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ABSTRACT

It is pointed out that two forms of
the induced pseudotensor current, equivalent on
the mass shell, lead to quite different results
in nuclei for J: (f£t) P"'/ (ft)ﬁ_ -1 which
was used by Wilkinson as evidences for a pos-
sible presence of the second class current, and
therefore to an ambiguity in determining the
coupling constant gT. We show that the reso-
lution of this ambiguity requires a considera-
tion of meson-exchange current. The two-body
current thus appearing is found to give in fact

a dominant contribution to J .
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Recently Wilkinson
G parity irregular currents 2) may be present in weak interaction by

revived the possibility that the
analyzing mirror beta transitions for a wide range of nuclei. He
demonstrated that the presently available data tend to show for the
quantity

§= B8 —1 (1)

a linear dependence on (WZ + W;), the sum of the energy release in
ﬁf decays considered. Since for typical transitions, W; + W; is

of order of 60 K% (Where o is the electron mass), the test of

the presence of the second class (or G parity irregular) currents

in nuclei seems quite feasible. If one ignores the corrections of
electromagnetic origin on the first class currents, an assumption which
may be justified in some nuclei because of considerable cancellations

3)

sy & conventional form of the current [i.e.,

4)

among various effects

Eq. (3a) defined belo@l leads in impulse approximation to

& - ?(%’f)(w}rwi) (2)

where is the axial coupling constant, and 8n the induced pseudo-

g
A
tensor (PT) coupling constant (in unit of electron mass me) to be

defined below.

The purpose of this paper is to point out that Eq. (2) is
interesting not only for the fundamental question of the existence of
the second class current in nature, but also for its relevance to meson
exchange phenomena in nuclei. We first illustrate that within the
framework of impulse approximation, Eq. (2) is ambiguous and then show
thét the resolution of this ambiguity requires a consideration of meson

exchange effects in beta decay.
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The vector current QX is free of second class currents
if the CVC is taken. Therefore we consider only the axial currenf @fi
where * stands for P:F decays,Aand A is the Lorentz index. One
can write the matrix element of J\ between two nucleon states in
several forms allowed by Lorentz invariance, all equivalent on the mass-
shell. We shall consider two of them here. One conventionally used

2),5)

form is

VR Y =iag) g [ na% GG I0 Ug) G

and another form which is sometimes used is

<f'| th"f> :{E(r')zt [_9A'XA+3,Q;% ILS;B.]Xs “Cf) (3b)

where P (p—p'),\ y Py o= (p+p')a and g, 8p) & are respect-
ively axial, induced pseudoscalar, and induced pseudotensor (PT) form
factors, all of which are assumed to be real functions of q2. The
first two terms are called first class currents, the last one second
class current. If one ignores the proton-neutron mass difference,

then one can identify gy = gA, gp = g% and &p = gé. Now the usual
(and the only workable) procedure in application to nuclear system is

to reduce the matrix element (3) non-relativistically and then use it as
an effective single-particle operator. This is the usual impulse

approximation.

Since the first class current matrix elements appfoximately
factor out in 5' (except for some small terms coming from the electro-
magnetic corrections, etc., which of course should be included in com-
parihg with experiment), it suffices to consider explicitly only the

pseudotensor term alone. From now on, we shall refer to Eq. (3) only

for that term. Also we shall denote by = the nuclear axial current

relevant to the pseudotensor current alone.
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Now reducing non-relativistically, we find that Eq. (3a)

yields

A
h 4
F = 18 2 wdFw £ @)

->

Fa

whereas the PT current of Eg. (Bb) yields

Lw= * 3 3 uwdw-E @)

(4a)

n

A
W 92T Tt §RX)

(=t

}t(?) B} O(ﬁ) (4v)

where we have made the identification of (E,iqo) by (k,iWO), the

momentum and energy actually carried away by the leptons : k = ke-+E§ ’

o}
mass—-shell, give the same time-component, but quite different spatial

W = Ee-+Eb . Thus the two forms of the current, equivalent on the

component j when applied to a many-body system. Clearly this is an
ambiguity due to the impulse approximation manifesting the many-body
nature of a nucleus. Does such an ambiguity occur in any other nuclear
processes ? The answer is yes with a major difference : in all electro-
magnetic processes and also in weak interactions via first class currents,
the ambiguity arises in small correction terms, and hence does not play a
significant role. Only in the present case does it appear in the major
term. To see that the ambiguity is a serious one we calculate s using
poth (4a) and (4b). If one uses (4a), one finds Eq. (2). But with

Eq. (4b), one gets instead

& = ’;’(%)(W:*'WJ) (5)

which differs from Eq. (2) not only in magnitude but also in sign. It

is perhaps possible to combine the Wilkinson analysis 1) which can

provide the magnitude of the coefficient of (WZ-+W;), and the muon
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capture experiments of the Louvain group 7)

which effectively determine
the induced coupling constants to discriminate the alternative in sign.
But a priori, there is no sacred criterion as to which of the two equi-

valent forms of the current should be more suited to nuclei than other.

We now show that the ambiguity can be resolved completely
if we take into account '"correlations" due to meson exchanges. This we

do with one assumption : that the nuclear PT current is divergenceless

350 = o0 '

As can be verified directly from both (Ba) and (3b), for the nucleons,
the divergence of the PT current is trivially zero. It becomes, however,
an assumption, though plausible, when the current is a nuclear current.
We can make the assumption somewhat weaker by introducing the nuclear

Coulomb interaction via the minimal coupling

24007 de 40§ = o )

where ao(x) is the Coulomb field. Let us for the moment drop the
Coulomb interaction and in order to obtain an equivalent two-body

8),9)

operator, apply the Adler-Dothan theorem to the two-nucleon

process

N@ NGB —> NR)+ NGO +e) +Y3y) (o)

where ke-fkg, = k 1s the momentum carried away by the leptons, and
N(p) stands for a nucleon with momentum p. Let us write the ampli-

tude for (8) as

M, = M3+ M, + O%)
ext —_— t = ! N
My = T ae) [ () S 'r"cr.',mt;g,m +
1*(&3?.';&, RROSERRA) + U80]Jugiug) + 0F) .

)

(9)



_5._

where 1:(1‘) is the PT current vertex inserted to the nucleon

line 1°', SF(p) the Feynman propagator (i ]ﬂp~+M)—1, P tne
positive energy on-shell nucleon-nucleon T matrix and o(k) implies
that terms explicitly of order k have been neglected 10 . One can
easily show that MeXt' leads to the impulse approximation results of
ak of Eq. (4), when Tp is interpreted in terms of a nuclear poten-
tial V. Now in order to determine &My , we use the condition (6)

which in this case is
!
%, (M a,) = o)

If one takes the PT current of (3a), then since %k 1}» = 0, one

1
gets ky M;Xt = 0 which means that

AM; = 0lk) (10)

Therefore to the order we are considering there is no correction of

two-body origin to Eq. (4a). On the other hand, for the current (3p),

. P_ _P
we have with TO =7 (pé,p;; pz’P1)’

A.M.: = ?LE(Y:) 5.(?:) {31.['(;;@'5)1 ; 'T;P ]_ + (1?2.)} (11)
u@ruly) + Ok) . N

Translated into an equivalent nuclear current y, this Jjust gives

0 = o)
#

"

(12)

=39 [ T, 2 awstw R8T

J

where the superscript 2 stands for a non-relativistic two-body

operator.
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In allowed approximation which is used in obtaining 6», what we need
is 3(2) = Jd3xa,(2) (x) so that adding EIO, Zt_t(i)g-i]_ =0
where HO is the kinetic energy term, we get (asla relation for matrix

elements)
@t -
§ =19 W Dwnrda) | (13)
p]

Thus the two-body current restores nicely the spatial current which was
missing in Eq. (4b). We shall see below that Eq. (13) is actually

valid without the allowed approximation.

In order to incorporate the Coulomb effect and to avoid
the allowed approximation, we can use an argument analogous to Siegert
theorem 9>. This is possible since Eq. (12) tells us that to the |
order considered there is no two-body exchange correction to the
’t(;). We then rewrite Eq. (7) as

V-})*m =-4 [H—Hc,&;t(?)]_ (14)

which follows from

tea,fiw= [H, Fewl

where Hc is the two-body Coulomb Hamiltonian. One may include the
p-n mass difference in Hc’ but it can be verified that it is
cancelled exactly in 8 . Substituting into Eq. (14) }t(x) as given
by Bq. (4), it follows that 1)

Fo=v9 [h, ZeoTpieRl+ Re O

—

where R is a possible correction term satisfying i; - R=0. It is,
however, easy to convince oneself that ﬁ = O(Ez) ; therefore we may

drop it safely. ZEquation (15) modifies C{ to



Sx-4(& =) (Wo+ W+ B{aET+aF ) (16)

where

QB = E{H. I§> ~ CilKeldd

is the Coulomb energy difference for the ﬁi decay from a state i

to a state f. We emphasize that this correction, pertaining only to

the second class current, has nothing to do with the electromagnetic
effects (associated with the first class currents) neglected above.

It is interesting to note that the Coulomb correction is really quite
small because of the cancellation of the large isovector Coulomb energy
in the sum AE: + AE; For instance for the A=12 +triplets, the cor-
rection amounts to less than 1 MeV reduction to W;+W; ~ 30 MeV. The
place where the correction might perhaps have influence on the energy

dependence is in the positon decays

'8 Ne F‘ ’8‘F & 'go

In this case, the energies subtract, so that the Coulomb correction
g(AE ( F - AE ('82)) -0.8 MeV is not negligible compared with
61 - W (‘32 A~ 2.8 MeV. A quantitative assessment of the cor-
rectlon would be, however, harder in combinations of this sort, since
other finer corrections than the second class would have to be reliably
estimated. In general the correction would become smaller for heavier
2713

nuclei (roughly as and would be negligible in most of the

cases.
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Let us now enquire whether one can represent the two-
body current Eq. (12) by a set of Feynman graphs. In an analogous
case of meson exchange electromagnetic currents, one knows 12)’13)
that one-body current plus the two-body currents obtained from the
Figure are sufficient to satisfy the continuity equation

ékJ ‘B*(x) = 0. Let us see whether one can make a similar corres-
pondence for the PT current. On invariance ground, the pionic current
(graph a) cannot contribute to the axial current, be it first or
second class. The graph b does contribute, however, and its contri-

bution to the spatial component of the current can be calculated in

a standard way 14) H

Xt ") 9 T
¢ =f&5w2?) = %‘t(%) -9-'% é (x4, By
(17)
] Go-3G) % +3fr R©F +NL.

r
where Pih is the exchange operator in ¢ , @ Space, gr the
renormalized WN coupling constant (® 13.5), _fi,] (0‘ u-) Pr -
1 Ed d _ - 2
B(O'i—o.J)l, Yg(f_),- eP/F, Yz(ﬁ) (1+3/'0 +3/p )Y (f),
JP= m.'r, r = ri-rj, and N.L. stands for non-local terms which

may be ignored. Equation (17) should be compared to Eq. (12) obtained

in replacing V Dby a one-pion-exchange potential Vw 5 lye.y,
TR
& =%3: [V, PRI

. (18)
= ;-'5(%)-3-’—-2 [ 2t) -2ty {(c(o-a‘g))cz)a«&-)

%) + 3T7CE ~Fh ) )]
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Thus the graph b is seen to reproduce all the terms proportional to
P:E, but fails to give terms proportional to Pf}. In contrast to
the electromagnetic current, additional graphs are clearly necessary
to saturate Eq. (12) ; i.e., to obtain the Pg:]. terms. Unfortunately
search for such graphs will require a knowledge of how the second
class current couples to other hadrons than nucleon, an information
which is of course not available at present. Therefore this intri-
guing question of the origin of the additional terms must wait until
the presence of the second class current itself is more convincingly

established.

To summarize, we have obtained an equivalent non-rela-

tivistic G parlty irregular current }A applicable to nuclear

‘! decay going beyond the usual impulse approximation. The major
contribution to J comes from the spatial part 8 which is entirely
of many-body origin. It is seen that although the conventionally used
PT current of (3a) gives the entire nuclear current L (4a) in the form
of impulse approximation, it, however, is not a genuine one-body operator,
but an effective one, whose meaning becomes clearer if one uses the form
of (3b). It is tempting to suggest that a clear demonstration of a
linear dependence on W;+W; in mirror A decay and a determination
of the sign consistent with Eq. (2) (perhaps through muon capture) could
be an indication not only of a second class current but also of a meson

exchange phenomenon.
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FIGURE CAPTION

Pion exchange graphs needed to satisfy the continuity
equation for the electromagnetic current.

Graph a vanishes for the axial current, and

Graph b fails to saturate the two-body current
needed for the approximate continuity equation

assumed for the induced tensor current.
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