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ABSTRACT

An attempt is made to place an additional
constraint on the Veneziano model for ¥¥¥% scatter-
ing by using a non-linear sum rule which incorporates
unitarity. This sum rule, which was first derived by
Arbab and Slansky, we call a unitarity sum rule (USR),
We discuss various uses of USR's, using the Veneziano

model as an illustration.
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INTRODUCT ION

Recent studies of finite-energy sum rule (FESR) bootstraps
together with the assumption of straight line trajectories are
leading to new ways of analyzing the S matrix theory of strong
interactions ! .0Of particular interest has been a proposal by
Veneziano 2) for the construction of a simple Regge-behaved,
crossing symmetric amplitude, which is a solution of the FESR boot-
strap. Recent evidence seems to show that this model provides a
reasonable parametrization for many strong interaction processes 3),
despite having some unsatisfactory features, especially in connection
with unitarity. However, the model can only give ratios of coupling
constants and hence widths (not over-all magnitudes), due to its

homogenous nature.

In this paper we discuss the possibility of imposing a
further constraint on the Veneziano amplitude by using a unitarity
sum rule (USR), first derived by Arbab and Slansky 4). We consider
e sgattering, for which we take the following Veneziano ampli-

5

tudes with no satellite terms:

Q‘hc Kt.s,w\ = ‘_;. EV(t,s) fvtta\"\) - “5 V(S'V“\

AT () = Vigs) - Vie,w)

“:‘a(t, S,m) = Vks,u)
(1.1)

where

Vit,s)= ~ A F(\—ct\t))r‘(\—o\ls\)

(1.2)
L (4 - als) = x\e) o



and I is the isospin in the t channel. s, t and u are the

usual Mandelstam variables and we take for the Regge trajectory

v O = 1
Re ale) = 3 veole W) witn & 2 (k- ) ‘) (1.3)

in order to satisfy the Adler self-consistency condition and

Red(mi )=1.

Arbab and Slansky 4), assuming analyticity, elastic unita-
rity, Regge asymptotic behaviour for s¥9 N, and a resonance appro-
ximation for s&N, derived a sum rule which can be written in the

-

following forms:
‘.(mp(“"‘)

sin] 2Twmate) tn. La.-w\} 2 z ot [/

esl)

(1.4)
where zN=1+(2N)/(t—4p-2), and the sum is over all resonances
1
with mass mr(Nz. The ar(t) are known kinematical factors and

the ,[_; are the elastic widths of these resonances.

They then suggested applying Eq. (1.4) at % =m§, where
m;, 1is the mass of an elastic resonance with width I__:.., in order to
obtain a relation between high and low energy parameters. Then
Imd(t:mi) is given by Imﬂ(mi) =ami[-: and so Eq. (1.4) becomes

a non-linear relation between resonance widths.

We investigate a possibility of using the amplitudes given
by Egs. (1.1) and (1.2) as a model. Then the ratio of each resonance
width to PN is given and Egq. (1.4) becomes a non-linear equation

for )\ of the form

sin (eN) = YA (1.5)
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thus determining N and the over-all scale of the interactions.
We note that the amplitudes given by Egs. (1.1) and (1.2) have Regge
asymptotic behaviour and the conditions under which Eq. (1.4) were

derived hold with some small modifications.

In Section 2 we derive a modified version of Eq. (1.4) and
discuss the approximations involved. We find that there are some
uncertainties which make it difficult to determine N « This is
gone into in detail in Section 3 for the I =1 amplitude. In
Section 4 we discuss the difficulties involved in applying Eq. (1.4)
to the I =0 amplitude. These difficulties illustrate the care

which must be exercised in applying USRS.

DERIVATION OF THE UNITARITY SUM RULE

We start from the generalized unitarity relation in the

complex £ plane:

* %
AT(e0) - (AR &) 2ip AFLOLATLN)

(2.1)
where
Ya
por s (2 ;)
e (2.2)
2.2
in the elastic region 4"'2$t$to 6),
>
ve = tla =M (2.3)

M is the pion mass and AI(L,‘G) is the signatured partial wave
amplitude with isospin I in the t channel, defined for all £

by the Froissart-Gribov continuation



Atlte) = 1 g a A (50)Q (1 + s)aue)
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(2.4)
Here Ki(s,t) is the s channel absorptive part with isospin I
in the t channel and QZ is a Legendre function of the second
kind.

4)

Arbab and Slansky noticed that Eq. (2.1) implies that

- 1 - le\. q1 (Q.t)
2:.?@ R > o* 10

(2.5)
where d,(t) is the Regge trajectory function, and proposed that
the real part of this relation would be a useful tool, independent
of FESR, for relating high and low energy parameters. They thus

obtained the sum rule

oo
Re ti. ds a: (S,t) Qq(i » sllo;): @]
R > atie) AR
(2.6)

of this integral we divide the in-

*)

tegration region into two parts at s=N above which we assume

In the evaluation

Regge asymptotic behaviour and below which we saturate with resonances.
It turns out that Eq. (2.6) depends on ImQ(t) so we apply it at
‘t:m?, where 1 =P ,fo, which we assume to be elastic resonances.
Then Im®(t) is given by the equation

Since the integral in Eq. (2.6) is divergent for Reﬂ), £,

it should be evaluated for Re® { £ and continued to 4= o™,



Iw\, ol.(m‘{\ = O c.: L
(2.7)

Since we know the elastic widths of all the resonances in
terms of AN [see Eg. (2.14)] we know 1Im “(mi) in terms of A .

We can now evaluate the two parts of the integral in Eq. (2.6).

Evaluation of high energy part (s )N)

For syN we assume Regge asymptotic behaviour for

Ki(s,t) i.e.,

a: (s,c) =27 (Quwe) « 1)ﬁt (<) P&\c\(‘)
(2.8)

where

T = 1. S‘l\k
(2.9)

We can then do the integral and obtain

(-]

Re Lim, L gis AL (5md) Q (14 820,

Lo ¥ tond) Wy o

Tl
== (m'), ""‘[%"Mﬂ][l * w:(s‘(mﬂ]{ T s ()
QIM “(N\;) QQ/SI(W\.‘.')

+ 2 Tma(wl) & 2Tm *\M?)} + O { (Tona Lm%))"} ]

3

(2.10)
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where
9l (m?)= 2 Lon «(w?) An (22.3)
(2.11)
Y = L aNag,
df= —=2 + ¥(Reatwd)s 1) - W (Reatmt) +1)

- ARetlw}) +1 (2.12)

with Wp(z) = £ (2)/ 0(2).

Evaluation of low energy part (ssN)

Here we saturate with resonances and can safely substitute
~T
the zero-width approximation for As(s,t) into Eq. (2.6) and
retain sufficient accuracy, as Imu(mi) is small. Thus Ki(s,t)

is given by
Y Re (mmacu™)

A0 =) Ha Y 3 (A0 Dy B (222 R 1 441205)

*)

10 t'=o
(2.13)

where X (1'3 1
1t o 3 1l

is a 2x2 sub-matrix of the isospin crossing matrix. (There are

no isospin two resonances in our model, of course).

One can explicitly calculate elastic widths f‘R of

resonances R from Egs. (1.71) and (1.2), e.g.,

"
G- (- et)™ G = Bhlmiotnd)

(2.14)
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Thus, if we substitute Eqs. (2.10)-(2.14) into Eq. (2.5),
drop terms of 8) O{(Imu(mi))z} and put 9)

1?(-v<2)*62¢5(3’(,~n:)'= Ton aled)

(2.15)
we obtain
Sw
sin (N + KR a () = N} ¥ eer (08])
=1 (2.16)

where ylzclx, Yi and S§ 10) are calculable,

, b 3 “ 2
alz Im/2 (w?) v LdE Imalel) o 2 Tanalemd)
Re /A% Lw) Ty,

C)("[vvsdlﬁﬁﬂfi)

"

(2.17)
and Jy is the integer immediately below (N). Eq. (2.16) is the
modified version of Eq. (1.5). The difficulty in using Eq. (2.16)
to fix the valué"of X is that we do not know KI, because we
do not know (Imﬁl(mi))/(ReﬂI(mi)). However, we do know (from
unitarity) that the unknown term is O(Imﬂ(mi)) and this enables

us to get some information from the sum rule.

We must comment here on why we dropped some terms, while
we have retained terms of the same (or even 1ower) order in
Imu(mi). Since we have not taken the limit ImQ (m?) -0 we must
study the coefficient of In &(mri) or (Imﬂ(mi))2 before we can
neglect terms. This is why we must retain higher order terms in
Imﬂ(mi) which arise from expanding sin[ﬂnd(mi)zn(ZzN)] since
when :mu(mf) is multiplied by 2zn(2zN) the product is of

order one.



We also point out here that the derivation of the sum rule
does not depend on the detailed behaviour of Im®(s). We only

assumed the following:

i) Im(s)—>@o as s—-w. This is a necessary assumption because
otherwise Eq. (1.1) with Eq. (1.2) would not have Regge

asymptotic behaviour;

ii) we can make the identification Eq. (2.7) which enables us to

write Im&(mi) in terms of W .

As is well known, modifications of the Veneziano formula
with Im C(mi) 70 must have unwanted ancestors and degenerate total
widths. However, as we are merely imposing unitarity at one point

as a constraint, we feel that this does not affect us.

APPLICATIONS TO_ I =1 ™%  SCATTERING

3.1 The value of N _ for K 7 =0
The interesting question could be raised whether the USR,
Eq. (2.16), applied for I =1 could fix the scale of the inter-

action (X) through its non-linearity.

1
As shown in Eq. (2.17), the quantity XK N is of the
1
order ImUs(m2P ). Therefore, if cot(ec )\) is less than one, the
second term on the left-hand side of Eq. (2.16) is less than the

order Imu(mz9 ) compared with the first term.

Thus, one method to obtain information on x is to solve
Eq. (2.16) neglecting the K1X term and in previous applications
this has been done. An important point to note here is that after
Eq. (2.16) is solved by neglecting the 'K1)\ term we must check our
answer for x and ascertain that it does not give too large a
value for cot(c1%), otherwise this would definitely invalidate

our approximation. -



The solutions of Eq. (2.16) for x with K1 =0 are given
in the Table for various values of the separation points 12 . As
can bhe seen the solutions appear reasonable for the highest values
of N shown (to give a @ width of 112 MeV we require A =0.55).
This decrease of x with increasing N continues and for N:NBO
we obtain X =0.44 However, these results for large N should not
be taken so seriously as eventually our narrow resonance approximation

breaks down. As is also evident from the Table, values for cot(c1X)

are less than one for calculated ) but increase as N increases.

Since the magnitude of K1 (though it is known to be of
the order Imo(.(m; )) is not known precisely we have no way of
knowing the reliability Qf the value of )\ obtained above. The
10% error of the lz2ft-hand side of the equation could make the non-
linearity of Eq. (’/:.lo) meaningless sincc {tie above error can grow

to a 100% error for the value of N .

S0 at least, in the present stage, we cannot claim that
this method will fix the scale of the interaction, unless we have
a model to calculate highcr order terms in Im&(mi) like
Imﬂl(mi)/Re/&I(mi). The reasonable values we obtained for x

1
must be due to a cancellation which makes K small.

Another way to view the USR, Eq. (2.16), is as a relation
between N and Im/&I - l(mz’, )/Re/‘sI =1
say that the USR gives a good determination of Im/&I =1(m2, )/

1

/ReﬂI =1(mi ) if the interaction scale X is given 3).

(*nZP ) Therefore, we can

In Fig. 2 we give the graphs of )\ against K1 for NZNS’
NqO and N1‘5.
K€ 0. We use the N:l\T5

I =1 2 .
Re,e (mr ). We obtain

We can conclude (from the N =N5, N1O graphs) that
- 2
plot to determine Im‘gI —1(m’ )/

K= -0.064

—~
N

.1)
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Thus
s )
T (""‘9\ ~ —O0\a)\ = -0.07
Refst (o) (3.2)
Therefore, we find
p |
w2 (g
A M?\ = O(Tw\&(m;»
Reprt (mf)
(3.3)

is satisfied. If this were not so, then it would be because the

leading Veneziano term did not satisfy the USR.

It is worth pointing out here that if we take the Regge
residues from the Veneziano model [Eq. (1.12] l.€4y

ale)

o™ (ave) Aale)
r ( ale) & 3‘1)

/S‘ () =

(3.4)
and take this seriously for Im&(t)#0 we get an expression for

(Im/51(t))/(Re/$1(t)) in terms of Imee(t), i.e.,

j I /31 (€)

z lalave) - ‘P(RQ x\¢) *3‘3) v Rtlo\\‘t)

(3.5)

Re /3‘(‘&) LTonaly)

for small Im @(t).

At t::m; y We obtain

IMﬂ"(M;)
RO./S‘ (M;)

T -\-89 Iw\u.(w\})

(3.6)
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> -O\A
(3.7)
Here f; =112 MeV 1is used. This should be compared with Eq. (3.2).
In fact, if we use the expression (3.6) we find that the only solu-
tion of Eq. (2.16) is QA =0. Presumably the moral of this is that

we cannot take the one term Veneziano model so seriously for

Im®&(t) #ZO.

APPLICATIONS TO I =0 ™ SCATTERING

Equation (2.16).can also be applied to the I=0 amplitude
by taking t:m%o. In this case if we assume the fo meson to be
a pure elastic resonance and try to solve the equation for
after assuming KO=O we find that the only solution 14) is X =0.

This is because

=1 (4.1)
We could now follow the argument of Section 3.2 and conclude
that KO)O and hence Imﬁo(mi)/ReAO(mf.))O. We could obtain a
similar graph to Fig. 2, relating AN to K. However, we maintain
that the result would have very little meaning because of uncertain-
ties in the inelasticity at t=m§ . This affects the sum rule as

Og/ 2
follows: the relation between Imﬂ(mfo) and x is changed from

2 a s
Ima(m?‘) = 2\_: (MS‘- 4“&“) a
\Ow\b (4.2)



to

X . 5 .
T atlonf) = ot (wnf, - 4p2) ‘xtw\;,)

\wa,g° (4.%)

2
where }((mfo> is the ratio of total to elastic partial wave cross-

section.

These considerations did not affect us for the I =1 sum
rule because the evidence suggests that up to 1 GeV L ) scattering

is elastic 6), despite other channels being open.

Returning to the I=0 sum rule we conclude that although
the sum rule is not violated no information can be obtained from it.
lowever, a better knowledge of inelastic effects near the fo might
yield useful information via the sum rule, relating )\ to

Im/3o(m%0)/R%/go(m§O).

CONCLUDING REMARKS

So far, discussions have been focuscd on the real part
of Eq. (2.5). If we take the imaginary part of this equation the

following sum rule can also be derived:

1 = T Q.  § S ds a:(s»‘t) QQ\\\' S\Q\k\

i) ¢ »o*lc) ;(-:,‘ R (5.1)

However, in evaluating the low energy integral we find that the

~T
term InlAS(s,t)Re(Qot*(t>(1+s/2 ot) cannrot be neglected as it is
of the same order in Ime(t) as Re Ki(s,t) ImQ¢*(1+s/29t).
Since there is no reliable method of calculating the Inlxi(s,t)
IkeQu*(t>(1+s/2\)t) term the above sum rule is not very useful at

the present stage.



-13 -

We must also remark that USRs and FESRs give independent
information. Arbab and Slansky found this numerically but we can
see 1t as follows: +the model given by Egs. (1.1) and (1.2) would
satisfy FESRs for any value of x y although ) must be positive
so that the residues of the resonances are positive. However, any
positive value of )\ would not satisfy the USRs, even allowing
for uncertainties in Iq/}l(mi)/RelaF(mi). This is, of course, the
use for USRs proposed by Arbab and Slansky, albeit in a weaker form
because of the uncertainties. Despite this we were able to conclude
that the model given by Egs. (1.1) and (1.2) with W =0.55 (which
we need to obtain the correct i} width) was consistent with both

the I=0 and I=1 USRs.

Also we have shown that the I =1 USR can be used to
determine Im#1 (m2’ )/Reﬂ1 (mi) when X is given. This use is
not restricted to the Veneziano model as we could insert experimental
widths instead of the widths obtained from the model. This value
for Im/31(mi L@k731(mi ) could be useful in the dispersion
relations for/31(t) and ©&(t).

To illustrate the uses of USRs we have used the Veneziano
model with only leading terms. It is, however, possible that for
a realistic model we need satellite terms, perhaps even an infinite

15)

number of them .
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The cos( )‘Si) term in Eq. (2.16) comes from Re Q“ «(2)

~ QReu (z)cos(Imea £n(_2z)) for =z corresponding to the resonances,

E.g., Ref. 4) and the original version of this paper. We are

grateful to Drs. R.C. Slansky and C. Rebbi for pointing out to

us that the argument given in the original version [footnote 92]
. . . 1,2 1,2 c

to justify dropping the Imﬂ (m, )/Reﬂ (m,) term is in-

correct.

The separation points NH=N1,N2,...,N8 are defined by Fig. 1.

Each N, 1is placed half-way between two sets of resonances,

Apart from the limitations mentioned in Ref. 9). Of course,
this does not affect Eq. (3.3).

This has also been found by Slansky and Rebbi (orivate communi-

cation).

‘See, for instance, S. Matsuda, Phys.Rev. (to be published).
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FIG.1 Resocnances used to saturate the sum rule (marked e) and definition of N;,N; .....Ng
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