 ± 0.05 (stat.), respectively, in perfect agreement
given the estimated 8.4%, 12.2% and 23.6% errors on the rates for the γγ, γγc and γcγc chan-
nels, respectively (table 2). The agreement is also excellent for the γγc and γγ channels for the
η, despite a 34.3% uncertainty on the γγc channel (table 3).

Given the positive result of these consistency tests, a weighted average of the differential
cross-sections measured using the different channels is performed. The weights are taken as
the inverse of the square of the total errors. The systematic errors on the combined results
are obtained by assuming that the individual systematic errors are completely correlated. In
the few cases where the individual measurements and their errors are more than one standard
deviation away from the averaged result, the error on the average is scaled using the method
of ref. [26].

The η differential cross section measurements based on the γγ(γγc) and π0π+π− channels
have comparable total errors (13.9% and 12.9%, respectively; see tables 3 and 4) and the sys-
tematic uncertainties are largely uncorrelated. The two measurements are combined assuming
that the errors associated to the track and cluster simulation and to the variations of G̃γγ(m)
and of the Monte Carlo are entirely correlated and that all other sources of uncertainty are
uncorrelated. In the energy range where both types of data are available, the ratio of the
π0π+π− to the γγ(γγc) results is constant and equal to 1.14 ± 0.07 (stat.) ± 0.13 (syst.). With
the improved knowledge of the absolute normalisation provided by the combination of the two
data sets, the error on the total η rate is 10.9%.
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8 Results

In this section, the experimental meson rates are presented and compared to the predictions of
the JETSET and HERWIG Monte Carlo models. To simplify the comparison, the predictions
of the default versions of JETSET 7.4 and HERWIG 5.9 are used here, except for the a±0 which
is not produced in the default version of JETSET 7.4 and for which the prediction of the
JETSET version of ref. [19] is used. Two aspects of the model predictions are investigated: the
shape of the momentum spectra and the integrated rates.

8.1 Differential cross-sections

The differential cross-sections as a function of xE and log(1/xp) of the photon and the π0, η,
ρ±, ω, η′ and a±0 mesons are obtained by dividing the yields by the corresponding bin widths.
For the ρ± and a±0 resonances, the relationship between the meson energy and its momentum
varies from event to event. The yields are thus evaluated separately in bins of xE and in
bins of log(1/xp). The differential cross-sections are listed in tables 5 to 11 together with
the statistical and systematic errors. In fig. 13, the data are compared to the JETSET 7.4
predictions normalised to the measured rate. In the simulation, the difference between the
slopes of the photon and π0 distributions (fig. 13a) is strongly constrained by the fact that 92%
of the photons come from π0 decays. The measured shapes are consistent with the photon and
π0 predictions. The ρ± and ω mesons, both vector particles with similar masses, have similar
slopes (fig. 13b) that are also well reproduced by the Monte Carlo. However the predicted η
spectrum is too soft compared to the measurement (fig. 13c), while the η′ prediction is consistent
with the data within errors. The slope of the a±0 distribution (fig. 13d) is well reproduced by
JETSET with the parameters of ref. [19].

To emphasise the low-momentum portions of the spectra which represent the largest fraction
of the inclusive rates, the differential cross-sections are presented in fig. 14 as a function of
log(1/xp). In this figure, the full and dashed curves are the absolute predictions of default
JETSET 7.4 and HERWIG 5.9, respectively, except for the a±0 prediction of JETSET, taken
from ref. [19]. JETSET 7.4 reproduces the photon and π0 data slightly better than HERWIG
5.9. The predictions for the a±0 are quite similar, but HERWIG 5.9 provides a better description
of the ρ±, ω and η′ data. However, the η momentum spectra predicted by both models are too
soft.

8.2 Maxima of the log(1/xp) distributions

The location of the maximum of the log(1/xp) distribution is expected to be correlated with
the mass of the particle [36]. In addition, its value provides a quantitative measurement of
the hardness of the momentum spectrum. The value is extracted by fitting a Gaussian to the
data close to the maximum of the distribution. These values are listed in table 12, and shown
in fig. 15a where they are compared to other measurements at LEP and to the predictions of
JETSET and HERWIG. The errors quoted in the table are the sum of the fit errors and of the
uncertainties due to variations of the range of the Gaussian fits.
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As can be seen in fig. 15a, both JETSET and HERWIG reproduce the data within errors,
except for the η, for which the maximum is at a higher value in both JETSET and HERWIG.
This confirms that the η spectrum in the two models is too soft as was already noted in
section 8.1. The OPAL results agree with those of DELPHI [9] and L3 [10–12].

8.3 Rates extrapolated to 0 < xE < 1

The extrapolation of the rates to the full range of xE is done using the fractions of the rate lying
outside the measured range predicted by JETSET 7.4, HERWIG 5.9 and a Gaussian fit to the
log(1/xp) distributions. The applied corrections correspond to the average of the lowest and
highest values and the maximum deviation is taken as the systematic error on the procedure.
The data used to evaluate the extrapolation factors and the associated errors are listed in
table 13. The results of the Gaussian fits are considered because of their good description of
the data within errors and because in at least one case (the η) it appears that the JETSET and
HERWIG shapes may not be appropriate. Other shapes that describe the data equally well
are also considered. For the π0 and the η they are, respectively, the π± and K0

S distributions
measured by OPAL [2, 3]. The extrapolation factors derived from these experimental shapes
are all within the range covered by the predictions of JETSET, HERWIG and the Gaussian fit.

The particle multiplicities per hadronic Z0 decay extrapolated to the full energy range are:

〈nγ〉 = 20.97 ± 0.02 ± 1.07 ± 0.42 ,

〈nπ0〉 = 9.55 ± 0.06 ± 0.72 ± 0.21 ,

〈nη〉 = 0.97 ± 0.03 ± 0.10 ± 0.04 ,

〈nρ±〉 = 2.40 ± 0.06 ± 0.43 ± 0.02 ,

〈nω〉 = 1.04 ± 0.04 ± 0.13 ± 0.03 ,

〈nη′〉 = 0.14 ± 0.01 ± 0.02 ± 0.01 ,

〈na±
0

〉 = 0.27 ± 0.04 ± 0.10 ± 0.01 ,

where the first errors are statistical, the second systematic and the third are from the extrap-
olation procedure.

8.4 Discussion of the rates and comparison with models

In table 14, the measured rates are compared to those from other LEP experiments and to the
predictions of JETSET 7.4 and HERWIG 5.9. The ratio of the measured rates to the JETSET
7.4 predictions are shown in fig. 15b together with the results from other LEP experiments [6,
9–12]. In this figure, the results obtained by ALEPH in limited energy ranges for the photon,
η and η′ are divided by the JETSET 7.4 predictions in the corresponding range. All the
measurements are consistent with each other, except perhaps for the η′ where the measured
rate agrees with the ALEPH result [6], but is more than two standard deviations away from
that of L3 [12].

According to JETSET 7.4, 97.0% of all photons come from π0, η, ω and η′ decays. The pre-
diction of HERWIG 5.9 is 96.0%. In comparison, the sum of the measured π0, η, ω and η′ rates
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multiplied by the known photon multiplicities in their decays [26] accounts for (95 ± 5)% of the
measured number of photons6. The error on the ratio is calculated assuming that the errors on
the photon, π0 and η rates are fully correlated except for those associated with the background
subtraction and the fit to the invariant mass spectra7. This good agreement provides further
evidence that the models offer a reasonable description of the inclusive production of photons
in Z0 decays, an assumption on which the measurement of the photon rates relies.

The production rates of the π0 and ρ± can be compared with those of their isospin parters.
Using the measurements for the π± [2] and the ρ0 [6,8], the following ratios of rates are obtained:

2〈nπ0〉/〈nπ±〉 = 1.12 ± 0.01 ± 0.08 ,

2〈nρ0〉/〈nρ±〉 = 1.08 ± 0.04 ± 0.20 ,

where the first errors are statistical and the second systematic. These ratios are consistent with
the predictions of JETSET 7.4 (1.132 and 1.064, respectively) and HERWIG 5.9 (1.147 and
1.032). In these models, most of the deviation from unity comes from the decays η → π0π0π0

and η′ → ρ0γ.

As seen in fig. 15b, the measured rates are consistent with the predictions of JETSET 7.4
and HERWIG 5.9, except for the ω and the η′ for which the rates are more than two standard
deviations smaller than the JETSET 7.4 prediction. The failure of JETSET to reproduce the
η′ rate is well understood, as it assumes a similar strange quark content for the η and η′ and
neglects the effect of their difference in mass on their relative production rate. For this reason,
the suppression of the η′ relative to the η is a free parameter in JETSET 7.4. The present data
suggest that the current suppression factor of 0.4 should be further reduced. In contrast to the
η′, no single parameter can modify the ω rate in JETSET independently of all other mesons.
In that model an increase of the ω rate is necessarily accompanied by an equivalent increase of
the ρ0, ρ+ and ρ− rates because, with ideal mixing, these mesons are the corresponding isospin
I = 0 and I = 1 states. Indeed, the measured ρ± and ω rates (table 14) are consistent with
I = 0/I = 1 symmetry, albeit with a large error. However that symmetry can be broken by
cascade decays of heavier mesons such as the L = 1 states. The experimental information on
the production of these states is limited and the present a±0 data is interesting in this respect.

Table 14 shows that the a+
0 and a−0 are produced at rates comparable to the η′, a meson

of equal spin and similar mass. However, the strangeness content of the a±0 and η′ are not
expected to be the same. A more relevant comparison is with the f0(980) meson, which is the
isospin I=0 partner of the a±0 according to the quark model of mesons. The ratio of the rates
of the a±0 and the f0(980) [5] is 1.9 ± 0.8, compatible with the expected value of 2.

In the HERWIG cluster fragmentation model [21], the relative production rates of light-
flavour mesons are mostly determined by their masses, which affects the phase space available
for the cluster decay. This simple ansatz appears to be able to reproduce the measured a±0
rate. The a±0 is not present in the default version of JETSET. The inclusion of L = 1 meson
production in hadronisation requires the tuning of additional parameters. The predictions
shown in fig. 15 correspond to the choice of parameters of ref. [19] optimised, in part, to

6 In the data, the π0 and η decays alone account for approximately 91% and 4% of all observed photons,
respectively, in good agreement with the JETSET 7.4 predictions of 91.9% and 4.0%.

7These are the errors labelled as “Background subtraction”, “Gaussian peaks” and “Background normalisa-
tion range” in tables 1 to 3. The contributions of the ω and the η′ to the total error are negligible.
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reproduce the available data on D and B mesons. The agreement for the a±0 may be accidental
since the parameters of ref. [19] also predict a substantial b1(1232)±,0 rate of 0.92 meson per
Z0 decays. The present ω and ρ± data do not support this prediction. With the b1(1232)±,0

decaying exclusively to ωπ, the parameters of ref. [19] result in an ω rate which exceeds that of
its I = 1 partner, the ρ, with 〈nω〉 − 〈nρ±〉/2 = 0.56. The measured difference is −0.17 ± 0.26,
in better agreement with the prediction of −0.06 of default JETSET 7.4 with no L = 1 mesons,
and with the prediction of 0.00 of HERWIG 5.9, with a b1(1232)±,0 rate of 0.32. Thus, despite
the lack of direct measurements for several L = 1 meson states, it appears possible to constrain
the JETSET model by using the available data on all other mesons.

9 Conclusion

The inclusive particle multiplicity per hadronic Z0 decay and the differential cross-section have
been measured for photons and for π0, η, ρ±, ω, η′ and a±0 mesons. The a±0 is observed for
the first time in high-energy e+e− collisions. It is produced at a rate comparable to that of
mesons with a similar mass, such as the η′ and the f0(980). The inclusive ρ± production is
measured for the first time in hadronic Z0 decays. The models JETSET 7.4 and HERWIG 5.9
with their default parameters reproduce the shape of the measured differential cross-sections,
with the exception of that of the η meson which is too soft in both models. The absolute rates
in HERWIG 5.9 are in good agreement. In JETSET 7.4, the production rates of the ω and η
are overestimated by 20% and 50%, respectively. The present a±0 data is a valuable input for
the determination of the parameters required for the inclusion of L = 1 mesons in JETSET.
These parameters are further constrained by the data on other mesons like the ω and the ρ±.
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Photon sample γ γc γ + γc

xE range 0.003 - 1.000 0.003 - 1.000 0.003 - 1.000
Integrated rate 16.79 16.96 16.84

Errors (%)
Statistics (data) 0.1 0.2 0.1
Statistics (Monte Carlo) 0.1 0.1 0.1
Difference between Monte Carlos 3.4 3.0 3.3
Pγ(S) variations 0.8 - 0.6
Background subtraction 0.8 0.5 0.7
Nuclear interactions 2.0 0.9 1.7
Energy scale 1.5 1.3 1.4
Track and cal. simulation 1.8 7.6 3.1
Total error (%) 4.7 8.3 5.1

Table 1: Number of photons per hadronic Z0 decay in the xE range covered by the measurement
together with its statistical and systematic uncertainties (in %). The three columns are the
results obtained with the calorimetric sample (γ), the conversion sample (γc) and the combined
sample (γ + γc).
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π0 sample γγ γγc γcγc γγ + γγc + γcγc

xE Range 0.007 - 0.500 0.007 - 0.500 0.009 - 0.300 0.007-0.500
Integrated rate 8.37 8.12 7.51 8.29
Rate (0.009 < xE < 0.3) 7.80 7.35 7.51 7.65

Errors (%)
Statistics (data) 0.6 2.1 4.9 0.6
Statistics (Monte Carlo) 0.4 1.0 2.8 0.4
Difference between Monte Carlos 4.7 4.0 5.9 4.1

P̃γγ variations 2.0 2.7 9.3 2.2
Background subtraction 3.7 7.2 11.5 3.8
Gaussian peaks 0.8 1.1 3.0 0.8
Nuclear interactions 1.6 0.7 0.1 1.3
Energy scale (1%) 1.8 1.9 1.5 1.6
Background normalisation range 4.3 2.3 5.0 3.1
Track and cal. simulation 2.2 7.6 15.2 2.5
Total error (%) 8.4 12.2 23.6 7.6

Table 2: Statistical and systematic uncertainties (in %) on the number of π0 mesons per
hadronic Z0 decay measured using the individual π0 → γγ, π0 → γγc and π0 → γcγc samples,
and the combined sample.

η sample γγ γγc γγ + γγc

xE Range 0.025 - 1.000 0.040 - 0.300 0.025 - 1.000
Integrated rate 0.746 0.569 0.745
Rate (0.04 < xE < 0.30) 0.558 0.569 0.558

Errors (%)
Statistics (data) 2.6 6.5 2.6
Statistics (Monte Carlo) 1.7 4.5 1.7
Difference between Monte Carlos 3.9 9.7 3.8

P̃γγ variations 10.5 26.0 10.5
Background subtraction 7.4 16.7 7.3
Gaussian peaks 0.2 1.1 0.2
Energy scale (1%) 0.8 0.4 0.8
Background normalisation range 1.9 3.9 1.9
Track and cal. simulation 1.1 6.9 1.1
Total Error (%) 14.0 34.3 13.9

Table 3: Statistical and systematic uncertainties (in %) on the number of η mesons per
hadronic Z0 decay measured using the individual η → γγ and η → γγc samples, and the
combined sample.
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Meson η ρ± ω η′ a±0
Decay mode π0π+π− π0π± π0π+π− ηπ+π− ηπ±

xE range 0.025-0.4 0.025-0.6 0.05-0.8
log(1/xp) range 0.0-5.0 0.0-3.5
Rate 0.898 2.36 0.883 0.103 0.214

Errors (%)
Statistics (data) 6.5 2.3 3.6 10.1 16.8
Statistics (Monte Carlo) 1.7 1.7 0.5 1.6 2.5
Difference between Monte Carlos 3.7 - 5.9 4.9 -

G̃γγ(m) variations 2.4 10.9 3.9 7.2 13.6
Background subtraction 4.5 7.4 3.0 5.0 30.4
Mass resolution 4.0 7.0 8.1 6.8 -
Breit-Wigner extrapolation - 3.1 - - -
Track and cal. simulation 4.0 4.0 4.0 3.0 3.0
Partial reconstruction 6.6 9.0 5.8 - 6.6
Branching Ratio 2.5 - - 3.4 10.3
Total Error (%) 12.9 18.4 13.7 16.5 39.4

Table 4: Statistical and systematic uncertainties (in %) on the number of η, ρ±, ω, η′ and a±0
mesons per hadronic Z0 decay measured with the channels combining a π0 or an η meson with
charged pions. For the ρ± and a±0 resonances, the error associated with the difference between
the Monte Carlos is included in the error associated with the background subtraction.
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xE
1

σhad

dσ
dxE

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.003 - 0.004 1309 ± 13 ± 330 5.81 - 5.52 4.55 ± 0.05 ± 1.15
0.004 - 0.007 986 ± 2 ± 78 5.52 - 4.96 5.29 ± 0.01 ± 0.42
0.007 - 0.009 749 ± 1 ± 34 4.96 - 4.71 5.96 ± 0.01 ± 0.27
0.009 - 0.011 613 ± 1 ± 28 4.71 - 4.51 6.11 ± 0.01 ± 0.28
0.011 - 0.013 508 ± 1 ± 23 4.51 - 4.34 6.08 ± 0.02 ± 0.27
0.013 - 0.016 404 ± 1 ± 16 4.34 - 4.14 5.84 ± 0.01 ± 0.23
0.016 - 0.020 303 ± 1 ± 11 4.14 - 3.91 5.43 ± 0.01 ± 0.20
0.020 - 0.025 225 ± 1 ± 9 3.91 - 3.69 5.03 ± 0.01 ± 0.19
0.025 - 0.030 167 ± 1 ± 7 3.69 - 3.51 4.58 ± 0.01 ± 0.18
0.030 - 0.035 131 ± 1 ± 5 3.51 - 3.35 4.24 ± 0.01 ± 0.15
0.035 - 0.040 103 ± 1 ± 4 3.35 - 3.22 3.87 ± 0.01 ± 0.15
0.040 - 0.050 76.9 ± 0.2 ± 2.8 3.22 - 3.00 3.45 ± 0.01 ± 0.13
0.050 - 0.060 53.4 ± 0.2 ± 2.0 3.00 - 2.81 2.93 ± 0.01 ± 0.11
0.060 - 0.070 39.2 ± 0.2 ± 1.4 2.81 - 2.66 2.54 ± 0.01 ± 0.09
0.070 - 0.085 28.1 ± 0.1 ± 1.0 2.66 - 2.47 2.17 ± 0.01 ± 0.08
0.085 - 0.100 19.6 ± 0.1 ± 0.8 2.47 - 2.30 1.81 ± 0.01 ± 0.08
0.100 - 0.125 13.0 ± 0.1 ± 0.5 2.30 - 2.08 1.45 ± 0.01 ± 0.06
0.125 - 0.150 8.04 ± 0.05 ± 0.35 2.08 - 1.90 1.103 ± 0.006 ± 0.048
0.150 - 0.200 4.50 ± 0.03 ± 0.26 1.90 - 1.61 0.783 ± 0.005 ± 0.045
0.200 - 0.300 1.71 ± 0.02 ± 0.19 1.61 - 1.20 0.422 ± 0.004 ± 0.047
0.300 - 0.400 0.507 ± 0.010 ± 0.087 1.20 - 0.92 0.176 ± 0.003 ± 0.030
0.400 - 0.500 0.184 ± 0.005 ± 0.038 0.92 - 0.69 0.082 ± 0.002 ± 0.017
0.500 - 0.600 0.065 ± 0.002 ± 0.011 0.69 - 0.51 0.036 ± 0.001 ± 0.006
0.600 - 0.800 0.017 ± 0.001 ± 0.002 0.51 - 0.22 0.012 ± 0.000 ± 0.002
0.800 - 1.000 0.0023 ± 0.0003 ± 0.0010 0.22 - 0.00 0.0020 ± 0.0003 ± 0.0009

Table 5: Photon fragmentation function obtained by combining the calorimeter and conversion
results. The quoted errors are statistical and systematic, respectively.
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xE
1

σhad

dσ
dxE

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.007 - 0.009 254 ± 18 ± 48 5.06 - 4.77 1.74 ± 0.12 ± 0.33
0.009 - 0.011 266 ± 12 ± 38 4.77 - 4.55 2.42 ± 0.11 ± 0.34
0.011 - 0.013 248 ± 6 ± 28 4.55 - 4.37 2.78 ± 0.06 ± 0.31
0.013 - 0.016 211 ± 3 ± 18 4.37 - 4.15 2.92 ± 0.05 ± 0.25
0.016 - 0.020 178 ± 2 ± 14 4.15 - 3.92 3.11 ± 0.03 ± 0.25
0.020 - 0.025 139 ± 2 ± 6 3.92 - 3.70 3.05 ± 0.03 ± 0.13
0.025 - 0.030 113 ± 1 ± 5 3.70 - 3.51 3.06 ± 0.03 ± 0.13
0.030 - 0.035 94.1 ± 0.9 ± 4.0 3.51 - 3.36 3.03 ± 0.03 ± 0.13
0.035 - 0.040 77.7 ± 0.8 ± 4.3 3.36 - 3.22 2.89 ± 0.03 ± 0.16
0.040 - 0.050 62.5 ± 0.4 ± 3.9 3.22 - 3.00 2.79 ± 0.02 ± 0.17
0.050 - 0.060 45.7 ± 0.4 ± 3.0 3.00 - 2.81 2.50 ± 0.02 ± 0.16
0.060 - 0.070 34.7 ± 0.3 ± 3.0 2.81 - 2.66 2.25 ± 0.02 ± 0.20
0.070 - 0.085 26.2 ± 0.2 ± 1.8 2.66 - 2.47 2.02 ± 0.02 ± 0.14
0.085 - 0.100 19.4 ± 0.2 ± 1.4 2.47 - 2.30 1.79 ± 0.02 ± 0.13
0.100 - 0.125 13.2 ± 0.1 ± 2.9 2.30 - 2.08 1.48 ± 0.02 ± 0.32
0.125 - 0.150 9.05 ± 0.13 ± 0.76 2.08 - 1.90 1.240 ± 0.017 ± 0.105
0.150 - 0.200 5.36 ± 0.10 ± 0.69 1.90 - 1.61 0.931 ± 0.017 ± 0.120
0.200 - 0.300 2.26 ± 0.13 ± 0.38 1.61 - 1.20 0.558 ± 0.031 ± 0.094
0.300 - 0.400 0.764 ± 0.085 ± 0.309 1.20 - 0.92 0.266 ± 0.030 ± 0.107
0.400 - 0.500 0.455 ± 0.095 ± 0.244 0.92 - 0.69 0.204 ± 0.043 ± 0.110

Table 6: π0 fragmentation function obtained by combining the π0 → γγ, π0 → γγc and
π0 → γcγc data. The quoted errors are statistical and systematic, respectively.

xE
1

σhad

dσ
dxp

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.025 - 0.035 10.6 ± 1.5 ± 2.4 3.82 - 3.42 0.261 ± 0.038 ± 0.046
0.035 - 0.050 7.63 ± 0.78 ± 1.27 3.42 - 3.03 0.294 ± 0.030 ± 0.038
0.050 - 0.075 5.10 ± 0.38 ± 0.61 3.03 - 2.60 0.302 ± 0.023 ± 0.028
0.075 - 0.100 3.81 ± 0.21 ± 0.44 2.60 - 2.31 0.324 ± 0.018 ± 0.032
0.100 - 0.125 2.83 ± 0.12 ± 0.28 2.31 - 2.08 0.314 ± 0.014 ± 0.028
0.125 - 0.150 2.21 ± 0.10 ± 0.22 2.08 - 1.90 0.301 ± 0.014 ± 0.027
0.150 - 0.200 1.46 ± 0.05 ± 0.13 1.90 - 1.61 0.252 ± 0.009 ± 0.021
0.200 - 0.300 0.733 ± 0.026 ± 0.062 1.61 - 1.20 0.180 ± 0.006 ± 0.014
0.300 - 0.400 0.364 ± 0.022 ± 0.047 1.20 - 0.92 0.126 ± 0.008 ± 0.014
0.400 - 0.500 0.220 ± 0.019 ± 0.031 0.92 - 0.69 0.099 ± 0.008 ± 0.011
0.500 - 0.600 0.086 ± 0.010 ± 0.019 0.69 - 0.51 0.047 ± 0.006 ± 0.009
0.600 - 0.800 0.033 ± 0.004 ± 0.008 0.51 - 0.22 0.023 ± 0.003 ± 0.005
0.800 - 1.000 0.0013 ± 0.0004 ± 0.0011 0.22 - 0.00 0.0012 ± 0.0004 ± 0.0009

Table 7: η fragmentation function obtained by combining the γγ, γγc and π0π+π− data. The
quoted errors are statistical and systematic, respectively.
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xE
1

σhad

dσ
dxp

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.016 - 0.025 17.3 ± 8.1 ± 12.2 5.0 - 4.5 0.171 ± 0.008 ± 0.081
0.025 - 0.035 32.3 ± 2.5 ± 9.7 4.5 - 4.0 0.419 ± 0.035 ± 0.111
0.035 - 0.050 21.3 ± 0.7 ± 4.5 4.0 - 3.5 0.500 ± 0.092 ± 0.138
0.050 - 0.075 16.7 ± 0.4 ± 1.8 3.5 - 3.0 0.692 ± 0.028 ± 0.165
0.075 - 0.100 9.89 ± 0.40 ± 1.46 3.0 - 2.5 0.868 ± 0.021 ± 0.126
0.100 - 0.125 7.11 ± 0.25 ± 1.04 2.5 - 2.0 0.805 ± 0.022 ± 0.104
0.125 - 0.150 5.90 ± 0.25 ± 0.78 2.0 - 1.5 0.603 ± 0.017 ± 0.078
0.150 - 0.200 3.60 ± 0.12 ± 0.48 1.5 - 1.0 0.419 ± 0.014 ± 0.073
0.200 - 0.300 2.02 ± 0.07 ± 0.21 1.0 - 0.5 0.217 ± 0.010 ± 0.055
0.300 - 0.400 1.03 ± 0.04 ± 0.27 0.5 - 0.0 0.034 ± 0.004 ± 0.019
0.400 - 0.600 0.430 ± 0.023 ± 0.081
0.600 - 0.800 0.075 ± 0.013 ± 0.032
0.800 - 1.000 0.013 ± 0.003 ± 0.009

Table 8: ρ± fragmentation function. The quoted errors are statistical and systematic, re-
spectively. Because of the width of the ρ±, the relation between xE and xp varies with mass.
Therefore the analysis is performed first with bins of xE (first two columns) and then repeated
with bins of log(1/xp).

xE
1

σhad

dσ
dxp

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.025 - 0.035 15.2 ± 2.4 ± 2.1 4.01 - 3.49 0.293 ± 0.046 ± 0.040
0.035 - 0.050 9.88 ± 0.84 ± 1.48 3.49 - 3.06 0.344 ± 0.029 ± 0.051
0.050 - 0.075 5.82 ± 0.35 ± 0.75 3.06 - 2.62 0.330 ± 0.020 ± 0.043
0.075 - 0.100 4.12 ± 0.25 ± 0.54 2.62 - 2.32 0.344 ± 0.021 ± 0.045
0.100 - 0.125 2.74 ± 0.16 ± 0.32 2.32 - 2.09 0.299 ± 0.018 ± 0.035
0.125 - 0.150 2.23 ± 0.14 ± 0.24 2.09 - 1.90 0.301 ± 0.018 ± 0.032
0.150 - 0.200 1.45 ± 0.09 ± 0.17 1.90 - 1.61 0.250 ± 0.016 ± 0.029
0.200 - 0.300 0.789 ± 0.049 ± 0.099 1.61 - 1.21 0.193 ± 0.012 ± 0.024
0.300 - 0.400 0.335 ± 0.037 ± 0.042 1.21 - 0.92 0.116 ± 0.013 ± 0.014
0.400 - 0.600 0.130 ± 0.027 ± 0.028 0.92 - 0.51 0.064 ± 0.013 ± 0.014

Table 9: ω fragmentation function. The quoted errors are statistical and systematic, respec-
tively.
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xE
1

σhad

dσ
dxp

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.050 - 0.070 1.01 ± 0.38 ± 0.14 3.09 - 2.71 0.052 ± 0.020 ± 0.007
0.070 - 0.100 0.462 ± 0.180 ± 0.073 2.71 - 2.33 0.036 ± 0.014 ± 0.006
0.100 - 0.125 0.460 ± 0.144 ± 0.082 2.33 - 2.09 0.050 ± 0.016 ± 0.009
0.125 - 0.150 0.293 ± 0.099 ± 0.049 2.09 - 1.91 0.039 ± 0.013 ± 0.007
0.150 - 0.200 0.354 ± 0.068 ± 0.054 1.91 - 1.61 0.061 ± 0.012 ± 0.009
0.200 - 0.300 0.137 ± 0.028 ± 0.017 1.61 - 1.21 0.034 ± 0.007 ± 0.004
0.300 - 0.400 0.088 ± 0.020 ± 0.011 1.21 - 0.92 0.030 ± 0.007 ± 0.004
0.400 - 0.600 0.034 ± 0.010 ± 0.006 0.92 - 0.51 0.017 ± 0.005 ± 0.003
0.600 - 0.800 0.013 ± 0.006 ± 0.003 0.51 - 0.22 0.009 ± 0.004 ± 0.002

Table 10: η′ fragmentation function. The quoted errors are statistical and systematic, respec-
tively.

xE
1

σhad

dσ
dxp

ln(1/xp)
1

σhad

dσ
dln(1/xp)

0.050 - 0.070 1.65 ± 1.03 ± 0.75 3.50 - 3.00 0.093 ± 0.063 ± 0.050
0.070 - 0.100 1.05 ± 0.49 ± 0.73 3.00 - 2.50 0.104 ± 0.041 ± 0.041
0.100 - 0.125 0.747 ± 0.215 ± 0.214 2.50 - 2.00 0.076 ± 0.019 ± 0.030
0.125 - 0.150 0.985 ± 0.238 ± 0.560 2.00 - 1.50 0.088 ± 0.013 ± 0.023
0.150 - 0.200 0.623 ± 0.107 ± 0.171 1.50 - 1.00 0.040 ± 0.009 ± 0.012
0.200 - 0.300 0.207 ± 0.046 ± 0.069 1.00 - 0.50 0.019 ± 0.006 ± 0.007
0.300 - 0.400 0.093 ± 0.027 ± 0.040 0.50 - 0.00 0.0071 ± 0.0025 ± 0.0022
0.400 - 0.600 0.038 ± 0.015 ± 0.015
0.600 - 0.800 0.014 ± 0.005 ± 0.006
0.800 - 1.000 0.0040 ± 0.0018 ± 0.0024

Table 11: a±0 fragmentation function. The quoted errors are statistical and systematic, re-
spectively. Because of the width of the a±0 , the relation between xE and xp varies with mass.
Therefore the analysis is performed first with bins of xE (first two columns) and then repeated
with bins of log(1/xp).
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Particle Location of the maximum of dσ/dln(1/xp)
OPAL L3 [10–12] DELPHI [9] JETSET 7.4 HERWIG 5.9

γ 4.61 ± 0.12 4.54 4.63
π0 3.77 ± 0.11 3.90 ±0.24

0.14 3.96 ± 0.13 3.78 3.86
η 2.64 ± 0.14 2.52 ± 0.12 2.94 3.01
ρ± 2.63 ± 0.15 2.69 2.70
ω 2.89 ± 0.24 2.86 ± 0.20∗ 2.77 2.77
η′ 2.21 ± 0.42 2.69 ± 0.10∗ 2.48 2.17
a±0 2.57 ± 0.50 2.62 2.72

Table 12: Location of the maximum of the log(1/xp) distributions, determined from a Gaussian
fit to the data in the region around the maximum. The OPAL measurements are compared
to other LEP measurements and to the predictions of the default versions of JETSET 7.4 and
HERWIG 5.9. The errors on the predictions are typically ±0.01. The results marked with
an asterisk are extracted assuming that the shape of the log(1/xp) distribution is given by a
MLLA calculation [12].

γ π0 η ρ± ω η′ a±0
Measured range:
Min. log(1/xp) 0.00 0.69 0.00 0.00 0.51 0.22 0.00
Max. log(1/xp) 5.81 5.06 3.82 5.00 4.01 3.09 3.50
% of rate in range
JETSET 7.4 81.9 88.7 78.7 98.9 87.7 68.9 80.5∗

HERWIG 5.9 79.4 87.7 77.9 98.7 87.1 74.5 78.6
Gaussian fit 78.7 84.9 82.2 97.4 82.3 77.7 81.6
π± shape 88.4
K0

S shape 82.2
Combined % 80.3 86.8 81.1 98.2 85.0 73.3 80.1
Error 1.6 1.9 3.1 0.8 2.7 4.4 1.5
Measured rate 16.84 8.29 0.789 2.36 0.883 0.103 0.214
Extrapolated rate 20.97 9.55 0.973 2.40 1.039 0.141 0.267
Extrapolation error 0.42 0.21 0.038 0.02 0.033 0.008 0.005

Table 13: Data used for the extrapolation to the unobserved energy/momentum ranges. The
result marked with an asterisk is from the JETSET tune of ref. [19].
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Experimental results JETSET HERWIG
OPAL ALEPH [6] DELPHI [9] L3 [10–12] 7.4 5.9

photon
xE range 0.003-1.000 0.018-0.450

Nγ in range 16.84 ± 0.86 7.37 ± 0.24
Nγ all xE 20.97 ± 1.15 20.76 22.65

π0

xE range 0.007-0.400 0.025-1.000 0.011-0.750 0.004-0.150
Nπ0 in range 8.29 ± 0.63 4.80 ± 0.32 7.1 ± 0.8 8.38 ± 0.67
Nπ0 all xE 9.55 ± 0.76 9.63 ± 0.64 9.2 ± 1.0 9.18 ± 0.73 9.60 10.29

η
xE range 0.025-1.000 0.100-1.000 0.020-0.300

Nη in range 0.79 ± 0.08 0.282 ± 0.022 0.70 ± 0.08
Nη all xE 0.97 ± 0.11 0.91 ± 0.11 1.00 0.92

Nη xp > 0.1 0.344 ± 0.030 0.282 ± 0.022 0.286 0.243

ρ±

xE range 0.016-1.000
Nρ± in range 2.36 ± 0.42
Nρ± all xE 2.40 ± 0.44 2.82 2.29

ω
xE range 0.025-0.800 0.053-1.000 0.026-0.300

Nω in range 0.88 ± 0.12 0.64 ± 0.08 0.94 ± 0.14
Nω all xE 1.04 ± 0.14 1.07 ± 0.14 1.17 ± 0.17 1.35 1.14

η′

xE range 0.050-0.800 0.100-1.000 0.023-0.240
Nη′ in range 0.103 ± 0.017 0.064 ± 0.014
Nη′ all xE 0.14 ± 0.03 0.25 ± 0.04 0.297 0.122

N ′
η xp > 0.1 0.069 ± 0.012 0.064 ± 0.014 0.127 0.060

a±0
xE range 0.050-1.000

Na±
0

in range 0.21 ± 0.08

Na±
0

all xE 0.27 ± 0.11 0.210 0.221

Table 14: Summary of the measurements of the particles rates described in this paper compared
to other measurements at LEP and to JETSET and HERWIG predictions.
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Figure 1: Distribution of variables used for the discrimination of photons recorded in the
electromagnetic calorimeter. The points represent the data and the histogram represents the
Monte Carlo simulation, normalised to one event. The Monte Carlo photons and background
are shown as hatched and dashed histograms, respectively. The insert shows the weights used
in eq. 1. The variables are: a) the photon energy; b) the photon energy multiplied by the angle
to the closest charged track; c) the minimum of the invariant mass of the photon with any other
photon; d) the fitted shower energy divided by the sum of the energy in the 3×3 array of blocks
around the shower; e) the distance of the shower relative to the centre of the block, a value of
1 corresponding to the edge of the block; f) the maximum value of (E−1 − E0)(E+1 − E0)/E

2
0 ,

where E−1, E0, E+1 are the energies deposited in 3 consecutive blocks in either θ or φ, the
index 0 corresponding to the block where the shower is centered; and g) the sum of the residual
of the shower fit in the 3×3 array of blocks around the shower divided by the shower energy.
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Figure 2: Distribution of Pγ, the variable used for the selection of calorimeter photons in
the measurement of the photon rates. The points are data and the histogram represents the
Monte Carlo simulation. The Monte Carlo signal (dashed histogram) and background (hatched
histogram) are also shown. The Monte Carlo signal has been normalised to the measured photon
rate and the background to the number of events in the data sample.
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Carlo (histogram). The shaded histogram shows the contribution from background, according
to the Monte Carlo. The Monte Carlo sample is normalised to the same number of events. The
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abrupt cut at r = 50 cm is due to an additional cut on the dE/dx of the two electron tracks.
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Figure 6: a-f) Fits to the invariant mass distribution of pairs of photons, for the decay
channels π0 → γγ, π0 → γγc and π0 → γcγc for the lowest and highest P̃γγ cut used in the
present analysis. The points represent the OPAL data and the full lines the fits to the data
where the background (dashed lines) is parameterized as a second-order polynomial. The dotted
lines correspond to the background evaluated using the Monte Carlo distributions, which may
contain a small fraction of the signal in cases where the association between photon candidates
and true photons is ambiguous (see text).
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Figure 7: a-d) Fits to the invariant mass distribution of pairs of photons, for the decay channels
π0 → γγ and η → γγc for the lowest and highest P̃γγ cut used in the present analysis. The
points represent the OPAL data and the full lines the fits to the data where the background
(dashed lines) is parameterized as a second-order polynomial plus a Gaussian for the reflection
from ω → γπ0 decays. The dotted lines correspond to the background evaluated using the
Monte Carlo distributions, which may contain a small fraction of the signal in cases where the
association between photon candidates and true photons is ambiguous (see text).
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Figure 8: a-d) Mass peak for the decay channels π0 → γγ, π0 → γγc, π0 → γcγc and η → γγ.
The distributions are obtained by subtracting the fitted background shape from the raw spectra.
The points represent the OPAL data and the full curves the fit to the Monte Carlo. The Monte
Carlo distributions are normalised to the area in the data. A cut on P̃γγ> 0.3 is applied for the
π0, and P̃γγ> 0.2 for the η (see text).
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Figure 9: Fits to the invariant mass distribution of π0π± combinations for two different cuts
on G̃γγ(m). The points represent the OPAL data and the full curves the background obtained
in the fit to the data. The dashed histograms correspond to the background evaluated using the
Monte Carlo distributions. In the lower part of the figures, the signal obtained by subtracting
the average of the two background from the data is shown as the open circles, and the signal
in the Monte Carlo, normalised to the same number of events, is shown as the full histogram.
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Figure 10: Fits to the invariant mass distribution of ηπ± combinations for two different cuts
on G̃γγ(m). The points represent the OPAL data and the full curves the background obtained
in the fit to the data. The dashed histograms correspond to the background evaluated using the
Monte Carlo distributions. In the lower part of the figures, the signal obtained by subtracting
the average of the two background from the data is shown as the open circles and is multiplied
by a factor 3 for clarity. The full histogram is the Monte Carlo signal normalised to the same
number of events.
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Figure 11: Fits to the invariant mass distribution of π0π+π− combinations, for a cut of
G̃γγ(m)> 0.3. The points represent the OPAL data and the full curves the fit to the data. The
dashed histograms correspond to the background evaluated using the Monte Carlo distributions.
Fig. (a) and (c): fits in the region of the ω and the η, respectively. The signal extracted from
the fit to the data, multiplied by a factor 5 for clarity, is shown by the open circles. Fig. (b)
and (d): the points are the components proportional to λ (see section 6.4) extracted from the
data in the region of the ω and the η, respectively. The full curves are the fits to the data.
The dashed histogram is the simulated background, including partially reconstructed mesons
which appear as a bump close to the signal peak. The dotted curves are the contributions from
partial reconstructions included in the fit.
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Figure 12: Fit to the invariant mass distribution of ηπ+π− combinations in the data (left) and
in the Monte Carlo (right). A cut on G̃γγ(m)> 0.1 has been applied. The curves represent the
fit and the Monte Carlo background is shown as a dashed histogram. In the lower part of the
figures, the open symbols represent the signal extracted from the fit.
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Figure 13: Differential cross-section as a function of the scaled energy xE for the production in
hadronic Z0 decays of (a) photons and π0 mesons, (b) ρ± and ω mesons, (c) η and η′ mesons and
(d) a±0 mesons. The points are the data and the curves are the predictions of default JETSET
7.4, with a normalisation fitted to the data. The error bars represent the quadratic sum of the
statistical and systematic errors.
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Figure 14: OPAL measurement of the inclusive production of photons, π0 η, ρ± ω, η′ and
a±0 mesons in hadronic Z0 decays, as a function of log(1/xp). The full and dashed lines are the
absolute predictions of JETSET 7.4 and HERWIG 5.9, respectively, without any additional
normalisation. The error bars represent the quadratic sum of the statistical and systematic
errors.
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Figure 15: a) Position of the maximum of the log(1/xp) distributions. The black points are
the OPAL measurements, and the full and dashed lines are the predictions of JETSET 7.4 and
HERWIG 5.9, respectively. The measurements of DELPHI [9] and L3 [10–12] are shown as
white squares and circles, respectively. The maxima are obtained by a Gaussian fit to the data
close to the maximum, except for L3, which makes model-dependent assumptions concerning
the shape of the distribution. b) Particle multiplicities (extrapolated to 0 < xE < 1), divided
by the prediction of JETSET 7.4. The full circles represent the OPAL measurements, and the
open circles, triangles and squares those of other LEP experiments [6, 9–12]. The dotted line
represents the prediction of HERWIG 5.9.
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