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INTRODUCTION

In this series of lectures, I would like to discusé a
subject which is rather novel in nuclear physics. It is not a review
of what other people have obtained, but rather what I have learned
from discussions with Marc Chemtob and A.M. Green 1). In order not
to overburden the audience and readers I shall limit the referencing

and formulas to a bare minimum.

The problem we would like to pose is: what is the role
of mesons in nuclear structure? This is a question raised many times
in the history of nuclear physics, notably in the context of nuclear
force and exchange currents, but being an extremely difficult question,
has never been answered (to my mind) in a satisfactory way. Even at
this moment, there is not any clear-cut answer. But there is a hope
that with a new generation of experimental and theoretical tools, one
can begin to understand the problem. My aim here is to present some
old problems and more modern approaches to tackle them and some novel

information one gains from such attempts.

It seems to me that experimentalists can provide us
information on the role of mesons in essentially two ways. One,
experiments with high energy probes, and the other, precision
experiments with low energy probes. I see here an analogy to the
quantum electrodynamics (QED), the test of which is made at both
low (Lamb shift) and high (short distance) energies, In high energy
domain, one hopes to separate the role of baryon resonances (denoted
hereon as N*) from meson exchange phenomena by looking at large
angle scattering (say, p-d or T-d scattering). Such scattering
process may be particularly sensitive to excitation of one or two
nucleons to excited baryon states at some large momentum transfer,
while being indifferent to meson clouds. In the low energy domain,
for example in magnetic moments, beta decay, ’ﬁC'capture, etCa,
the N* or meson exchange effects are small in general, and would
require very accurate experimental results and very reliable theoret-
ical treatment. Furthermore, such processes may not be selective of

N*'s or mesons, all of which contributing with equal importance,
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In this connection, I shall try to convince you that contrary to

2
hopes cherished by several people s the two domains, high energy
and low energy, discussed above cannot be trivially joised. A lot

more work aeeds to be done for such a feat.

In this lecture, I shall confine the discussion to the
low energy domain only. Iife is quite complicated here for reasons
mentioned above, a 1ot more so than in the high energy domain. How-
ever,'we have a powerful tool at our disposal, the low energy theorems
based on the PCAC. These theorems, used judiciously, turn out to be
extremely useful in clarifying much of the complicated matter. A
novelty of the approach taken here as compared with the multitudes
of other methods and philosophies is precisely the use of those

theorems.

This lecture is divided into three sections. The first
section discusses how the meson exchange phenomena occur in nuclear
properties, the second section deals with how one can calculate things,
the third section on N* "shell model" and how it compares with
the low energy theorems. The metric I use will be that of Paulij

p::(R,ipO), and Dirac a”'s are Hermitian.

HOW AND WHERE DO MESON EXCHANGE EFFECTS APPEAR?

A, Exclusion Principle

One way of looking at the source of meson exchanges is
an exclusion principle correction. It is obviously not an entire story;
an absence of measurable meson effects is sometimes traced back to the
gauge invariance, the well-known example being the electric charge
(and also the vector coupling constant Gv in FS decay). However,
it is one nice way of seeing how they appear and I discuss here the
way one can see it for the nuclear force, the pseudoscalar coupling
constant in /Ai‘ capture and exchange currsnts in magnetic moments

and A; decay (in that order).
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Let us first consider a two-particle system, the
deuteron., In order to calculate something for this object, it suf-
fices to have a reliable two-nucleon potential V12. There are two
schools in getting the V12 - a phenomenological way by adjusting
parameters to fit all available two-body data (i.e., scattering and
bound state), and a theoretic approach which attempts to derive V12
from meson theories which fits as well as the phenomenological one
does. Although everybody seems to be pessimistic about the status
of the meson theories, one secems to agree that the method taken by
those who do the meson theoretic calculations has something sound
in it. There are many varieties of calculations which I do not aim
to review here., But I have in mind the one-boson-exchange potentials
(OBEP) which seem to converge gradually towards the phenomenological

potentials.

Let me represent the ingredients of a meson theoretic
approach by a set of Feynman diagrams as given in Fig. 1, and put in
a word of caution that in practice, the matter of whether to include
a particular graph or not can be very tricky, because of double
counting. Nevertheless OBEP (Fig° 1a) and baryon resonance graphs
(Figs. 1d,e) seem t0 become particularly successful, I have drawn
Fig. 1c on the same footing as Fig. 1d, since both represent the
vertex correction of the two-pion exchange graph. The double-counting
danger lies for example in the graph 1a with f9 exchange and

Figs. 1b, c.

We now suppose that a potential obtained in this way
correctly describes the deuteron and fits NN scattering data when
used in a Schrddinger equation. The question we raise now is whether
the same potential is suitable for other heavier nuclei - in particular
for bound state properties like binding energy. In principle, the
answer is no as there are corrections, although in practice, the
corrections may be small. In order to see this, we note that when
there are more particles in the system, filling up the available
states, the integration over the intermediate states (momentum k)

as indicated in Figs. 1b, ¢ which, in two-particle system can run
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freely over all values is restricted to the range kF$1<S<D,

where kF is the maximum momentum up to which the other particles
occupye. Therefore, when using the potential for heavier nuclei,

it is necessary to subtract away that portion of the term which
violates the exclusion principle. Such a subtraction is equivalent

3)

In the middle leg, each corresponds to a different contribution to

to an addition of the three-body force given by Figs. 2a, b, c.
a virtual pion-nucleon scattering, so the sum of it plus any other

graphs are lumped into a blob as indicated in Fig. 2d.

It is clear that by putting in more meson exchanges in
the three-body force in the same way as the two-body force, one can
again find that there is an exclusion principle violation in the
three-body force, the correction of which leads to a four-body force.

This can go on up to an A-body force for a nucleus with A nucleons.

A quite analogous situation occurs in the pseudoscalar

form factor in muon capture 4). In muon capture in nuclei

MR > A’c
(1)
where Ai and Af represent respectively the initial and final
nuclei, the pseudoscalar form factor Fp(q2) can be different from
the free space proton value because of the presence of other nucleons.
To see this, first recall how Fp(q2) is determined for proton. For

the reaction, /u:4-p—+n-+21 the axial vector matrix element

).L 9
has two terms:

&l 1> = iT6) [P tik@ LY ] wh)
(2)
One gets the Goldberger-Treiman result
2M9, (¢)
& 7

;;(ﬂ‘) =
(3)



by saying that Fp is dominated by one-pion exchange as depicted in
Fig. %a., Now, what happens when a muon is captured by a proton in-
side the nucleus? Clearly Fp(q2) cannot be the same as the free proton
for two (perhaps related) reasons. Firstly, the exchanged pion must
feel the presence of other nucleons (that is, the pion wave must be
distorted), secondly, there must be an exclusion principle correction.
The latter is seen in the following way. The left vertex in Fig. 3a
is usually calculated with the renormalized T NN coupling constant
gr(513.4)n Presumably this &y represents the sum of all Feynman
diagrars like those given in Fig. 4, where again the intermediate
states are integrated over all momenta. Making the exclusion prin-
ciple correction one obtains the correction to the Goldberger-Treiman
value in the form of a two-body correction as given by Fig. 3b. One
would have drawn this graph even in the language of the distorted

pion wave., As we shall see later this can be also viewed as an ex-
change current correction; more specifically an exchange current to
the pseudoscalar part of the axial current in //L capture, All these
different languagzes are in part equivalent and I shall not try to

make a distinction as to which is which.

Now note the similarity between Fig. 2d and Fig. 3b.
As it stands Fig 3% is ottained from Fig. 2d by replacing an outer
nucleon line by the lepton line (/ﬂ:?L~ ). The blob is the same.
This analogy will enable us to evaluate the correction to Fp from

the calculations available for the three-body graph.

Let us finally examine the old exchange current. A more
honest definition is given in the next subsection., Here we sinply
note the analogy of the exchange currents to what we talked about
above. Lebt us denote the current (a four-vector) as <a where
A is a Lorentz index (1,2,3,4). The current can be either the
electromagnetic current %ﬁM or the axial current %f . A single
particle matrix element will be denoted by a wiggly line attached to
a nucleon line as in Fig. 5., At the vertex, we stick in & renormalized
coupling constant, which again in principle must be calculable in

terms of many graphs like the ones of fig. 5 (for the axial current).
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The exchange currents appear as the exclusion principle correction in
the same way as we have obtained the correction to the PSS coupling
constant., Figures 5c and 5d plus many others then lead to a graph
depicted in Fig. 6a, where the blob indicates all kinds of complicated
stuffls appearing in the matrix elemert of the current between a pion
and nucleons., This graph then stands for oae of two-body corrections
to a one-particle current operator. Since it is a current attached
to the blob it can act only as a correction to the current, whereas
Fig. 3b may also be interpreted as a distortion of the pion wave,
Despite the PCAC, the way one can go about computing them is some-
what different. We will come back to this point later.

5)

B. A Meson Theoretic View

Up to now I have been discussing the meson effect as
arising from obeying a well-known principle in which every physicist
believes., Translating those Feynman graphs into numbers to compare
with experiments is easy as the next section will show. DBut the
question of double counting, normalizatioas, etc., is not obvious
from the graphs alone. It is in this context that the following
discussion helps in clarifying the situation. I shall restrict to
the exchange current, although a similar discussion can perhaps be

given for other meson exchange effects,

In nuclear physics, we are given a Hamiltonian which
we suppose is good for deuteron. Let us denote it as the sum of the

kinetic energy part Ho and a potential V12:

+l: Hb*"ﬁz
(4)
The eigenstates and eigenvalues of H will be denoted by |PI;> and

Em respectively with a complete set of quantum numbers m:

HIRD = BEul@ud
(5)



Suppose that in the presence of some external disturbance, say, the

z.m, field, there is an operator Hint such that

(?%( tht |94M\>
(6)
describes correctly the transition matrix element between an initial
state with quantum number m and final state with n, We would like
now to find this H.

int
To do so, we consider a field theoretic Hamiltonian including the

from the weay the potential V12 is defined,

e.m. interaction (We take this for definiteness; any interaction

will do),

{e1,:= -R *‘14%
(1)
where
‘A‘= fﬁ°‘+'1q}
4= 2 R+ Br
=he
= k)
1,2
v o= B + 2 Ky, (4)
T ymi 45523NN .
In this equation the subscript N stands for nucleoa, 3 for pions,
hIiNN for bare W N interaction; ho is the unperturbed portion,

and the coupling of 7 to N occurs through +v; . In the following,

we shall treat the problem to first order in VT but hopefully to
all orders in Vg 6).

We denote a two-nucleon eigenstate of h by a round

ket If m);

(8)
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Note that H EE,q. (4)] is defined so that the eigenvalue is the same
as that of Ekq. (8). The wave functions differ of course. The non-
interacting two-nucleon state without pions will be denoted by |Om).

Then the formal solution for i'@m) is

"E‘"\): | Ow) "‘tt'om) (9a)
with

t:’l%-t-‘ua.‘é‘t
Q:Eh‘ﬁ .

(9v)
Now, an electromagnetic transition between states with quantum
numbers n and m is
T, |5 | B
(T |9 1) o

from which we would like to extract Hf as

Qb 16> = (Bl 1B) | Hy=Hine .

Note that the pion degrees of freedom must appear in the operator
HT on the left side, since ,[f) has no explicit dependence on
them, while they appear principally in the wave function I'}P) and

to a lesser degree in the operator Vb" on the right-hand side.

What we need to do is to express ,@) in terms of

l?) o The latter in turn can be written in terms of IO) as

1Ry = 18 + 2£[0m)
(12)

where QO 18 a projectiozn operator which picks out a two-nucleon

state with no pions, and vanishes when it operates on a state with

pioas. The potential V,, of Eg. (4) is defined so that

RO = 10.) +€Tlow), T=V, +VeT (13)
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If we define an operator +ty which introduces pions explicitly,

L% +% 3k
(14)
in which Q“. E1-Qo is a projection operator which picks out states

with pions, then from Eg. (9b) and (14), cne has

t= br by ot

and therefore Eq. (9a) becomes

(15)

12) = (i )RS

(16)

which is what we wanted. Equation (11) leads to

+
b= O S5 ) vy ()
(17)

We are considering a bound two-particle system and hence }@E) should

be normalized accordingly

Bl = NE = 1 (1 (410
(18)

so that a properly normalized operator is

(b = (1 &5 (1 )
(19)

where the subscripts (nm) apply only to the normalization factors.
For two particles in scattering state, N2 turns out to be equivalent

to the wave function renormalization 22 in field theory, in which
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case N2 does not appear in a calculation where renormalized gquan-
tities are used. When the two particles spend some of the time
near each other exchanging pions between them, however, N2 is
certainly more than just 22. When tg acts on the same nucleon
in Eq. (18) (that is, pions are emiited from nucleon 1 and re-
absorhbed by the same nucleon), then it would just give the Z2
Tfactor. When pions are emitted by a nucleon and reabsorbed by another,

then it is an extra contribution. Taus, we can write

-
M= 2, [ g 8 (8 k1R, ]

(20)

where ND means non-diagonal ia nucleon co-ordinates for t’ 7).

Considering the case n=m, Eq. (19) would read as

+ ! \ &
()., =1+ 240 e (@F 1ey,] 2 (SRS (re%)
(21)
Tne renormalization game to put the seccrd Factor on the right in
terms of rencrmalized quantities is beyond my scope here (even
if such a game exists). We shall simply urderstand that all the
single-particle process (including pions emitted and reabsorbed)
multiplied by Zo is equivalent to VK~ with renormalized coupling
constants, etc. Next, terms non-diagonal in nucleon co-ordinates
(for tﬂ:) multiplied by 22 will be assumed to contribute to two-

body operator with only renormalized quantities appearing.

The lowest order graphs (now in gr) are given in
Fig. 8, These graphs have the old-fashioned propagators and should
not be ccnfused with Feynman graphs. Notice that because of the
operator QV , the graphs of Fig. 9 should not be included. They
are already taken into account in the wave function {p> , that is
in (qﬂn|vr ,}bn;> . Equation (21) contains further two-pion

exchanges, three-pion exchanges, etc. In practice, it would be
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impossible to calculate the multi-pion exchange graphs., Therefore,
we shall in practice do as is done in nuclear force. We chall take
the full one-pion exchange term as given in Fig. 6 with the Dblob

indicating all possible vertex corrections, and thern for the multi-

pion exchanges, we shall introduce heavier mesons.

We treat the normalization correction

Z % (EF k163,
in the same spirit, although it would be even tougher to give a
rigorous renormalization scheme in this case. We shall take only the
OPE term as given by Fig. Tb and ignore all the rest. Heavy meson
exchange terms are numerically very small, so that this would be a

good procedure provided my interpretation of the correction is correct.

The point of this subsection is that for the case where
two nucleons can spend some time near each other (at a distance of
ngg), there is a non-trivial normalization correction, and that
if one were to use nuclear wave functions Iq%> , one needs to exclude a
certain set of graphs to avoid double counting. The prescriptions for

them are clear, provided one can do the renormalization.

TESSONS FROM TOW ENERGY THEOREMS

We now proceed to do some calculations getting hints
from the low-energy theorems (involving pions) which have been
discussed extensively in the literature. We need only the most un-
sophisticated version. I shall treat the material in the same order
as I did in the previous section.

3)

A, Three-body Force

The relevant diagram we are interested in is given by
Fig. 2d. Heavy meson exchanges can also be considered, but there are
good reasons to believe that they contribute insignificantly. To

simplify the problem, let us consider nuclear matter, and calculate
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the correction from the three-body force to the nuclear matter binding
energy. 1 do not think that anybody has derived a three-body force
in co-ordinate space corresponding to Fig. 2d. But it is not
necessary to do so. One quick way of evaluating the contribution

of Fig. 2d as used by Ref. 3) is to consider the three-body graph as
a propagator correction to the two-body graph of Fig. la (With pion
exchange). To do that, we need to consider the direct term where
the second nucleon N2 suffers no momentum transfer, therefore both
pions carrying the same momentum g. Of course, an exchange term
would not have such kinematics, but apparently it is small., We
neglect it. I have drawn in Fig. 10 that portion of the graph cor-
responding to a forward scattering of a virtual pion off a nucleon,
Now, if the pion in Fig. 1a has a propagator (note that I am using

2 2
the metric q° =g -q,)

l
iy

(22)
a direct term of Fig. 2d may be viewed as effectively modifying the

pion mass in nuclear matter to

|
1
ﬁ%F1Wﬁp*-$ﬂMv

(23)
which when expanded gives (22) as the lowest term, and (q2+mfr)—1
<§m§ (qz+m,i,)—1 as the next term which is just the graph (2d). If
we denote the forward scattering amplitude depending upon two avail-

able invariants -peq/M and q2 corresponding to Fig. 10 as

T8

and the density of nuclear matter as F , then

Sy =P (-1 q)

(24)
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In nuclear matter, the isospin antisymmetric combination of the ampli-
tude TTI\](_)

T‘!‘N(+)

force effect, it suffices to consider the difference

does not contribute; hence only the symmetric cne

is needed in Eq. (24). In order to compute the three-body

A:(q’{-\m%fgm;,' )" - (q+ud) \

(25)
and, therefore, S.mi or T.rN(+). However, not the entire scat-
tering amplitude contributes. A positive energy nucleon intermediate
state (Fig. 11) should not be included, since it is already taken into
account in the Schrddinger equation with a two-body potential. Denote
the amplitude with the harmful term properly subtracted by TTrN(+)’.
Then,

(3“':})1 = PT'T"&)(_- f;—:l-)ql)

(26)
where the subscript 1 is to distinguish this formula from a later

one., If one chooses the frame p::(0,0,0,iM), then

.Q
%

which is small in nuclear matter. We may set it to zero. Then the
amplitude depends only on qusaz, which, however, differs depending
upon which graphs one looks at. In Fig. 12, I have drawn a three-
body force by putting a cross on the propagator 12a; Fig. 12b
represents a contribution from the three-body force when it is
iterated once. Now, Brown and Green 3 find that for Fig. 12a,
qzkuﬁi, and for Fig. 12D, quV6.5m; . Thus, the pion exchanged

in the second graph is not so soft. The reason is of course the

tensor nature of the force.

Now, what does a low-energy theorem tell us? The Adler
: . 8)
consistency condition

point 9y = q2 =0;

gives us valuable informations at the symmetry
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NG e
T o= T (0) =0 .

The remaining art of the game is to extrapolate from q2==O to
q2a3605mi « There are several ways of doing this, but let me just
report on two of them. The results seem to be more or less the
same for q2 relevant to us. One method is to separate T’rN(+)'
into a Born term evaluated with the renormalized coupling constant
g, [@hich in our case is just the pair term, (Fig. 13) and the
"recoil" term (Fig. 14) 9%1 and a non-Born (NB) term., Since the
Born term extrapolates by itself, what remains to be done is to
extrapolate the NB term. This is done by a forward dispersion
relation, where an over-all constant is fixed so that the NB term
cancels the Born term at the symmetry point. The other method is to
take more advantage of the Adler conditior in assuming that whatever
object it is that cancels the pair term at q2==O (s meson?)
continues cancelling as q2 moves away from zero, and some other
object which vanishes exactly at q2=:O, shows up as q2 becomes
non-zero. Dispersion theoretic calculations indicate that such an
object is reasonably represented by N§,3(1236). So one may extra-
polate by calculating a graph with N* intermediate state as given
by Fige. 15, I shall not go into discussions as to how one does the

calculations. For those interested in the details, Ref. 3) is

recommended.

The results of extrapolation are given in Table 1,
The dispersion method labelled as D, and the N* method labelled
as N* give about the same extrapolation up to q2~1Om2 « There
are two quantities given there, one (S:mi )1 as defined by Eq. (26),
and the other (Bmi )2 defined by

(&m), = £ X' 7™, 4

(27)
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where K(q2) is the pionic form factor of nucleon, which decreases
for larger q2. This definition is what should be used in calculating
the three-body contribution EEq. (25110 The reason for this is as
follows. A three-body force contribution to Figs. 12a and 12b carries
the pionic form factor K(qz) at each WNN vertex, whereas a OPE
force of Fig. 1a is usually calculated with the form factor on the
mass shell K(-mﬁ ) =1. Therefore, to interpret the three-body

force as being a correction to a two-body force via a propagator
modification as was done here, Kz(q2) has to be multiplied into

2
(5}%’)1 to have a correct form factor deperndence.

What Brown and Green obtain is that the three-body
force contributions from Figs. 12a and 12b are respectively about -1
and +4 MeV/particle with a total of ~+3 MeV/particle. This is
not a small number compared with the two-body force contribution
~+10 MeV/particle.

B. Pseudoscalar Coupling Constant 4)

The blob appearing in the two-body contribution to the
pseudoscalar form factor is quite similar to that of the three-body
force. There are differences, however. TFirstly, the pion (111 in
Fig. Bb) coupled to the leptons can carry only a definite momentum
which turns out to be tiS%i Rs%mi whereas the pion (112 in Fig. 3b)
exchanged between the nucleons has on the &average qzsums s Or
larger if the tensor nature of the force comes in. In three-body
force,lwe have considered the case where both pions carry the same
momentum, hence a forward scattering amplitude. Now, if we are to
use correlated wave functions to evaluate the nuclear matrix elements,
then only the non-iterated graph (Fig. 3b) is relevant for which N
may be taken to have ~m2 . The second difference is that while

w
+ .
T 4 must be a charged pion, 172 can be Y or TP- This means

that both T.WN(+) and T1'N(_) can, in principle, contribute.

For these two reasons, it is not quite correct to consider

Pig. %b as a propagator correction to Fig. 3a, A correct way is to
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evaluate Fig. 3b as a genuine two-body operator as is done for the
exchange current. It is of course quite complicated. Tor our
purpose of making a rough estimate, we shall ignore the difference
between q? and qg, and consider Fig. 3b as a propagator correc-
tion, that is, we ignore -ﬂo exchange which is equivalent to

wN(-) 10)

ignoring T o

Then, the Goldberger-Treiman relation [qu (3[] is

modified in nuclear matter to

Nuclear M RQG)
o qy) = = free ,
P e, LA

where
2 T
9+Ms
= T 2 T
7 Ty *(5”11)4 (29)
and Ffree is that given by Eq. (3) for free nucleon. Note that

2 . 2 —
here we need (Xmﬂ )1 instead of (5mﬂ )2 [_see Egs. (26) and (27)].
This is because each vertex in Fig. 3a requires the form factor,
2
unlike in nuclear force. To obtain a number, let us put qzzz%mﬂ
which is about the right momentum transfer for /LL capture in

nuclei, and read off from Table 1,

L ?.
Sy~ -026My (50)

and so that

7% 1,2 (31)
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a 20% enhancement over the G-T value. If one takes

l
G= "ufpla )/34 @) =t

usually quoted as the G-T value, one would have

Nuclear

G

I consider this as an upper limit, because among other reasons,

{ 85

(32)

the nuclear matter density is perhaps an overestimate if capture
occurs near nuclear surface. I heard from the TLouvain group that

their experiment in B11 sets an upper limit of about 9.

Before closing this part, let me point out a few things
which are important to bear in mind. We recall that in calculating
am; , Wwe took away the positive energy nucleon intermediate state
for the reason that it is already in the nuclear wave function (in
the language developed in Section 3.B, it is the wave function
l?m> ). One may work instead with the uncorrelated state IOm),
in which case we must include that term also. This, in principle,
could be a systematic way of doing the calculation, but, in practice,
quite difficult. If one takes only the nuclear intermediate states,
one may compute the entire pseudoscalar nuclear matrix element by
putting in particle-hole bubbles to modify the pion propagator.

What I mean is depicted in Fig. 16 which is a Goldstone diagram
rather than a usual Feynman graph. The particles and holes interact
through the effective interaction G (usually called Brueckner G
or K matrix), not just through the exchange of a pion., There are
a couple of disadvantages in looking at the problem in this way,
however. ZFrom the practical point of view, the extraction of

FNuCl’ is not straightforward. One has to divide it by a nuclear

mgtrix element of the operator without the coupling constant, and
this has to be done in the same way as for what we have above. The
other point can be more serious., Consider for example a graph with
only one particle-one hole bubble. One cannot use the pseudoscalar
coupling for the TWNN vertex, for then we will have the well-known

disaster coming from the NN (pair) term.
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Let us assume that that pair term is somehow suppressed
as it must be. Then, a simple calculation with i;?ﬁ coupling
shows that gmfr (qo,qz) has a pole at qo~q2/2M which, for
q2F8%m; is about 5 MeV. This is not too far from the actual
value qofv10 MeV, The consequence of this phenomenon is that
8@5 can be very sensitive to what transition energy one is
dealing with. Therefore, it is important to treat the p-h inter-
action very carefully. If this is not done properly, one will have
a spurious enhancement which does not exist in non-perturbative
approach. On the other hand, if this Born term is taken into
account in the wave function , m)», we have no such problem.

The enhancement expected near q0;35 MeV in a finite order of
perturbation theory like Fig., 16 is merely a disease in the approach,
not a real effect. Therefore, the large enharcement ()-5@%) found

4)

by Wycech based on this method is most probably subject to this

criticism.

C. Exchange Currents

I have discussed in Section 2.B a meson theoretic way
of looking at the exchange current operator. One knows that it is
impossible to calculate anything in that way. Instead we shall
take the attitude of nuclear force people in that multi-pion exchanges
are simulated by heavy meson exchanges. TLet us split the graph
into a OPE contribution (Fig. 6a) and heavier meson exchanges
(abbreviated as HME), (Fig. 6b). The OPE term we try to calculate
as accurately as possible, and the rest somewhat roughly, considered
as a correction. This is not always justified, especially if the
OPE turns out to be small. In that case, the numbers can serve

only as an estimate of size.

The low energy theorem is applicable to the OPE graph
in the following way. If one looks at the tlob in Fig. 6a, one
notes that it is just a production of pion off a nucleon through
the current qﬁ o The pion is virtual, and would have a small posi-

tive value for q2, if the initial and final nucleons are within
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and near the Fermi sea. We already know that it is quyms_. The
soft pion theorem is then applied to the matrix element [for

reference, see Dashen and Adler, in Ref. 12X]

1 ~7Q-
(G ) jd?t e G T(po T pY

(33)
in which T is the time-ordering operator. As is usually done,
we shall deccompose it into a Born term and a NB term. The former
is a definition from which the NB +term is determined by the low
energy theorems. The soft pion result would be exact if its condi-
tions are met. The pions in nuclei are very nearly soft in a
process like Fig. 6a and in fact a rough calculation correcting for
the non-softness of the pions shows a rather negligible correction
Eﬁefo 11) for detailé]. Let me emphasize that this is an important

point - that we can treat the pion term rather accurately.

Now, given the blob, and ) NN vertex

RO AITIY

we can obtain a two-body current jA (;1,§2) from the Feynman

graph (Fig. 6a) by Fourier transforming it,

Coaa 3 w'al 4'*!)

‘ . - - / . /| - v +P-x -Px -p-

8(?::}.) 3( ?7,—)?1)‘))0?:}:,) - (ﬁr)(‘ df:dg .M,‘U’,:',i )e L(Pa X Exz ﬁx &&
(34)

where MA is what the Feynman rule gives for Fig. 6a. In general,

j) (21;§2) depends upon derivative operators acting on the 5

functions. These cperators which are non-local will not be included

in our discussion. Including them would make life terribly compli-

cated. Besides, they are numerically small when taken between wave

functions we are dealing with. In the limit that the current carries

small momentum, we only need the space component of le€ay

Jis
k
k =1,2,3. For the Gamow-Teller matrix element in (8 decay, the
time component contributes only in higher order of (p/M) and thus

need not be included,
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For the magnetic moment, the operator is

A AD S
=TV X T
] k=0
so that only 5 would be needed.
The formulas one obtains in this way are unfortunately very
lengthy and unilluminating. I shall not reproduce them here. Those
who can amuse themselves with complicated formulas are referred to
Ref. 11). What I would like to do here is simply to summarize what

we learn from it.

a. Magnetic moments

The low energy theorem teaches us that the isovector E.M.
production of pions &t small four-momentum (physically at threshold)
is well described by the Born graphs [}o the accuracy of (m"./M)
where M is the nucleon masé] whereas for the isoscalar production
the Born termes are small, and hence the theorem is unable to say
anything 12). This means that the exchange current '3V (v for
isovector) can be unambiguously calculated by the Born graphs, but
not '38 (s for isoscalar). It also means that we can at best do
a model dependent calculation for the latter. To be complete, we
shall do all wc can do - calculate Feynman graphs of the type given
in Fig. 17 by using phenomenological Lagrangians. For fv this

is merely a correction.

As for the HME graphs (Fig. 6b), the vector dominance
model is used whenever pessible. It turns out that only f’ and
@ make significant contributions, so that we have ignored any
other mesons. There is an inherent uncertainty due to the uncertain-
ty in the coupling constants. For the isoscalar moment this is a
serious drawback; however for the isovector moment it amounts to

a smell number.

Tet me now go into a little detail on some subtle points.

Recall that given a two-body operator, the matrix element is to be
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obtained by sandwiching it between the wave functions iq)mf>
containing nuclear correlations. This }de\ contains for

example the short-range correlation reflecting the particular
short-range behaviour of potentials. Therefore, in principle, there
should be no ambiguity for short-ranged operators if the short-range
part of the wave function were correctly accounted for., DBut this
short-range behaviour of wave function is a major open question in
nuclear physics; hence, we have to rely on models. Now, which are
the short-ranged operators? Firstly, some of the Born terms are.

In particular, the "recoil terms" (as we shall call them) of Figs. 8c
and 8d can be shown to have a radial dependence (K's are Bessel

functions of 2nd kind)

K, 000 = KO ) o
(35)

which 1s fairly sensitive to the wave function at short distances.
Another example is the vertex correction graph (Fig. 17b) which, if

one evaluates blindly has the radial function

et e oy

e _ (.‘21?.)3 "

14
\36)
whose matrix element can be very wrong if one ignores the (correla—

tion) hole in the wave function.

Another delicate point is the normalization, that is, how
to compute it in practice. In the discussion of a previous section,
I mentioned that we would calculate it to the lowest order in the
renormalized coupling constant (see Fig. 7b) while "higher order"
terms interpreted in terms of heavy meson exchanges were hand-waved
away (the reason being due to the hole in the wave function).
Frankly, I think that this procedure is quite questionable. And it
is serious especially when one would like to understand a small

discrepancy like in deuteron. It does not however affect the ratio
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between a single-particle operator and the exchange current, the

normalization factor being an over-all fector.

I have examined how much change this normalization amounts

Z
to in the tri-nucleon systems 3H and “He. It is found to be

2
N"~ 093

for the ground state. et us now confront what I asserted above

3 3

with some numbers calculated for H and He. They are given in

Table 2. //Lv and /ALS are calculated values for exchange moments
2 2 3 3
(isovector and isoscalar respectively) for “H. For ~“He they are

-/;Z and /Aga One can summarize the results as follows:

(1) /ALZ: the Born terms are dominant as the low-energy theorem
says. The NBE contribution is negligible. The HM contri-

bution amounts to 10—20% of the Kroll-Ruderman term.

(2) A; the Born, NB, and HM terms are about equal. Thus,

the results are exitremely model depeindent.

b. Camow-Teller matrix clement

Here the momenta of both the current (k) and the pion
(q) are soft. A low energy theorem for such situation was worked
out some years ago by Adler and Dothan 13). What it says is that
once the Born terms are defined properly, the NB term can be
computed uniquely in terms of off-shell J N scattering amplitudes
(in fact, derivatives of the amplitude with respect to k) 14).
Due to the latter which require models for extrapolation, the cal-
culation of the exchange current for ﬁB decay is somewhat mopdel-
dependent. The error is hard to assess, but it must be of the order
of the error made in testing the Adler consistency condition which

is 10-20%.

For allowed transitions, the axial vector current gives the

one-body operator



A

g
HI = 3AZ'§~ .
<

9

(37)
In general the two-body operator for the pion exchange is very

complicated, but if the nuclear wave function has the symmetry

Blede> (2 foed=Fan) )

then the matter simplifies enormously. This is the case of the

Gamow-Teller transition in

3 3 o -
H = H te+Y,

(38)
on which I shall talk mostly. An attempt to make some order out
of the complications for other nuclei is being made at this moment
and perhaps we will have a chance to talk about it on some other
occasion. Now, for the process (38) and for the predominant
conponent of the wave functicn (see next subsection for symmetries

of I(P> ), we get a simple operator for the NB term

pNB
*C =34 éj ﬁ']

NB - MgV
f = Coustant x (-B) &— (2,T) (@3- )

(39)
where o and P are different combinations of W N 'amplitudes

(off shell), and the constant is irrelevant for the discusiion.
15

-(3 arises from the identity for symmetric state sos
2 3 ﬁ >\ - 2 2 -\. Y
FET), @) ¢ = +P(;—xz,2\(°;¥°;~)(fg

(40)
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Let me just mention that in other nuclei, and also for the D
state of 3He and 3H, it will be quite different and furthermore
because of the tensor force, tensor operators do not vanish as

they do above.

The predictions based on the low energy (Adler-Dothan)
theorem for g/ and P are given in Table 3. The numerical
values (labelled as Adler) are obtained from Adler's estimates
of the off-shell amplitudes. Note that ¢f and ‘6 have about
the same magnitude and the same sign, and therefore in the process
(%8) there is a large cancellation. Due to this, the contribution
turns out to be minute. Denote the matrix elements of H? and
HA as MA and MA

2 1 2
triton F decay

respectively. Then, Table 4 gives for the

&< b/t
2 /M’ (41)

in terms of Ty the hard core radius. Indeed, the column "NB"
shows that the cancellation is almost complete. One may wonder

why the cancellation is so close. To see this we recalculate ¢
and p by sticking in relevant Feynman graphs. We assume that

N* graphs (Fig. 17a) play the dominant role for the NB terms.

We note in Table 3 that indeed the N*(3,2) practically saturates
of and F while other N*'s are negligible. [@here is of
course the (9 term (Fig. 17b), but as we mentioned before, this
needs a careful handling because of the short range behaviour. It
is negligible if one calculates the matrix element with Eq. (36)
and with correlated wave functions,| It is well known that §*(3,%
cannot contribute in tri-nucleon ground state because of the isospinj

thus it is the selection rule that makes the NB minute. Such a

selection rules does not necessarily apply to heavier nuclei. It
is plausible that the NB can make a sizeable contribution in some

nuclei which would also point tc a role of N*(%,% in nuclei.
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Unlike the NB +term no cancellation occurs within the
Born term and also within the HM term. They are small individually.
The near cancellation between Born and HM terms is probably for-
tuitous, Whatever the case, Born + HM 1is small., This is probably
the case also for other nuclei. Thus the search of N*(£,3) role
3

in p decay of nuclei other than H is an interesting open

problem.

To summarize: 1in triton ﬁ decay, the exchange current
contribution is very small ( :&1%), due to the suppression of the
NB Dby selection rules. This is quite different from the magnetic
moment where the Born term plays the major role, and gives about

10% correction.

c. Consequences of exchange curremts in 'H and “He
What is the significance (if any) of the results we have
obtained? ILet me now try to answer this question by examining the
structure of the wave function of the tri-nucleon system or indirect-
ly the nuclear force. For the three bound nucleons and in the ground
state, °H (°He) has J=% (}), T=% (), snd T =-% (+3). 4n
eigenwave function of the nuclear Hamiltonian H would be & linear
combination of different space symmetries while keeping over-all
antisymmetry required by statistics. The symmetries are S (fully
symmetric), S' (mixed-symmetric), D (due to tensor force), and

so on;

§0= dg ¥y + %Y +%,,<&, -
(42)
Other symmetries other than S, 5', D +turn out to be insignificant
and so we shall not talk about them here. Both 's and 9b's
will reflect the nature of nuclear force., By this I mean that a
stronger tensor force will induce larger C(D; a hard core in the
potential will punch a hole in qb 's, the size of the hole depending

upon the nature of the repulsion.
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One cannot say anything about q"s from the static quantities like
magnetic moment and Gamow-Teller matrix elements, but one can say
something ahout (X 'se This is because the single-particle operators

have matrix elements depending only on the Pi = l diiz,

/Q,S = -Y%?z" (-PS*Ps' -_PD) +§L.P_D
A= BRR AR 4B )4ER

M} = (3 (R-1R +3B) (43)

v
where ( rp¥ xn)/Z is the (;:s> for nucleon, equal to (-(2).232)

in nuclear magneton.

I 1list in Table 5 the discrepancy bctween experiments and
single-particle values /}LZ’S(PS,PQ,,PD) and M?(PS,PS,,PD) which
clearly depend upon the probabilities P. Allowing large errors for

the HM and NB (for magnetic moments), our results are consistent

with only the upper two rows. On the other hand, the Hamada-Johnston

potential which fits scattering and deuteron data implies when used

in the tri-nucleon system 9% D, and 2% S' which are in definite
disagreement with our results. Supposing our calculations are reliable,
this would imply that there is a sizable additional effect in many-
nucleon system which makes it invalid to use blindly a two-body
potential in many body system. We have noted this in the binding
energy of nuclear matter. If what we find is true, then there would

be a serious gap in our understanding of nuclear structure. But

then our calculation may be erroneous! It would be very important to
do this calculation in more sophisticated and accurate way. Our
calculation reported here as the exchange current correction is done
with only the S state. As we have seen, the é; decay in particular
can be sensitive to N*(%,%) whenever allowed and hence sizable D
state (9%) would brirg in the N* effect which would invalidate the
above argument. This is another important point we hope to look into

soon. I woulid like to urge others to do so also.
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de Quasi-elastic neutrino scattering

Although I have no results to show, the process

V‘l‘A“' —)/U‘.--" A{_

(44)
at low momentum transfer q° (small angle O) where 1=P, “Bo
A A
pv -aﬁ =co0s @ has an interesting feature which if reconfirmed ex-

perimentally might be an evidence of meson exchange phenomenon.

What is observed up to now is that for high energy neutrino scat-
tering off nucleus Ai to /AC and all final states of Af, the
suppression of cross-section as ©—-0 is much less than what the
Pauli exclusion principle allows for a one-particle operator. If one
nsglects the muon mass and if N =1Z, +the cross-section would be

zero for ©=0 in the impulse approximation. Of course, %v £0;
hence, the Pauli suppression is not complete even at 6 =0, unless
Ev$§n1 « In any case, when cats are away, even mice can take over.
The hecpe is that when the main terms are suppressed, the exchange

current would show up better 17).

In reality, when cosG- 1, ral approaches minimum nuclear
excitation energy ~10-20 MeV. So even at that limit the situation is
not exactly the same as the ﬂg decay. But the CVC and the Siegert
theorem say that at IEI::O, there is no exchange current for the
vector current. I shall not consider it. For the axial current, it
turns out that for Pﬂé(%{’ where R 1is an inter-nucleon distance,

a good approximation for the exchange current is
Y - D [
Hy =3, % ep(4q-R; )K,;j
-
DD
F;' ~ (’a:*ﬂa )/CZ

6 (45)
where hﬁj is that for the /? decay, |q|-0. Now, if we define

the difference
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d5~ - 112;
Alcosé) = d((es6) [ co06) Tupulse
(46)

"impulse" meaning the single-particle operator case, then 1& which

is the exchange correction to the cross-section is as ©-0,
) Gz 2 al -NE - t z}
A(C(PG <2 ‘:'Z'Tr‘[ggA (H-SM{)J % (t/’“.}; {‘Sﬁ‘*["ll = ,fr‘l
(47)

where WS ar |-
Joi = FI1Z2TE MV >

2

ap- pP .
fo = <f lézcj. 18 *R,) iy

e (‘?x){,;"‘ £= (EA[E&)

1s the energy carried away by the outgoing muon.

The same discussion about the possible role of N*(%,%

applies here, perhaps more so because the transition here involves
kicking a particle from below to above the Fermi sea. DILet us wait

and seeo

WHAT ABOUT PUTTING N¥*'s INTO THE WAVE FUNCTION?

2)

infancy that, on the one hand, we may be able to determine the N¥

There is an interesting idea floating around in its
components in the nuclear wave function by some high energy experiment,
and on the other hand perhaps what we call exchange current effects

may be explained away in terms of these N¥* components. If this
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were true it would be nice, bescause one would then know how to
correlate N*'s, short range correlations, and meson exchange effects
all at the same time, all of which are open problems in modern nuclear

physics.

The lowest N* 1lies ~300 MeV above the nucleon state and
hence the excitation involved is much greater than any low energy
nuclear physics experience. Aay nuclear physicist will agree that the
excitation energy of ~ 50 McV is already too complicated. Then,
how can one hope to see any effect coming from a 300 MeV excitation?

I think the answer is found in what Danos has been emphasizing: that
N* comes in at very short range wnich pops up in a manner quite dif-
ferent from what happens at 0-50 MeV., Thus the back angle scattering
of protons off deuteron involves momentum transfer just where N*'s
become relevant. The evidence from such experiments is that a 1—2.5%

N* probability is likely.

Now, we would like to ask the following question: can the
N* probability of that amount account for the discrepancy usually
ascribed to the exchange current? The deuteron is not a good place
to look, because only isoscalar moment contributes and an explanation
of a small number by N*'s would not mean much. The next candidate
is the tri-nucleon system which has a sizable discrepancy in the
isovector moment. Unfortunately an N*(%,%) cannot be mixed into
the wave function, which makes the testing somewhat difficult, {Other
nuclel are too complicated at least for quantitative studies.) Danos
suggests 2>, nowever, that N¥*(3,%) at 1400 MeV could account for
the isovector moment discrepancy (see Table 5) if the probability is
about 1%.

Now, suppose that N*(%,% is the sole agent for the iso-
vector moment discrepancy. Next we ask: is this picture consistent

with other exchange currents, say, the f! decay? The answer is no,

that N*(%,% plays a very little role and that meson excharge current

is really a meson exchange current as the low energy theorem says.

To see this, let us write a good borna-fide tri-nucleon wave function

including the N*'s as
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Ee ds bt e Doy »

where ;bI{ is a wave function wherein one nucleon is in a resonance
R. In our case, we take only the Roper resonance N*(%,%). Now,
evaluate the matrix element of the ma%nifio moment operator o ’

A _ +
and the ‘8 decay. operator p —Zi:\‘Ci O‘i. The presence of w R
leads to

cs/"‘ 0(;°(R 4%‘/3 %>+ C.c.
S = ot (| 3 1,00 + 4 <R IR 150>

(49)

Taking o('s to be real and evaluating the matrix elements explicitly

one gets

= 2ot g { A/ |

2

M= 2o 2= 0 (N >hy)

(50)
where
& A ] e (P)
M :<-Nc7‘/‘3'“t1> , T4 for (o y
thus N%EEN*+ and N3 =N*°, +the superscript + and O standing

-2
for the charge state. The arrow indicates the spin. MA is defined
to be

JERTRT TN (51
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where the reduced matrix element is taken with respect to spin. We

now appeal to =xperiments for 1nformatlon on//L and MAo In the

literature, /u,* is quoted to be 18)

» ¥ ¥
- (52)

where /Q‘ is the nucleon moment., From a generalized Goldberger-

Treiman relation, one obtains from the width of N*(3,3) 19)

Mcm >N) x 036 M (n>p)

(53)
N Ve a M*(n-p)aM® where subscript 1 indi 5 th
oW, ,Ai";/l1’ an n-p)~M, where subscrip indicates the

one-body matrix element in the tri-nucleon system. Hence, we have

Sy
/1 N
Sh /M,
(54)

which says that if the N¥* contributes 10% isovector moment, then

it is expected to contribute the same amount to the Gamow-Teller matrix
element. I think this is in violent disagreement with the experiments
and the low energy theorem. Clearly, if oane were to pursue this idesa,
cne would have to find another mechanism in Fg decay which would

kill off the large N* contribution. I have tried this, but I did

not find one yet,

Alternatively, one may argue that the isovector moment
discrepancy does not come from N* at all (if at all it must be tiny)
and is due entirely to something else. This would mean that either

or * or both are small. In fact, an order of magnitude cal-

R
. . . . 19
culation comparing coupling constants gives )

(2
oy 25 63 .,
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Llso, a large class of models predicts ,/Li =0, and the failure up

t0 now to photoproduce N*(%,3) again seems to support much smaller

/Q; than used above. But then this is what the low energy theorem

has been telling us. Just look back at the "derivation" of the

exchange current by means of wave functions (Section 2.3) - whether
one puts the blame on the operator or on the wave function is

a matter of taste. Clearly the absence of the N* strength in the
exchange current for magnetic moment speaks also for its absence

in the wave function!

Then, how can one reconcile the large N¥ probability
needed for high energy phenomena (whichever N* it is), and the
exchange moments and f; decay? This question can probably be
enswered in the same linc as the "effective charges" used in electro-
magnetic transitions in nuclei. Such a scheme requires an unambiguous
way of classifying mesons and baryons so as not to double count
things. One way is the quark model, but then there are other problems.

This whole thing is an open problem for future.
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NOTE ADDED AFTER LECTURES

After having written this note I learned that Fujita

et al. 20)

claim to have found an extra term in the exchange current
operator in beta decay which increases sﬁ by a few percent.

I think that that term is included correctly if one evaluates Fig. 17b
in the phenomenological Lagrangian method, and amounts to a negligible
correction if the PCAC values (Adler) are used. This tricky "yes

we have" and "no you have not" argument is described more in Ref. 11).
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Table 1 &

aZ/m2 | o.5 1 4 8 12 16
v
c) b)
Ju2
( m )1 D -0.15 -0.25 -0.61 -0.86 -0.75 | -0.57
}T* "0029 —0.66 -'0091 -1.00 -1 Q07
(dn? ) D -0.13 | -0.20 | -0.38 | -0.33 | -0.18|-0.08
Ty /o

N* —0.23 -004'1 —0035 -0024 -0.15

Sm,lf in unit of £~

2

VS. q2/m$ . The

taken to be that of nuclear matter; i.e.,

a) Numbers from Ref. 3).

b) D=dispersion method,

¢) (snﬁ )1 =(°T'WN'(+)

i (G )y =P K(a")

N*¥ =N*¥ method

density P is
kp =1.35f .

1

p N (+)
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Table 3

« A
Adler 0.70 0.50
N*(%,38) 0,55 0.55
N*(35,3) 0.09 0
N*(3,%) -0.07 -0.02

i

Amplitudes o and P calculated
from low energy theorem (Adler) and

from N¥* graphs of Fig. 17a.

we (2 ) i B™),

Refs. 11,12)

~Me (3,;)’(“)(344 )o
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Table 4
r, Born NB HM Total
Feynman Normali-
graphs zation Sum
0 -0.028 0.054 0.026 -0,0035 -0.,020 0.0019
0.2 -0.019 0.039 0.020 -0.0034 -0.016 0.,0013
0.4 -0.0098 | 0,025 0.015 -0.0030 -0.011 0.00053
0.6 -0.,0048 0.016 0.011 -0.0027 -0.0076 0.,00088
0.8 -0.0018 0.010 0.008 -0.0023 -0.0054 | 0.00083

3A==M2/M§ for the triton beta decay. Calculation for NB

is based on the Adler values.

Table 2 is used.

The same radial function as
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Table 5
v S
Fs Fp | Fa &’ =) dp Jut b
96 4 0 0.269 (10.5%) 0.003 (0.7%) -0.06%
94 6 0 0.304 (11.9%) 0.009 (2.1%) 1.31%
92.8 6 1.2 0.342 (13.4%) 0.009 (2.1%) 2.97%
92 6 2 b) 0.%68 (14.4%) 0.009 (2.1%) 4.09%
91 8 1 ¢) 0.370 (14.5%) 0.013 (3.1%) 4.,04%
89 9 2 3) 0.419 (16.4%) 0.020 (4.7%) 6.11%

Discrepancies between experiments and single particle

values in isovector, isoscalar moments and Gamow-Teller
matrix element. PS, PD’ PS' are respectively S, 8!
and D state probabilities. Experimental values used

are /.C’(,uf) =2.553 (0.426), ngp:1.685.

V,S V,S _
a) /Q'exp g (PS’PS"PD)' The numbers in parentheses

are % defined by &‘//“1‘
b) Known in the trade as Gibson wave function I:see Ref. 16)].
c) 014 Blatt-Delves wave function l__l-?ef. 16):'°

d) New Blatt-Delves wave function [Ref. 16)].
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REFERENCES AND FOOTNOTES

None of them, however, is responsible for possible erroneous

statements in the lecture.

L.S. Kisslinger, Phys.Letters 29B, 211 (1969);
H. Arenhével and M. Danos, Phys.Letters 28B, 299 (1969).

For an extensive discussion on the three-body force, see
G.E. Brown and A.M. Green, Nuclear Phys. A137, 1 (1969).

The discussions on the pseudoscalar form factor are based on
an unpublished work (or a thought?) of

A.M., Green and M. Rho;

see also |

S. Wycech, Nuclear Phys. B14, 133 (1969).

This part is entirely based on the thesis of

M. Chemtob, "Les courants d'interaction nucléaires & deux
corps", Université de Paris (1969). Although most of the
confents may be found in many old articles, I give this

reference for its thorough references into the matter.

This may or may not make sense, but what we do finally in the

next section seems to be meaningful.

Perhaps a graphical explanation is easier to see. First we note

that

Wl Q10D = Rl Tl

and the matrix element

CADE TR

is just the second order (in gf ) energy. The diagonal
term looks like Fig. T7a, and the non-diagonal term like
Fig. Tb.
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8) The content of the Adler condition needed here is thoroughly

discussed in Ref. 3).

9) The recoil term is found to be small by A.M. Green (private
communication).

N(-)

10) There is a reason to believe that T
[9)
a,~0, a” £0. See
J. Hamilton, Nuclear Phys. B1, 449 (1967).

is small for

11) Details can be found in a paper being written by Marc Chemtob

and myself,

12) This is a variant of the well-known Kroll-Ruderman theorem
translated into an isospin language. The relevant K-R
theorem is best studied in the monograph "Current Algebras"
by S. Adler and R. Dashen.

13) See the monograph quoted in Ref. 12).
14) Refer to Ref. 11) for more details relevant to the problem.

15) This would be true independently of the wave function if the
radial part of the operator were zero-ranged; i.e,, if
mﬂ —>CD L]

16) L.M. Delves and A.C. Phillips, Reviews of Modern Phys. 41, No. 3,
497 (1969).

17) The sentiment among some physicists is that one has to wait for
better experiments. I am basing my observation on the paper
by

R.L. Kustom et al., Phys.Rev. Letters 22, 1014 (1969).

18) See Danos et al., in Ref. 2)

19) H. Primakoff, Weak interactions in Nuclear Physics, Karlsruhe
Lecture (1959).

20) J. Pujita, H. Ohtsubo and G. Takeda, submitted to Phys.Letters
(early 1970).
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Figure 2
Figure 3
Figure 4
Figure 5

Figure 6

Figure 7

Figure 8
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FIGURE CAPTIONS

Feynman diagrams considered in two-body force. The

symbol M stands for all mesons exchanged between two
nucleons. Fig. c is not usually considered explicitly

when phenomenological coupling constants are used.

Feynman graphs for three-body force. Fig. a contains

a part which is contained in an iterated two-body
force, which is subtracted away to construct the three-
body force. Fig. d describes lumping all the vertex

correction into the blob.

Two-body correction to the pseudoscalar form factor
in /LL capture (b). Fig. a is the usual graph to
obtain the Goldberger-Treiman relation for a free

nucleon.

Possible graphs contributing to the renormalized Y N

coupling constant 8o

Possible graphs contributing to the renormalized axial

vector coupling constant The wiggle here denotes

gpe
the axial currente.

Graphs representing the exchange currents for J§M

A
or JA . Fig. a is the "dominant" pion exchange,
Fig. b the heavy meson exchange.
described in Section 2.B.

b to the ND

Graphs for normalization Ni

Fig. a leads to 22 (presumably), Fig.

(non-diagonal) term.

0ld-fashioned perturbation graphs (not Feynman graphs)

for pion exchange current. Figs. ¢ and d are usually

referred to as recoil term. The wiggly lines represent

the current (either %fM or %ﬁ ).



Figure 9

Figure 10

Figure 11

Figure 12

Figure 13
Figure 14
Figure 15
Figure 16

Figure 17

..

.

.o
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Old-fashioned perturbation graphs which should not

be included in the exchange current.
Graph representing pion-nucleon scatteringe.

Positive energy nucleon Born term which should be
subtracted away from Fig., 10, Otherwise double

counting!

Two-body graphs with modified propagator used to
calculate three-body effects. The cross means that a
third nucleon interacts with the pion, thus causing
Jﬁi in the propagator. TFig. b corresponds to &
once iterated graph where only one pion propagator is

modified. This gives rise to the tensor contribution.
Pair term (Nﬁ Born term) in TN scattering.

Recoil term in WN scattering.

N* graph used to extrapolate T(+)(qo,q2) in q?.

Change to the pseudoscalar form factor in /Ak- capture
due to the modification of virtual pion field by
particle-hole excitation in nuclei. The dot represents
full nuclear interaction given by the matrix elements of

Brueckner G matrix,

Non-Born contributions to pion exchange currents to be

calculated with phenomenological Lagrangians.
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