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ABSTRACT

Meson theory is applied to the study of the exchange magnetic moment
and Gamow-Teller operators. We consider contributions due to the exchange
of one pion and of vector mesons and give their detailed expressions in
terms of a general classification of the operators. The one-pion-exchange
process is separated into Born and non-Born parts corresponding respect-
ively to the Born and non-Born parts in the process of weak or photo-
production of a pion by the nucleon. The results of low-energy theorems
for this process enable us to reach a model-independent description of
the non-Bern parts. Corrections to the soft-pion 1limit are studied by
means of simple dynamical models: phenomenological Lagrangian for the
weak current and the Chew-Low model for the e.m. current. The exchange
operators due to the exchange of p and w mesons are evaluated in the
vector dominance model. The applications are concerned with the exchange
effect in the isovector and isoscalar magnetic moments of 3He and ’H and
in the Gamow-Teller matrix element for °>H beta-decay. The results are
obtained with the dominant S-state with a Gaussian radial function. We
also discuss their dependence on short-range correlations described in
terms of Jastrow factors. The exchange corrections are found to be too
small for the current wave functions of the trinucleons. We discuss
briefly other agencies that may account for the remaining discrepancies.
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I. INTRODUCTION

)

In a previous paper 17 we made use of the low—energy theorem based
on the PCAC hypothesis to obtain the complete one-pion-exchange (OPE) two-
body contribution to the Gamow-Teller matrix element in beta decay and
applied it to the process °H ~ 3He +e + Ge' We have suggested the approach
as a successful means of tackling the difficult problem of meson exchange
effects in nuclei. 1In this article, we would like to expand that theme to
both weak and electromagnetic interactions by systematically discussing the
low-energy theorems, defining as clearly as possible what we mean by the
meson exchange corrections, pointing out which pieces of information are
model-independent, and emphasizing the basic differences in the meson
exchange currents of weak and electromagnetic processes.

The problem of exchange currents in the weak and electromagnetic
processes is an old oneZ). However, it still remains unclarified because
of the difficulties in defining interactions in a composite system starting
from the field theoretic description. We do not pretend to resolve these
difficulties. The solution to the problem would involve a fully rela-
tivistic equation for many-body systems, which is at present beyond our

capability.

Our approach in obtaining the equivalent 2-body current (we neglect
many-body currents) relies on the conventional S-matrix method which has
the advantage of being both simple and consistent. This has been used
before. A renewal of interest in it stems from two sources: one, a recent
development in deriving the two-nucleon potential, notably the one-boson-

3)

exchange (OBE) models®’, and the other, the success of the low-energy

theorems associated with the PCAC and current algebra in describing the

m=-N interaction“). Within the conventional S-matrix framework, the former
tells us how to split the totality of the relevant Feynman graphs, and the
latter allows us to treat the OPE term correctly to all orders in the strong

interaction coupling constant.

In our studies, we encounter both the soft-current and soft-pion
theorems. The former is applicable to the Gamow-Teller matrix element
where the four momentum transfer kx is small. The soft-pion theorem supple-

ments the former when we deal with the OPE graph. For the magnetic moment,



however, it is more convenient to take the soft-pion limit as will become
clear in Chapters II and III. Let us point out here that the soft-pion
theorem has proven to be an extremely powerful technique in understanding
both the nuclear force and T-nucleus interaction, thus being applicable to
the virtual as well as the real pions. The pion exchanged in nuclei is not
really soft; the pion four momentum 9, does not vanish. But the extra-
polation to the relevant value of q2 has been studied, and shows that the
effect is not significant at least for the OPE termS). From these con-
siderations emerges an important and hitherto unappreciated fact that the
exchange current in the weak process is quite different from that in the

electromagnetic process, that is, the sources of the corrections are

different.

In treating the exchanges of mesons other than a single pion, the
situation is not simple. The exchange of two soft-pions may be treated,
but it cannot represent the true situation. Because of the tensor nature,
one or two of the pions can carry considerable momentum. There are also
the practical difficulties in the choice of graphs. So we shall not con-
sider the multi-pion exchanges here. We include however the vector meson
(p and w) exchanges in an approximate way with the hope that they simulate,

at least partially, the effect of multi-pion exchanges.

We apply our theory to the bound three-nucleon systems. Aside from
the deuteron, the wave functions of these nuclei are the best known in
nuclear physics. There have been innumerable studies, both theoretical
and experimental, on the ground state properties of these nuclei: the
Coulomb energy difference, the electromagnetic and weak properties such as
electric and magnetic form factors, n-d radiative capture, photo - and
electro - disintegration, B-decay and muon capture. A lucid discussion on
the status of the three-body problem can be found in the review article of
Delves and Phillipss). Despite such a long history and considerable efforts,
the understanding of the three-nucleon system is far short of the extent
to which one knows of the deuteron. The reason is, of course, the extra
degrees of freedom an additional nucleon brings in. A reliable calculation
of meson exchange corrections in triton beta decay, and in the magnetic
moments of °H and *He would be valuable since once we know the corrections,

a set of linear equations describing the beta decay and the magnetic moments



can be used to draw conclusions about the structure of the bound three-

nucleon systems.

Our calculation is limited in that only the dominant S-state com-
ponent of the trinucleon wave functions is used. This is only a first
step towards more accurate calculations using a more realistic wave func-
tion. Furthermore, since our exchange current operators (except for the
isocalar magnetic moment) should be reliable, an extended application to

other nuclei would be just an exercise in nuclear structure calculations.

In view of the length of the paper, we summarize the essential points
here. The two-body meson exchange operator is divided into a one-pion
exchange (OPE) term and a heavy-meson exchange (HME) term. We apply the
low-energy theorems to the OPE term. The Chapter II deals with this
question. We give the theorems relevant to the Gamow-Teller transition,
and the isovector and isoscalar magnetic moments. The principal conclu-
sions are that (1) for the Gamow-Teller operator, the theorem specifies
the exchange current in terms of two off-shell 7N amplitudes, available
from Adler's works, (2) for the isovector magnetic moment, it leads to a
reliable expression given in terms of generalized Born graphs, and (3) for
the isoscalar magnetic moment, the theorem has no predictive power and hence

one needs to go beyond it.

The Chapter III is devoted to the classification of two-body meson
exchange operators based on general invariance considerations. Explicit
expressions are given for the OPE operators when certain assumptions are

made. We also indicate how the operators are extracted from Feynman graphs.

In Chapter IV, the one-boson—exchange contributions are explicitly
calculated. For both the beta decay and the magnetic moments, models
are used to get the HME contribution. For the magnetic moments, the
vertex correction coming from N* is calculated by means of the Chew-
Low model. The short comings in our treatment of the HME graphs are

emphasized, and should be kept in mind in assessing the results of Chapter V.

The Chapter V deals with the details of experimental situations and
theoretical calculations of the Gamow-Teller matrix element, and the iso-
vector and isoscalar magnetic moments in the three-nucleon system. We use
for simplicity the dominant S-component of the wave functions. For this

reason, the exchange Gamow-Teller matrix element is small as the N%¥3 cannot
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contribute. The importance of the D-state is pointed out. For the iso-

vector magnetic moment where the N§3 is expected to play a minor role, our
calculated value should be reliable, but there still remains some sizeable
discrepancy. Although the exchange isoscalar moment fills up the existing

discrepancy, this may be fortuitous because of its model dependence.

Appendix A deals with the problem of defining the meson exchange cur-
rent from a field theory, and Appendix B deals with the model dependence

in the nuclear wave function.
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IT. LOW-ENERGY THEOREMS

The study of the two-body exchange currents amounts to the descrip-
tion of the process given in Fig. 1. We follow the usual procedure used
in the nuclear force problem, and split the contributions into a one-pion
exchange (OPE) graph and a heavy-meson exchange (HME) graph as given by

Figs. 2a and 2b. As was pointed out by Blin-Stoyle and Tint7) for the

)

triton B-decay and by Ohtsubo et al.”’ for the axial current in general,
a model-independent way would be to look at the two-body exchange con-
tribution by means of the PCAC hypothesis applied directly to the two-

body processes

Ny + N > N3y + Ny +Y
(11.1)

N; + Np > Ny + Ny + e + v,

which may be given in the low-energy limit (that is, when the current mo-
mentum k approaches zero) by a non-radiative amplitude T(p3,pu; P2,P1)
describing the two-particle reaction in the absence of a current. We

shall not consider this approach here.

In this Chapter, we discuss the low—energy theorems relevant to the
OPE graph of Fig. 2a, although by now these are folk-lores in particle
physics. Our philosophy is that this is the dominant contribution in
most of the exchange current contributions and therefore should be treated
as accurately as possible. The HME terms are treated as corrections, and

hence are more model-dependent.

Let us consider the process given by Fig. 2a. The matrix element for

such a process is

]_ > > 1 ]
T 8(p1 + P2 *+ kK = p1 - p2) X

2

. d_(q%)
x <w“(q)N<p{>|J§|N<pl>>qT“+—;n—f (N2 [ |NGp2) ) +

+ (122, (11.2)
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where superscripts n and j are the isospin indices for pions and current,
dﬂ(qz) is the pion propagator form factor, and J2 is the pion source
current. The TNN vertex dﬂ(qz)(N]Jﬂ|N) will be taken to be known from
dispersion theoretic analysis (see Chapter III, Section 2 for more details).
Therefore we need only to know the left vertex which is essentially a
matrix element for‘the production of a pion by a current Ji, which is
either Ji'm' or J?J. In allowed B-transition we are only interested in

the soft-current limit (k - 0). In all cases, however, the pion is as-
sumed to be soft, since it carries a mass (-q°) which is small in the
process where a nucleon makes transitions with little momentum transfer,

2

. . 2
as in the case of B-decay or magnetic moment. On the average, q° = m.

Thus the well-known soft-pion theorem is ideally suited to this kind of
process occurring in nuclei, in contradistinction to elementary particle
physics where the soft-pion limit is only a mathematical limit. We shall

argue later that q® = 0 is a reliable limit, the extrapolation to q? x~ m?

T
modifying the results unappreciably.
DEFINITIONS
We shall follow the notations*)of Adlers) with minor modifications.
The process given by Fig. 3 which represents the reaction
j n '
Jy (k) + N(p1) > m(q) + N(p1) (I1.3)
is described by the set of kinematic invariants
k%,q%,v = =(p1 + p1) * k/2M , Vv =q - k/2M (I1.4)

B

in which M is the nucleon mass. We denote the axial current by JiJ and

the e.m. current by Ji'm' = XJ + Ji, where JXJ and Ji are the isovector

and isoscalar components, respectively. When we write simply Ji, it means

*) We use the natural units h = ¢ 1, e?/4m = Y13,, and the Pauli metric

> > > > . .
where a*b = aubu =a*b + ayby a*b - agbg. The Dirac matrices are
all Hermitian and satisfy {Yu’Yv} = ZGUV. We also use Ys = Y1Y2Y3Ys

and 0 = (1/20) (Y v, = v,¥) -
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both JQJ and Ji‘m‘ unless otherwise specified. The transition amplitude

for the process (II.3) is described in terms of
nj _ . -iq-°x 1 n i
M = i(q? + md) fd'*x e (o[ I @ o), (IL.5)

where T is the usual time-ordering operator. Let us specify the isospin

structure of MX by the decompositions:

L g, 0,0

nj nj A
e.m. _ . Vnj Sn _
MX = MX + MA =
NGO MCY )y ) (o), (0)
= anj VA + anj VA + a_ VA . (I1.6)
where
) _,
fnj =k LTy,
(11.7)
aEO) =% Th?
and the space-spin structure by
8
+ + - 1
A 2 ) A L ,e)Eeho, e uky)
2=1
(11.8)

6
MCDIN) Vi (0,v,k2,42) (10, (V) ulpy)
2=1

+ +
In Eq. (IIL.8), Aé_)(...) and Vé”o)(...) are amplitudes which depend on
the invariants Eq. (II.4), and OA(AQ) and OA(VQ) are covariants given in

+
Table 1. The aim of any theory is to determine the amplitudes Aé_) and
eRy
2 .

We shall often use the matrix elements of the currents between nucleon

states:



. T.
w157 p1> = iu(e) [gA(QZ)YAYs - ihA(Qz)Qst] — u(p)  (II.9a)

oIlle ' S T V
<ﬁwimpp=m@b%X@Fu&)+§wm&ﬂ— ]
(II.9b)
S T3 .V v
- GAnQn [‘6 Fz(Qz) + '73 Fz(Qz)]}u(Pl) ’
where Q = p{ - p1, and the form factors at Q® = 0 have the values
gA(O) = 1.23 = 0.01
S
F5(0) = F)(0) = 1
K (I1.10)
S S 0.12
F200) =9 =~ "
K
\Y vV _3.70
200 = =T -

AXTAL CURRENT

In this section, we discuss in a concise manner what we mean by the
low-energy theorem relevant to the B-decay. In the limit as k - O which
is valid in B-decay where both energy and three-momentum transfers are

8,59)

small, the Adler-Dothan theorem provides an expression for Mﬁ valid

)

up to order k. The derivation is given in the papers of Adler and Dothan’ s

and Adlera)
into a "Born term" (Mi)B and a non-Born term ﬁﬁ,

Mi - (MJ;)B + ﬁi‘ . (I1.11) | -

3 so we shall simply give the results. Let us separate Mﬁ

Then the Born term is defined by



B_ -, 1 . . Ts
(Mﬁ) = u(p1) [1ngan S(p1 + k) lgA(kz)—%-YAYs +

T,
+ ig, (1K) = v,¥s S(p1 - @) ingnys] u(p1), (IL.I2)

where

S(P) = (iy * P + M) !

This corresponds to Fig. 4. Rearranging the non-Born term a little from

the original expression of Refs. 8 and 9, we may write

) = iE<p{>~{a‘*)Y<q2>qx +al [-ze<q2>1>X - 21a<q2>mwk:]}u<p1> :

nj n
where
a(q?) = [Kf*’<q2) - %KS"<q2>]
v=vg=k?=0
B(q®) = - [Kf—)(qz) + Zg—)(qz)] (I1.13)
v=vp=k?=0
v(q?) = & (q?) .
v=up=k?=0

Thanks to the PCAC on which the low-energy theorem is based:

g

_ A n
SR o (11.14)
a, B, and Y can be given in terms of the invariant TN scattering ampli-
tudes AﬂN, BﬂN:

N(2)

a(py) it Yoy =

= -ia(p]) [A“N(i’ - iy k B"N‘i)] u(p1)
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by

8r Nl

a(q?) = gy B
r v=vB=k2=o
g =TN(-)

B(q?) = 5 ?0) aAav (11.15)
r =vB=k2=0
g TN (+)

2y _ A oA
Y(q%) 2.(0) 3vB

The 0 and B are related at q°> = 0 by the Adler-Weisberger relation")

- g;%%';'g‘; [B(0) + a(0)] =1 - g;Z . (11.16)
It is thus advantageous to work at q? = 0, in which case only two off-
shell TN amplitudes completely specify Mﬁ since the Born term Eq. (II.12)
is given unambiguously. One may, however, ask at this point how o, B,
and Y extrapolate from their values at q2 =0 to q2 x m;. Such an extra-
polation necessarily involves models, since it deals with momenta which

cannot be reached directly by experiments.

It has been shown in particular by Brown and Green that numerically
the different models yield similar results up to q2 = 10 m; 5). Thus

from a practical point of view, the model-dependence is not an obstacle.

We have applied a method similar to the one used by Brown and Green
for three-body force, and found that the extrapolation in q2 changes in-
significantly from the values at q2 = 0. More specifically, using the
same arguments and procedures [i.e. saturation of the dispersion inte-

gral by (3,3) resonance, zero-width approximation, etc.], we found that
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a(q?) = a(g®)a(0)
B(q?®) = b(q?*)BR(0) ~(11.17)
Y(q?) = c(g®)yv(0) ,

with

2 2
~ q’ K(q%)
a(q®) = (1 ¥ X MTJ ®(0)

5 2 K 2
b(a®) * [1 b MZ] Kgg))

2

2 2
2 q K(q®)
c(q®) [1 * x, M2] K(0) °

where the magnitude of each of A_, Xb’ Ac is greater than unity. It is thus

consistent with

a(q?) ~ b(q?®) =~ c(q?) =

for g2 <« M*. If the pionic form factor of nucleon K(q?) is assumed to

2 2

extrapolate to q2 =m. as smoothly as it does from q2 =m  to q2 =0,

then we would expect that

Q

2y & 2 2y o
a(mﬂ) b(mﬂ) c(mﬂ) 0.95 ,

which gives a 5% variation from q? = 0 value. We shall neglect this vari-

ation from now on.

There is a variant of the low-energy theorems that can be obtained
by considering directly the soft-pion limit (q - 0). 1In this limit the
only surviving amplitudes are Kg_) and KS—) for which the PCAC places the

constraints
(- _&© y ,
30 - ﬁg-gz [Fl(kz) - g8, (k?) + 2M Fz(kz)] :
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One can also take advantage of the relatioms (II.15) valid at
k - 0, arbitrary q, and the above relations valid at q + 0, arbitrary
k, describing the same quantity ﬁi, to obtain the combined constraints

which would specify ﬁé up to 0(qk, q2, k?). The results are given in

Adler-Dothan 9). The advantage of this method is that it allows Kf-)

and K§+) Kg') KE-)

to be specified separately in addition to s

ELECTROMAGNETIC CURRENT

Unlike the axial case where the k - 0 limit is appropriate, we
shall instead take the soft-pion limit for the electromagnetic current.
The reason is that the k + 0 limit is not quite appropriate for the
magnetic moment, and furthermore we want to rely on the experiments of
the threshold production of pions for which the soft-pion theorem is

known to be reliable for charged pions.

A shortest derivation of the theorem is through the modified PCAC

relation in the presence of electromagnetic field AX 10)
A(E) - . # _ @)
2,05 ) 7 iea 53 = cor
(o) _ ¢ (o)
BXJQ -z O
A(x) _ Al _ . _A2
e (11.18)
A(0) A3
o
2
.- /EM.mﬂ 8p _ )
gr(O) m M

where (+#,0) stand for the charge states of the pion. For charged pions,

the photoproduction amplitude is
: + . +
<P{|J,,(T )1P1k> = - fi{i eey <p{|J§:( )lp1> +
i

+ qy <pf|3§(i)|pxk>}

+
EAMi'm'(ﬂ ), (I1.19)
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where € is the photon polarization four vector, and the bar in the

second term on the r.h.s. means that a pion-pole term

f q2
m <l (1)
- —— (p1lJ fP1k>
2 2 ™
q’lT + mTr
has been separated out. Similar equations can be written for the neutral
e.m. .m.

pion. Now imposing the gauge condition kXMK = 0, one finds that M;

is given to order (mﬂ/M) by the Born terms of Fig. 5.

The first term in Eq. (II.19) yields the seagull term Fig. (5a) and
a piece of Fig. 5d. (Note that the seagull term is equivalent to the
Born term with NN intermediate state. It contributes only to the charged
pion production.) One can see this by examining the matrix element of
J? in Eq. (II.9a) and using the Goldberger-Treiman relation to express
hA in terms of N and letting Q? = 0 in the form factors. The Figs. 5b,
5c, and a part of Fig. 5d come from the second term of Eq. (II.19). Note
that we are to take the full electromagnetic vertex as defined in
Eq. (TI.9b) and Fw(qz) +-Fﬂ(0) = 1 to ensure the gauge condition. It
is important to note that to the order (mﬂ/M), no non-Born terms contri-
bute, in contradistinction to the axial current where non-trivial con-

tributions come from the non-Born terms.

3.1 Threshold production of pions

In order to have an idea how good Eq. (II.19) (and a similar equa-
tion for the neutral pion) described by Fig. 5 can be for the isovector

e (0

and isoscalar V amplitudes for our purpose, it is instructive
to look at the experiments on the photoproduction of pions at threshold.
We shall assume that the features observed at q? = —m; (physical pions)

. . . ~ 2 .
can give us some information about the q2 omo point.

It is now well established that Fig. 5 describes very reliably the
charged pion (ﬂi) production, whereas it appears to be insufficient for
7% production where the main terms Figs. 5a and 5d vanish. Also theoreti-
cally, the corrections to the soft-pion theorem are found to be very small
for ﬂi, while important for m° 11), Now to translate these observations
in terms of the isovector and isoscalar amplitudes, we note from Eqs. (II1.6)

and (II.7) that:



W™ (yp > 1) = % I:Vi_) - vg”
Ve (yn > 1p) = - 55 VO - v§°)]

(I1.20)
M ™ (yp > 1) = [V§+) + v§°)] /2

Or inversely

Vi—) = ;%; [Mi'm' (Yp > T'n) - Mi'm' (Yn > 1T_P)]
V§+> _ [Mi'm' (vp > mp) + M (yn > n”p)] , (II.21)
v§°) - 71_2- [Mim (o > m'n) + 5™ (yn > Tf-p)] ,

where Mi'm' (yp »> ﬂ+n) stands for the amplitude for y + p > o+ n. Sub-

+
stituting into Eq. (II.21) the experimental values for T production and

11)

the theoretical estimate of T° production by Furlan et al. , we have

found that
(+)
VX

)
Lo\

-3
=6 %10

(I1.22)

<
>~

-2
=7 %10 .

l

<
>~

. . . + .
Thus in the isovector part we may safely ignore Vi ). The amplitude

Vi_) being the sum of numerically reliable quantities is thus correctly

given by the low-energy theorem. The same would hold for the amplitudes

we are interested in if the extrapolation from q? = —m; to q? = m; is as

smooth as is assumed.

so obtained would not be good, since it is

On the other hand, Vio)

a difference between two large numbers, and any further corrections to

it can become significant.



_15..

ITI. TWO-BODY EXCHANGE OPERATORS

GENERAL CLASSIFICATION

In this section, we discuss how the non-relativistic two-body opera-
tors for the magnetic moment (MM) and the Gamow-Teller (GT) R-decay transi-
tions are extracted, given the appropriate meson theories (next section) to
calculate the Feynman graphs. Let us first classify the functional forms

for these operators based on general invariance requirements.

We assume that GT and MM exchange operators have the same transforma-
tion properties as the corresponding one-body operators. They are both
axial vectors. The GT operator is an isovector, whereas the MM has an
isovector as well as an isoscalar component. For their construction we
have at our disposal position coordinates of the two nucleons ;1,22, their
conjugate momenta ;1,;2, the Pauli spin matrices 31,32, and isospin matri-

ces T(1),T(2).

For the isospin parts of the operators, all possible two-body terms

formed with ?(1) and ?(2) must reduce to three isoscalars:

T » T ,

(I11.1)
[1+15)713(2)]

and three isovectors:

[ta) x ?(z>]j ,
(111.2)
[Tj(l) + Tj(Z)] ,

where the MM operators involve the isovector component j = 3 and the GT

operators j = (1) £ i(2).

For the space-spin parts it is convenient to work with the relative

and C.M. coordinates:

> > > -> ->
= (%1 - X2) , R = (x1 +x2)/2 .

"y
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Operators depending on ﬁ (i.e. translationally'non—invariant terms) or on
the momentum operators'ﬁ1,ﬁ2 (non-local terms) are, in principle, allowed,
but we shall not consider them in our classification. The space-spin
parts must then be axial-vectors formed with 31,32, and T. They must be

. ~ _ >,
of the following seven forms (¥ = r/|r|):

>
(01 X 0'2) ’

>
02) ’

~
Q¥
1+

[}
2}

G, x 32) . (I11.3)

£,

=)

> >
(01 = 02) -

[(G, » 8)@2 x£) + Gy x £)(G, * B)] -

That no new terms can occur upon introducing the isospin and spin ex-
T o . . . ..
change operators P;, and Pj, can be seen by using the following identities

among the isospin matrices:

[T x 7] Pl, = i[T(D) - T(2)] ,
(I1I.4)
[1- 71113 (2]PT2 =T * T(2) - T3(1)T3(2) ,

and likewise for the spin matrices. Because of the antisymmetry of nuclear
wave functions P%z P?z P?z = -1, the Majorana operator (P%z) would there-
fore bring nothing new. Thus the operators (III.3) give the full space-
spin dependence within multiplicative scalar functions of the relative
coordinate. The complete operators are formed by combining these with

the isospin parts (III.1) and (III.2) in all possible ways under the re-
striction that they are fully symmetric under the interchange of all par-
ticle coordinates. We thus arrive at the general classifications of the

isovector and isoscalar components:
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fax
1
N D

{(?u) X T(2), [(31 x Sy + 1) gu]

T

* [?u) - ¥<2>]J. [(31 - G,) (hy + hy Py, + h] BJ)) +

+
3
[SI

A
~~
=
+
=
)
lae
-
N
<+
=
= Q
—
d
~Q
N
N
| I——
+

+

F(l) + ?(2>]J. [(31 +02) jp +

>

>(+) . .
+ sz) JII + 212 JIII] ’ (III.S)

C > > Z(+) i3
Hy =7 {13(1)”(2) [(01 +O2ky + Typ" kg + Iy kIII]

-> > >(+ >
+ [(01 + 02) RI + sz) QII + X, QIII]

" [?(1) . ?(2)] [(31 25y mp v T8 w4 T, mln] ,

(I11.6)

where we have used the definitions:
i -> - > - > ~ -> -
AP =§[(ol *B) (02 x B) + (01 X B) (02 - r)] ;

>®
T)»

[(31 ®0y) *+ £ ¢ —% (G, ® 8’2)] ,  ©=+f,x, (II1.6a)

>@ > -> ~ .
The operators T,, are the D-wave parts of (0, ® 02) * ¥ T, obtained by
subtracting out their average over orientations of f£. The functions

T . . > .
81> 81y hI, hI’ etc., are arbitrary scalar functions of |r| = r, which
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must all be real by virtue of the transformation properties of the opera-
tors under time reversal (see Appendix 3 of Ref. 2). The constant G is
defined by

e/2M (MM)

G = (111.7)
“8p (GT)

We note that of the 20 terms entering our classification, only 12
of them would be allowed in the phenomenological theory of Osborne and
Foldylz). The additional 8 terms are those involving the functions

T o

h , h , and also those involving functions with subscript III,
I,11° 1,11

namely hIII’ etc. They had to be rejected in the phenomenologi-

Jr11°
cal theory of Osborne-Foldy as a consequence of the assumptions used in
its construction and the restrictions imposed on the two-body operators
by time reversallg). To be more specific, their assumption that the

exchange operators are proportional to the NN potential imposes reality
conditions on the radial functions, which for the above-mentioned terms
are incompatible with conditions imposed by time reversal. For example,

a term such as

(G, x G,) [¥j(1> - ?j<z)] G(r)

transforms properly under time reversal only if we allow G(r) to become
pure imaginary. On general grounds there is, however, no reason to dis-
card these terms, which in fact will appear in our explicit meson-theory

descriptions.

The classification of operators non—invariant under translation is
a rather fastidious task which we do not wish to undertake here. We
simply write down some typical terms we shall encounter in the calcula-

tions:

B =6 [(31 +3,) *RE- (3, +02) (F ﬁ)] F
+ [(31 -Gy *RE- (6 -32) (F+ ﬁ)] Fip
+ [(31 +®) G x B+ G xR G, - f)] Flig

+ i(Ff x ﬁ)FIV R (I1I.8)
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I’ ey FIV are real scalar functions of r which may depend on

spin and isospin operators, and have appropriate symmetries so that H

where F

is fully symmetric under interchange of two coordinates.

As for non-local operators, there exists a phenomenological classi-
fication of them by Sachs and Austernlu). In our calculation where the
static approximation is made for nucleons, non-local operators are met
only infrequently, so we shall not go into them; they do not contribute

in our application to the three-nucleon systems.

DEFINITION OF EXCHANGE OPERATORS FROM FEYNMAN DIAGRAMS

The most convenient way of looking at the meson exchanges is to di-
vide them into an OPE term and a multipion exchange contribution which
is to be simulated partly by heavy meson exchanges (HME). We have given
the corresponding Feynman graphs in Fig. 2. They represent two-nucleon
scattering from initial momenta p;,p, to final momenta p{,pé while under-
going an interaction with the external field (electromagnetic or weak).
The relevant currents are the e.m. or weak currents. The deduction of
exchange operators from the Feynman amplitudes associated with those

graphs will now be discussed.

Let us first consider the OPE graph, Fig. 2a. The matrix element
associated with it is denoted by (p{p;[Jilplpz). If the vertex corres-
ponding to thg pion production by a current Iy is written as
(ﬂn(q)N(p{)lJi[N(pl)) where the superscript n stands for the isospin in-
dex for pion, then using the conventional form of the TNN vertex

(N2 |I2[N(p2)) = i g, K0 (a®) G(@D)YsT ulp2) (III.9)

r

we may write

o0 -> 1] 3
Ji = (2m)° 8§(p1 + P2 * k - 1 - P2) <P{P£|Ji|p1p2>
-3 -> - > >, >,
= (2m) ~ &8(p1 + p2 + k - p1 = p2) X
: d_(q*)
n I v ! n \
X {<ﬂ (Q)N(Pl)IJi|N(P1)> 377;75;; <N(P2)|JH|N(P2)) +
+ (12 2)} (I11.10)
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in which (1 2 2) stands for the term obtained by interchange of nucleons

1 and 2 in initial and final states. The ji can be considered as a matrix
element in momentum space of the two-body current operator for two-
nucleon systems. Equation (III.10) represents an amplitude expressed in
renormalized perturbation theory, thus containing a pionic form factor of

nucleon K1T and the pionic propagator form factor dﬂ. These quantities

NN
are normalized at the pion pole q? = —m%. In principle, the off-shell
behaviour in these form factors can be very important. However, if we
want to pursue the calculation in the line adopted in nuclear force theory,
we need to be careful. The reason is that when obtaining two-nucleon po-
tentials by using phenomenological coupling constants and masses for pion
and heavier mesons, the form factor effect is assumed to be automatically
taken care of. This fact was duly recognized by Brown and Greens) in
their treatment of three-body force. Since we are going to use correlated
nuclear wave functions, and put in also the heavy meson exchanges, it is
deemed necessary and consistent to put K(q2?) = K

TNN
shell K(—m;) = 1. This argument does not apply to the weak or photopro-

(a%) dﬂ(qz) on the mass

duction vertex (ﬁN|Ji|N), whose off-shell-dependence cannot be ignored.
In our case, we work with the amplitude at the soft pion limit q? = 0

which is sufficiently reliable for small q2.

As it stands, the representation (III.10) is not suitable for nu-
clear physics applications. The reason is that conventional description
of nuclear structure is usually given in terms of non-relativistic,
single-time wave functions depending on the space and intrinsic coordi-
nates of nucleons. The transformations required for such a description are
standard ones. Matrix elements with respect to Dirac spinors must, firstly,
be expressed in terms of Pauli spinors and, secondly, transformed to posi-
tion space. In the non-relativistic reduction of Dirac to Pauli spinors,
the static limit is taken. This is achieved by expressing matix elements
in a particular representation for the Dirac matrices and retaining lead-
ing terms in the limit where the nucleon mass M >~ «. The procedure re-
produces the lowest-order terms in a Foldy-Wouthuysen transformation. The
representation in configuration space is then obtained by doing a Fourier

transform on each nucleon momentum.
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>1->1 Ji> 2>
<X1X2|JXIX1X2>

§Gh - %2)6(1 - %2)3) Gia,xo)

1

- >1
f dp]_ oo dP2 X
(2m)®

> > >1 >y > >4

i, . _ . _ ~
x o F(P1*X1 * P2tx2 - P1°X1 Perx)3l (rrr.an)

where Ji(zl,gz) is the diagonal part of the matrix element. It represents
the Fourier transform of the current density of the two-nucleon system as
the momentum k of the external field is held fixgd. Any momentum-dependent
term would come from a derivative contained in Ji(;l,gz) operating on the

delta functions.

In Table 1, non-relativistic expressions in the static limit are given
for each covariant OA(A) and OA(V)‘ The TNN vertex is, on the other hand,
> >
g * q

2M

a(p2)ysulpa) »

. . e . 2 ~ 2
and in the static limit (¢ q° .

As an illustration, let us consider the axial current. To make an
unambiguous separation of local and non-local terms, one should be careful
in performing the integrals in Eq. (III.1l1). Of the four integrals over
nucleon momenta, one, say ;{, is used to eliminate the delta function
expressing momentum conservation. The remaining integrals are then ex-
pressed in terms of the independent momenta ;1, (3; + 32)/2 and

> -> -> . .
(p2 - p2) = q. The argument of the exponent is written as:

> -> - ! 4 > > > (—>I + > >y
. [} 2 1 X2 X2
-1 P1 . (xl - Xl) + .LZ_Z—p— . (x2 - xZ) + q . txl - -—_—2_—_] -~k X1 R

The integrals over the first two momenta introduce the delta functions

displayed in Eq. (III.11l) so that any dependence on them is equivalent to

the terms:
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Py +p >
>
P 5 P2 P2 + q

-> - . .
where 1 and P> are momentum operators acting on the ket wave functions.

Putting Eq. (III.10) into (III.1ll), we can write

m )

G = 72—175 {fd&’ u(pl) 0, (a) [As)ar(l;) + A(')algjf):, u(P)

> >

-iq-e-r
’3‘2'+_m’2' &, U(Pz)leT u(@2) + (12 2) } (III.12)
where s = 1, ..., 8, and a =Y, [T ,T. ] as defined before. After

expressing all the dependences on pion momentum by a derivative, i.e.

qp 132, 2 =1,2,3, the integration over q brings in the familiar Yukawa

function
E -
-iq 1
> e
qu m = 2’1’1’211'1,]T Yo (Xﬂ) R (III.13)
1l

(£)

no dependence on q, the integrand in Eq. (III.12) depends through OA(AS)

where Yq(x) e—X/x, with X =mr. If the invariant amplitudes Ag” have

and Ys on the pion momentum, at most quadratically. As we have seen

)

in the previous section, the amplitudes A have that feature in low-
energy limits. But suppose we consider explicitly the vertex correction
due to p (Fig. 6¢), giving rise to the two-body operator of Fig. 7. 1In

the limit k - 0, the amplitude relevant to this contains the factor

1

af‘;‘ag (II1.14)
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if the Feynman graph is evaluated in the usual way. In such a case, the

integration is not Eq. (III.13), but

RS -
N -iq- T o2 m m
qu > = > Yolx) - EI—D- Yo [ £ x ]
(q? + m;) (q® + m;) R i m.

m

(I11.15)

If, furthermore, pions can propagate with either positive or negative fre-
quencies alone as is the case in some of the Born terms (see the next sub-
section), then Eq. (III.12) does not hold, and radial functions different
from the Yukawa types [Eq. (III.13) or Egq. (III.lS)] appear.

Now given 3%, what are the relevant operators for the magnetic moment
and the B-decay? To answer this, we recall that only the space part of the
current four-vector is needed. The Gamow-Teller operator is simply the
monopole part of the axial current, and the magnetic operator is the dipole

part of the current, i.e.

Aj
Kj K=o for B-decay

(III.16)

= :
V,ox 38T for MM .
K

>
M= -

i
2

We conclude this section by giving the expressions of the radial

(¥)
S b
are independent of the invariants Vv, Vs and q2. 1In Table 2, we

dependences of the operators in the case where the amplitudes A
+
(o)
give the functions g, h, j for the GT operators, and in Table 3 the func-
tions g, h, j, k, £, m for the MM operators. We note that this condition
is met for the NB parts of the amplitudes found in the application of the
low-energy theorems. It does not, however, apply to the Born parts which
have singular terms in the soft-pion or soft-current limits. For this and
other reasons to which we will return in the next Chapter, the Born parts

must be treated separately.
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Note that for the GT operator where k - 0, As, ..., Ag do not con-
tribute, and for the MM operator, Vs and Vg vanish since k? = 0 for real
photon. Furthermore, in the non~relativistic (NR) limit, V; and V, are neg-
ligible compared to V3 and V,, since the matrix elements of OA(VI) and OA(Vz)
are proportional to kg or M '. These are the reasons why Table 2 contains only

A, s=1, ..., 4 and Table 3 only Vg, 8 = 3,4. We also note that at the

s?
2

limit v = Vg = k? = q®> = 0 which comes in the low-energy theorem, some

amplitudes vanish due to crossing symmetry, and these are indicated therein.
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IV. ONE-BOSON EXCHANGES

In this Chapter we calculate the two-body exchange operators due to
OPE and heavy-meson exchange (HME) contributions. For the OPE term, we
use the low—energy theorem information, and supplement the calculation
by using other models: phenomenological Lagrangian model for the GT
case and the Chew-Low model for the MM case. For the HME, we consider

the p- and w-exchange graphs.

ONE-PION EXCHANGE CONTRIBUTION

For the benefit of those readers who have not quite appreciated the
power and relevance of low-energy theorems, we summarize here some im-
portant points to bear in mind. For both the e.m. and axial currents, we
have divided the pion production amplitudes (and therefore the exchange
current) into a well-defined Born term, and the rest into the non-Born
term. Then the low-energy theorems tell us essentially the following:
(1) for the isovector e.m. current, the NB term is negligible; (ii) for
the isoscalar e.m. current, the Born term is small, while the NB term is
undetermined; and (iii) for the axial current, the NB term is given in

terms of off-shell TN scattering amplitudes, not necessarily small.

These results rest on the applicability cof the soft-pion theorems,
and the question is then: to what extent can the exchanged pions in the
OPE process be considered as soft? In practice, there are limitations
in Eq. (III.12) on the range of integration over the pion momentum. The
long-range parts of the interactions are only sensitive to small values
of q. The longer the range, the smaller the q involved. From energy-
momentum conservation. at the 7NN vertex, we also have: q = pé - p2 .
Thus for uncorrelated nucleons near the Fermisurface, qp = péo - p20 =0

and q2 roughly in the range between m;

and 4m% with the peak at m;.

This is not far from the soft—pion limit, and thus renders the PCAC
applicable. Once this is established, the power of the theorems is that they
give us non-trivial relations exact to all orders in strong interaction
coupling constants connecting the required amplitudes to either calculable

quantities or measurable quantities.
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1.1 Non-Born contribution

We reverse the order and treat the non-Born part first. The reason
is that the NB part permits the full pion propagator and has no danger
of double counting which the Born term does. Thus the discussion of

Chapter III is directly applicable.

In following this part of the Chapter, Tables 2 and 3 are of prac-
tical importance to us, since once the amplitudes are calculated expli-
citly, the associated GT and MM operators can be read off from the tables.
The assumption that the amplitudes are independent of the invariants ap-—
plies to most of the situations discussed below, as the relevant point

2

corresponds to V = Vp = k? = q® = 0.

1.1.1 Axial current

Let us consider the NB parts (denoted by a bar) of the pion produc-
tion matrix element given in Eq. (II.16) in the limit k > 0. They are

regular, so we have

i

it

% = (T @ONGED [ N g = Bk { [Kf” + B ] alD0,

+ &7a Do, ) + [RE') - 2&5')] ar(lg)OA(Aq)} u(p1) + 0(k)

= 36p1) {—s(q2>a§3)ox(Az> + ¥(aDa 0, o) -
- Za(qz)al(lJT)OX(Au)} u(p1) + 0(k) . (1Iv.1)

This equation defines a, B, and Yy for arbitrary q?. Note that o and B

are related by the Adler-Weisberger sum rule at q2 = 0, as can be seen
from Eq. (II.19). The soft-pion limit is a good approximation for the
case we are considering; hence we need only a(0), B(0), and Y(0). The
corrections for the case q2 = m; can be safely neglected. From Eq. (III.5)

we have
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-3 {.[?(1) x ?(z>}j [(31 x $o)gy + TH) 811] +
+Pa)—ﬂn][61—&x%+h}ﬁp+
J
+ 70D (hy  + by sz):l +
+ [T<1) + T(Z)]. [(31 +52) ip +
J
RIS jH] + H?L } , (1V.2)
where
g = 5 E(OYo(x) , gy = “E0(0)Y2(x)
hy = = - = EY(0)Yo(x,) hrp = dpp = - 5 EY(O)Y2(x)
13 g =Y (L) TolEL) 11 - 1 2 2 (X

=
]

Te-3 a[a(O) + s<o>]Yo<xﬂ> ,  hp=- s[u(O) . e<o>] Y2 (x,)

(1v.3)

where

g m -X
1 r i) 2 e
g = [ ][ ]m s YO(X) = »
8m gy M} i X

X lw

+ X%-) Yo(x) .

7

Yo(x) = [1 +

There is no translationally non-invariant term, but there is a non-local

term:
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CRE [?<1> x ¥<z)]j z[a<o> + B(O)] ﬁi [(31 - £)p, +

+ (32 . f);l] (} + ;L] Yo(x,) . (Iv.4)

(i

The PCAC implies that

Fo

Bp ——ﬂN(—)}
o = B s
@ =g @[> |
8, [3z™() ]
_ °A JA
B(0) = gr(o) 59 s (1Iv.5)
o -0
oy = A AN
gr(O) i Vg jo
where the subscript 0 means that Vv = VB = k? = q2 = 0. These values have

been evaluated by Adlera)

by extrapolating from on-shell TN scattering
amplitudes. They are given in Table 4, row 1, denoted for short as
"Adler". The errors involved in these numbers are hard to assess, but
we would guess that they are of the same magnitudes as the errors usual-
ly quoted in the test of the Adler consistency condition and the Alder-

Weisberger sum rule.

We shall now turn to an alternative calculation of the amplitudes
which may be considered as some sort of book-keeping of the global pre-
dictions of the low—energy theorems. The low—energy theorems can be
viewed as sum rules derived from current algebra by insertion of a com-

15)

plete set of intermediate states in the equal-time commutators . Cheng

16)

and Kim exploited this idea in relation to the Adler—-Weisberger sum
rule. We shall apply here a similar idea and approximate the pion-
production process by pole diagrams with intermediate states corresponding
to nucleon isobars (N*) and vector mesons (V). These are illustrated by

the diagrams given in Figs. 6a to 6c.
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Nucleon isobars

We describe the intermediate resonances in particle representation.
Effective couplings are used for the vertices ﬂNN* and ANN*, where A is
a shorthand notation for the axial current. Coupling constants for the
former vertices are determined from available experimental widths and for

the latter by using one-pion-pole dominance in the axial form factors.

+
The isobars with angular momentum and parity JP =(n+%,n>0,

are described by Rarita-Schwinger spinors uul " (P). For n = 0, the
eee Up
usual Dirac spinors are used. We give the TNN* vertices in terms of the
matrix elements of the Lagrangian densityle):
{ "2 ) = i u(p’) ' (
m(QN(p") ®)) = gmyx & 9, -o-q, vl [ fu o (@),
n 1Ys n
P oE
[(J )N* =(n+% ,n=1, 2, ... ] s (1v.6)
, ! * = iY;\
(r@Ne") [N 0)) = gpx 50D | | ue)
1
P +
[(J dx = % ] . (Iv.7)

Introduction of isospin is straightforward. Let T be the isospin of the
isobar, s’ its projection along isospin Z-axis and let o (spherical com-
ponent) and s specify the isospin projections of T and N, respectively.
Inserting the Clebsch-Gordan coefficient (1 % as|Ts’) in the r.h.s. of
Eqs. (IV.6) and (IV.7) takes care of the isospin dependence by making

them isoscalars, as they should be.

*
The ANN couplings involve, in general, a number of invariant opera-
tors. In the limit k »> 0, relevant to our problem, only one invariant
operator survives. We write the vertices in terms of the matrix elements

of the axial current:
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A % 1 * .n-1
<N(P')|JA|N (P)> =58, 1 Glul q,, -+ d

1
x u(p') ( u (p) + 0(k) ,
iYS Ule...Un

. - Ys
NEH | BRI @)> = 3 &) 36y, 1«w+ow),
I:JP - '/f] : (1V.9)

The requirement of time-reversal invariance implies that all the
coupling constants introduced so far must be real. The inclusion of iso-

*
spin dependence is done in a similar way to that for the TNN vertices.

*
The PCAC hypothesis places constraints on the coupling constants 8y

that we shall use in the following. They are connected to the coupling

16):

constants &N through the relation

2
m

Mg
(8" 19,338 ®)) = 5> pe R (m(NG") [2|N"(p)) . (1V.10)
r m

These Goldberger-Treiman-type relations may be written in general form:

*

g M g

A A
= = (0) (IvV.11)
fﬂNN* r
P Lyt -
gTTNN* [J =(n+ %7, n=1,2, °:|

Ernw® = (Iv.12)
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In particular, they fix relative signs of the coupling constants which

would otherwise be difficult to know.

We have now the necessary ingredients for calculating the diagrams
given in Figs. 6a and 6b. We restrict to the lowest—excited nucleon
* * *
3+3(1236,120), N1+1(1400,120), and N3_1(1525,40), where the

numbers in paranthesis specify masses and partial widths (in MeV) for

resonances N

*
N - N + m decay modes, and the subscripts stand for (2JP, 2T). Cor-
responding to the Feynman propagator for spin-% particles (i v * Q + M)_l,

we use the following expression for the spin-3, propagator:

(GMJ— % Y)\Yu]/(i Y*Q+ M,

-* . . . . .
where terms of order Q/M which vanish in the static limit and unknown

off-mass-shell terms have been dropped.

The results will be expressed in terms of the contribution to the
@)
s
will not be written down.

amplitudes A Terms of order q?/M? appear in the calculations but

*
G 5O LB 2 B B
3t3t Ml 4 9 M*-M °
*
g % 8
= - = -]—- = —2_ _lN_IE__.A
a(0) = -8(0) =7 v(0) =3 wES— (1v.13)
2 *
* o= _x(H) ___M —(=) _ “Brnn* Ea
Nj4g? A2 7 =437 = M + M Ay © = M*2 - M2
*
Eonn* 8a
a(0) = =
MM* - M)
2 *
48 % gA
B(0) L (IV.14)

1
2
~
(=]
~
]
Ztl



*
e 3O o lz 2 Ernnx BA
31° 1 2 73 3 M+ M
*
g * 8
= - = -1 _ _ 2 CZTNNT A
a(0) = -B(0) > Y(0) 3 v W (IV.15)

The numerical values are given in Table 4 where the low-energy theorem
values are also given for comparison. In the last column of the table
we consider a particular combination of the amplitudes given by

[2&5—) - Kg-) - % K§+)j within a factor. This is precisely the combi-

nation which determines the GT matrix element of triton beta-decay if
*

one restricts to the S-state. Note that the contribution from the N3+3

is exactly cancelled

Vector mesons

A strict polology treatment of the vertex correction given by
Fig. 6c presents delicate points because of the vector-meson propa-
gators (q® + m\"’;)—1 and their non-trivial dependence on the pion mass
(—qz). Adlers) has given a general treatment of these vector-meson ex-
change amplitudes by a method implementing the vector-meson dominance
(VMD) hypothesis with the current algebra. It includes the effects of
all vector mesons with quantum numbers JPG = 1_+. We shall not enter
into the details of his method, but shall simply enumerate some defini-
tions and quote his results. They are strictly valid in the soft-pion
limit q > 0, but we shall also retain the q?-dependence originating from

the vector-meson propagator.
The VNN vertex is taken to be

T
iued [vy ©r -0y (k- £2]5 u) , (1V.16)

where f; and f, are form factors, functions of (k - q)%. The p-propagator
has the form [6Au + (k - q)x(k - q)u/méj/[(k -q)?%+ méj. The matrix ele-
ment of the axial current between vector meson and pion states is found to

be (up to order k) ©
. g
k h| - _r
<vu|J§ I1Tn> M 8 FV dku

glkn (IV.17)
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*
where unknown off-shell terms are neglected ). The factor FV is the
quantity used in the field-current identity17) to relate the current
J;’m' to the vector-meson fields VA’ namely:

2
e.m. _ _
JX = FV VX = E?;'VX . (Iv.18)
The amplitudes, as k - 0 are
2
(), 2 g, (Oxy "p
A2 (q ) = 2 2 2
M gy a* mp
, (Iv.19)
(0) m
=), 2 Er P
A = - — (1 +k,,) s
L (q ) M2 gA( V) q2 + mé

where we have used the hypothesis of p dominance of the isovector e.m.
form factor FY 2(kz) =f 2Fp/(k2 + m;). If one neglects q? as compared
s 9

2 .
to mp, one obtains

Zg—) = §§;E%£! , Ks_) = - ;éfgi (1 + KV) .
Or
a(0)=g—ri(l(1+l<)
2M2 gp v, 2
. (O)Kv (1Iv.20)
s(o)=—2§2—gA

which are almost identical to the results of the low—energy theorems ex-—

.. . =(=) *%)
cept for an additional term in A, .

%) The result (17) is related through the KSFR relation to the result
obtained by the application of the PCAC hypothesis to the VTA ver-
tex. The PCAC constraint specifies the coupling constant gyqp in
terms of f_ = V2 [M gA/gr(O)] (pion decay coupling constant) and

By (the coupling constant for V - 7T decay) by the relation
BymA = V2 gynm fr. The KSFR relation gives on the otherzhand
= 2 1 =
&y = (my/£)?%, which leads to gy, = [g,(0)/g, M] x md/2vy)
. —(-) g, (0) 8y 8p
) Note that the PCAC value for A, * = - Ezgz— (1 + KV) M vt
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The numerical values corresponding to this assumption are given in

Table 4, fifth row.

If the model used to get Eq. (IV.19) were correct, then the q? de-
pendence would just reflect the off-shell extrapolation of the amplitudes
Eé') and KE_). However, even though the q> + 0 limit is in agreement
with the PCAC prediction, it is not clear whether the q? dependence in
Eq. (IV.19) is correct. For example, the hard-pion theories give quite
different behaviour, with a disagreement with the PCAC results in the

q2 = 0 limit. As already noted, when transformation into coordinate
2

p

(q2 + mé)—1 in Fig. 7 amounts to re-
placing the Yukawa function e—mﬂr/mnr by

space is made, keeping the factor m

m | mr m mr
T m T

2 3
m _mTrr m -mAaY
L = - [——p e 71, (1IV.21)
o

'~

Note that this is dominated by the p-meson term at small r (< 1 fm), and

for r >>1 fm by the pion term: it is negative for r < 1 fm, and changes
sign to positive for r 2 1 fm. This is quite different from what one

would expect from taking Eq. (IV.20). For a sensible nuclear wave func-
tion, Eq. (IV.21) gives expectation values with signs opposite to the

PCAC results, and is very sensitive to its inner parts. Thus if the
extrapolation from q> = 0 to q* # 0 is indeed smooth, then we must con-
clude that a calculation based on Eq. (IV.21) is a suspect. It might be
appropriate at this point to note that this sort of ambiguities also appears

in treating K(qz) extrapolation in coordinate space.

1.1.2 Vector current

Unlike the axial case, the limit k - O cannot be taken directly in
the case of magnetic moment, since the latter may depend on terms linear
in k in the matrix elements of the vector current [see Eq. (III.16)]. Re-
gardless of what k takes, we can choose to work with the soft-pion limit
(q > 0), in which case,‘as we have seen in Chapter II, only the general-
ized Born terms survive. This does not mean that the non-Born terms can-

8)

not be given by the soft-pion technique. According to Adler and Gilman' s

the terms determined in this way are
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_+) 80y
WOt T

(1v.22)
g, (0)K

(o)
Vl 2M2 4

while the other amplitudes are not determined, since they are associated
with the invariants OX(VS) linear in q. But these contributions are
already of order M2 and, in accordance with the general results of
Table 1, the exchange MM (expressed in units of nuclear magneton) cor-
responding to these terms is of order M. Thus we conclude that the

NB terms are small.

The question remains, however, as to what happens when q2 moves
away from zero. In Chapter II we have given an argument that for the
axial current, an extrapolation to some finite value q®> << M? introduces
only a small modification; but what about the e.m. current? There is
a systematic way of resolving this question as discussed by Furlan et

al.ll) 19)

, and extensively used by M. Ericson in photoproduction of pion

on nuclei. We shall not do such analysis for the reason that even ex-

trapolated to q2 Y m;

, the NB terms remain small for the isovector e.m.
current, and hence an elaborate theory is not warranted. Therefore we
shall use models to evaluate them. This is perhaps dangerous for the
isoscalar moment for the reason that the NB terms are not small correc-
tions any more. Our analysis for this, therefore, may not be as meaning-

ful as for the isovector case.

In the same way as for the axial vector current, we shall assume
. *
that the NB terms can be described by the N graphs, and the vector

meson (p,w) graphs.

Nucleon isobars

Unlike the B-decay case, coupling constants are not readily avail-
able for the phenomenological Lagrangian approach. We shall instead use
the celebrated dispersion theoretical method of Chew, Goldberger, Low
and Nambuzo) (CGLN) for treating the pion photoproduction amplitudes. We
take the static limit for the nucleons and the Ml approximation. The

latter amounts to neglecting all partial waves other than the magnetic
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dipole coming from the nucleon magnetic moment and is expected to take
into account the contributions from low-lying even-parity TN resonances

with(ZJP, 2T) £ (3+,3)-

The procedure goes as follows. We use the expressions connecting
the invariant amplitudes VS to the C.M. amplitudes 72. These are given
in Appendix 1 of Adler's paperS). We then take the static limit for the

nucleon M > ©, and find

v v
F 7
Vi== |7+ (q 0|2+ —r
la| k]  [q]
Vy = - Z’Y/wﬁl
(1V.23)
v
Vs =:1—_,(“Z+7ZJ+‘3—“2
la| (k]| lq
Vi =+—1+—7‘27 ,
la| |k

where |E] and IEI are the C.M. momenta of the current and the pion, re-
spectively, and w = W - M, where W is the total energy. From partial
wave decomposition of the amplitudes 7?, keeping only the magnetic dipole

M, i=Y%,%, we get

J
A £La v
71 ~ 3(k . q) M13/2 ’ ?2 o 2M13/2 + M11/2 ’
(1v.24)
\Y
7y = “3Myy, Fe =0

The amplitudes M,. of course depend upon w. It is a well-known result

1j

of the CGLN theory that the solution for M1j is

@ _ /A Tp " Ta g ()

Mlj M 2f |k||Q|h1j ’
TNN

(1v.25)

gr m'fT
R v
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where hl' is related to the partial wave amplitude for elastic m-N scat-

tering flj by 5.
flj e "] sin éj

1j = S = 3 . (1Iv.26)
|a] lqf

Here 6j is the p-wave phase shift for j = 4 or 3. To avoid double-
counting, the Born contributions to M1j must be subtracted out. However,
the same equation (IV.25) which connects the full Mlj and hj’ also con-
nects their Born parts. Thus the NB part of Mlj is connected to the NB

part of hj by the same equation.

To state the results for the functions g and h of Eq. (IIL.5), it
is convenient to introduce the following combinations of p-wave scattering

amplitudes

h;(0) = (hyy = hys = hsy + h33)1w=0
(Iv.27)

hy(0) = %(hy1 + 2h;3 + 2h3; + 4h33)lw=0,

where the subscripts on h stand for (2J,2T). We evaluate these quantities

L
at w = 0 since as v, v, > 0, w = [2M(v - vB) + M2]2 - M-> 0. Explicitly

B
we get
vy 22 [ [ . N )
1(0) = = e sin® 833 (p) + sin® &1, (p) | = 0.074/mTT
: P
® (1v.28)
2 dp . 2 1 . 5 . 3
ho (0) —'_-n_— W sin 633 (p) + -4- sin 611 (p) _0'0658/mﬂ ’
P

0

where the numerical values are obtained by putting in the known values for

21)

833 and the Roper parametrization for §11.

*
In terms of h T the desired amplitudes are )

23,2

*) Note that V, is proportional to 1/w but that since the associated in-
variant 0)(V;) is itself proportional to w (see Table 1), the contri-
bution 0)(V1)Vi to the matrix element of the current is regular in
the limit w + 0 as it should be. In view of this fact, there may be
a contribution to the MM operator associated with V). However, the
M1 approximation gives exactly Vi = 0.
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V(t) =0, §(+) = 65—) - £ hi1y + hys = 2hsgs
1 3 3
w=0
6§_) = %‘[hll - hy3 - h3; + hss]
w=0 (1V.29)

§£+) = é’[hll + 2hy3 + 2h3; + 4h33]

3

w=0

m, Y. - Y

£ =y 2
TNN
Since (h;; + h;3 - 2h33)]w=0 = 0, §§+) = Gf—) = 0; so we need the

combinations h; and h, only.

Now from Table 3, the following contributions to the MM operator are

obtained
Y.~ Y Y.~ Y

~4_p n 3 - -6 p n 3

gI = —9' 2 hl (O)YO (x'ﬂ')m'ﬂ' s gII 9 ) hl (0)Y2 (XTI')mTl'
Y. Y.

=i =-L1l_p n 3

hI i 3 5 4 hz(O)Yo(Xn)mﬁ s
Y.~ X

-: -3 _r n 3

hII =i;p =3 5 4 h2(0)Y2(xﬂ)mTr .

*
Note that we have not considered N contributions to the isoscalar
(%)
s
because of the factor (Yp + Yn)/2 and of the fact that only (%,%) reso-

amplitudes V' ’, since the dispersion integral cannot contribute much

nance (Roper) is allowed.

Vector mesons (p and w)

The CGLN theory based on fixed momentum-transfer dispersion relations
overlooks a piece of the pion photoproduction amplitude associated with the
t-channel singularities. It is known that the neglected part is well
approximated by a resonating JP = 1 wave in the t-channel, provided the
Ml-approximation is made and the dispersion integrals are restricted to

the 3,3 resonance region.

We shall study these effects in an approach similar to the one de-

veloped in the axial case. We assume them to be described by the vector
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meson exchange processes given by Fig. 6(c). Both p and w are allowed
intermediate states and contribute to the matrix elements of the iso-
scalar and isovector currents, respectively. The VTY vertices, where

V is p or w, are taken to be

g
n S| m, 4 _ _: _PTmyY nm
<ﬂ (q)IJAIpu(k )> 1 Swou kyqy 67,
. P (1IV.31)
n Vj 1N\ o _; oy / nj
( (@[3 o, G )) = -i m_ Sxwop Ky 96 8

where elvdu is the fully antisymmetric tensor (€:1234 = +1). These are
the only possible gauge-invariant couplings if gradient terms are ig-
nored. In a recent dispersion theory analysis of the nucleon magnetic
moments, made by Abarbanel, Callan and Sharpzz), the p and w pole-
contributions were included and vertices of the form (IV.31l) used. This
study, as well as the analysis of the inelastic form factors of the nucleon

)

by Walecka and Zucker?® , give us some clue to the signs of the coupling

constants..

The VNN vertices are written as in Eq. (IV.16) for the axial vector

current

K
. = 1 v '
ig oy u(P1) T, [Yu - o Oy (P1 - pl)v] u(p1)

(8D 1383 [N Gp1) )

(1Iv.32)
K

- 1 i
ig \y u(P1) [Yu - 5% v (p1 - Pl)v] u(p1)

]

() 1IN Ge1) )

Note that

=2£,(0) , Ky = 2M §f§8§ ,

gpNN

where f; and f, are the form factors used before [see Eq. (IV.16)].
From radiative widths of the vector mesons I'(p - my) = 0.5 MeV and

I'(w > my) = 1.3 MeV,

Bomy = 0.448 , By 0.758 . (1Iv.33)
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The one-pole approximation to the e.m. form factors of nucleons gives
gyny © Vv o

where Yy is the coupling constant in the direct V-Y coupling [see

Eq. (IV.18)]. The coupling constants Yy can be obtained from leptonic
decays of the vector mesons or storage ring experiments or photoreac-
tions on hadrons. There is some disagreement among various experiments.

24)

We shall use the values deduced from leptonic decays s

ZE = 0.52 + 0.03 Ié = 3.70 £ 0.7
4 e T > 4m oY= E
which give
gpNN = 2.56 , 8NN 6.82 . (IV.34)
With the vertices Egs. (IV.31) and (IV.32), the V amplitudes V(i’O)

are easily computed:

vfo) -9 t(gpﬂy fZQNN/mp)
2
t
+mp
700 2(85my £20mi/™p)
2 t + m?
() _ z(gpwy gpNN/mp)
$ ) =
t + m?
(Iv.35)
ICONNS tyumy Founn/™w)
' t + m?
)
_ (g f /m )
V§+) - 9 _WTY ~2wNN' w
t + m2
W
g(+) Z(gwﬂy ngN/mw)

y ’
t + m?
w
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where we use the abbreviations t = (q - k)2, £

200N~ Bony (Ky/2,
fngN = BuNN (KS/ZM). At the symmetry point and to the lowest order in
M 1, we have
2g g 2g g
=(0) _ "PpNN “pmy =(+) _ "PwNN °wry
v, = Z s vV, = ; . (1v.36)
m m
o w
. . . . 22,23) .
The sign BUNN gV1TY > 0 is favoured in various analyses . Referring

to Table 3, the exchange MM operators coming from the vector mesons are

3 3
m mTl_
my = ZCO = Yo(x“) , mpg = 6Cp = Yz(xﬂ)
p p
s , (Iv.37)
My ) O
hy =31 =%, o Yol(x) »  hpp = i = 3%, |o Ya2(xp)
w W
where
Ty =~ Bymy Byqy 87127 -

Let us emphasize that the results (37) are simple since q? is taken
to be zero. However, if we were to keep the q? dependence, we would have
a situation analogous to that discussed near Eq. (IV.21). If one keeps
the q2 dependence then the following modification should be made to
Eq. (IV.37):

YO,Z(XT[) —>—2——-——2— YO,Z(X’]T) - | = Yo’z(xv) . (IV.38)

1.2 Born contributions

In principle, the Born contributions to the amplitudes are uniquely
defined, as it is through the definition of the Born terms as in Figs. 4
and 5 that the non-Born terms are given their precise meaning. However,
in the spirit of deriving an equivalent operator which is to be sandwiched

between nuclear wave functions, there is a problem of double-counting,

which is a unique feature of a many-body system. In as far as the nuclear
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wave function already contains some parts of meson exchanges through the
N-N potential, not all the graphs of Figs. 4 and 5 can be ascribed to the
additional meson exchange effects we are talking about. This can be best
illustrated in terms of the time-dependent picture. The pieces already
included in the wave function are given in Fig. 8, in which emission and
reabsorption of pions is completed before or after the interaction of a

nucleon with the external field.

Subtracting these graphs from the Born terms, one obtains the legi-
timate nucleon Born terms of Fig. 9. One notes that in Figs. 9a and 9b
a neutron B-decays(for example) to a proton before the pion gets reabsorbed
by the spectator nucleon. Figures 9c and 9d correspond to NN pair inter-
mediate states. Here of course, the pion can propagate with both positive
and negative frequencies and has the Feynman propagator. Figure 9e con-

tributes only to the isovector e.m. current.

Because the pion is present in the intermediate states in Figs. 9a and
9b, an introduction of such terms as corrections would necessitate a nor-
malization correction also. We do not know at this moment how to treat
this satisfactorily, the trouble being that our formulation is not a per-
turbation theory. (It is important to realize that despite the terminology
"Born term'", our Born terms are not perturbative objects.) In perturbation
theory, one may be able to formulate a systematic theory to take into ac-
count terms such as those given by Figs. 9a and 9b and corresponding nor-
malization corrections. These questions are discussed in Appendix A from
a general point of view. The practical aspects pertinent to our applica-

tion will be left to the next section.

We divide the Born terms into three groups. Referring to Fig. 9, we
shall call the current associated with Fig. 9e a '"pionic current", Fig . 9c
and 9d a "pair excitation current", and Figs. 9a and 9b a "nucleon recoil
current". Both the axial and e.m. currents will be discussed simultaneous-
ly. Most of the arguments baving been presented alreadyzs), the discussion

will be kept as brief as possible.

1.2.1 Pionic current

All the time-ordered diagrams are allowed here so that the Feynman
rules are to be used in getting the matrix element of the exchange current

in momentum space. There cannot be any contributions to the Gamow-Teller
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operator because of the Lorentz invariance, nor to the isoscalar magnetic
moment operator because of the G-parity invariance. The isovector matrix

element in momentum space is

1

1
(p2 - p2)° + m;

! !
X (p1 = p1 + p2 ~ Pz)k

[G(;{)Ys T u(p1)] ie, [t—l(pé)Ys T u(pz):l . (1v.39)

jmn

After some standard calculations, the two-body MM operator associated with

>,
. . T . . .
pionic current M1z is found to be [1n units of nuclear magneton (e/2M)]

> -M 2 -> -> -> > -> ->
Myz = a; £ [T X T(2) : (01 ¢ V1) (02 * V) X

[(‘r’ x R) Yo<xﬂ>] : (1V.40)

where )

2 __1 _r
fﬂNN 4 |8 oM ¢

- -
Carrying out the differentiation indicated by V; and V, in Eq. (IV.40),

we find among other terms the well-known Sachs' space—exchange moment:

Sy

M 2 -> ->
Sachs ~ 3m_ £oNN [T(l) X T(Z)]3 (r X R) %

x [(31 . gz)Yo(Xﬂ) + Slez(Xﬂ)] ’

Il

S12 36, + %) @2 + %) - (G1 + 32 , (IV.41)
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which can be identified with the 4th term in Eq. (IIL.8); i.e.,

_1M o 23 ]
Fv =1 3m, fony TR [T(l) * T(3)_3 *

x [(31 £ G)Yo(x ) + S1a¥a(x) | - (1V.42)

-
In addition to msachs, we have other operators which can be written in

terms of the classifications (III.8) and (III.5),

=-2M o - =-M g
.1 T 3m fry 2~ 2o 5 gy m Fry (1 * Yoz
-> >

-X
(1+x) Yo(x) = (1 +x) =—.

Y1 (%)

1.2.2 Pair excitation current

The relevant diagrams include all possible time-orderings for the
TNN vertex, but the current is allowed to create or annihilate a nucleon-
antinucleon pair only. Thus in writing down the contributions to the ex-
change current, we can still make use of the Feynman rules except that in
the nucleon propagator (iy « Q + M)_1 only the part which propagates with

negative frequency must be kept. This part is the second term in

- YyEz - iy - Q + M
Gy »q+m ™t = -1 { d

E-6 QO-E6+ie

Qo + Ex - ic

-YMEQ'i-Y>‘6+M}.
Q

This term contributes to both the axial and vector current. The contri-

bution to the isovector e.m. vertex leads to the large seagull term which
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.. . *)
is just Fig. 5a 7,

/ Vi 8y
u (q)N(pl)lJ IN(p1)> “ oM Cnjk Tk Og 0 b= 1:2,3 (IV.44)
pair

whereas there is no contribution to the isoscalar vertex to the order 1/M.
On the other hand, due to the fact that the axial vector current of the
nucleons has an odd Dirac operator, we have to go to one more power of

M—l, with the result

g

(P@neh B Nen) > - g, 55 x
pair
{aég) (g X E)Q/ ( )[O' X (Pl + pl)] }. (IV.45)
L

We shall keep this, since terms of that order also occur in the NB parts.

It should be clear to everyone at this point that the exchange currents

must be basically different between the B-decay and the MM. The notion

which is still invoked, that one can determine one matrix element from

another independently of exchange corrections, is clearly erroneous.

The pair contributions expressed in terms of our classification are:

Axial current

_ 020
gy = 2hy =33 foy Yo(xp)
(1V.46)
_ O'__2. __mTTz
gr1 = 2hpp =~ 3 dppr T 7 W Emw Y2 )
Vector current
__2 - 2M
&1 T T38m T 3m £y Y1(xp)
(IV.47)
- £2
FIII fﬂNN [T(l) X T(Z)] MR Y1(xﬂ) .

3

*) The equivalence between the seagull term (sometimes called Kroll-
Ruderman term) and the pair term in the NR limit can be checked ex-
plicitly by notlng that the negative frequency propagator becomes
- E(B -1) + B4 - Q/M]/4M > - (B - 1)/4M to the lowest order in M .
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Comparing with Eq. (IV.43), we see that the sum of R-dependent terms from

.. . . . i pair _
the pionic and pair currents vanishes, i.e. FIII + FIII 0.

1.2.3 Nucleon recoil current

The graphs to be considered are the time-ordered ones given by
Fig. 8. These contribute in the adiabatic limit, since the nucleon recoils
due to the emission or absorption of the exchanged virtual pion. The matrix
element of the exchange current can be calculated in the non-covariant per-
turbation theory, which we do not reproduce here. We simply quote the

results.

Axial current

Ki(x_ )
=i =1, __ 1 c -
hy = 1577 81 3T fTrNN KO(XN) X J
(IV.48)
. _1 __1
by =i =78 7 Emoy K2 ()
Vector current
Ki(x_)
= 2. = =L, - _ 2 -
mp = 2jp = 2hy 2 81 37 Ty | Ko (xp) X
(IV.49)
m,. =2j.. =2h__ = =2 = - 22 Ko (x_)
11 11 II 811 T TuNN 2 gl

where KQ(xﬂ) are the Bessel functions of the second kind.

HEAVY-MESON EXCHANGE CONTRIBUTIONS

It is a formidable task to calculate systematically the exchanges of
more than one pion. Such calculations have been performed for the meson
theoretic N-N potential with reasonable success. They were, however,
limited to two-pion exchanges. The two-pion exchange graphs are usually
supplemented by exchanges of resonances such as p,w. Apart from the

complexity, clearly there would be a need for care because of the double

counting.
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There have been calculations in fourth-order perturbation theory for
the GT 26) and MM 27) exchange operators, but the reliability of such cal-
culations is not clear. In our approach, we shall neglect the uncorrelated
multipion exchanges, but assume as in nuclear force calculations that the
correlated part of multipion exchanges is important. Thus we shall con-

*)

sider only the w and p exchanges ° and use the vector meson dominance model

for their evaluations. The results are given in Table 5.

A strict adherence to the procedures used in the calculation of nu-
clear potentials would require that VNN coupling constants and my be de-
termined phenomenologically by fitting the scattering data etc. We have
already touched upon this question in connection with the pionic form fac-
tor of nucleons. In view of rather large discrepancies between parameters
used by different people, we shall not do the (in principle) correct pro-
cedure. We shall just use the coupling constants already determined in the

previous subsection.

Even restricted to the vector meson exchanges, a complete calculation
is difficult because of the vector nature of the particles. For the nucleon-
recoil graphs (equivalent to Figs. 9a and 9b with the pion replaced by the
vector mesons), the time-time components of the vector meson vertices give
the leading terms, while those coming from the space components are of
order M-_2 relative to the former. However, our calculation of other con-
tributions in the MM case is not complete for the following reasons. We
have disregarded the mesonic-current processes in which the currents inter-
act with the intermediate mesons (i.e. graphs equivalent to Fig. 9c with
T replaced by the vector mesons), partly because of the complicated struc-
ture of the radiative vertices and partly because the relevant form factors

(associated with monopole, dipole, and quadrupole interactions) are not at

*) We have also looked into the n-meson exchange graphs but found them

to have unimportant effects. They have essentially the same radial
dependence as the OPE diagrams but do not compete significantly with
them because of the smaller nNN coupling constant [exact SU(3) with

a ratio £/d = 0.6 gives gnNN/gnNN = 0.3] and the shorter range. They
also turn out to be small compared to the vector-meson exchange dia-
grams. The role that the n plays in meson-exchange currents appears
therefore to be very similar to the one it plays in the NN potentials.
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present available. It is worth while to note here that a part of the
contributions from these processes must be related to the NN potentials

due to the vector meson exchanges in the same way as the Sachs moment

EEq. (IV.41)] is related to the OPEP. For the pair excitation graphs

in the MM case, both the time-time and space-space vertices of the vector
mesons give contributions of the same order. The results given in Table 5
refer only to the latter, where only the spin currents were taken (neglect-

ing the convection current part).
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V. APPLICATIONS TO 3H AND 3He

The isospin doublet 3H and 3He is the simplest nuclear system with
all the many-body characteristics, such as off-shell effects, etc. Next
to the deuteron, its wave function is the best known, and it has a com-
plete set of experiments we are interested in -- i.e., magnetic moments
and B-decay. Deuteron possesses only an isoscalar moment, which is too
tiny and cannot make a bound-to-bound B-decay transition, making a clear-
cut calculation unfeasible. Thus the trinucleon system is better suited
for our purpose. Historically, the anomaly in its magnetic moment was

. . . 28
one of the first pieces of evidence of meson-exchange effects ).

Before going into details of calculation, let us review both theore-

tical and experimental situations.

MAGNETIC MOMENT AND GAMOW-TELLER MATRIX ELEMENTS

1.1 One-body operators

MM: My = -2 _ 0 Oi + —E————E-giTg(i) + orbital
2 2 v.1)
. (D) > _(+) .
GT: H, A 03T (i)
where
0.440
(v, tv)/2-= .
p R 2.353

o . +
The classification of allowed states: (JP =k

29)

, T =1%) of three nucleons
gives 10 distinct states corresponding to the spectroscopic terms:

three ZS%, ZP,/2 and “D% and one "P%. If we assume that of all these only
the S (full space-symmetry), S! (mixed space-symmetry), D and T = 3, (mixed
space-symmetry) states are significant which seems to be borne out by most

30)

recent analyses , then the GT matrix elements and the MM are given in

terms of the state probabilities PS'°- and the amplitudes AS--° by
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(1) _ 21 1 2 2
My© =T 5 3|Pg 3Py * 3Pyt 3Py T Aghy |
+ Y
A _ % T _ 1 1
us = 9 (PS + PSI PD + 2 P3/2) + 2 PD ’ (V' 2)

M " Ta oy J Ll (1, 1 _1
Wy = (Pg —3Pg + 3Py +5Py) —gP,

where all contributions are independent of the radial forms chosen for
* . 1 . .
the states ). The last terms in ué % are the small contributions from
, ,
the orbital magnetic moment. The isoscalar and isovector moments (us and

uv) are related to °H and %He magnetic moments by

_ uCH) + u(CHe)

Hg = 2
(v.3)
W = u(CH) - 1 (*He)
so that
Bo= g —(20)uy; 2t = +1(-1) for *He (°m) .

1.2 Two-body operators

In evaluating the exchange current correction, we shall not use the
full wave function, but retain only the symmetric S-state. This brings

with it a considerable simplification in the calculation.

*) Similar radial forms were assumed for T = % and S’ states. Note
that breakdown of mirror symmetry which may be due to the T = 3k state
or to different state probabilities in °H and 3He has only a slight
effect. We find, for example, that a 107 difference in P, between
%1 and %He results in a change in Wy and g by only 1% anﬁ 207,
respectively.
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The spin-isospin part of the S-state wave function is given by

Wmt - l; m-t =m ¢t ,

Vo % n o n)
0" = xo(L,2% (3 , (V.4)
T o=@ -3 - G o,

/12

where m,t are the z-components of the total spin and isospin, respectively.

1 1
. . m=% -m=% . . .
A more explicit form for ¢ 2 and ¢ * is convenient for calculation;

m=Y%

6" = = [ - ()]

i \/% [<-++) L (++_):|

(v.5)

(S

and similarly for nt and ﬁt , where (+) and (=) represent spin up and
down for ¢ and proton and neutron for n. The simplifications that

Eq. (V.4) brings are that because the S-state is fully space-symmetric
any operator odd under interchange of space coordinates has vanishing ex-
pectation values; thus the C.M. dependent operators [Eq. (III.8)] do not
contribute. Moreover, tensor operators have vanishing matrix elements.
Note that the vertex corrections with an intermediate state N;+3
contribute in fully space-symmetric states by virtue of spin-isospin

cannot

selection rules.

Unlike the one-body operators of Eq. (V.1l), the matrix elements of
the exchange current operators depend on radial wave functions. There
are various forms involving the coordinates ?1,?2,¥3 which satisfy the
symmetry. We shall work exclusively with the analytically simplest
Gaussian form exp (-const {r?, + r?; + r3;}) where Ty = I;i - ?5]. The
fact that some of the Born terms and also all heavy meson exchanges are
very sensitive to the part of wave functions where rij is small requires
that the short-range correlation be handled with care. Again for sim-
plicity, we shall use the Jastrow type correlation function

22, 1
Hi<j (1 -e Y rlJ)f to simulate the short-distance behaviour. For
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completeness, in Appendix B we examine what happens when a correlation
function of different nature used frequently in nuclear matter calculation
is used. Although this cannot be a quantitative assessment of what we

do below, it gives an idea as to how different correlation functions be-
have at short distances. The complete form of our radial function is

then

9,2 2 .2 v2.2.0%
N @ (F12¥T234T13) /2 :[I 1 -e Y T (v.6)
i<j

f(ri12,r13,r23) =

where the range parameter o takes the value 0.384 fm = when fitted to
Coulomb energy and is taken in our calculation to be 0.337, 0.384 (C.E.),
and 0.440 fm_l. The parameter Y is interpreted as indicative of repulsive
core radius T the rough relation being r, = (yv/2)~!. The values used in

the calculation are

r = 0.0 0.2 0.4 0.6 0.8 fm

Yy = o 3.53 1.768 1.179 0.884 fm

v.7)

We can now write down the non-vanishing matrix elements with the
wave function Eq. (V.4), and these are given in Table 6. They comprise
all matrix elements needed, since operators like E?(l) X T(Z)j (01 X 02)
reduce to [T(l) - T(2)j (01 - Gz) in S-state, and all others vanlsh
Using Table 6, and Eqs. (IT11.5) and (II1.6), we have

“52) [<g1> <hM>]

(2) _ (. -

Mgt = {kp + & - 3mp) (v.8)
(aHe||H(2)||3H)

o = e

Cre| |18 || %0)

where by definition the one-body matrix element in Giz) is evaluated with

the S state only. We use

> > >
(gI) = Nz./‘lf(r12,r23,r13)|2 gr(riz2) dry drp drs
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and superscripts M and B for magnetic moment and B-decay. The functions
g, hy ..., are given in terms of amplitudes V and A in Tables 2 and 3 for
the case of NB term, and in Chapter IV for other contributions. In
order to compute uV,S and GA, it suffices to collect all contributions to
g,h, etc. For example,

Bor NB
g1 = @Dope * GPme = e * ©opr ¥ Clme V-9

and likewise for the others.

1.3 Wave function normalization correction

As we have discussed in Chapter IV, there is a correction quite dis-
tinctive from the two-body operators we have been considering and any
other one-body correction such as relativistic corrections etc. —-- it is
the normalization in the wave function due to an explicit dependence on
meson degrees of freedom. For the trinucleon system, it adds the follow-

ing corrections,

norm _ (1)
Hgy = Mgy (2)

(V.10)
§UOTR = (7)

where

and (Z) means an expectation value which is independent of the spin and

wm€> = -9

isospin projections. Since

<%mt

- - - ->
Z ('ri . Tk) (oi . Ok)

i<k

we find
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Ky (x_)
norm _ (1) | _ 6 .2 / _ Ll
Moy “Ws v |~ 7 Emy Ko Cxp) % >

(v.11)

K (x))
norm _ _ 6 .2 / _ 1
8 = -7 fo Ko Gxp) X > :

m
There are two points we must emphasize here. Firstly we are only consi-
dering the normalization correction coming from the pion exchanges where-
as vector meson exchanges are also included in our calculation. 1In
principle, we could do a similar calculation for the exchanges of other
mesons, but it is numerically small and perhaps the meaning of such a
calculation is not clear because of the difficulty of extending renormali-
zation procedure to two-particle systems. We find it more appropriate in
numerical calculations to lump the normalization correction into the OPE
Born term. The second point is that practical calculation of <Z> gives a
positive result instead of negative as the interpretation of a normaliza-
tion would suggest. In other words, it enhances rather than reduces the

matrix elements.

We also note here that this normalization correction cancels only
partially the nucleon recoil term. The exact cancellation occurs only in

the extreme case of the neutral scalar meson theory.

EXPERIMENTAL SITUATIONS

The magnetic moments are known very accurately and are given by
u(®H) = 2.97893 , u(’He) = -2.12815 . (V.12)

Or in terms of the isoscalar and isovector moments,

ngP = 0.426 , usxl’ = +2.553 ., (V.13)

The discrepancies between the experimental values [Eq. (V.13)] and the
single-particle values [Eq. (V.2)] as a function of various P's are

given in Table 7, where §u denotes
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_.exp _ (1)
Sug v = Mgy T Mg,y (V.14)

The experimental situation for MA is quite controversial, because of
the various experimental quantities involved in its extraction. This is

seen in the formula

2(f0) 1ug uy — (E0) a5 | (EE)
Z(ft)1“0+1”N - (ft)n+p (ft)3H+3He

exp _
1M, | 5,5, = 3 , (V.15)

which shows that, besides information on (ft)3H+3He’ the super-allowed
decay '“0 - 14N needs to be used to determine GV (Fermi constant) and
neutron beta-decay to determine g = GA/GV. For all these decays, uncer-
tainties are also introduced by radiative and Coulomb corrections. The
former correction, though small, is not unambiguously known. The major
uncertainties lie however in ft-values for n and °H decays. Previous
determinations based on the neutron lifetime measurement by Sosnovsky et
al.al) [2

The more recent value reported by Christensen et al.%? R (t%)n =

(10.80 + 0.16) min, decreases IMA|2 down to 2.88. All these estimates

, (t%)n = (11.7 * 0.3) min, gave |MA ranging between 3.30 and 3.17.

3)

are done with the same (ft)3H+3He’ namely the value quoted by Goldhaber® ,
1132 * 90, which is close to POrter'sak) 1137 + 20.

In recent re-examinations of the triton beta-spectrum by Salgo and

5)

extend farther to the right than in the older data. This has the effect
|2

Staubas) and by Bergkvist3 , the end-point of the spectrum was found to

of increasing the ft values and therefore of reducing still further |MA

Using almost similar inputs they find

(ft)3H

(ft)3H

(1159 * 11) sec , [M,|* = 2.84 + 0.06 Salgo-Staub

(1143 + 3) sec , |M,|? = 2.94 +0.05 Bergkvist .
(V.16)

A summary of the early and recent status of this important question is given
in Table 8. The discrepancy between the value of Salgo and Staub and the

single-particle operator value is tabulated as a function of P's in Table 7.
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We also give in Table 9 the variations in §(Gibson) =

IIVIEY) (1) .. . _
(|M.A|exp |MA IGibson)/ My Gibson and similarly in G&(Blatt-Delves)
corresponding to four values of IMA|exp given in Table 8 and probability

amplitudes listed in Table 7.

NUMERICAL RESULTS

We now write down the necessary formulae explicitly and evaluate

them:

(2) _ . pionic pair recoil norm NB

uV uV,n * UV,n * uV,ﬂ * uV,ﬂ * uV,Tr
pair recoil pair recoil
T YW WL R
(V.17)

(2) _ . recoil norm NB pair recoil pair recoil
Hg © = Hg g THg T Hg,r T Mg o Ms,po THsw T Hs,w

(2) _ .pair recoil norm NB recoil recoil
GA - GA,H * GA,W * GA,W 6A,ﬂ'+6A,p * 6A,w »

where subscripts m,p,w represent the mesons exchanged, the superscripts
the kinds of terms: pionic current, pair excitation current, normaliza-

tion correction, Non-Born (NB) term, nucleon recoil term etc.,

pionic pair _

M
Pv,rm Y Wy —

2 (@xp = DYo(x)) = 0.7257 ((2x - DYo(x))

I
wl&
=]

. Ky (x_) Ky (x )
recoil _2 2 _ il - _ il
V.1 == fﬂNN Ko(xﬂ) ——::——£> 0.05093 <%o(xﬂ) ——;;——£>

ﬂ m
Ky (x )
norm __6 2 /(1) _ -
My, =7 I MWy > <%°(xﬂ) X -
S il
Ki(x)
= -0,3595 Ko(xﬂ) - ——;;——



B
v,m

pair
V,p

urecoil
V,p

pair
V,w

recoil
s W

recoil _

S,m

norm
S,

NB
uS il

’

|
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1+ K,
( 2 V} [% (h1y - 4h13>] {otx) -

3
g g g m /
_ _wNN “wry “TNN [_l] §Y°(Xn)> = -0.00336 <Y0(X.,T)>

m
6m w

2M

- ?n; f;NN (1 + k) <Y1 (xp)> = -0.9755 <Y1(Xp)>

2
& JNN 1
= 4 [p J <(1 + ZKV)KO(XO) - Xp Kl(xp)> = 1.394 <Ko(Xp)> -

4

- %
0.02767 {x, Ki(x)))

- %Elﬁ. £2 00 (L + ko) <Y1(xm)> = 0.4523 (¥ (Xw)>

WNN
(]

2

g

-4 [wNN] <(1 + 2|<V)Ko (xw) - %— X, Kj (Xw)> =
4T

- [9.897 (Ro(x)) - 0.1964 (x Ki (xw)>:‘

£20 (Ro(x) = Ka(x)/x) = 0.05093 (Ko(x) = Ki(x)/x)

EN

R, (“s(;l)>s (Ko Gep) = K Gep) ) =

0.06723 (Ko (x ) = Ki(x )/x,)

3
Bomv Somy Smw [I_:JT.J <Y0(x“)> = 0.01551 <Yo(xﬂ)>
2m o) |
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S,P

2
. 24
recoil ONN + 1 ] -
= _PAN - = K =
Mg o 12 (sz <[(1 2kg)Ko (xp) 5 %, I(Xp)

= 0.3785 (Ko (x))) - 0.08300 (x Ki(x))

pair _ ., M _
u 2o T (10 (1)) = 0.9755 (11tx))

S,w

2
. g
recoil WNN 1 _
Vs T [lmJ <[(1 v KK (x) — g x, K (xw):|> )

= -0.8954 <K°(Xw)> + 0.1§64 <Xw Kl(xw)>

pair _ _ g_ji 2 - /
u iy £2 00 (1 + k) <Y1(xw)> 0.4523 <Y1(xw)>

GziiTr - %I;_" £2 0 (Yo(x)) = 0.03136 (Yo(x,))

5Ze;°11 = % f’rerN <,1<0 (x) - K (xﬂ)/xﬂ> = 0.1019 <Kg (x) - Ki(x) /xﬂ>

5Z?§m = - g'f;NN <Ko(xﬂ) - K1(xﬂ)/xﬂ> = -0.1528 <Ko(xﬂ) - Kl(xﬂ>/xﬁ>
NB 1 &mw M =(=) _ 72 =(+) -
GA,N T em ga M m; [ZAI T AT T A <Y°(xﬂ)> B

= -0.0144 (Yo(x)) *)

*) This formula was quoted erroneously in Eq. (5) of our previous
paper!) and elsewhere®?) with a misprint of a factor of two and a
sign mistake inside the brackets. Due to the sign mistake the con-
clusions drawn there about the NB contributions are not correct.
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2
6Zc’agoil -4 fﬁf%] <Ko(xp)> = 0.6640 <Ko(xp)>

2

. g

srecotl o 4 | (Ro(x)) = -4.713 (Roxy) (V.18)
’ 2w

where the numerical values are obtained from coupling constants listed
in Table 10. Other quantities needed are the nucleon mass M = 938.9 MeV,
. 1 1
Ky = 3.70, Kg = -0.12, the matrix elements <ué )>S = 2.353, <ﬁé )2;= 0.440.

We have taken positive sign for g and g following Adler

38) pﬂx gpNN wmy ELNN
and Drell , and Abarbanel et al. . We have also used

%[h11 - 4hi13] = 0.8197 X 10_2/m; obtained by using the Roper resonance
parametrizationZI).

(2)
V,S
range parameter O [Eq. (V.6)], the hard core radius r, [Eq. (V.7)], and

The results for u and 6;2) are given in Table 11 in terms of the

individually for the OPE and HME contributions. For reasonable values

of & and r_, o = 0.384 and r_ = 0.4, our results are

(2) _ +0.041
My = 0.193 (g o40)
() _ +0.0077

+0.18

(2) _
GA - 0.053 (_0.043) Z L)

where we have indicated in parenthesis the range of values they can take
when ¢ and r, are varied. We may summarize the results in the following
way.

(2)

Wy The low—energy theorem implied that the pion—exchange con-
tribution is dominated by the Born term. This is confirmed explicitly.
Even taking some sizeable errors in the method of calculation, the NB term
is definitely negligible, even less than 47 of the Born term. The heavy
meson exchange is small (about 107 of the Born term), but needs to be
treated carefully since it subtracts. As one can see from Eq. (V.18)

there is a large cancellation between p and w terms; thus the result could
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be quite sensitive to the relative size of the coupling constants gpNN and

BLNN" In our calculation ngN/gpNN 7. However, the more recent value

39) 40)

prefer in their nuclear force calculation a ratio of about 12. Further-

quoted by Ting has the ratio 8.6 * 1.0, while Partovi and Lomon
more, the normalization correction which we made only for the pion may be
necessary for other mesons if more accuracy is needed. Thus there is
room for improvement in the HME contributions. It should be emphasized
that the normalization correction has roughly the same magnitude as the

OPE contribution, but is more strongly suppressed when r, is increased.

(2)
Hg

: Clearly the low-energy theorem is useless here as all the
model-dependent corrections are as large as the Born term. The non-Born
term coming from the vertex correction due to the P meson is of about the
same size as the Born term. Here not only the magnitude but also the sign
of the coupling constantg gpNN gpTTY 8Ny 2Fe uncertain. Although the posi-
tive sign is favoured by other evidences, there is no fundamental reason
why it cannot be negative. If it is negative there will be almost com-—
plete cancellation within the pion-exchange term, leaving everything to

the HME contribution. The same discussion as for the uéz) leaves uéz)
considerable doubt. Clearly more refined and if possible model-independ-
ent calculations are called for.

(2)
GA

¢ The Born terms are small as expected, but in principle the
NB term could be substantial. In triton B-decay, the latter calculated

in S-state is very small because of the fact that N3 3 cannot contribute.

Table 4 shows that the Adler values are mostly accounted for by N 39 the

3,

remaining part presumably coming from N and p-terms. The small

>
NB contribution is most probably a fortiliouslsituation due to the can-
cellation of N§’3 terms, typical of the S-state of triton, but perhaps the
situation could be different in other systems. Because of this cancella-
tion, the OPE term is as small as the HME term, with the resulting value

consistent with zero exchange contribution.

COMPARISON WITH EXPERIMENTS

In Table 7, we have given the expected corrections for different

choices of state probabilities (S, S’ and D). Let us compare these values

(2) (2)

with our results for u.“’, ™ and Mﬁz) given in Table 11. For the iso-
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vector moment and the GT matrix element, our results would be compatible
with the wave functions with anomalously small PD. The Blatt-Delvesul)
wave functions(PD = 97, PS’ = 27), for example, would require much lar-
ger corrections than our calculated meson exchange corrections would
provide. With the Gibson wave functionso) (PD = 67, PS’ = 27), the cor-

rections needed are smaller.

With the GT matrix element, and isovector and isoscalar magnetic

moments, we have three linear relations for the state probabilities:

Y. +Y P
-_p n - 1 D (2)
Hg ; {Ps *Pgr - Pyt 3 P%] Yt Ps Vg

1 2 2 (2)
* 3Byt 3Py f 3 AgAy + S, ) -

One may ask what conclusions about the state probabilities can be drawn
(2) (2) o .
from our values of uV,S and GA .« Hy and MA appear in a similar combina

tion of P's; therefore we may consider Mg and Wy only. Neglecting

P%E % 0.25% which has negligible effect, we find with PD + PS + PS' =1,
_1-a
Py =3
(v.21)
=3 -n -2
Ps"4[1 b 3PD:]’
where
Y. ot
- 2 P n
a = [US - ué )] / ) =Pg + Pgt = PD
(v.22)
_ _(2) o "l o 1 1
b [“v Hy o | s 3% T3 h
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Note that whereas PS' depends on the isovector and isoscalar moments, PD

depends only on the isoscalar moment. Thus a precise calculation of
uéz) is needed since it would unambiguously fix PD. (However, the iso-

scalar moment is a difficult object to calculate.) Taking our calculated
(2)
S,v’
considered, are P

values for u the solutions of Eq. (V.21), for the range of o and r,

Sl = 0, PDS 6%.

REMARKS

To summarize, we have found that our calculated values for uézé are

Hd
consistent with the wave functions different from what the presently ac-
2 .
ué ) but its calcula-

cepted nuclear force dictates. directly gives P

s
tion is model-dependent and uncertain because of ambiguities in the coupl-
ing constants and normalization correction. uéz) is fairly model-
independent, although the exact magnitude can also be affected by the
model-dependent correction terms. As for the 6;2); the corrections con-
sidered are small, consistent with zero. As one can see in Table 12 there
are, however, some differences between the PCAC and the phenomenological
Lagrangian methods. If in the latter one treats the p-propagator as sug-
gested by the PCAC [i.e. replacement of 1/(q? + mé) by 1/mé], the dif-
ference in the two methods is substantial. However, if one keeps

(q + mz))-l in Fourier-transforming, the p-contribution becomes negligible
for r, ~ 0.4 and the net result is small, close to the PCAC value.

Since a 3-5% reduction is expected from the relativistic corrections

to the GT one-body operator"z)

, a still larger exchange correction than
given in Table 11 would be needed to eliminate the discrepancy. There
are a number of effects that can resolve the discrepancies. Firstly,
although the D-states may enter with small probabilities, they can com-
pete substantially through the S-D matrix elements. The reason is that
the S-D matrix elements can receive contributions from the vertex correc-
tion with an intermediate N§’3 and in general from tensor-like operators
[see Eq. (III.6a)] . Recent calculations by Blomqvistua)

. 43
Riska )

, and Brown and
which include the D-states by approximate methods indeed suggest
the importance of the S-D terms. Secondly, a possibility of having a
substantial contribution from three-body currents cannot be excluded

)

as suggested by the calculation of the isovector MM by Padgett et al.**’,
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Finally, there is the dependence of the two-body operatorsvon the shapes
of the radial wave function and on the types of core correlations (soft-
core or hard-core). The Gaussian function is perhaps not very adequate
in view of its too rapid fall-off. The dependence is insignificant for
two-body operators of long-range character, but may not be for operators
of the forms EYQ(XW) - (mp/mﬂ)3 Yo(xp)] and {Ko(xﬂ) - Kl(xﬂ)/xﬂ} . Their
matrix elements depend also on whether soft- or hard-core correlations are

used. These matters are further discussed in Appendix B.
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Table 1

Explicit forms of covariants O (As) and 0O (VS) and their non-relativistic expressions,

_1
where {a,b}XE akb *k-a- kb, P=3 (p1 + P1) » A =1,2,3,4
0>\ Covariants NR limits
> >
Ay O)\uqu -(0 x Q)
AN ‘_>
Ay 2iP>\ 2iP
. >
Aj 1q>\ 1q
Ay -y, %[3(6’ EOENCE 3{)3]
1> > > > > > >y > >
As =y * K)2Py MP| @ R@ P+ @ PO )
A R L3[@-DE-3 @ 3HE - b]
=
Aq ik)\ ik
As (v Wk, {I—ﬂ]:(é “DE P @ INE B
V1 7 vsirvhy koS + 5 L(B‘ CPNE xR - GxRE 31)]
. > > > > 1 > >1 -> ->__'
v, 2iys{P,qly ioc s (k- q Lkoq - 5 [{(Pl + py) X q} x k)J‘
V3 Ysly,aly i [(3 x Q) X K]
1. T - >
Vy 2Y5 [{Y’P}A - -é' lM{Y"Y}AJ (q X k)
vs ivs{k,al, 30 G- [L—*@ "B - ?ﬁ?]
Ve Ys{k,Y}A -i [(g X i) X k]
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Table 6

Spin-isospin matrix elements of exchange current operators for
trinucleon system in symmetric S-state

Operator O3, Matrix element
[Ta(l) - T3(2)] (31 - 32)3 -16mt
3

[?m . ?(z>]<31 + 32), ~12m

MM
@ + gz% +4m
T3(1)T3(2) (41 + O2) —4m

GT [m) - r(2)]+ @1 - 3,) 443

GT :

|a

(uell 3 og511°)
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Table 9

The discrepancies between the various experimental Mp's of Table 8 and the
values obtained with Gibson and Blatt-Delves wave functions

|, | %P §(Gibson) 2 | §(Blatt-Delves) >’
1.78 +0.054 | 0.107 * 0.033 0.101 * 0.033
1.80 * 0.052 | 0.120 % 0.032 0.114 * 0.032
1.70 * 0.034 | 0.054 * 0.021 0.048 + 0.021
1.685 + 0.0178 | 0.047 * 0.011 0.042 + 0.011

(1) -
a) M | gipgon = 1+609
(1) -
b) IMA IBlatt-Delves 1.617
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Table 10

Coupling constants used to evaluate Eq. (V.18)

N2
(M) 2 L (Eams
EBNN g Epmy BNN ZmL M
13.64 138 0.080
2.56 750 0.448 0.0829
6.82 783 0.758 0.643
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Table 12

Comparison between the PCAC and phenomenological lagrangian methods
for 6&2) (in 7Z) calculated with the S-state with o = 0.384 fm.

r_ 0.0 fm 0.4 fm
Adler -0.35 -0.30
N3, 3 0 0
pe %
S NT 1 0.29 0.25
] 3
&0 © %
2 N3, -0.44 -0.38
(el =]
g
g o o) 2.4(=3.7) 2.05(=0.64)
a A
Q
o
oW
Total 2.2(-4.0) 1.9 (-0.77)

2) The numbers given outside of the parentheses are calculated by
setting q? = 0 in the p propagator whereas those in the parentheses
by taking the q? dependence into account.
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Appendix A

MESON THEORY

In order to have a concise definition of the two-body electromagnetic
or weak exchange operators in meson theory, one may follow the same line of
reasoning as in the definition of the two body nuclear potential. Some
approximation scheme is set up for the evaluation of the field-theoretic
S-matrix in the scattering of two nucleons involving interaction with an
external field (here, absorption of photon or B-decay). The hypothesis
which is then made is that the mutual interaction energy of the nucleons
and their interaction energy with the external field have representations
in terms of non-relativistic, energy-independent potentials. The identi-
fication of transition amplitudes obtained in the meson theory description
and the non-relativistic equivalent operator description give then prescrip-
tions of how to define the latter. The non—unique character of the pre-
scriptions arise, in general, from the different choices that can be made

for the representation space of the two—nucleon system.

The method used in this work, called the S—-matrix method, rests on the
representation of the two—nucleon states in the unperturbed Fock basis. It
has some specific features which are not shared by others, the unitary
transformation method being one example. We shall, therefore, sketch them

briefly and refer the reader interested in more details to Ref. 25).

Consider the decomposition of the field theory Hamiltonian of the two-
nucleon system H = Ho + V, + V, into parts associated to the free fields
(Ho), to the pion—nucleon interaction (V;) and interactions of the pion and
nucleon fields with the external field (VX), all taken to be additive. 1In
the quantum mechanical description the interactions of the nucleons are
represented by a potential. We denote its stationary states by |¢a} . The
index o is a label for the state of the two nucleons. If l?a> denote the
corresponding stationary states of the field-theory Hamiltonian H, it can
be shown that l¢a) are just their projections on the meson vacuum. More
precisely, one has

(¥, = 1o, + SR (o) (A.1)
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where a = (E - Hg), A is a projection operator off the meson vacuum and
R% is the reaction matrix associated to VTr but with all intermediate states
containing at least one pion or NN pair. The transition amplitude between

states labelled by m and n due to one interaction with VX can be written as

(R )= (o ln,l0,)

A

_ A
B <¢m|vx * Vx a R% * R%

= \'
a

Ay A
a X a

\
7 )
V. + R Rﬂld)n/ . (A.2)

The first equation is the definition of Hx , the interaction energy of the
system with the external field. In the second equation, the first term
stands for the normal one-body operator and the others for the operators
describing virtual meson effects. The projection operator A shows why

processes described by the diagrams of Fig. 8 had to be excluded.

In the perturbation theory expansion of Eq. (A.2) there are a number
of terms representing self-action effects which we assumed are already taken
into account in using the renormalized forms of the one-body operators and
in evaluating the two-body diagrams in renormalized perturbation theory.
In principle renormalized quantities are here ''system'" quantities in the
sense that they depend on the state of the system as a whole even though
they may refer to the properties of a single nucleon, such as mass, form

45) within the framework of

factors, etc. It was, however, shown by Frantz
the static model that this system dependence disappears when the adiabatic

limit is taken.

There is still another important feature of this approach which deserves
some attention —— the wave function normalization correction. The state
vectors IWQ) as given by Eq. (A.l) are not normalized. Assuming |¢a> to
be normalized then the normalization is taken care of by the substitution

|, =~ |£x)/z&% where Z&%==<¢a|Ya>. From Eq. (A.l) we get

’ '-2 \ -1
z! = [1 + ‘l‘bale'T(_gJ R! (9, }] (A.3)
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which, if solved to lowest order in Vﬂ, gives

AP ‘
zy =1 - <<p0‘|v1T (;J vﬂ|¢a> . (A.4)

The one-body parts of the operator: VW(A/a)ZVTT are assumed to be
incorporated into the renormalization effects mentioned above. The re-
mainder is a two—body part which can be given an operator representation .
by using essentially the same methods as for the calculation of nuclear
potentials. By taking the static limit and-transforming to coordinate

space, we find

> >
1
z'(x1,x2) gl

122 [fn - T@] Gr * DG+ DRolxp)

2 -> -> -> ( K],(X’n_)w
1+ f;NN [?(1) . 1(2)] Gy ¢ 3) LFO(XW) _ —_E;_f)

+ Slsz(Xﬂ) (A.5)

where the derivative is with respect to x . The correction to the m?trix
elements <¢m]HXl¢n> amounts to multiplying them by the factor IZI;IZIlll/2 s

where Zﬁ (Zﬂ) denote the expectation value of Eq. (A.5) in the state m (n).
In a second-order perturbation treatment of the normalization correction,

it seems adequate to introduce the correction only for the one-body operator,

in which case it just adds on the r.h.s. of Eq. (A.2) the term

<¢m|vxl¢n> [(zlglzrll)lﬁ - 1] . (A.6)

Meson—-exchange effects reflect the extent to which meson degrees of
freedom are eliminated from the nuclear wave functions or, stated equivalently,
the extent to which more diagrams appear in a field-theory description than

in a non-relativistic description. The normalization correction Eq. (A.6)
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accounts for these effects as much as the two-body operators.

To conclude, we should mention that the question of normalization

has raised much controversy in the past in relation to the definition of

nuclear potentials. The difference between the fourth-order parts of the

Taketani-Machida-Onuma (TMO) and
precisely in its omission in the
whether it should be included or
The procedure that we used stays

ments. It is therefore not very

if ZI stays close to one. This

to the three-nucleon systems.

Brueckner—Watson (BW) potentials lies

1 “6). The question is not

BW potentia
excluded but rather how it should be handled.
essentially on perturbation theory argu-
satisfactory, but can perhaps be trusted

turns out to be the case in our applications
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Appendix B

TRINUCLEON WAVE FUNCTIONS FOR THE S-STATE

We briefly discuss here other forms of wave function which are available
and how these different wave functions modify our results. In our calcu-
lations, we have used the Gaussian form for the radial wave function of
the S-state. The others frequently used are the exponential, Irving, and

), all of which fall off somewhat less rapidly

Irving-Gunn wave functions®
than the Gaussian form. We have calculated the matrix elements of Yo(xﬂ),
EKo(xﬂ) - Kl(xﬂ)/xﬁ] and Yo(xp) with the Irving wave function (multiplied
with a Jastrow factor) and found that they were not significantly different

from those of Gaussian wave function over the range of r, we have considered.

Let us now examine the correlation function. We choose a hard-core
function frequently used in nuclear matter calculation. Assume that we

can write

_2 2 .2
s (rf2+r13+r23)/211; (1-n

, (8.1)
i<]

f(ri2,r23,r13) = N ij)

which seems to be valid when on- and off-shell "defect'" wave functions are

taken to be the same, and

- 2
d - ri.'
n.. = [——=1 for c¢Sr.. S d
1] d -c 1]
=1 for r.. < c (B.2)
1]
= > .
0 for r:]._j d

Here d is the separation distance which is about 1 fm for acceptable po-
tentials, and ¢ is the hard-core radius of order of 0.4 - 0.5 fm. For the
0 given by Coulomh energy o = 0.384, Eq. (B.1l) and Eq. (V.6) (the soft—core),

when properly normalized, are found to give the same matrix element of
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Yo(xﬂ) for each ¢ = (Yfi)-1 if we choose d = 1 fm. For our discussion we

may take this as some sort of normalization. Then we have evaluated the matrix
elements of [Ko(xﬁ) - Kl(xﬂ)/xﬁ] and Yo(xp) with both wave functions, and
plotted them as a function of ¢ = r, = (YJ'E)—1 in Fig. 10. Note that the
correlation function Eq. (B.2) suppresses their matrix elements more than

the soft-core factor does. As a consequence, it is possible that our
calculations with the soft-core factor obtain somewhat overestimated values

for the nucleon recoil, the normalization correction, and HME terms, the

bulk contributions of which come from the inner part of the wave function.
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Figure captions

Fig. 1 : Diagram representing the transition amplitude of a two-nucleon
system interacting with the axial or vector currents (denoted
by the wavy lines).

Fig. 2 : One-pion-exchange (a) and one-boson-exchange (b) contributions

to the exchange currents.

Fig. 3 : Pion production amplitude from a single nucleon by the axial

or vector currents.

Fig. & Nucleon pole diagrams in the amplitude for pion production

from the nucleon by the axial current.

Fig. 5 Born diagrams representing the amplitude for pion-production

.o

by the vector current. The separation into the seagull
diagram (a), the nucleon-pole diagrams (b) and (c) and the
pion-pole diagram (d) provides, when appropriate expressions
for the vertices are used, a book-keeping of the terms de-
scribing the full amplitude in the soft-pion limit. These

modified vertices also follow from the chiral Lagrangians.

Fig. 6 : Representation of the pion-production amplitude by the axial
or vector currents in terms of pole diagrams. Graphs (a)
and (b) are for the intermediate nucleon isobars (s-channel
singularities) and graph (c) is for the vector-meson inter-

mediate states (t—channel singularities).

Fig. 7 : One-pion-exchange diagrams representing the vertex corrections
due to vector meson intermediate states. Due to its odd
G-parity the w-meson (JPG = 1-—) contributes only to second-
class currents.

Fig. 8 Time-ordered Feynman diagrams representing mechanisms where

the interaction with the current occurs after emission of

the pion and its absorption. Together with the diagrams



Fig. 9

Fig. 10
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where the current interacts before the pion is exchanged,

they represent effects already included in the wave functions.

The parts of the Born contributions to the OPE process that
remain after excluding the unwanted parts given in Fig. 8.

The time-ordered diagrams (a) and (b) give the nucleon-recoil
exchange current, and (c) and (d) the pair-excitation exchange
current. The Feynman diagram (e) gives the pionic exchange

current.

Plot of the variation of the expectation values of exchange
operators having short-range character as a function of core
radius. Comparison is given between soft-core and hard-core
correlations built with Jastrow factors into the same radial
function: Gaussian exp [—az(r%z + 1y + r%g)/Z] with

o = 0.384 fm L.
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