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A. S. Belyaev 1,2, O. J. P. Éboli 1, M. C. Gonzalez–Garcia 3,
J. K. Mizukoshi 4, S. F. Novaes 1, and I. Zacharov 5
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We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector–
boson interactions through the production of vector–boson pairs accompanied by jets. In the frame-
work of SU(2)L ⊗ U(1)Y chiral Lagrangians, we examine all effective operators of order p4 that
lead to new four–gauge–boson interactions but do not alter trilinear vertices. In our analyses, we
perform the full tree level calculation of the processes leading to two jets plus vector–boson pairs,
W+W−, W±W±, W±Z, or ZZ, taking properly into account the interference between the standard
model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous
quartic interactions and we study the strategies to distinguish the possible new couplings.

I. INTRODUCTION

The standard model (SM) of the electroweak interac-
tions, based on the SU(2)L⊗U(1)Y gauge symmetry, has
accomplished an impressive agreement of its predictions
for the fermion–vector boson couplings with all the re-
cent experimental data [1]. Notwithstanding, the tests of
the triple and quartic bosonic interactions still lack the
same accuracy to further confirm the local gauge invari-
ance of the theory or to indicate the existence of new
physics beyond the SM.

The interactions responsible for the electroweak sym-
metry breaking play an important rôle in the gauge–
boson scattering at high energies as they are an essential
ingredient to avoid unitarity violation in the scattering
amplitudes of massive vector bosons at the TeV scale [2].
There are two possible forms of electroweak symmetry
breaking which lead to different solutions to the unitar-
ity problem: (a) there is a scalar particle lighter than 1
TeV, the standard model Higgs boson, or (b) such particle
is absent and the longitudinal components of the W and
Z bosons become strongly interacting at high energies.
In the latter case, the symmetry breaking occurs due to
the nonzero vacuum expectation value of some composite
operators which are related with new underlying physics.

In this work we analyze the potential of the CERN
Large Hadron Collider (LHC) to study deviations of the
quartic vector–boson couplings from the SM predictions,
assuming a strongly interacting electroweak symmetry

breaking sector (SEWS). In fact, the LHC will be the
first collider capable of directly studying these couplings
through the scattering of gauge–bosons in reactions like
pp→ qqV V → V V jj [3–5], with V = W± or Z0. Studies
of quartic couplings will also be possible at future e+e−

colliders [6–10], and also in eγ [11] and γγ collisions [12].
Notwithstanding, at present, this sector of the SM can
only be indirectly bounded by the precise measurements
of the electroweak parameters [13,14].

In this paper we assume that there are no new heavy
resonances at the LHC energy scale, which means that
the SU(2)L ⊗ U(1)Y gauge symmetry is nonlinearly re-
alized. In this case, the electroweak sector must be
parametrized in terms of electroweak chiral Lagrangians.
We study the complete set of dimension four operators
contributing only to quartic vector–boson couplings and
we estimate the sensitivity of the LHC to search for de-
viations from the SM predictions.

We present the results for the full tree level calculation
of the processes pp → V V+ 2 jets, with V = W±, Z0,
taking properly into account the interference between the
SM and anomalous quartic contributions. This improves
the previous studies of SEWS at the LHC [3–5] which
relied upon the equivalence theorem [15] or/and the ef-
fective W–boson approximation [16]. Moreover, we per-
formed our calculation both in the unitary and ’t Hooft–
Feynman gauges, and we also included the efficiencies for
detecting the leptons originating from the vector boson
decays.
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In our analyses we obtain the allowed range of the co-
efficient of each anomalous quartic operator and com-
pare the results with those coming from indirect mea-
surements [13,14], as well as the attainable limits at fu-
ture e+e− colliders [6–10]. In addition to the discovery
of an anomalous behavior of the cross section for the pro-
duction of a vector boson pair, it is important to identify
the possible source of this deviation. Depending on the
particular operator(s) responsible for the deviations, we
could have some hint about the underlying physics that
generates this departure from the SM predictions. This
can be achieved by the comparative analysis of the dif-
ferent reactions since distinct operators contribute differ-
ently to each possible two boson final states.

The paper is organized as follows. In the next Sec-
tion, we summarize the model independent formalism
and present the respective chiral Lagrangians describ-
ing the anomalous quartic couplings among the gauge
bosons. In Section III, we analyze both the signals and
backgrounds involved in the production of a vector bo-
son pairs accompanied by two jets. We also establish the
best cuts to improve the signal over background ratio.
Our final results for the cross sections are presented in
Section IV, in terms of the chiral Lagrangian coefficients.
The final section contains our general conclusions.

II. CHIRAL LAGRANGIANS

When the Higgs boson is a strongly interacting parti-
cle or when it is absent from the physical particle spec-
trum, one is led to consider the most general effective
Lagrangian which employs a nonlinear representation of
the spontaneously broken SU(2)L ⊗ U(1)Y gauge sym-
metry [17]. The resulting chiral Lagrangian is a non-
renormalizable non-linear σ–model coupled in a gauge-
invariant way to the Yang-Mills theory. This model inde-
pendent approach incorporates by construction the low-
energy theorems [18], which predict the general behavior
of Goldstone boson amplitudes, irrespective of the details
of the symmetry breaking mechanism. This low–energy
effective theory should be valid up to some energy scale
smaller than 4πv ' 3 TeV, where new physics would
come into play to avoid unitarity violation in vector–
boson scattering [2].

In order to specify the effective Lagrangian, one must
fix the symmetry breaking pattern. We considered that
the system presents a global SU(2)L ⊗ SU(2)R symme-
try that is broken to SU(2). With this choice, following
the notation of Ref. [17], the building block of the chiral
Lagrangian is the dimensionless unimodular matrix field
Σ(x), which transforms under SU(2)L⊗SU(2)R as (2, 2),

Σ(x) = exp

[
i
ϕa(x)τa

v

]
, (1)

where the ϕa fields are the would-be Goldstone fields and
τa (a = 1, 2, 3) are the Pauli matrices. The SU(2)L ⊗
U(1)Y covariant derivative of Σ is defined as

DµΣ ≡ ∂µΣ + ig
τa

2
W a
µΣ− ig′Σ

τ3

2
Bµ . (2)

The lowest-order terms in the derivative expansion of
the effective Lagrangian are

L(2) =
v2

4
Tr
[
(DµΣ)† (DµΣ)

]
+ β1g

′2 v
2

4
(Tr [TVµ])2

.

(3)

where we have introduced the auxiliary quantities T ≡
Στ3Σ† and Vµ ≡ (DµΣ) Σ† which are SU(2)L-covariant
and U(1)Y -invariant. Notice that T is not invariant un-
der SU(2)C custodial due to the presence of τ3.

The first term of the above equation is responsible
for giving mass to the gauge bosons W± and Z for
v = (

√
2GF )−1. The second term violates the custo-

dial SU(2)C symmetry and contributes to ∆ρ at the tree
level, being strongly constrained by the low-energy data.
This term can be understood as the low-energy remnant
of the high-energy custodial symmetry breaking physics,
which has been integrated out above a certain scale Λ.
Moreover, at the one-loop order, it is also required in
order to cancel the divergences in ∆ρ, arising from dia-
grams containing a hypercharge boson in the loop [17].
This subtraction renders a finite ∆ρ, although dependent
on the renormalization scale.

At the next order in the derivative expansion (p4),
there are many operators that can be written down [17].
We shall restrict our analyses to the ones that exhibit
genuine quartic vector-boson interactions, i.e. that do
not have triple gauge–boson vertices associated to these
quartic couplings. These operators are

L(4)
4 = α4 [Tr (VµVν)]

2
, (4)

L(4)
5 = α5 [Tr (VµV

µ)]2 , (5)

L(4)
6 = α6 Tr (VµVν) Tr (TV µ) Tr (TV ν) , (6)

L(4)
7 = α7 Tr (VµV

µ) [Tr (TV ν)]
2
, (7)

L(4)
10 =

α10

2
[Tr (TVµ) Tr (TVν)]

2
. (8)

These Lagrangian densities lead to quartic vertices in-
volving gauge bosons and/or Goldstone bosons. In the
unitary gauge, there are new anomalous contributions
to the ZZZZ vertex coming from all five operators, to

the W+W−ZZ vertex from all operators except L(4)
10 ,

and to W+W−W+W− interaction arising from L(4)
4 and

L(4)
5 . Moreover, the interaction Lagrangians L(4)

6 , L(4)
7 ,

and L(4)
10 violate the SU(2)C custodial symmetry. Notice

that the quartic couplings involving photons remain un-
touched by the genuinely quartic anomalous interactions
at the order p4. The Feynman rules for the quartic cou-
plings generated by these operators can be found in the
last article of Ref. [17].
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III. SIGNALS AND BACKGROUNDS

In our analyses, we study the strongly interacting elec-
troweak breaking sector at the LHC via the scattering of
weak vector bosons that are radiated off quarks. We con-
sidered the following processes involving the four–gauge–
boson interactions (4)–(8),

pp→ W+W− j j , (9a)

pp→ W−W− j j , (9b)

pp→ W+W+ j j , (9c)

pp→ W+Z j j , (9d)

pp→ W−Z j j , (9e)

pp→ Z Z j j . (9f)

We evaluated the complete set of QCD and electroweak
scattering amplitudes for the above processes, i.e. we did
not use neither the effective W approximation [16] nor
the equivalence theorem [15]. Therefore, we were able to
keep track of the full correlation in the matrix elements,
as well as the interference between the anomalous and SM
contributions. Moreover, we took into account not only
the electroweak contributions but also the O(α2α2

S) ones.
For the sake of clarity, we show in Table I the anomalous
interactions that contribute to each of the reactions (9).
This table indicates the strategy that should be followed
to understand the origin of the possible deviations from
the SM.

The calculation of the matrix elements was performed
numerically using two distinct tools. On one hand, we
evaluated the scattering amplitudes in the unitary gauge
using the HELAS package [19], with the SM contribu-
tion being generated by Madgraph [20]. In this case, we
wrote special subroutines to evaluate the anomalous con-
tributions (4)–(8) to the vector–boson self–interactions.
On the other hand, the same processes were evaluated
using the CompHEP package [21]. The p4 chiral ef-
fective lagrangian was implemented into CompHEP in
the unitary and the ’t Hooft–Feynman gauges. Despite
the Feynman rules in the ’t Hooft–Feynman gauge being
cumbersome, this gauge maximizes the CompHEP per-
formance and allows us to double check our calculations
by comparing the results in two gauges. The results from
HELAS/Madgraph and CompHEP were confronted and
they indeed agreed.

The evaluation of the processes (9) requires a very large
computing power. The complexity of this calculation can
inferred from the large number of diagrams involved. For
instance, there are 1918 Feynman diagrams contributing
to the W+W− final state, while for W+Z there are 1503,
and 978 for ZZ. As an illustration, we present, in Fig. 1,
the complete set of Feynman diagrams for the subprocess
uu → W+W+dd which contributes to the W+W+ pro-
duction (9c). The first diagram in this figure receives con-
tributions from the anomalous interactions, giving rise to
the signal, while all other graphs correspond to QCD and
electroweak backgrounds. We neglected in our analyses

the small contribution coming from subprocesses exhibit-
ing two sea quarks in the initial state.

Strongly interacting symmetry breaking sectors mod-
ify the dynamics of longitudinal vector bosons. However,
it is impossible to determine the polarization of vector
bosons on an event–by–event basis, and consequently, we
have to work harder to extract the SEWS signal. Taking
into account that the electroweak production of trans-
versely polarized vector bosons is approximately inde-
pendent of the Higgs boson mass, and that the VLVL
production is small for light Higgs bosons [4], we define
the signal for SEWS as an excess of events in the V V
scattering channels with respect to the SM model with a
light Higgs, i.e.

σsignal ≡ σ(αi)− σSM
∣∣∣
MH=100 GeV

, (10)

where we sum over the vector-boson polarizations. In
principle, we might have a signal even for αi ≡ 0 since
there is no Higgs in our model to cut off the growth of the
scattering amplitudes. In this case, we should also study
whether it is possible to establish that the anomalous
couplings αi are compatible with zero or not.

In the effective–W approximation [16], the signal is de-
scribed by the scattering VLVL → VLVL. This process,
however, does not respect the unitarity of the partial–
wave amplitudes (aI` ) at large subprocess center–of–mass
energiesMV V [8]. Therefore, the chiral expansion is valid
only for values of MV V and αi such that |aI` | ' 1/2. For
higher V V invariant masses, rescattering effects are im-
portant to unitarize the amplitudes. Taking into account
this fact, we conservatively restricted our analyses to in-
variant masses MV V < 1.25 TeV, which guarantees that
the unitarity constraints are always satisfied. In the cases
where it is not possible to reconstruct the V V invariant
mass from the leptonic decay products, this requirement
corresponds to a sharp–cutoff unitarization [22].

Since we evaluated the full matrix elements for the
processes (9), summed over the vector–boson polariza-
tions, several backgrounds were automatically included,
e.g. the O(α4) and O(α2α2

S) irreducible backgrounds
qq → qqVTVT (VLVT ). In addition to that we also evalu-
ated the “continuum” V V production, qq(gg) → gg V V ,
where the vector bosons are produced in association with
gluons. Another important background is top–quark pair
production, i.e. qq(gg) → tt̄ → W+W−bb̄ which
was also taken into account, since we considered the
W+W−bb̄ final state. Moreover, triple gauge boson pro-
duction also contribute to the V V jj signature when one
of the three boson decays hadronically. In principle, we
should explicitly include further backgrounds like the as-
sociated production of tt̄ pairs accompanied by a W± or
a Z, however, these contributions are negligible once we
applied the jet veto and tag cuts described below [4].

One should stress the importance of the jet–tagging
and jet–vetoing cuts since the background can be effi-
ciently suppressed by cutting in the jet rapidities and
momenta [4]. In order to understand that, we must recall
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that the spectra of transversely (fTW/e) and longitudinally

(fLW/e) polarized W in the effective W approximation are

given by

fTW/e(x, pT ) =
α

4π sin2 θW

1 + (1− x)2

2x

×
p2
T

[p2
T + (1− x)M2

W ]2
, (11)

fLW/e(x, pT ) =
α

4π sin2 θW

1− x

x

×
(1− x)M2

W

[p2
T + (1− x)M2

W ]2
, (12)

where pT is the transverse momentum of the W± (jet).
From the above expressions, we can learn that the trans-
versely polarized W possess a higher pT than the lon-
gitudinally polarized ones. Therefore the spectator jets
associated with W±L are produced at large rapidities since
their energies are of the order of TeV.

Forward (backward) jets are characteristic configura-
tions of the signal. At the same time, jets coming from
the signal are well separated and their pT distribution
does not peak near zero because of massive vector–boson
propagators. On the other hand, the situation is opposite
for some backgrounds: either their pT distributions peak
at small values due to photon, gluon or light quark t–
channel exchange, or they have the tendency to be close
to each other since the jets originate from gluon or photon
splitting. This remarkable difference between the signal
and the backgrounds allows us to substantially reduce the
latter by requiring the tagging of forward jets. We can
further reduce backgrounds, like tt̄ and V V V , by vetoing
large jet activity in the central region of the detector [23].

In Fig. 2, we show some kinematical distributions for
the process pp → W+Zjj (9d). Fig. 2a contains the
pseudo–rapidity distribution of the jets, while we exhibit
the pT (energy) distribution of the jets in Fig. 2b (c),
and the invariant mass distribution of W+Z pairs in Fig.
2d. From these figures we can see that the jets associated
with the signal are produced at large rapidities and carry
a larger amount of energy, illustrating the importance
jet–tagging and jet–vetoing cuts.

In order to suppress the backgrounds and enhance the
signal for anomalous quartic interactions we studied sev-
eral kinematical distributions for the processes (9), ap-
plying different cuts on the final state particles. Our
results indicate that the cuts presented in Ref. [4] are
able to improve considerably the signal/background ra-
tio. We applied the following set of kinematical cuts,
keeping those from the above mentioned paper and also
suggesting some additional ones that could allow further
suppression of the backgrounds:

(i) We required the existence of two jets satisfy-
ing pT > 20 GeV, |η| < 5, and ∆R ≡√

(∆η2 + ∆φ2) > 0.5. The cut in pT is impor-
tant not only to guarantee that the jets will be well

defined, but also to suppress the background due to
the photon and gluon exchanges in t channel. At
the same time, the ∆R cut is necessary, combined
with the pT one, to remove the singularity coming
from gluon splitting in some background subpro-
cesses.

(ii) We applied the jet–tagging and jet–vetoing cuts
suggested by Bagger et al. ( [4]), i.e.,

E(jtag) > 0.8 TeV (except for W±W±) ,

3.0 < |y(jtag)| < 5.0 , pT (jtag) > 40 GeV ,

pT (jveto) > 60 GeV (30 GeV for W+W−) ,

|y(jveto)| < 3.0 .

tt̄ production gives rise to a quite large back-
ground to the W+W−jj signal, and consequently,
the requirement of a more stringent pT (jveto) cut
for this process is important to improve the sig-
nal/background ratio.

(iii) We also required the invariant mass of the vector
boson pair to be in the range 0.5 < MV V < 1.25
TeV. The upper limit of this cut is quite important
since it prevents the effective operators (4)–(8) to
be used in a energy regime where unitarity is vi-
olated and rescattering effects become important.
The lower limit of this cut aims to reduce the back-
ground (see Fig. 2).

In this work we considered the “gold–plated” events
where the W ’s and Z’s decay into electrons or muons,
ignoring final states associated with the hadronic decay
of the vector bosons. In order to make a more realis-
tic estimation of the limits that can be imposed on the
anomalous parameters, one should take into account the
detection efficiency of the final state leptons. This prob-
lem was studied in Ref. [24] for W± and Z decays in
Higgs production processes. Imposing that the leptons
satisfy the following cuts

|η`| < 2 , p`T > 100 GeV , and pmiss
T > 100GeV,

the detection efficiency for leptons originating from W
(Z) decays is 43% (52%) [24]. We also took into account
the branching ratios ofW± and Z into electrons or muons
(` = e or µ),

BR(WW → `ν̄` ¯̀ν`) = 4.7% ,

BR(W+Z → `ν̄` ` ¯̀) = 1.5% ,

BR(ZZ → 4`) = 0.45% .

IV. RESULTS

The most general expression for the total cross sections
of the processes (9) can be written as
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σ = C0 +
∑
j

αj Cj +
∑
j≤k

αj αk Cj−k , (13)

where j, k = 4, 5, 6, 7, or 10 and C0 is the cross section for
αj ≡ 0. In our calculations, we applied the cuts (i)−(iii)
and used the CTEQ3M parton distributions [25], with
Q2 equal to the invariant mass of the parton system.
We present in Table II our results for the coefficients
C0, Cj , Cj−k, as well as for the SM with a Higgs of mass
MH = 100 GeV (CSM)

Given our definition of the signal (10) and the above
parametrization of the anomalous cross section we can
easily obtain the LHC attainable limits on any combina-
tion of genuinely quartic anomalous couplings. We ex-
hibit in Fig. 3 the 90% CL exclusion region in the plane
α4 × α5 for each process (9) independently, assuming an
integrated luminosity L = 100 fb−1 and taking prop-
erly into account the detection efficiencies and leptonic
branching ratios. In this analysis, we assumed that the
SU(2)C violating interactions vanish. As we can see,
the W±Z, ZZ, and W+W− productions lead to similar
bounds while the W±W± give rise to somewhat weaker
limits. Combining all channels allow us to improve the
limits by a factor of approximately 2

Fig. 4 contains the 90% CL exclusion region in the
α6 × α7 plane for α4 = α5 = α10 = 0 and an integrated
luminosity of 100 fb−1. The W±W± production does
not give rise to any bound since these interactions pos-
sess only ZZZZ and W+W−ZZ anomalous couplings.
Moreover, the production of W+W− pairs leads to weak
bounds since these couplings contribute to this final state
only through the subprocess ZZ → W+W−, which is
suppressed. The best limits come from the ZZ pair pro-
duction and the combined limits of ZZ and W±Z pro-
ductions are only slightly better than the ZZ bounds.

The anomalous interaction α10 modifies only the ZZjj
production since it alters solely the vertex ZZZZ. We
present in Fig. 5 the limits that can be obtained on this
coupling from the ZZ pair production for α4 = α5 =
α6 = α7 = 0 and an integrated luminosity of 100 fb−1.
Therefore, this coupling is the one that will be less con-
strained at the LHC.

Table III shows the limits on each coupling αi, i =4, 5,
6, 7, and 10, taking into account our results presented in
Figs. 3, 4, and 5. These limits were obtained under the
assumption that only one anomalous parameter is non–
vanishing. For the sake of comparison, this Table also
contains the present indirect bounds on these anomalous
couplings obtained from the precision measurements at
the Z pole [13] for a scale of new physics Λ = 2 TeV.
As we can see, the direct bounds on α4 and α5 that
can be obtained from the V V jj production at LHC are
more restrictive than the present limits by one order of
magnitude in some cases. Nevertheless, the attainable
direct limits on the SU(2)C violating interactions α6, α7,
and α10 are of the same order of the present indirect
limits.

It is also important to devise a strategy to disentangle

the anomalous couplings in case a departure from the SM
prediction is observed. In fact the simultaneous analysis
of the W±W±jj, W+W−jj, W±Zjj, and ZZjj produc-
tions allows us to narrow down the anomalous couplings
associated to the observed effect. The anomalous cou-
plings α4 and α5 possess the distinctive characteristic of
giving rise to observable effects for all processes V V jj.
On the other hand, the couplings α6 and α7 lead to large
signals in the channels W±Z and ZZ without any excess
in the W±W± reaction. Finally the anomalous coupling
α10 gives rise only to an excess of events in the ZZ chan-
nel. The effects of α4 and α5 (α6 and α7) can only be
separated if we have additional information like the triple
gauge–boson production at the NLC, where the α’s ap-
pears in different combinations for the different channels.

V. CONCLUSIONS

In this paper we presented the first complete calcu-
lation of the reaction pp → V V jj taking into account
anomalous quartic vector–boson couplings. Our calcula-
tions were done at tree level in two different gauges and
without any approximation, such as the effective W one
or the equivalence theorem. Our results show the ability
of the LHC to shed some light on the electroweak sym-
metry breaking sector and to look for a possible signal of
strongly interacting electroweak symmetry breaking.

The attainable LHC limits for the quartic anomalous
parameters are tighter than the present indirect bounds
[13,14], improving them by one order of magnitude in
some cases. The LHC bounds are also one order of magni-
tude better than those which could be obtained from the
study of triple gauge–boson production at the Next Lin-
ear Collider (NLC) [6,9,10]. Notwithstanding, the study
of the reaction V V jj at the NLC running at TeV ener-
gies [8,9] will be able to improve the LHC limits by a
factor of 2 to 8, depending on the specific couplings.

In our analyses, we assumed that the detection efficien-
cies of electrons and muons are the ones obtained from
the production of heavy Higgs bosons. For a more real-
istic study one should construct a complete Monte Carlo
generator including the vector–boson decays and detec-
tor resolution [26]. Such generator will allow not only to
improve the leptonic cuts but also to study the hadronic
decay channels of one of the gauge bosons, which could
improve the limits on the anomalous couplings. We be-
lieve that even assuming this more realistic situation, the
bounds presented in this paper will not change signifi-
cantly.
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Coupling W±W± W±Z ZZ

α4,5 Yes Yes Yes

α6,7 No Yes Yes

α10 No No Yes

TABLE I. The processes affected by the different quartic
couplings (4)–(8).

W+W− W+W+ W−W− W+Z W−Z ZZ

CSM 0.049 0.0044 0.0009 0.018 0.0070 0.0044

C0 0.050 0.0061 0.0011 0.019 0.0074 0.0056

C4 0.21 −0.38 −0.062 −0.14 −0.062 0.066

C5 0.27 −0.19 −0.034 −0.12 −0.057 0.20

C6 0.036 — — −0.14 −0.062 0.066

C7 0.11 — — −0.12 −0.057 0.20

C10 — — — — — −0.00012

C4−4 18. 27. 4.3 14. 5.4 13.

C5−5 36. 7.2 1.2 6.3 2.4 23.

C6−6 0.67 — — 14. 5.4 49.

C7−7 5.7 — — 6.3 2.4 58.

C10−10 — — — — — 47.

C4−5 46. 28. 4.4 11. 4.2 31.

C4−6 1.4 — — 29. 11. 50.

C4−7 3.6 — — 11. 4.2 55.

C4−10 — — — — — 47.

C5−6 4.0 — — 11. 4.2 54.

C5−7 12. — — 13. 4.8 69.

C5−10 — — — — — 47.

C6−7 3.7 — — 11. 4.2 102.

C6−10 — — — — — 94.

C7−10 — — — — — 94.

TABLE II. Coefficients of the different combinations of
coupling constants contributing to the total cross section in
pb [see Eq. (13)], and also for the SM with a light Higgs
(MH = 100 GeV). These results were obtained applying the
cuts (i)− (iii).

Coupling Indirect Limits LHC Limits
(×10−3) (×10−3)

α4 −160. ≤ α4 ≤ 54. −3.5 ≤ α4 ≤ 15.

α5 −410. ≤ α5 ≤ 13. −7.2 ≤ α5 ≤ 13.

α6 −27. ≤ α6 ≤ 8.9 −13. ≤ α6 ≤ 13.

α7 −26. ≤ α7 ≤ 8.5 −13. ≤ α7 ≤ 11.

α10 −28. ≤ α10 ≤ 9. −29. ≤ α10 ≤ 29.

TABLE III. Limits on the anomalous quartic couplings αi
which will be accessible at LHC, as well as the present indirect
bounds from Ref. [13].
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FIG. 1. Complete set of Feynman diagrams contributing to the process uu→W+W+dd.
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FIG. 2. Kinematical distributions for the process pp→W+Zjj: (a) pseudo–rapidity of the jets (ηj); (b) transverse momen-
tum of the jets (pTj ); (c) energy of the jets (Ej); and (d) invariant mass of the W+Z pair (MWW ). The light gray area stands
for the background while the dark area represents the background plus the signal associated to α4 = 0.03. We required that
pjet
T > 20 GeV and the jet separation ∆Rjj > 0.5.
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FIG. 3. 90% CL exclusion region in the α4 × α5 plane for the W+W−, W±W±, W±Z, and ZZ channels. We applied all
cuts and efficiencies discussed in the text and assumed that all SU(2)C violating couplings vanish and an integrated luminosity
of 100 fb−1.
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FIG. 4. 90% CL exclusion region in the α6 × α7 plane from the W+W−, W±Z, and ZZ productions. We applied all cuts
and efficiencies discussed in the text and assumed that α4 = α5 = α10 = 0 and an integrated luminosity of 100 fb−1.
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FIG. 5. Number of events for ZZ production as a function of α10 where the horizontal line represents a 90% CL effect. We
applied all cuts and efficiencies discussed in the text and assumed that α4 = α5 = α6 = α7 = 0 and an integrated luminosity
of 100 fb−1.
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