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ABSTRACT

Assuming isotopic spin invariance, we prove the
following axiomatic upper bounds on the difference between
Ir_p and 1T+p integrated unpolarized elastic cross-sections,

and compare them with experiment.
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INTRODUCTION

N

in the consequences

The Serpukhov total cross—section experiments

2)-4)

of asymptotically unequal particle and antiparticle total cross-

have gene-

rated a great deal of theoretical interest

sections. In particular, for P N scattering, it has been shown

that 3), if
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This result implies in particular that the P N charge exchange
cross—section cannot vanish for s — @ 1f the Pomeranchuk theorem 5)
is violated. It is of obvious interest to ask a corresponding
gquestion about the difference between integrated elastic cross—
sections for Ir—p and 1T+p scattering. The answers given in this
paper may be conveniently summarized by the following theorems.
Theorem 1 is a consequence of isospin invariance alone, and for the
remaining theorems we assume in addition unitarity, crossing and the

analyticity properties and asymptotic bounds given by axiomatic field

theory 6 .

Theorem 1

Isospin invariance alone implies that the unpolarized inte-
grated cross—sections for Pr N scattering at any c.m. energy ./s

must obey the bound,
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This result enables us to understand the small elastic
cross—section differences at high energies in terms of the small charge

exchange cross—sections. In particular, it requires that if

np-sn°n n-p
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In addition, at low energies, comparison with experiment (see the
Figure) reveals the unsuspected result that the upper bound given
by Eq. (2) is actually equal to the experimental value of

[C!e;p - e!?, ]2 within the experimental errors, for energies
below the one-pion production threshold. At high energies, this
result can be improved if the Pomeranchuk theorem is violated, to

yield the following result.
Theorem 2

If
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Comparison with the inequalities (1) and (2) shows that the
result (6) improves both the unitarity-analyticity bound (1) and the
isotopic spin result (2). The bound (6) shows also the 1nterest1n§

“poRon and (O‘e.:@p+ cez )7

the larger the Pomeranchuk theorem violation, the smaller is the

feature that for given values of C‘

- +
allowed difference lO’:e P_ ' P ] In particular, if the violation

of the Pomeranchuk theorem is the 1argest permitted by the unitarity—

analyticity bound (1), then the elastic cross—section difference

= T
[:U‘e'!:’ P(g) - j:; P(s)] must vanish for s — o . This result is

particularly interesting when we note that, in this case, the individual
elastic cross—sections have to be non-zero because of the unitarity-

analyticity bound 3)’7),
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Hence, the elastic P p and lr+p cross—sections are in this case
non-zero and equal asymptotically. These results should be compared
with the recent results of Cornille and Martin 8) who show that the
particle—antiparticle integrated elastic cross—section differences must
vanish asymptotically if certain conditions on the elastic differential

cross—sections are fulfilled.
The 1sotoplc spin bound (2) can also be improved at high

energies if o- ( /(Ens > const. for s —» ®. This is expressed

by the following theorem.

Theorem 3

[q- (s)+o;°£(s)]/fns > Cowat.
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then,
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It may be noted that the expression in the square bracket

in (10) is positive definite because
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which follows from (2). Hence the result (10) improves the isospin

bound (2).

Encouraged by the saturation of the isotopic spin bound (2)
at low energies, we now state some improvements due to unitarity of
this bound which are valid at all energies, but require the use of
pion-nucleon phase shifts as additional input. The usefulness of
these results is suggested to us by the recent work of HBhler and

9)

Jakob on comparison of J¥ N unitarity bounds with data.
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where,

lr* mih 2 b 2
], (13)
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k 1is the c.m. momentum, and the fﬁi(s) are the pion-nucleon partial
wave amplitudes related to the inelasticity parameters "Li and the

phase-shifts SZ:I: by the relation,
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Theorem 5

Let the phase shifts for all £ in some set S be known.
Then,
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It may be remarked that, as expected, the larger the number
of phase shifts that are known, the better the bound (15).

It would be interesting to compare the bounds given by

theorems 4 and 5 with experiment.

Before passing to the proof of these results, we wish
to note that. Theorems 1, 4 and 5 do not use crossing symmetry
and hence are independent of the fact that the rr—' and 'r+ are
antiparticles of each other. Hence they can be generalized to
obtain, for example, bounds on [q- - @ p] in terms of
K*p KOp K+n—K0p o> ek
[:o‘e!‘ + @, ] and @ . Secondly, all the Theorems 1 to

5 generalize to the case of XN scattering when the following

kK, b—=>K
LP($>SP (19)

replacements are made :

-n°n
b (8) > 20
m'h  — k*n (20)

np — KN

2. ISOTOPIC SPIN BOUND ON ELASTIC CROSS—SECTION DIFFERENCE

The integrated unpolarized elastic cross—sections have the

partial wave expansions :
L 1 T3t A o
Using isotopic spin invariance for the scattering amplitudes T,
'T‘l'l',"'l‘l°n - TD"'F-’D""I’_ -r""""'} ’
0y (23)
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Schwarz inequality then yields,

t " m-poncn P
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which can be re—expressed in the form of theorem 1, as an upper bourd

- +
on [ce";?, p(s) - q"e'z p(sﬁz.

The Figure and thé Table show a comparison of this upper
bound with the experimental data below the one-pion production thres-
hold. It is remarkable that in this region the upper bound coincides
with the experimental elastic cross—section difference within the
experimental errors. It is clear, of course, that the inequality (25)
becomes an equality if either the I = 1/2 or the I = 3/2 amplitude
vanishes or if the I = 1/2 and I = 3/2 phase shifts are all equal
to one another. But pure I = 3/2 scattering is not a good approxi-
mation in the entire energy range. For example, pure I = 3/2 scatte-

mw+ T — o
ring requires .y P _ 9/2 o= p-T n. At a lab. kinetic

+ o
energy of 31.4 MeV, c-:z P o 6.15 £0.12 mb, and 9/2 W PorOR _
= 31.6 £ 1 mb. Even at the energy closest to the 3 ~ 3 resonance

™y
that we have used, at 163.8 MeV kinetic energy, G‘ J) = 200.7 %

— o] -
£1.9 mb, 9/20=7 PV _ 5455 & 1.4 mp, (c' P :ﬂ Py
- 179.4 % 2.2 mb, and (o= WP _ g7 P 3

) * ’ el upper bound
Thus the saturation of the upper bound is true to a much better

expt =
= 182.6 i 109 mbo

accuracy than explicable from the dominance of I = 3/2 scattering.
The inequality (25) would also be an equality if the I = 1/2 and

= 3/2 phase shifts were equal. This again is not a good approxi-
mation, because, for example, the I = 3/2 state contains the 3% - 3 -
resonance and the I = 1/2 state does not. It is remarkable thet
the departure from pure I = 3/2 scattering and from the equality
of I =1/2 and I = 3/2 phase shifts gives only small corrections,

comparable with the experimental errors, in this energy range.
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The saturation of the bound does not hold it higher energies. For
example, at 307 MeV kinetiec energy, (Q'e'!e P ‘e“ﬂ,—p) = 53.7 £ 2.5 mb,
and the upper bound on it 64.7 * 3.7 mb.

Comparison with triangular inequalities.

Comparison of the present isospin inequality with the well-
known triangular inequalities on the differential cross—sections is
facilitated when we note that Theorem 1 has the following analogue
in terms of the differential cross—sections (the proof of which we

omit),

n-p>nn

-} i*
[y o] Tealss) Tefrudal ]|

The validity of these relations at each s and t 1is in
fact necessary and sufficient for isospin invariance. The validity
of the three triangular inequalities at each s and t 1is also
necessary and sufficient for isospin invariance. Hence the three
triangular inequalities together are equivalent to the above relation
between the differential cross—-sections. The point of discussing the
comparison with experiment of Theorem 1 is that at low energies
extremely accurate data are becoming available (see for example the
recent experiments of Bugg et al., and Carter et al. quoted in the'
Table) on the integrated elastic cross—sections, and a posteriori the
fact that the inequality (2) is quite stringent, as seen from the
Table and the Figure. We should like to mention that it would be of
great help if accurate data on oﬁn p, q' np and @ W "On
are made available at the same energy, as 1nterp01ation between
different data points increases the errors in the comparison of the

bound with experiment.
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POMERANCHUK THEOREM VIOLATION AND PARTICLE-ANTIPARTICLE ELASTIC
CROSS—-SECTION_ DIFFERENCES

Let the total cross—sections obey the conditions (3) and

(5) and the helicity non-flip amplitudes be normalized such that

nip ntp
-[M o.L o{; t:0) = kr * (s) (26)

where t denotes the c.m. momentum transfer squared.

The forward dispefsion relations then imply 10) that there

must exist a sequence of values of s — + @ such that

*h
lom R Toiog 59T - b Re[ Toprog 9], _ i
S->aA S l“ s S S &ns 9",1 « (27)

We will show that this restriction can be used to improve the bound
on the elastic cross—section difference given by isospin invariance.
For this, we will need the additional result that in the partial

wave expansion for the forward scattering amplitude it is sufficient
—
A/S

to keep orbital angular momenta up to zo = zﬁ_zns, for s - o.
To be precise, we will need the fact that, T
mtp nth °
&-m Re T.j_ oL(S 'l'-o) RQ 0*_ 0 (S,‘h ) 0
S=>w — =v, (28)
Sfns
where i0,1/2;0,1/2 denotes the truncated partial wave series,
: < lo 11‘1’ ”t"
AT
T I,(s,’c-o) wy (m)[} () +r (9 (5)
orioy  Riee e @) |
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We defer the proof of Eq. (28) to the Appendix. We proceed to find upper

and lower bounds on [0'"+p( ) + o,ll’_P( ) - 20’" p_,“. sﬂ which
has the partial wave expansion (24), given Re TOR1/2 0, 1/2(s t = O),
and @ e'!@ ( ) This is most easily done by pretending that the n—p
partial wave amplitudes are all given and varying the p partial
waves according to Lagrange's method of undetermined multipliers 1)
subJect to the two constraints that g. “ p( ) and

T WD m
Re TO 1/2 0, 1/2(5; t = O) are given. lﬂe stationary values of

-
[ O:A" b(s) +a;l" bls) -acal l"'""'}

are reached when,

n*p P A
e 9 =4, ®
? ”+ .p
Re f » = o((‘)Re:a:(‘) -l-ﬁ, oglst.,

;
13
% *o

Re

n
TR d(s)R‘fld_- , >4,
]:mf (5) 2 of(s) Im J: (S) . j-ova”l
2+ F 3.+
L (30)
and o and B are to be determined to fit the given values of
O';'f;p(s) and Re TO“1§2 0, 1/2( s). We will now show that, in fact,

the desired bounds are obtalned with the choice (30) of the partial
waves, the upper and lower bounds being obtained respectively in the
cases d (s) >0 and « (s) < 0. Denoting the cross—sections with
) A ®'D A o gon .

the partial waves (30) by [ ) and @ , we obtain,
after using (30) and the two constraints,

- An-panon n-p->n°n

$
[v,,.un oyl - :a & - [0+ in-20" 00
+ nh
=4 N b
4, (m)l % £<s|+| &4 )

1)~ ((41)- (51)
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This equation demonstrates the assertion that the choice (30) yields

the upper or the lower bound according to whether @ (s) is positive
or negative. Evaluation of the bounds and use of Egs. (27) and (28)

then yield Theorem 2 stated before.

We have already noted the qualitative consequences of this
- WP\ _ .M'P .
theorem, viz., that '.ef, (s) o.eﬂ, (s) must vanish for s —» @,
either it @ W P7 Won(s)s;;OO O or if the Pomeranchuk theorem violation
is the maximum possible. A valid numerical comparison with data is
. n p—>"0n . .
not possible at the moment because @ (s) is decreasing
rapidly and measurements at very high energies of the elastic and
charge exchange cross—sections are not available. To get a feeling
1)
on total cross—sections and the 16.86 GeV lab. kinetic energy data !
- o}
on g‘" PR we obtain the value (0.8 % 0.2) mb for the upper
— + —p— g0
bound on [Ge'; P_ c'e'z P, This number will improve if o LU A

for this bound, we note, however, that using the Serpukhov data

continues to decrease as the energy increases, and may give a useful
bound on the poorly measured quantity [O’e"z p(s) - ng p(s)] at

high energies.

We shall omit the detailed proof of Theorem 3 which is
obtained by an analogous variational procedure with

m WP (s,t = 0) held fixed instead of Re WD (s,t = 0).
0,1/2;0,1/2'>? 0,1/2;0,1/2™?

USE OF PHASE SHIFTS.

An improved bound on the elastic nfih "+p cross—section
difference valid at all energies can be obtained by supplementing
isotopic spin invariance with the positivity property due to unitarity
of the imaginary parts of the elastic partial wave amplitudes f

We then obtain from (24),

C {‘"(:L (t) P+ ‘"]

2 @/ k‘)‘éo(&ua)l‘kcf o Ref ¢S>+Ref ( ”k‘{u)-

Z -lgueghe
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where the second step follows from the Schwarz inequality. Combining
(25) and (32), we then obtain the improved bound given by Theorem 4.
Theorem 5, the proof of which we shall omit, is obtained by using a
variational procedure in which some of the partial wave amplitudes

are held fixed. For a proper test of the bounds given by Theorem 4
and 5, the phase shifts should be calculated from the "r—p and "+p
data alone (without the use of isospin invariance and the data on
charge exchange scattering). The bounds can then be used as a test

of isospin invariance, unitarity, and of the truncation after a
finite number of partial waves which is necessary in any partial wave

analysis.
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APPENDIX 1. PROOF OF EQ. (28).

We shall prove that if

mip
Tt () S >0t Comat (33)
T J"Z (244) [[; m]+| { cs>l] 30 .
x (s)SS lns T ) e r l d4)- (34)
: °- hs

This result obviously implies the validitg of Eq. (28). The
main information we need is the Jin-Martin result 6 that the T[N
scattering amplitudes satisfy twice subtracted dispersion relations

2

for 1] € dng .

[t] < 4nyg

the present proof.) Using also the unitarity relations,

(Actually, polynomial boundedness is sufficient for

Im § (9 2 14,6

(35)

we obtain, for 0 < t < 4m

S & 1 <
3 1[”1{‘2;\1-’" "t"m\ ]P(ﬂ*i3= GGY)
7 RGO
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We then find that an upper bound on X" ( ) given o‘" p

and
G(s,t), [ising the fzi(s) as variational parameteré], is obtained

when,

_A(S)
f(s\ ‘#ﬂ»i;? - P“_.,.‘l: )+@(5) ’ (37)

where

wp 37 o((S)
o, (s) = (8+1) »
- 22 Racfyre@]

Gbys 2 Y ed_£00 B vEe)
b [pa+d )+B(s>j

Evaluation of the upper bound and use of (33) and (36) then yield,

(39)

X +’,(s) < Com‘l" ‘ fn(&ns)

b ]
S0 AnS )

which implies the needed result (34).
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TABLE CAPTION

The pion-nucleon unpolarized cross—section data on
np n'r : L

[’;z (s) - rez (sﬂ are compared with the upper bound on it given
by (2) The asterisk (¥*) mark on some rows indicates that slight
interpolations between data points were needed to obtain values of
03@ p, ve’}, P and @ n oropen at the same energy. The references
to the experiments appear in the last column. The last row is
included to indicate that the saturation of the bound does not

continue to be true at higher energies.
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FIGURE_CAPTION

The pion-nucleon unpolarized cross—section data on
- - +
Lee',‘% p(s) - ce','% p(sD at energies below the one=pion
production threshold are compared with the upper bound on

this difference given by (2)
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