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ABSTRACT

Covariance under infinitesimal transformations of the spinor
group SU(2,2), the universal covering group of the coaformal
group, can place significant restrictions on the Wilson'!s type
analysis of operator products on the 1light cone. For a dis—
cussion of the expansion it is relevant to analyze under such
transformations the infinite set of local operators providing
a basis for the expansion., An infinite ladder of irreducible
representations provides such a basis. The existence of a scal—
ing function places relations between the dimensions of tensors,
belonging to inequivalent representations, which are all annihi-
lated under K, , the generator of infinitesimal special con-
formal transformations. These relations are not deducible from
conformal invariance alone., We establish a theorem which fixes
the scale dimension of an irreducible symmetric local operator
which is annihilated by Ka s with its divergence. The theorem
Zgr some possible extensions of yﬁ7 may be useful to build up an
algebraic scheme satisfying canonical dimensions. As an example
of a mathematical mechanism providing for the required correla-—
tion of dimensions we discuss an algebraic scheme based on en-
larging the conformal algebra.
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INTRODUCTI ON

It is well known that the convergence of the Bjorken-Callan-

1),2)

Gross sum rules provides stringent restrictions on the sitruc-

3)34)55)

These restrictions can be
4)45)

ture of the underlying theory

analyzed in terms of equal time commutators

3)46)57)

2)

or on the basis

of operator product expansions

Following Bjorken'!s analysis

of the kind

one has general sum rules

Q, —
9, (fuoum )= fim U7 18 <1 [H499 70 >

Mm=1,3,5. ...

where Ft(w) is the transverse scaling function and T (x) the

electromagnetic current, The positivity of Ft(w) ensures that

0 <« fn Z an-l' Each fn must be finite and non-vanishing.
. n n .

The matrix element of Zf'g JX/’Qt ’ JX;7 carries n+l momenta.

Therefore, the operator which contributes the

O/"l"'/‘n-1’
leading term of the commutator, must have spin s = n+l whereas
its scale dimension 5) is JL = n+3, providing the relation

,6:: s+2. Canonical dimensions 7,8 would provide a way of
satisfying this relation. The subject of renormalization of dimen-
slons has been discussed by many authors and it appears as a very

difficult dynamical problem 9)’1O>’ll). The relevance of approxi=-

3)34)55)512),13),14)515) | 18 1o the
16),17),18)

mate dilatation invariance

exploration of the stronger coaformal invariance

Implications of conformal invariance in the analysis using

4)

equal time commutators have already been discussed .

Covariance under the infinitesimal transformations of the
SU(2,2) group (the universal covering group of the conformal group)
can consistently be required on operator product expansions of the

type first proposed by Wilson 3). For a discussion of the ensuing
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restrictions it is essential to analyze the transformation proper-
ties of the infinite basis of local operators which allow the
realization of the expansion., We shall be interested in the region
in configuration space close to the light cone (leading singular
terms) 7)’ as 1t is well known that it is that region which is

3),4>36)’7), The imposi-

relevant for the Bjorken asymptotic limit
tion of covariance under the action of the SU(2,2) generators has
been proposed in such situation and Jjustified under some assumptions
Z;e refer to Wilson's paper for such a discussion, in the case of

dilatation, Ref. 3)7/.

In the present work we illustrate the role of an infinite
ladder of irreducible representations of the algebra in classifying
the basis of local operators on which the expansion is made. 1In
each irreducible representation those operators which are annihi-
lated by ]KA, which generates special conformal transformations,
contribute to the matrix element defining the limit of the structure
function. The existence of a scaling limit for such function is
equivalent to requiring definite and related dimensions (canonical
dimensions) 3)’4)’5)’7).

The conformal structure is uncapable alone of providing a
justification for such a striking regularity; its basis seems to
lie in the dynamics. On the other hand, one may base the discussion
on introducing indecomposable (rather than irreducible) representa-
tions, as advocated by Mack 5). Here again, however, the assumption
required to produce the required spectrum of dimensions goes beyond
the assumption of conformal invariance on the light cone. To gain
a better intuition of the problem one can try to visualize the
product A(x) B(o) of two local fields A(x) and B(x) as a

non-local operator, describing a composite system.

One can develop, for instance, an analogy with the hydrogen
atom 19). The conformal algebra can then be seen as providing the
degeneracy algebra of the composite system; The Casimir operators
have on the system an infinite discrete spectrum. Correspondingly,

there are infinite towers of operators with increasing and related
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spin and dimensions. Their couplings are determined by product
composition rules. However, different towers (inequivalent ir-
reducible representations) are not a priori related unless a
dynamical scheme is imposed. This may be achieved, for instance,

by postulating a dynamical group, like for the hydrogen atom.

In the last section of the paper we shall also examine such
a possibility in a simplest model. We have not, however, carried
out a general discussion of possible spectrum generating algebras,
in view of the apparent arbitrariness. Nevertheless, we think that

further study of these points should be useful.

CONFORMAL ALGEBRA

The algebra associated to the conformal group is a 15-

dimensional Lie algebra with the following commutation rules:
the commutators of the Poincaré algebra among P/_ and anv

LKO’,Hrv]z fCSaTKv'ng).} LD, H/.v] =0
[k, B 1= -2 (g)w])-r M) Ld,RI=E (2.1)
LKk I=0 LK, Dl =-11<p

In terms of J,. (AyB = 0y04.,6)

:Tr.v: “rw :)_'GS':D ISr:Ji(P/“K/‘) Ier:é(?,“\'Kr) (2.2)



one has

[JKL,IMA] =1 (%KNI\.H-[' ?Ln J;cu” skﬂ JLN - 31.'\) Jm« )

(2.3)
gpas (£----t)  Gap=0  AFE

Equations (2.3) are those of the orthogonal algebra 0(442). The

Casimir operators are
AB_CD _EF ch

A | A3
CI:\TA&] BCTF:EABCDEFI JJ C—,fJ J'BC_J J;A(Z.Ar)

In particular,
CI-= hrvnr\/‘\'ﬂaP'k"—g[D‘aDL (2.5)

On the Minkowsky space, special conformal transformations
i b

X, - CnXt
X'r, = r f‘__. (2.6)
1-2CX + et

can map finite points to infinity, they can violate causality.

The action of the conformal group in Minkowsky space is equivalent
to that of the coanznected part of 0(4,2)/02 (where C, =(4,-4)
on the cone in six-dimensions /i.e., the homogeneous space
0(4,2)/10(3,127. The transformation which maps the six-dimensional
cone in Minkowsky space is a projective transformation and some
points are mapped to infinity. The conformal group is locally

causal: for each x 1in Minkowsky space, there is a neighbourhood



of the identity for which causality is preserved. The conformal
algebra is the algebra of the universal covering group of 0(4,2),
the spinor group SU(2,2). We are interested in covariance under
infinitesimal SU(2,2) transformations, Therefore, multivalued
representations of the factor group 0(4,2/02) are a priori allowed

and can be related to physical quantities, Ref, 20).

LIGHT-CONE EXPANSION AND REDUCIBLE LADDER REPRESENTATION OF THE
CONFORMAL GROUP

For simplicity we shall confine our discussions to the
expansion of the product of two local operators A(x), B(x),
which are Lorentz scalars, have well defined dimensions JCA and
‘QEB and satisfy /A(e), %”_7 = /Blo), §u_7 = 0., We assume the
existence of an infinite set of Hermitian local tensor operators

nm
0(x) = Ou, ..

(O(X),.P)\-l
EO(x) ,D ]
[.OO(),H)—d]z[i(x-vbln.‘x)"a\,}'f‘{/w} O(x) (3.1)

N.<X) which transform according to

192000
(Ix+4A) OGO

1

\

LOow), KnT= )i (2 x -2 dnm 2 xv[ngd*ﬁv]“@soﬂ

where :{P’ ,£3 ’ K/4 form a representation of the stability group
2t x = 0. The index n (to be called principal quantum number)
labels an indecomposable infinite-dimensional representation of the

stability algebra ( 2 pv; &, K)o Within the representation

Oiﬁ L4 (0) is the tensor of lowest dimension (= *en> and
!

sat%sfles

mnm

[O,(,,_xm,l’(x]:o (3.2)
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Under K,\ ’ O‘( o goes into a suitable superposition of
m—l 10.. m
o"

o( 1o K pq implying

[Oo(.~ 2.4 Al <t (dntmon) O <&

(3.3)

Using conformal invariance it can be shown (see Section 4) that,

by possibly redefining the operators in terms of suitable com-
binations, P/‘Vr can be taken to act as a rising dimension operator
within each representation. As a consequence each string of oper-
ators On&nl.“ o (Labelled by the principal quantum number n

and the starting dimension Ln) realizes an irreducible (infinite- ’

dimensional) representation of the full conformal algebra.

For definiteness we take

N rat |
{ds }[ o(,-- KL Edm+\1= Oa( ee A 4| (3.4)
1= )

In the next section we shall give explicit examples of

such families of operators. We write a generalized Wilson's
expansion

A& "l--‘('hf\ meomn

) Q )

°(|--‘(’W\

(3.5)

where 0( o are completely symmetric. After commuting with
looo m
D one obtains by a simple argument

} [,_]H
AB e b (£atls -Lmtm) A L)/ ottt o
g (%) =(—-) 9 3 () XX
o x* Kz9,2.. hMK ohoky = Jolye-1 (3.6)
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In the leading contribution on the light cone the terms with k £ 0
can be neglected and we have

AB}“.-‘W\ , //1 (‘eA"'eQ-eM'\"“) AR X“‘ .1,,,,
- | - --. X
mm (%) S x‘) Chm (3.7)
AB AB

~ _ : . . m m . .
where Com Cn.mo’ Thus only the irreducible (2,2) highest spin

nm . . 2 it}
part of O"‘l-.-“m enters at the leading order in x°, The [5_7
traces are irrelevant

AwB=(7,)

After commuting Eq. (3.8) with P/‘ and by taking the Hermitian
conjugate of both sides one has

X co nan o{ -- K
. (3.9)
l/(eﬁ'l'e&) l Vr_e_n = m-lyy AD oi %Yy A
- (X‘) : f QZL) - ( <Y C“"‘-‘V) -
h=o Mmzh " h=o

we thus obtain

m-n |
-h

BA M AR

Cam = Eo G J‘;l. Chm-k: (3.10)



and, in particular,

BA
CN\ =C ')m Cnn (3.11)

From Eq. (3.8) we also obtain (L = -iD)
[A(*)B(_O),K)‘]x)\ = (x](2a-0s) A B@ t (AW B©, LT =
()M () T L 0, ]
h=o m=n
(3.12)

The coefficients Ciﬁ are thus determined from the symmetric part

of Zo’f(nl.“ o(m’KAJ with respect to o ... a(m,,\ which we
write as
L(' ) E; NIN“‘\
N\N\ A
s [ <o m KAl <! ‘%)\M‘ oy.-Kj..olmm
' {dl' '('W\
} s ol A
(3.13)
for M2 m+]
= O for m &€m

in terms of known coefficients b(n,m) 21).

We also note that the full commutator would not give rise

to any additional information, in fact
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[AM Bw) K. 1 =(;<)‘-.. ,/Z(Q“eg{ i { i van (2(%+

4 om- 0A+€s—\v\-Qv\) '(3? —Xliﬁd‘d'a ‘M’.]O &
O

2
() ST [ s R
hee ™ " (3.14)

then it follows that

~n

‘V\ -
e O(\---tm\ A] Chm_' [ § gl\*m D(a-o(mzi (QA*

hm

-\ ?
T -y - Q“Q":“'e“) 5 S % ‘% I o By 1=
l—o QO(‘ ‘('Wl& J M‘
mm-|
"‘CV\M- (.‘QANeﬁ‘\.e’“-m +W\-l} [ S g(\dm Ogl'-- Aoy = | ]
{otdm §
(3.15)
so we obtain the same relation as derived from Eq. (3.12).
Equations (3.12) and (3.13) give
A
CV\W\ (€afptlntm-m) = b(nme) Chm (5.16)

or

AD Al
CV\W\ C-V\ M-+t ‘é&-eA—‘.e'Y\-\—W\-M

Crwm C.-%,':.... Ra—Lp, t€mt m-m (3.17)
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and by iteration

AD AQ
Caw C:WV\ }3 ('QB"€A‘*€5n)’hn-ﬂ1)
Com PR B (Qem@stfm,mem) (520

where B(x,y) is the /3 function., To derive Eq. (3.18) only the
tensor'properties of Omlo( o under the stability algebra at
x = 0O have been used. By combinIJI.lng Egs. (3.10) and (3.16) one

also has

0 B{Ls~€a +&nm-n) ghmm-l_“'_ Gy

AB
Cv-mn = (‘ W ‘
B ( 0a-Ls +Qm\/m-m) =° ‘ (3.19)

For representations such as those discussed above only the quadratic

Casimir operator CI is different from zero., Its value on the

representation with "principal quantum number" n is given by

)_ CI(NQ =mm+2) +€m(€n-4) (3.20)
T

where «Ln is the dimension of the operator transforming as the
n
59
contained in the representation. It can be noted that the

g) Lorentz irreducible representation annihilated by X, ,

"conformal polarization'" defined as Wy (x) = S,\,; vG é_ r X v
vanishes on these representations as a consequence of the vanishing
of one of the second order Casimir operators of the 0(3,1)

algebra 22). The spectrum of CI(n) is not fixed by conformal
invariance as 'Ln can be arbitrary. The observed scaling law
does not, therefore, follow from conformal invariance alone, but it

is rather a dynamical property. The scaling law implies that all
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the irreducible (232 tensors of "principal quantum number" n,
which are annihilated by X 4, have ‘cn = £+n where ‘e is

fixed. In this case

Le(m) = 2m(mte-D) +2(k-4)
- (3.21)

The scaling law appears, therefore, as a spectral requirement on
the allowed representations of the conformal algebra on the light
cone implying a ladder of irreducible representations according

to a definite (infinite) spectrum.

SOME CONSEQUENCES OF CONFORMAL INVARIANCE ON THE TLIGHT CONE

When A = B, Eq. (3.11) implies Copy = 0 for odd n.
In such a case, only those irreducible representations which start
with an irreducible tensor of even order n, which is annihilated
by K contribute. Tensors of odd n appearing in the expansion
must not be such as to be annihilated by K4k; thus they will
belong to some irreducible representation which starts with a

tensor of even order.

As a consequence of Eq. (3.19) we observe that, when
m-n = ‘QB— £A—‘£n, only the first m-n Clebsch-Gordan coefficients
Cﬁi of the corresponding representation are different from zero.
Then, in the case of "correlated dimensions", only the first

n = /(B—.QA-.L representations have a finite number of terms.,

With "correlated dimensions", ‘e'n =‘€ +n, translation
invariance could, in principle, give rise to relations between
irreducible representations of different "principal quantum number"

n. This phenomenon can never happen in other cases, translation
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invariance tells us that P is a rising operator in each in-
equivalent representation, in fact, this operator cannot comnect
operators with different n as they have a different over-all

. 2
power in x".

Then in the first case, translation invariance gives
w
BA mtl  AQ m=-m m
2 LCmat GO C 9 =
n-m n m-m m oy~ Am

CI M‘M{ AB M—M-‘V,’Y\-'W\ (401)
Cn—m~b,m-n ol

‘Mnm)-. dﬁ\
mst mn‘ :

Equation (4.1) can be solved by induction. One has

AL _BA

oo - C;Oc

2L B = (% N0 (63 0%

etc,

Commuting Eq. (4. 2) w1th K )\ one sees that the commutators of
ZOOO, P°(1_7 and of O'(l are both proportional to the same
operator 0°°. 1n fact, O does not contribute since

11 ~ . ~11
[6,‘1, KAJ = 0, One can, therefore, always define O and

0°L, “such that

[O«:, Kal=0 (4.3)

n~
Vo d
which [o;’l, K,/ e&ives € ot 0°° ana %%, B, 7 gives o;‘l.

Extending such a procedure to the higher tensors one concludes that

it is always possible by means of translation invariance to redefine
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the basis such that P A acts within each inequivalent representa-

tion as a step-up operator,

Equation (4.1) becomes an identity for A = B and even n,
To diagonalize the corresponding even operators one can use the

equation for n+l and commute both sides with K;X'

The above discussion shows, in perticular, that a single
indecomposable representation (representations which cannot be
separated into irreducible components but having invariant non-
trivial subspaces) 1s not sufficient to expand a product of opera-—
tors near the light cone. In such a case, conformal invariance
would tell that it must also be irreducible. An infinite set of
operators, each annihilated by K,X s occurs in the light cone
expansion, The coefficients Cﬁﬁ cannot be derived from conformal
invariance. The condition j?n = £L+n assuring scaling of the
measured scaling functions is not to be considered as a congequence

of conformal invariance alone.,

In connection with the problem of "correlated dimensions"
or, particularly, of '"canonical dimensions" (_2 = 2) we can add

the following remarks. For a tensor g,% satisfying

Tol1eee ot
[-T:(t--"(m ,Pe(. ] =0 (4.4)

and annihilated by Kﬂk’ use of the Jacobi identity, tells that

I: [; 1:;h- *h\,jE:&.jI) ki% j]

is proportional to (.ﬂngn—2)T From (4.4) one has

Adz.o. (na

Ron= Mt (4.5)
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Equation (4.5) follows from Eq. (4.4) but the reverse is not true:

it ig gsufficient that

/(Do(q_--o(m = [ T‘*--"%,E‘»] (4.6)

23)

realizes an irreducible representation of the conformal algebra
(K y=0 and well-defined dimension). Note that some care has
to be exercised in the application of these results. For instance,
for the e.m. field one would derive ,e = 3 from QAAA =0

and £ =1 from DA,\ = 0., But both equations are not conformally
invariant and they must be replaced by the Maxwell equation written

in a general gauge so that conformal invariance holds.

In conclusion, we can mention that the above results can
easily be extended to examine the implications of conformal
invariance to expansions of more complicated operators, belonging
to more complicated representations of the stability algebra

(at x = 0).

EXPLICIT REALIZATIONS IN PARTICULAR MODELS

We First discuss the explicit operator basis in terms of which

products of a Zgupposed conformally invarianﬂ scalar field theory.

A set of operators of the order n is provided by the expressions
. ga(\o- g%m-m\ (Cf Q"m-rmﬂ" go(m C.e) . (5.1)

Such a basis is neither Hermitian nor does it exhibit simple

transformation properties. We, therefore, define



07= > ¢¢:
1 <
0% = 1 24, (49): OL =@ 94%.

°<I
SEFRCTR'Y
= " ‘Ce lce :
OMz 99(%) O™ (g 1™ (5.2

0t S [ ealaq) - ]

etc., etc.

The set OQ‘ o symmetrized and made traceless provides us
‘l..o

with a ladder of iTrreducible representations of the conformal

algebra with the properties we have requested. The spectrum of

the Casimir operator CI is given by

;'— Czlm)= mn+) - A (5.3)

where we have inserted the canonical value ,€, =2 (e.gey free
field theory). At each n a new operator comes in, which is
annihilated by Kﬂk; in fact, under K A every choice of n+l
independent operators of the order n goes into linear combinations
of n operators of the order n-l, implying that one linear
combination exists which is amnihilated by K‘A The operators
’le.“ ol see Eq. (4.6), are anaihilated by K,\, since
. (4.5) holds.

It is useful to refer to the triangular scheme in the Figure
The tensors OOO, Oll 022,... on the lowest diagonal are annihil-
ated by IKA . On the vertical lines are the towers of irreducible
Lorentz tensors which build up irreducible representations of the
conformal algebra. In such representations other tensors are

present, according to the discussion of Section 3, but they contribute
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non-leading terms on the light cone. As noted by Mack there are,
besides irreducible representations, also indecomposable repre-
sentations (i.e., representations with non-trivial invariant sub-—
space, but which cannot be reduced), which can be used to provide

a classification of the sets of operators providing a basis for
light-cone expansions, One might think that the set of irreducible
representations of the conformal algebra, relevant on the light
cone, constitutes an indecomposable representation of the little
group. One can show that this is not the case., The comstraints
implied by translation invariance, see Eq. (4.1), cannot be satis-
fied in such a case. Nevertheless, the whole analysis could be
reformulated in terms of an infinite set of indecomposable repre-—
sentations. However, the correlation of dimensions required from
conformal invariance would in any case have to rest in the dynamics

alone,

As an illustration of some of the stated points let us consider

in free field theory the expansions

' c\)’(:d‘. P Qo) = < > Pt

— X" X

C
LSt = — PO ko) (5.4)
XX,

where ¢ is a constant. The left—hand sides behave undistin-
guishably under dilatations; however, commuting with K 4 brings
in the difference iZA_‘eB’ On the right-hand sides, one has a
single representation in the first case, a ladder, as those we have

discussed in the second case.

One can develop a similar discussion of this basis starting

from spin L+ fields. The lowest spin interesting representation

starts with the operator :11(,‘0‘, : / which is annihilated by Kt\—/'
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For what concerns the second order symmetric tensors, Ka acting
on_ S, ¢ 9 " : leads t : Al . i

RU LA LA SLREC e & 7% RN
er& -\'; KI" XB ‘)“‘\r : 1s annihilated by KA .

Otherwise we could interchange 6]‘ with Xreﬁ) and
obtain similar results, Correspondingly, one nas two different
types of representations (distinguished by parity). For the rest,

no egsential differenceg arise.

Expansions of more general products are easily discussed.
For example, one could expand productc ol operators with Zru y
K A’é O, For instance, for the produci of a conserved current and

a scalar operator, one has

Eoar = 2 0 gp DFWee %, Som

Foay= ()" o

. . 00
whare "Q)?j’ £ are the dimensions of ¢ and 0 g resp

-~

aRER | Vel‘yo
Conformal invariance implies in this cage the absernce of the

n = 0 representation,
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EXAMPIE OF ALGEBRAIC REATLIZATIONS OF CANONICAL DIMENSIONS

In this section, we shall discuss the possibility of
connecting the occurrence of canonical dimuensions to a possible
algebraic structure of the non-local operator A(X)B(o) =’§f(x).
As remarked in the introduction, the convergence of the Bjorken-
Callan~Gross sum rules gives a relation between the dimensions of
the Lorentz irreducible tensors annihilated by Ky, in the light-—
cone expansion, and which belong to inequivalent irreducible
representations of the conformal algebra. Such relations are not
implied by conformal invariance, Perhaps, one can describe the
situation in more transparent terms by considering the non-~local
cperator EP-<X) as providing a description of a hypothetical
composite system. On the system, the Casimir operator CI of
the coaformal algebra has an infinite gspectrum. The conformal
algebra plays the role of the degeneracy algebra. Of course, it

does not define the dynamics,

For each eigenvalue of the Casimir there is (apart from
possible trivial degeneracies) an infinite tower of operators with
known dimensions and increasing spins., The coefficients which fix
their couplings on the light cone are supposedly obtainable as
Clebsch-Gordon coefficients for the conformal algebra (as we have
already remarked this implies general dynamical restrictions on
the theory). But, in any case, operators which belong to different

eigenvalues of the conformal Casimir cannot be related, unless

through dynamics., An exceptional case would be one in which only

an irreducible repressntation appears in the expansgion, In this
case, the structure functions will be a singular 5 like distri-
bution, The analogy with a composite system can be extended further,
For instance, for the H atom, we know that the dynamical group

( spectrum algebra) is 0(4,1). The energy spectrum of the gsystem
can be accomnodated in an infinite-—-dimensional irreducible repre-
seatation 0(4,1). In the light-cone analysis, we are discussing
here, we know, as a main dynamical information, that the operators

with K.A = 0 have so-called "canonical dimensioas'", precisely,
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. mm — (6.1)
d\m\ ©O(|--0§m = M+

We can look for a spectrum generating algebra which reproduces the
correct spectrum of the Casimir and the correct classification of the
operators éghch as in Eq. (5.3) and in Fig. 1, respectivelx7. We
recall (see Section 2) that the coaformal algebra acting on the
Minkowsky space is isomorphic to the 0(4,2) algebra acting on

the light cone in gix dimensions, The operator CI is essentially
an angular momentum in six dimensions for the composite system

described by the "wave function" 1{r(x)

— —AD
CI = JABJ (6.2)

We can try to enlarge the 0(4,2) algebra in order to induce
transitions between states of different six-—~dimensional angular

momentum, The new algebra will have to contain a lowering operator

nn n—1,n-1
L that transf 3 O int 0 ’ . Mo it
a ransform Hlees oy into &1eee Xl oreover, i
will be appealing to recover the whole gpectrum of C within one

I
single irreducible representation of the algebra.

As an example, we can choose é; = 0(4,2) & 0(4,2) as
a possible dynamical algebra for the non-local operator 1ir(x).
We call JAB and JXB the two sets of 15 generators each of the
two factor algebras 0(4,2)., In addition, we define

~~ [} —

4 1<
Jne = Jast Jas Jas = J;u;_ Jan (6.3)
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The generators span an 0(4,2) subalgebra of é?, wnich we identify

with the conformal algebra, following Egs. (2.2). We also introduce

' v
T}\.J < G—/\-V - J/“-V

S = Jis-Jdes

t4,. = éT;f + JPG/- (; '+ J}v; : )
’ cr 6.4

L.r = J.c/-"' JS’/«—CIS‘/'+J6/‘)

We then have:

for D, K, lipy B, the confornal algebra commitators,
[>Tuls0 [D,s]zo [DLJ:ilu LB MWI=-(H,
(B.Hl-o (BS):iH, (Rld=2(gu S+ o)
LB Toel= 1 (Gpp Hom guobed [Kphel: -8i(Ge S+ Tue)
[ S]zil, ThkulpTeo [ Terls 1 (3,lamgpale)
e Trlz0 [HuST-0 Hpwlelamr(gp (o= 5, L)
[Hp, Bpl= -i (gputy -8pu Hy)

(g tu]=-ik (SR TRvL,l=-20(5,,Dr Hop)
[S,T)N]:o Ho M. ]=0 Llobpl=e

[H ‘f‘] 8"(1? ﬁva-f [L"‘f‘] (3"6‘( 3Wl’()(6 5)
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In particular, L/A is a dimension-lowering operator which, besides,
maps states which are annihilated by K/. into similar states,
We can, therefore, employ L/A to induce transitions among in-

equivalent representations within the basis. We have

[Cr,Lpls-bLpr 4iHo, L'+2[ 2 LpTK M -
. (6.6)
- 8Lp-4iDLp-2Lp

and when applied to a state which is annihilated by K/,

[CI’Lf]= (—Gggvf‘l& H V)L"-l- (4L-10) Lf (6.7)

§

We note that, due to the presence of the term 4iMfVLV in
Eq. (6.7), L p does not transform an eigenstate of C, into
another eigenstate. In fact, because of its vector character Lf

induces two kinds of transitions

(
(33) = (30)

The latter transition is irrelevant, however, as we are interested

in leading light cone singularities. The operator C takes on

the eigenvalue CI(n—l) when acting on the (E%E,EEE irreducible
component of the state ZLf \ n)>. By iteration one can thus
conclude that there exist representations of 0(4,2) ) 0(4,2) which
contain the spectrum of representations of the conformal algebra
which is relevant for the light-cone expansion. The spectrum may
indeed be richer, but not all representations contribute leading

terms on the light cone.
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The following relation holds between one Casimir operator,

to be called @ , of the algebra 0(4,2) & 0(4,2) and ©;

G = CI - -ZJA-BJ- AB , (6.9)

We can evaluate (§> on the irreducible representation of an operator

basis whose lowest element is the scalar 0°° satisfying

[H., 0°1:0 LKy 0™)=0 [L,0°]=0 [DO™)=0"

(6.10)

The eigenvalue of (5 is 2 (L-4)+5(1%+i85-5%)°° where the
superscript 00 denotes the eigenvalue on OOO and T2 = T/hw,TJ“v ).
The acceptable representations of 0(4,2) Qa 0(4,2) thus differ

in the eigenvalue of %(T2+188—2S2) on the scalar object,

However, they are also restricted by the fact that they have to
contain representations of the conformal algebra with CII = CIII =0

(see Section 3).

The algebraic scheme obtained realizes the tower structure
illustrated in Fig. l. The canonical value (_@ = 2) is then
fixed if tbe octet currents J/l~ and ©,, are located within
the chosen representations (the extension to include internal
quantum numbers is obvious)., Equation (6.4) is then satisfied
and complete scaling assured. Besides, we note that for each
irreducible Lorentz operator of the basis annihilated by %/*

we have a kind of partial conservation equation: the operator

mnm
K- - dm = (j tz?f—dfn,:Ii“l]

is a local operator annihilated by 3/‘.
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22) For instance, the "conformal spin" W2/K2, which is an invariant
operator of the stability subalgebra & av, Al,K/n is
zero on the allowed representations,

23) This is a particular case of the requirement that a local
operator, in order to satisfy a conformal invariant equation,
must have a well-defined relation between spin and dimension.
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