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Introduction 

It has been customary in the design of transport and acceleration 
systems for positive ion or electron beams either to neglect the space 
charge effects or to assume them to be linear (Vladimirskij and Kapchin-
skij, 1959). In a beam of circular cross-section this assumption of linea
rity imposes a constant charge density over the beam radius. Experi
mental results, however, indicate that this is not the case (Taylor, 1963) 
a typical distribution being bell-shaped with a maximum on the axis. 
For this, non- distribution, non linear space charge forces are 
present and these can have an important influence on the dynamical 
behaviour of the beam. 

Taylor (1969) has pointed out that there are two main consequences of 
the field variation across a non-uniform beam. The first, due to the 
variation of the horizontal field Ex with x will cause an initially elliptic 
emittance diagram in the phase plane (x, x') to be become distorted 
(Fig. 1 a), while the second, produced by the variation of Ex with y, will intro
duce a coupling between the transverse motions. This coupling has the 
effect of producing a centinuous spreading in the phase plane of the 
projected beam distribution. Equi-density contours in the projection will 
no longer enclose a constant area (as would be the case for a uniform 
beam) and this manifests itself as an apparent increase in the emittance 
in the projection. This is illustrated in Fig. 1 b which shows that the 
fraction of the beam current lying inside a given area of the phase plane 
is diminishing'with time. Alternatively we can say that the phase plane 
area enclosing a given current is increasing. 
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The present paper describes the work that has been carried out in the 
PSLinac Group at CERN on non-linear space charge effects and summari
ses the preliminary results that have been obtained. 

Theoretical Considerations 

In the study of the dynamics of charged particle beams the funda
mental transport equation is the Boltzmann equation: 
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where F(x1, x2, x3, v1, v2, v3, t) dx1 dx2 dx3 dv1 dv2 dv3 is the number of 
particles in the phase space volume dx1 dx2 dx3 dv1 dv2 dv3. Theare 
the components of the so-called "field forces" acting on a particle of 
mass m and charge e. 

In the Vlasov approach to the study of beam dynamics the effect 
of the space charge field is included in the , that is it is considered 
as a macroscopic field derivable from a potential. The term on the right 
hand side of (1) represents the change in F due to binary collisions, 
including ionisation and similar effects. At the densities normally encoun
tered in a proton beam this collision term is negligible (Lapostolle et 
al, 1968) so that the right hand side of thus (1) is zero. It is then interesting 
to note that the left hand side may be written: 

DF = 0 Dt = 0 

where D denotes differentiation in a frame of reference following the 
element of phase space under consideration. Thus (1) has the same 
form as Liouville's equation and the phase density F remains constant 
if we follow the motion of an element in phase space. 

A common method of studying beam dynamics is the so-called 
Eulerian approach in which it is assumed that the beam is monoenergetic, 
that is at any point in space the beam can be described by a 
single densityand a single velocity field . The basic equations to be 
satisfied are the continuity equation 

div()=— (2) div()=— t (2) 
and the momentum equation 

m D = e ( 3 ) m Dt = e ( 3 ) 

whereis the sum of the external field and the space charge field of 
the beam. Again D/Dt denotes a differentiation in a frame of reference 
following the motion of the element of the beam under consideration. 
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All magnetic effects are assumed to be negligible and the motion is 
taken to be non-relativistic 

Let us now consider a rotationally symmetric beam whose diver
gence is small so that longitudinal effects may be neglected. We assume 
that the axial beam velocity and the axial components of the external 
field are constant over the cross-section of the beam. Then, in the 
absence of rotational motion the equations describing the radial motion 
of the beam are from (2) and (3) 
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One may see the relation between these last two expressions and the 
Boltzmann equation by taking the first and second moments of the 
latter (Davies, 1969) when one obtains: 
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One sees that these last two relations are identical in form with (5) and 
(6), the difference being the use of the average velocityrather than 
the local particle velocity and the appearance of the "temperature" term 
on the right hand side of (6). When T=0, =ur and the solution of 
the Boltzmann equation will yield the same values for p a n d a s the 
solution hydrodynamic eguations (4) and (5). 

We may thus conclude that for beams of small emittance (i. e. a 
small velocity spread and thus a small "temperature" so that the last 
term on the right hand side of (7) is negligible) the density function 
and particle velocities computed from (4) and (5) will be very good 
approximations to the mean densities and velocities. 

In general solutions of the hydrodynamic equations have only been 
considered for the case of laminar flow when there is no "overtaking" 
of particle trajectories, that is a particle having an initial radial co-ordi
nate less than that of another particle will continue to have a smaller 
radial co-ordinate. 

Davies (1969) has however described a method by which the 
crossing of particle trajectories may be taken into consideration. For a 
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rotationally symmetric beam of zero emittance the state of the beam is 
completely specified by a "zero emittance line" in the phase plane ' 
(Fig. 2). Whereas the charge density distribution can discontinuous if it 
is taken to be a function of the radial co-ordinate, the distribution along 
the zero emittance line is always continuous and no overtaking can occur 
along this line. The basic idea of the method is to trace the motion of 
the zero emittance line and the distribution of charge along it. This 
distribution is only projected on to the r axis in order to compute the 
space charge force on any element of the beam. 

Davies has also shown that a very good approximation to the 
motion of the beam envelope of a finite emittance beam can be obtained 
if the space charge force on a typical particle on the envelope is com
puted from the mean motion of the beam, that is from the charge density 
distribution along the zero emittance line. 

Although this method can give a great deal of information about 
the beam dynamics and only uses a relatively small amount of computer 
storage and time it does not trace the full four-dimensional phase dis
tribution of the beam which is essential if, for example, one wishes to 
project the distribution on to any one of the six phase planes. 

Tanguy (1969) has developed an alternative approach to the prob
lem in which he traces the four-dimensional phase space distribution by 
a Lagrangian method. 

Again the beam is taken to be rotationally symmetric and longi
tudinal effects are assumed to be negligible. The beam is represented 
as approximately 6000 groups of charge and the trajectories of these 
groups are traced, at each stage the space charge at a given radius being 
computed by determining the number of these groups inside that radius. 

Tangy's procedure can be summarized as follow: 
a) From the equations of motion: 
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r 

r(r)dr 
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the unknown integrals on the right hand side are expressed in terms of 
the current I(r) flowing inside a circle of radius r by: 

r 

r(r)dr I(r) (9) ∫ 
r(r)dr I(r) (9) ∫ 
r(r)dr 2πv (9) 

0 

r(r)dr 2πv (9) 

where v denotes the velocity of the particles. 
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b) In terms of the total current It carried by the beam the equations 
of motion (8) become 

x"= qIt (1+x'2+y'2) X I(r) x"= 
2πε0mv3 

(1+x'2+y'2) r2 It (10) 
y"= qIt (1+x'2+y'2) X I(r) 
y"= 2πε0mv3 

(1+x'2+y'2) r2 It 
c) Equations (10) are integrated for a great number of particles N, 

whose initial co-ordinates and slopes are distributed according to the 
desired distribution in the initial four-dimensional phase space. For each 
particle j (j=1, ··· N) and at each step of integration ratio I(rj)/It is 
given by: 

I(rj) = Nj (11) 
It 

= Ν (11) 

where Nj denotes the number of particles whose distance to the axis of 
the beam is equal to or less than rj. 
d) The computation has been made possible when the number Ν of 

particles is very large by using the following manoeuvre: let us suppose 
that at the abscissa z the Ν particles are arranged so that their distance 
to the axis of the beam are: 

rj≤rj+1, j=1, ···,N (12) 
Thus the ratio is given by: 

I(rj) = N j = j (13) 
It 

= 
Ν 

= 
Ν (13) 

As we are not dealing with a laminar flow the arrangement as defined 
in (12) no longer holds, but as the integration step is small the degree 
of this disarrangement is therefore small and a subroutine is able to 
restore the arrangement of (12) in a very short time. Finaly let us note 
that the method used has allowed us to reduce the computation time 
by a factor of around 150. 

In order to follow the evolution of the current r emittance function 
the output of this programme can be analysed by the method described 
by Warner (Taylor, Warner et al, 1966) which gives the equi-density 
contours in the emittance prpjection and inregtares the areas and cur
rents to produce the density curve (Fig. 1 b.) 

In both the above methods the effects of linear* and acceleration 
in the logitudinal direction can be taken into consideration. 

Results 
In Fig 3 a — e are shown the results of the calculations for the 

case of a beam having an initial Gaussian distribution in principal axes 
* Non linear external forces and any kind of rotationally symmetric density 

distributions in the four-dimensional hypervolume can be treated by Tanguys procedure. 
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(Fig. 3 a) drifting fn a drift space with no external fields. Fig. 3b gives 
the results of the hydrodynamic rr' calculation for drifts of 1 m and 1.5m, 
and for comparison the ringed points show the proejction on to 
the xx' plane of the y=0, y'=0 section as obtained from the Lagrangian 
calculation. From this figure we see that particle overtaking com
mences at about 1.3 metres. Figs 3 c ond 3 d show the density distri
butions in real space obtained by both methods. Here we see the 
formation of first a hump towards the outer radius of the beam which 
finally tends to a singularity when overtaking of particle trajectories 
has occured. Fig. 3 e shows the corresponding curves for the traction 
of the current Ir inside radius r as a function of r. 

We see from the emittance diagram corresponding to 1.5 metres 
drift in Fig. 3 b that the curve may be divided into two regions. The 
first, between the origin and about 1.6 cm, approximates to a long 
thin ellipse with nearly constant charge density. If the rest of the beam 
were absent we would thus expect to be able to focus the beam with 
linear lenses without introducing any further aberrations since the space 
charge forces will be nearly linear (in this case an ellipse will 
always transform into an ellipse). The outer region beyond 16 cm dis
play a larger amount of aberration and contains 50% of the charge in 
the beam. Thus if one introduced a diaphragm to remove this outer 
region one would also lose 50% of the beam current. 

To illustrate the large aberrations that may be introduced by the 
nonlinear space charge the computation was performed for the case of a 
converging beam with same emittance as used previously Fig. 4 a—c. 
Again the emittance curves obtained by the two methods are practically 
identical. 

Also shown dotted in Fig. 4c is the beam envelope one would 
obtain on the assumption that the current is uniformly distributed over 
any cross-section. We see that the neglect of the non-linear effects may 
give a completely unrealistic picture of the beam dynamics. In particu
lar, whereas in the case of a uniform distribution the charge would all 
be contained inside a radius of about 11.2 cm, in the non-linear case 
only 39% of the charge lies inside this radius. 

Finally concerning the increase in the area of a given amount of 
charge mentioned in the Introduction, the analysis of the Tanguy prog
ramme output shows that the inner equi-density contours increase by 
the order of, 30—40% in a drift of 1.5 m, whereas the total area increa
ses by almost a factor of two. This effect represents a real reduction 
in the emittance projection, while the aberrations can lead to an effective 
reduction. 

Conclusinos 

The above examples demonstrated that one is unjustified In neg
lecting or linearising the space charge forces in a beam having a non
uniform distribution in the transverse direction. 
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The hydrodynamic or zero emlttance method for studying the beam 
dynamics can give a great deal of information about the beam dynamics 
and because it is economical as regards computer storage and space is 
very convenient for making a preliminary investigation and design of a 
transport or accelerating system. 

The Lagrangian method, although requiring considerable computing 
facilities, is able to trace the four-dimensional phase space distribution 
and can give a more detailed final analysis. 

Both these methods are to be used in the study of the proposed 
new pre-injector and tank 1 of the CERN Linac. 

R E F E R E N C E S 

V. V, Vladimirskij, I. M. Kapchinskij, Limitations of Proton Beam current in a 
Strong Focusing Linear Accelerator Associated with the Beam Space Charge, 
Int. Conf. on High Energy Accelerators and Instrumentation, CERN 1959. 

C. S. Taylor, High Current Performance of the CERN PS Linac. Int. Conf. on High 
Energy Accelerators, Dubna 1963. 

C. S. Taylor, Non Linear Space Charge Effects in Non-Uniform Beams, CERN Inter-
nal Report, MPS/Int. LIN 69-14, 1969. 

P. M. Lapostolle, C. S. Taylor, P. Têtu and L. Thorndahl, Intensity Dependent 
Effects and Space Charge Limit Investigatons on CERN Linear Injector and Synchrotron 

CERN Yellow Report, CERN 68-35, 1968. 

A. J. Davies, Transverse, Non Linear, Space Charge Effects in Rotationally Symmetric 
Electron and Ion Beams, CERN Internal Report, MPS/Int. LIN 69-12 1969. 

P. Tanguy, Etude des effets de charge d'espace dans des faisceaux à densité non 
uniforme. Application à l'étude des faisceaux à symétrie de révolution. CERN 
Internai Report, MPS/lnt. LIN 69-11, 1966. 

C. S. Taylor, D. J. Warner, F. Bloch, P. Tetu, Progress Report on the CERN PS 
Linac 1966 Linear Acc. Conf, Los Alamos, 1966. 

ДИСКУССИЯ 

Капчинский: Нелинейные эффекты в принципе могут приводить к расши-
рению фазового объема только в тех случаях, когда пучок не согласован с фо-
кусирующим каналом. Фазовые распределения, вызывающие нелинейные кулоновские 
силы, не приводят к увеличению эмиттанса, если распределения стационарны. В 
этой связи следует подчеркнуть важность согласования пучка с каналом, которое 
пока на всех действующик протонных ускорителях осуществляется недостаточно 
хорошо. 



Fig. 1a Effect of variaton of Ex with x. Fig. 1b. Effect of coupling 

Fig 2. Zero emittance line, 

Fig. 3a. Initial beam. 
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Fig. 3b, rr' proection after drifting. 

Fig. 3c. Real space density distributions by zero emitance calculation. 

Fig 3d. Real space density by Lograngian calculation 
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Fig. 3e. Fraction of current within a given radius. 

Fig. 4a, Initial beam. 

Fig. 4b. xx' projection (y=0, 
y'=0) after drifting 0.75 m. 

Fig. 4c. xx' projection (y=0, y'=0) 
after 1. 5m. 
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