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Abstract

One–loop radiative corrections to the production cross section of a pair of light

charginos in e+e− colliders are calculated within the MSSM. Top and bottom quarks

and squarks are considered in the loops, and they are renormalized using the MS

scheme. If the center of mass energy is equal to 192 GeV, positive corrections typi-

cally of 10% to 15% are found when the squark mass parameters are equal to 1 TeV.
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Figure 1: One–loop renormalized γχ+
b χ
−
a and Zχ+

b χ
−
a vertex functions.

In the Minimal Supersymmetric Standard Model (MSSM), the supersymmetric

partners of the charged Higgs and the W gauge bosons mix to form a set of two

charged fermions called charginos. Experimental searches for charginos at LEP2 have

been negative so far, and lower bounds on the lightest chargino mass have been set.

The bound depends mainly on the sneutrino mass and the mass difference between

the chargino and the LSP ∆m = mχ1 − mχ0
1
. ALEPH has found that mχ1 > 85

GeV for mν̃e > 200 GeV [1]. DELPHI’s bound corresponds to mχ1 > 84.3 GeV for

mν̃e > 300 GeV and ∆m > 10 GeV [2]. A lower bound of mχ1 > 85.5 GeV was found

by L3 for mν̃e > 300 GeV [3]. Finally, OPAL has found that if ∆m > 10 GeV then

mχ1 > 84.5 GeV if m0 > 1 TeV and mχ1 > 65.7 GeV for the smallest m0 compatible

with current limits on sneutrino and slepton masses [4].

In the Born approximation, chargino masses and mixing angles in the MSSM

depend only on the SU(2) gaugino mass M , the ratio between Higgs vacuum expec-

tation values tanβ, and the supersymmetric Higgs mass parameter µ. Much can be

learned about these parameters from an accurate measurement of the total chargino

production cross section and masses in e+e− colliders, and also about the rest of the

supersymmetric particles in the case of MSSM–SUGRA [5]. Nevertheless, for this

to work, accurate experimental measurements must be accompanied by precise the-

oretical calculations. In this talk we report on a recent calculation of the one–loop

corrections to the total production cross section of a pair of charginos in e+e− colliders

[6].

Charginos are produced in the s–channel with intermediate Z bosons and photons,
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Figure 2: Top and bottom quark and squark contributions to the unrenormalized Z

and γ self-energies and to the Z − γ mixing.
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Figure 3: Feynman diagrams contributing to the unrenormalized chargino two–point
functions (self–energies and mixing).

and in the t–channel with intermediate electron sneutrino. In our approximation only

Zχ̃+χ̃−, γχ̃+χ̃−, e+ν̃eχ̃
−, and e−ν̃eχ̃

+ vertices are renormalized. We denote these one–

loop renormalized total vertex functions iGabZχχ, iGabγχχ, iG+b
ν̃eeχ, and iG−aν̃eeχ respectively.

The first two total vertex functions are given in Fig. 1, where we have the following

contributions: (a) tree level, (b) gauge boson self energies, (c) Z − γ mixing, (d)–

(e) chargino self energy and chargino mixing, and (f) the 1PI triangular diagrams.

The two total vertex functions involving sneutrinos are simpler because they receive

contributions only from the tree level vertex and chargino self energy and mixing,

and we do not display them.

One-loop diagrams contributing to the gauge boson self energies and Z−γ mixing

can be seen in Fig. 2. The first diagram corresponds to quarks and the second

two diagrams correspond to squarks. Similarly, in Fig. 3 we display the diagrams

contributing to chargino self energies and mixing. They involve top–sbottom and

bottom–stop loops. Finally, 1PI triangular diagrams are shown in Fig. 4. All diagrams

in Figs. 2 to 4 have been calculated [6] in terms of Passarino–Veltman’s functions [7].

We have used the DR scheme, which in our approximation is completely equivalent

to the MS, and taken Q = mZ as the subtraction point.
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Figure 4: Unrenormalized one–particle irreducible triangular diagrams contributing
to renormalization of the Zχ̃+χ̃− and γχ̃+χ̃− vertices.

In Fig. 5 we have plot the tree–level and renormalized one–loop total production

cross section of a pair of light charginos as a function of the gaugino mass M , while

keeping constant the chargino mass mχ±1
= 90 GeV, the sneutrino mass mν̃e = 100

GeV, and tanβ = 10. We consider the case µ < 0 and a center of mass energy
√
s = 192 GeV, relevant for LEP2. The tree level cross section decreases from 1.6 pb.

when M = 500 GeV to a minimum of 0.22 pb. at around M = 105 GeV, and grows

again up to 0.34 pb. at M = 90 GeV. Below this value of the gaugino mass M there

is no solution for µ < 0 which gives mχ±1
= 90 GeV. Radiative corrections to this

cross section are parametrized by the squark soft masses which we take degenerate

MQ = MU = MD, and by the trilinear soft mass parameters A ≡ AU = AD, also

taken degenerate. This choice is done at the weak scale and it is made for simplicity.

Three radiatively corrected curves are presented given by MQ = A = 200 GeV (dots),

MQ = A = 600 GeV (dashes), and MQ = A = 1 TeV (dotdashes).

We observe from Fig. 5 that radiative corrections are positive and grow with the

squark mass parameters. For M close to 90 GeV the corrections are only of a few

percent, but they grow fast until a maximum of 21% at M = 140 GeV. For larger

values of the gaugino mass, the corrections slowly decrease until they reach the value

6% at M = 500 GeV. A logarithmic growth of quantum corrections with the squark

mass parameters is observed, as it should be. It is worth pointing out that the value

of µ is not constant along the curves because it is fixed by the constant value of the

chargino mass mχ̃±1
.
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Figure 5: One–loop and tree level chargino production cross section as a function of
the SU(2) gaugino mass M , for 192 GeV center of mass energy.

In summary, if charginos are discovered much information can be learned from

the measurements of the total production cross section and masses. Nevertheless

it is essential to have a precise theoretical calculation of these observables. In this

sense, one–loop radiative corrections must be included. We have found that for LEP2

energies they are typically 10% to 15% and can reach up to 30% if the squark masses

are equal to 1 TeV.
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