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objects (Carr 1994, Gerhard & Silk 1996) could explain,
at least in part, the dark galactic haloes.

In 1986, Paczy�nski proposed microlensing techniques
for measuring the abundance of compact objects in galac-
tic haloes. The LMC stars are favourable targets for mi-
crolensing events searches. Since 1990 and 1992, the EROS
(Aubourg et al. 1993) and MACHO (Alcock et al. 1993)
groups have studied this line of sight. The detection of
10 microlensing events has been claimed in the large mass
range 0:05�1M� (Aubourg et al. 1993, Alcock et al. 1996).
This detection rate, smaller than expected with a full halo,
indicates that the most likely fraction of compact objects
in the dark halo is f = 0:5 (Alcock et al. 1996). Con-
currently, the small mass range has been excluded for a
wide range of galactic models by the EROS and MACHO
groups. Objects in the mass range (5 � 10�7M� < M <
5� 10�4M�) could not account for more than 20% of the
standard halo mass (Alcock et al. 1998). In the meantime,
the DUO (Alard et al. 1995), MACHO (Alcock et al. 1995)
and OGLE (Udalski et al. 1995) groups look towards the
galactic bulge where star-star events are expected. The de-
tection rate is higher than expected from galactic models
(see for instance Evans 1994, Alcock et al. 1995, Stanek
et al. 1997). The events detected in these two directions
demonstrate the eÆcacy of the microlensing techniques
based on the monitoring of several millions of stars.

Microlensing Searches with the Pixel Method

The detection of a larger number of events is one of the big
challenges in microlensing searches. This basically requires
the monitoring of a larger number of stars. The Pixel
Method, initially presented by Baillon et al. (1993), gives
a new answer to this problem: monitoring pixel uxes. On
images of galaxies, most of the pixel uxes come from un-
resolved stars, which contribute to the background ux.
If one of these stars is magni�ed by microlensing, the
pixel ux will vary proportionally. Such a luminosity vari-
ation can be detected above a given threshold, provided
the magni�cation is large enough. Unlike other approaches
(namely star monitoring and Di�erential Image Photom-
etry, see below), the Pixel Method does not perform a
photometry of the stars but is designed to achieve a high
eÆciency for the detection of luminosity variations a�ect-
ing unresolved stars. This means that we will work with
pixel uxes and not with star uxes. A theoretical study
of the pixel lensing method has been published by Gould
(1996b).

This pixel monitoring approach has two types of ap-
plication. Firstly, it allows us to investigate more dis-
tant galaxies and thus to study other lines of sight. This
has led to observations of the M31 galaxy. The AGAPE
team (Ansari et al. 1997) has shown that this method
works on M31 data, and luminosity variations compatible
with the expected microlensing events have been detected
but the complete analysis is still in progress (Giraud-

H�eraud 1997). A similar approach, though technically dif-
ferent, called Di�erential Image Photometry is also in-
vestigated by the VATT/Columbia collaboration (Crotts
1992, Tomaney & Crotts 1996). Some prospective work
has also been done towards M87 (Gould 1995).

The second possibility is to apply pixel microlensing
on existing data, thus extending the sensitivity of previous
analyses to unresolved stars. This is precisely the subject
of this paper and of the two which will follow: we present
the implementation of the Pixel Method on CCD images
of the LMC.

Pixel Method on the LMC

We have applied for the �rst time a comprehensive pixel
analysis on existing LMC images collected by the EROS
collaboration. With respect to previous analyses (Quein-
nec 1994, Aubourg et al. 1995, Renault 1996), our analysis
of the same data using pixel monitoring allows us to ex-
tend the mass range of interest up to 1M� and to increase
the sensitivity of microlensing searches. On these images,
a large fraction of the stars remains unresolved: typically
5 to 10 stars contribute to 95% of the pixel ux in one
square arc-second. Since this approach potentially uses
all the image content (and not only the resolved stars),
the volume of the data to handle is much larger. Hence
we perform this �rst exploratory analysis on a relatively
small data set: 0.25 deg2 covering a period of observation
of 120 days, which corresponds to 10% of the LMC CCD
data (91-94).

This paper is the �rst of a series of three, describing
the data treatment (this paper), the microlensing search
(Melchior et al. 1998a, hereafter Paper II) and a catalogue
of variable stars (Melchior et al. 1998b, hereafter Paper
III). In the companion papers (Papers II and III), we show
how the data treatment described here to produce pixel
light curves allows us to perform analyses that increase
the sensitivity to microlensing events and variable stars
with respect to the star monitoring analysis applied on
the same �eld: an order of magnitude in the number of
detectable luminosity variations is gained.

To discover real variations, the images and light curves
have to be corrected for various sources of fake variabil-
ities, such as geometrical and photometric mismatch, or
seeing changes between successive images. The construc-
tion of light curves cleaned from these e�ects is the subject
of this �rst paper. If the ux of a given star contributes
to the pixel ux, the latter can be expressed as follows:

�pixel = f � �star + �bg; (1)

where �star is the ux of the given star, f the fraction
of the star ux that enters the pixel, hereafter called see-
ing fraction and �bg corresponds to the ux of all other
contributing stars plus the sky background.
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If this particular star exhibits a luminosity variation,
then we will be able to detect it as a variation of the pixel
ux:

��pixel = f ���star; (2)

provided it stands well above the noise. Actually, this pixel
ux is a�ected by the variations of the observational con-
ditions and our goal here is to correct for them. We dis-
cuss the level of noise achieved after these corrections and
include this residual noise in error bars. The outline of
this paper is as follows. In Sect. 2, we start with a short
description of the data used. In Sect. 3, we successively
describe the geometric and photometric alignments ap-
plied to the images. We are thus able to build pixel light
curves and to discuss their stability after this preliminary
operation. In Sect. 4, we average the images of each night,
thus reducing the uctuations due to noise considerably.
In Sect. 5, we consider the bene�ts of using super-pixel
light curves. In Sect. 6, we correct for seeing variations
and obtain light curves cleaned from most of the changes
in the observational conditions. At this stage, a level of
uctuations smaller than 2% is typically achieved on the
super-pixel uxes. In order to account for the noise present
on the light curves, we estimate, in Sect. 7, an error for
each super-pixel ux. We conclude in Sect. 8 that the light
curves of super-pixels, resulting from the complete treat-
ment, reach the level of stability close to the expected pho-
ton noise. They are therefore ready to be used to search
for microlensing events and variable objects, as presented
in the companion Papers II and III.

2. The data

2.1. Description of the data set

The data have been collected at La Silla ESO in Chile
with a 40cm telescope (f=10) equipped with a thick CCD
camera composed of 8� 2 CCD chips of 400� 579 pixels
with scale of 1:2100/pixel (Arnaud et al., 1994b, Queinnec,
1994 and Aubourg et al., 1995). The gain of the cam-
era was 6:8e�=ADU with a read-out noise of 12 photo-
electrons. For the 1991-92 campaign only 11 chips out of
16 were active. Due to technical problems, we only anal-
yse 10 of them. The monitoring has been performed in
two wide colour bands (Arnaud et al., 1994a). Exposure
times were set to 8 min in red (h�i = 670 nm) and 15 min
in blue (h�i = 490 nm). As the initial goal was to study
microlensing events with a short-time scale (Aubourg et
al. 1995), up to 20 images per night in both colours are
available. A total of 2000 blue and red images were col-
lected during 95 nights spread over a 120 days period (18
December 1991 - 11 April 1992). The combined CCD and
�lter eÆciency curves as shown in Grison et al. (1995) lie
below 15% in blue and below 35% in red. Bias subtrac-
tion and at-�elding have been performed on-line by the
EROS group.

The seeing varies between 1:6 and 3:6 arc-second with
a mean value of 2:9 arc-second (typical dispersion 0:5
arc-second). It should be emphasised that the observa-
tional strategy (exposure time) has been optimised for
star monitoring. In other words, this means that the pho-
ton noise associated with the mean ux (typically 280
ADU per pixel in red and 100 ADU in blue) is relatively
large: 6.6 ADU in red and 3.8 ADU in blue. To apply the
Pixel Method to this data set, we take advantage of the
large number of images available per night, increasing the
signal-to-noise ratio with an averaging procedure.

2.2. Absolute calibration

The procedures described below are performed with re-
spect to a reference image. The correspondence between
the ux measured on these images and the magnitude,
deduced from Grison et al (1995), is as follows:

mB = �2:5 log�B + 24:8 (3)

mR = �2:5 log�R + 24:9 (4)

where �B and �R are the ux of a star in ADU in the blue
and red respectively. Note that the zero point is about the
same in the two colours, whereas the background ux is
much larger in red than in blue. The correspondence with
the Johnson-Cousins system can be found in Grison et al.
(1995).

The aim of the whole treatment presented below is
to obtain pixel light curves properly corrected for varia-
tions of the observational conditions. The PEIDA package
used by the EROS group was adapted for pixel monitor-
ing. This treatment is applied to the �rst CCD campaign
(1991-92) of the EROS group on the LMC bar, i.e. 10%
of the whole data set analysed in Renault (1996).

3. Image alignments

The alignments described in this section are needed in or-
der to build pixel light curves from images that are never
taken under the same observing conditions. Firstly, the
telescope never points exactly twice in the same direc-
tion so that the geometric alignment must ensure that
the same area of the LMC contributes to the same pixel
ux, through the entire period of observation. Secondly,
photometric conditions, atmospheric absorption and sky
background light change from one frame to another. The
photometric alignment corrects for these global variations.

Errors a�ecting pixel uxes after these corrections are
a key issue as discussed through this section. It is not
obvious how to disentangle the various sources of error
introduced at each step, in particular after the geometric
alignment. Global errors for each pixel ux, including all

sources of noise, will be evaluated in Sect. 7.
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3.1. Geometric alignment

Between exposures, images are shifted by as much as 40
pixels and this displacement has to be corrected, in order
to ensure that each pixel always covers the same area of
the LMC. As emphasised below, errors a�ect the pixel ux
after the geometric alignment and two components can be
distinguished. The �rst one, resulting from the uncertainty
in the parameters of displacement, turns out to be negli-
gible, whereas the second one, introduced by the linear
interpolation, is a more important source of noise. In this
sub-section, we give a qualitative overview of these sources
of errors. This study, based on synthetic images, allows
us to disentangle errors due to the geometrical alignment
from other e�ects present on real images, because the posi-
tion and content of unaligned synthetic frames are known
by construction.

Displacement parameters. The parameters of displace-
ment are determined with the PEIDA algorithm (Ansari,
1994), based on the matching of star positions. Beside
translation, rotation and dilatation are also taken into ac-
count as far as their amplitude remains small (otherwise
the corresponding images are removed from further con-
sideration).

A series of mock images synthesised with the param-
eters of real images (geometric displacement, absorption,
sky background and seeing) allows us to estimate the mean
error on the pixel position to be 0:011�0:005 pixel. Similar
estimates have been obtained by the EROS group (Ansari,
private communication) on real data.

This introduces a small mismatch between pixel uxes:
in �rst approximation, the error on the ux is proportional
to the pixel area corresponding to the di�erence between
the true and the computed pixel position.

Linear interpolation. Once the parameters of displace-
ment are estimated, pixel uxes are corrected with a linear
interpolation. This interpolation is necessary in order to
monitor pixel uxes, and to build pixel light curves. We
use synthetic images to understand qualitatively the resid-
ual errors. Two sets of blue images are simulated with the
identical uxes (new moon condition) and seeings (2.5 arc-
second) but shifted with respect to one of them (the \ref-
erence" image). A linear interpolation is applied to each
of these images in order to match the position of the ref-
erence. In case of pure translation, the corrected ux is
computed with the ux of the 4 pixels overlapping the
pixel p on the reference frame: the areas of these intersec-
tions with this pixel p are used to weight each pixel ux.
The square of the variable v, depending upon Æx and Æy,
the displacement in the x and y directions,

v =

r�
Æx2 + (1� Æx)2

��
Æy2 + (1� Æy)2

�
; (5)

Fig. 1. Error due to linear interpolation estimated with
two sets of synthetic images: � is the dispersion measured
on the ux di�erence between pixels on the \reference"
image and corrected images, while v is a function of the
displacement, as discussed in the text (Eq. 5).

is the sum of the square of these overlapping surfaces. It
characterises the mixing of pixel uxes produced by this
interpolation: the smaller v is, the more pixels are mixed
by the interpolation.

Figure 1 displays an estimate of the residual errors af-
fecting pixel uxes for di�erent displacement parameters,
and shows a correlation of the errors with the variable v.
The �rst set of images, simulated without photon noise,
shows errors on pixel uxes due to linear interpolation
smaller than 5.5 ADU (about 4.5% of the mean ux).
The second set of images, simulated with photon noise,
allows us to check that the photon noise adds quadrati-
cally with the \interpolation" noise and that residual er-
rors are smaller than 7 ADU. The correlation observed on
this �gure between the error � and the variable v can be
understood as follows: when v decreases, the interpolated
image gets more and more degraded, and the interpolation
noise increases while the poisson noise is smeared out.

This residual error is strongly seeing dependent. If the
above operation is performed on an image with a seeing of
2 arc-second, the residual errors are as large as 10% of the
mean ux: the larger the seeing di�erence, the larger the
residual error. As the seeing of raw images varies between
1:6 and 3:6 arc-second, this makes a detailed error tracing
very diÆcult. The PSF is also slightly widened due to the
re-sampling, but this e�ect remains small compared to
other sources of PSF variability, and is largely averaged
out when summing over the images of a night (see Sect. 4).
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Fig. 2. Photometric alignment: (a) absorption and (b) sky
background ux (in ADU) estimated in each blue image.

3.2. Photometric alignment

Changes in observational conditions (atmospheric absorp-
tion and background ux) are taken into account with a
global correction relative to the reference image. We as-
sume that a linear correction is suÆcient:

�corrected = a�raw + b; (6)

where �corrected and �raw are the pixel uxes after and
before correction respectively. The absorption factor a is
estimated for each image with a PEIDA procedure, based
on the comparison of star uxes between this image and
the reference frame (Ansari, 1994). A sky background ex-
cess is supposed to a�ect pixel uxes by an additional term
b which di�ers from one image to another.

In Fig. 2, we plot the absorption factor (top) and the
sky background (bottom) estimated for each image with
respect to the reference image as a function of time. The
absorption can vary by as much as a factor 2 within a
single night. During full moon periods, the background
ux can be up to 20 times higher than during moonless
nights, increasing the statistical uctuations by a factor
up to 4.5. However, this high level of noise concerns very
few images (see Fig. 2), and only about 20% of the im-
ages more than double their statistical uctuations. De-
spite their large noise, full moon images improve the time
sampling, and at the end of the whole treatment, the er-
ror bars associated with these points are not signi�cantly
larger than those corresponding to new moon periods, ex-
cept for a few nights.
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Fig. 3. Pixel light curve before (above) and after (below)
�ltering out the large-scale spatial variations. Fluxes are
given in ADU.

3.3. Residual large-scale variations and their correction

We note the presence of a variable spatial pattern partic-
ularly important during full moon periods. This residual
e�ect, probably due to reected light, can be eliminated
with a procedure similar to that applied to the AGAPE
data, as described by Ansari et al. (1997). We calculate
a median image with a sliding window of 9 � 9 pixels on
the di�erence between each image and the reference im-
age. It is important to work on the di�erence in order to
eliminate the disturbing contributions of stars, and to get
a median that retains only large-scale spatial variations.
We then subtract the corresponding median from each im-
age, to �lter out large-scale spatial variations. In Fig. 3, we
show a light curve before and after this correction. Above,
the pixel light curve presents important systematic e�ects
during full moon periods, e�ects which have disappeared
below, after correcting for these large-scale variations.

3.4. Image selection

After these alignments, we eliminate images whose param-
eters lie in extreme ranges. We keep images which have no
obvious defects and parameters in the following range:

{ Absorption factor:
0:6 < aR < 1:5 ; 0:6 < aB < 1:5

{ Mean ux (ADU):
100:0 < �R < 2000:0
70:0 < �B < 1500:0

{ Seeing (arcsec):
SR < 3:6 ; SB < 3:6
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Mean of the histogram: 0.091

Fig. 4. Relative ux stability of about 1000 ux measure-
ments in the blue band, spread over 120 days for pixels
within a 50� 50 patch of CCD 3.

(a)

(b)

Fig. 5. Number of images per night for one CCD �eld: in
red (a) and in blue (b).

This procedure rejects about 33% of the data.

3.5. Stability of elementary pixels after alignment

We are now able to build pixel light curves, made of about
1000 measurements spread over 120 days. The stability
can be expressed in term of the relative dispersion �=�
measured for each light curve, where � stands for the mean
ux and � for the dispersion of the light curve. This disper-
sion gives us a global estimate of the errors introduced by
the alignments, combined with all other sources of noise
(photon noise, read-out noise. . . ). In Fig. 4, we present
the histogram of this dispersion for one 50� 50 patch of
one CCD �eld, which shows a mean dispersion of 9.1%.
We estimate the contribution of the photon noise alone to
be as high as 7%. With such a noise level, dominated at
this stage by photon counting and ux interpolation er-
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Fig. 6. A stable pixel light curve (a) before and (b) after
the mean is performed over each night.
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Fig. 7. A variable pixel light curve before (a) and after
(b) the mean is performed over each night.

rors, one does not expect a good sensitivity to luminosity
variations. Fortunately, various improvements described in
the following (namely the averaging of the images of each
night, the super-pixels and the seeing correction) will fur-
ther reduce this dispersion by a factor of 5.
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Mean of the histogram: 0.039

Fig. 8.Relative ux stability achieved on pixel light curves
after averaging the images of each night, on a 50�50 patch
of CCD 3.

4. Going to one image per night

The motivation of this pixel analysis is to increase the
sensitivity to long duration events (� 5 days) in the mass
range where all the known candidates have been observed.
It is crucial to note that a sampling rate of 1 measurement
per day is suÆcient. The numerous images available each
night (up to 20 per night) allow us to reduce the noise
discussed in Sect. 3.5, by co-adding them, and are very
useful for the error estimation as emphasised in Sect. 7.

4.1. Construction

We average the images of each night. During the night n,
we have, for each pixel p, Np

n measurements of ux (�pn;j;
j = 1; Np

n). The number of measurements Np
n available

each night is shown in Fig. 5 and ranges between 1 and 20
with an average of 10. The mean ux �pn of pixel p over
the night is computed removing the uxes which deviate
by more than 3� from the mean, in order to eliminate
any large uctuation due to cosmic rays, as well as CCD
defects and border e�ects. Note that, due to this cut-o�,
the number of measurements Np

n used for a given night
can di�er from pixel to pixel.

4.2. Results

Figure 6 shows the result of this operation on a typical
pixel light curve. The dispersion in the data on the top
panel (a) is reduced and included in the error bars (see in
Sect. 7) as shown on the bottom panel (b). Figure 7 shows
the same operation applied to a pixel light curve exhibit-
ing a long time scale variation. One can notice that uncer-
tainties in the data during full moon periods are not sys-
tematically larger than those corresponding to new moon
periods. Figure 8 displays the histogram of relative stabil-
ity for the resulting light curves, for the same area as for
Fig. 4. A mean dispersion of 3.9% is measured: the noise
is thus reduced by more than a factor 2. Photon noise is
estimated to be 3.3%.

Fig. 9. Example of a 19"�29" �eld on our data in blue,
with 3 arcsec seeing. The grey scale gives the intensity in
ADU.

3x3

1x1

5x5

7x7

Fig. 10. The signal to noise ratio expected for a single
star, whose centroid lies in the central pixel, is given as a
function of the seeing values for di�erent super-pixel sizes.
This assumes a circular Gaussian PSF.

4.3. Additional remarks

Thanks to this procedure the PSF of the composite im-
ages will tend towards a Gaussian. This thus removes the
inhomogeneity in the PSF shape that can be observed on
raw images. In particular, the seeing on these composite
images becomes more homogeneous with an average value
of 3:0 arc-second in red and 2:9 arc-second in blue and a
quite small dispersion of 0.25 arc-second. The seeing dis-
persion is divided by a factor 2 with respect to the initial
individual images, whereas the average value is similar.

To summarise, this procedure improves the image qual-
ity, reduces the uctuations that could come from the
alignments and removes cosmic rays.
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Fig. 11. Flux stability achieved on super-pixel light curves
in blue (a) and in red (b) for all the pixels of CCD 3 (before
the seeing correction).

5. Super-pixel light curves

So far we have worked with elementary pixel light curves.
Pixels which cover 1.21"�1.21" are much smaller than the
typical seeing spot and receive on average only 20% of the
ux of a star, whose centre lies in the pixel. A signi�cant
improvement on the light curves stability can be further
achieved by considering super-pixel light curves. Super-
pixels are constructed with a running window of dsp�dsp
pixels, keeping as many super-pixels as there are pixels,
and their ux is the sum of the d2sp pixel uxes. These
super-pixels have to be taken large enough to encompass
most of the ux of a centred star, but not too large in
order to avoid surrounding contaminants and dilution. As
such, their size should be optimised for this dense star
�eld given the seeing conditions.

Figure 9 illustrates the di�erent super-pixel sizes that
can be considered. The expected signal to noise (S/N)
ratio is proportional to the ratio of the seeing fraction to
the super-pixel size (dsp). Going from 1�1 to 3�3 super-
pixels increases the seeing fraction by more than a factor
3. Then increasing the super-pixel size further increases
the seeing fraction substantially less than the uctuations
of the sky background. Figure 10 displays the variation
with seeing of the signal to noise ratio for di�erent super-
pixel sizes. It is clear that 3� 3 super-pixels o�er the best
S/N ratio for our con�guration.

As discussed by Ansari et al (1997), the alternative
that consists in taking the average of the neighbouring
pixels weighted with the PSF is not appropriate here, as
it ampli�es the uctuations due to seeing variations.

Figure 11 shows the relative dispersion a�ecting the
super-pixel uxes for CCD 3: we measure in average 2.1%
in blue and 1.6% in red, which corresponds to about twice
the estimated level of photon noise (1.1% in blue and 0.7%
in red). The comparison with Fig. 8 shows that the disper-
sion is reduced by a factor smaller than

p
9 (pixels) = 3

because of the correlation between neighbouring pixels.
This stability can be improved even further by correcting
for seeing variations.

Blue Red

Fig. 12. Histogram of the correlation coeÆcient � between
the super-pixel ux and the seeing (before seeing correc-
tion).

6. Seeing correction

Despite of the stability discussed above, uctuations of
super-pixel uxes due to seeing variations are still present.
For a star lying in the central pixel (of the 3 � 3 super-
pixel), on average 70% of the star ux enters on average
the super-pixel for a Gaussian PSF, but this seeing frac-
tion is correlated with the changing seeing. In this sub-
section, we show that this correlation is linear and can be
largely corrected for.

6.1. Correlation between ux and seeing

Depending on their position with respect to the nearest
star, super-pixel uxes can signi�cantly anti-correlate with
the seeing if the super-pixel is in the seeing spot, or cor-
relate if instead it lies in the tail of a star. A correlation
coeÆcient for each super-pixel p can be de�ned using the
usual formula:

�p =

P
n (�

p
n � �) (Sn � S)qP

n (�
p
n � �)

2P
n (Sn � S)2

(7)

where � and S are the mean values of the super-pixel ux
�pn and seeing Sn on night n. In Fig. 12, we show the dis-
tributions of correlation coeÆcients �p in blue (left) and in
red (right) for each super-pixel p. These histograms look
quite di�erent in both colours but both distributions have
a peak around � ' �0:8. This peak, which corresponds to
the anti-correlation with seeing near the centre of resolved
stars, is expected due to the large number of resolved stars.
It is higher in red than in blue, which is consistent with
the EROS colour-magnitude diagramwhere most detected
stars have B�R > 0 (Renault 1996). The correlation with
seeing expected for star tails (� > 0) is less apparent. How-
ever, a clear excess at high values of � (around � ' 0:6)
appears in red, again consistent with the EROS colour-
magnitude diagram. Figure 13 gives an example of such
a correlation. The upper left panel of Fig. 13 displays the
scatter diagram of one super-pixel ux versus the seeing,
corresponding to a correlation coeÆcient �p = �0:89. De-
spite the intrinsic dispersion of the measurements (which
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Fig. 13. Seeing correction applied to the ux of one super-
pixel light curve anti-correlated with the seeing (�p =
�0:89). This corresponds to the super-pixel dominated by
a centred resolved star, whose position on the CCD frame
is labelled \A" in Fig. 15. The error bars shown here and
in the following �gures are computed as described in Sect.
7.

could be large in particular when a temporal variation oc-
curs), a linear relationship is observed. The bottom left
panel displays the light curve of this super-pixel.

6.2. Correction

This seeing correction is aimed at eliminating the e�ect
of the seeing variations and to obtain pixel light curves
that can be described as the sum of a constant fraction
of a centred star ux and the background (see Eq. 1).
The variation of the super-pixel ux can be interpreted
as a variation of the ux of this centred stars (see Eq. 2).
However it is clear that the super-pixel ux contains the
ux of several stars and that we are not doing stellar pho-
tometry, but rather super-pixel photometry.

The idea is to correct for the behaviour described in
Sect. 6.1 using a linear expression:

�pnjcorrected = �pn � �p (Sn � S) ; (8)

where �p is the estimate of the slope for each super-pixel
and �pnjcorrected is the corrected ux. In the following, �pn
will stand for this corrected ux.

Figure 14 shows that the seeing fraction of a given
star varies linearly with seeing, and hence justi�es this
correction. If several stars contribute to the super-pixel

(0.0,0.0)
(0.4,0.4)

(0.8,0.8)

(1.2,1.2)

(a)
(1.6,1.6)

(2.0,2.0)

(2.4,2.4)

(2.8,2.8)

(3.2,3.2)

(b)

Fig. 14. Variation of the seeing fraction of the star ux
that enters a 3� 3 super-pixel as a function of seeing, for
di�erent star positions, given on the �gures in pixel unit
with respect to the centre of the super-pixel. Panel (a)
shows cases when the centre of the star lies within the
super-pixel (anti-correlation). Panel (b) shows the seeing
fraction that could contribute from surrounding stars (cor-
relation).

Fig. 15. Di�erent super-pixels labelled \A", \B", \C".
\D" and \E" corresponding to the di�erent con�gurations
discussed in the text.
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Fig. 16. Seeing correction applied to the ux of a super-
pixel light curve with no signi�cant correlation with the
seeing (�p = 0:02). The position of the super-pixel on the
CCD frame is labelled \B" in Fig. 15. The stars whose
centres lie in the super-pixel are too dim to be resolved.

ux, their contribution will add up linearly, because the
ux of the background �bg (Eq. 1) can be written as:

�bg =

Nother

starsX
i=1

fi�i + �skybg ; (9)

where i refers to the stars whose uxes enter the super-
pixel, fi is the seeing fraction of each of these stars, �i
their ux, and �skybg the sky background ux that enters
the super-pixel. The �rst term describes the blending and
crowding components that can a�ect the pixel.

Di�erent con�gurations can occur as shown in Fig. 15,
and are discussed in the following. Firstly, if there is no
signi�cant contamination by surrounding stars, either (A
in Fig. 15) the star ux is large compared to the noise that
a�ects the super-pixel or not (B in Fig. 15). The e�ect of
the seeing correction on super-pixels of type A and B is
shown in Fig. 13 and Fig. 16 respectively. Secondly, if there
is a signi�cant contamination by surrounding stars, three
cases must be considered:
{ The centres of the surrounding stars lie in the super-
pixel (C in Fig. 15; seeing correction in Fig. 17).

{ The ux due to PSF wings of surrounding stars is
larger than the contribution of the centred star we are
interested in (D in Fig. 15; seeing correction in Fig.
18).

{ The ux due to PSF wings is comparable with the
centred star and their variation with the seeing cancel
each other (E in Fig. 15; seeing correction in Fig. 19).

Fig. 17. Seeing correction applied to the ux of a super-
pixel light curve strongly anti-correlated with the seeing
(�p = �0:94). The position of the super-pixel on the CCD
frame is labelled \C" in Fig. 15. This is a case of blending.

6.3. Importance of the seeing correction

The correction described above signi�cantly reduces the
uctuations due to seeing variations. Figure 20 displays
the relative dispersion computed after this correction.
With respect to the histograms presented in Fig. 11, this
dispersion is reduced by 20% in blue and 10% in red,
achieving a stability of 1.8% in blue and 1.3% in red, re-
spectively 1.6 times the photon noise in blue and 1.9 in
red. The improvement on the overall relative stability re-
mains modest, because most light curves do not show a
correlation with the seeing and do not need a correction.
The importance of the seeing correction as a function of
the correlation coeÆcient � can be more precisely quanti-
�ed. Figure 21 displays for both colours the ratio �A=�B ,
where �A is the dispersion measured along the super-pixel
light curves after the seeing correction, and �B the one
measured before the correction, as a function of the initial
correlation coeÆcient �. It can be shown that, if the slope
� de�ned in Eq. 8 is measured with an error ��, then the
following correlation is expected:�
�A
�B

�2
= 1� �2 +��2

�
�S
�B

�2

where �S is the dispersion of the seeing. This correlation
shows that the stronger the correlation with seeing, the
more important the seeing correction is. The dispersion
of the measurements can be reduced up to 40% for very
correlated light curves. The limitation of this correction
comes from the errors �a which explain why most points
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Fig. 18. Seeing correction applied to the ux of a super-
pixel light curve strongly correlated with the seeing (�p =
0:96). The position of the super-pixel on the CCD frame is
labelled \D" in Fig. 15. The super-pixel ux is dominated
by tails of surrounding stars. Centred stars are too dim to
be resolved.

Fig. 19. Seeing correction applied to the ux of a super-
pixel light curve not correlated with the seeing (�p =
0:05). The position of the super-pixel on the CCD frame
is labelled \E" in Fig. 15. Contributions due to the sur-
rounding stars cancel each other.

Fig. 20. Relative ux stability achieved on super-pixel

light curves after seeing correction for all the pixels of
CCD 3.

(a) (b)

Fig. 21. Importance of the seeing correction. The ratio
�A=�B is displayed as a function of the correlation coeÆ-
cient � calculated before the seeing correction is applied,
in blue (a) and in red (b). Data for 20 000 super-pixels are
used.

are slightly above this envelope. When j�j < 0:15, most
points in fact lie above 1, in which case the "correction"
worthens things. Therefore we do not apply the correction
to light curves with j�j < 0:15.

As the seeing is randomly distributed in time, the
above correction will not induce arti�cial variations that
could be mistaken for a microlensing event or a variable
star.

One can wonder however what happens to the super-
pixel ux when the ux of the contributing star varies. In
this case, the slope a of the correlation between the ux
and the seeing does change, thus resulting in a lower cor-
relation coeÆcient. In extreme cases, when the correction
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(a)

(b)

Fig. 22. Possible systematics. Panel (a) displays the vari-
ations of the air mass towards the LMC for each individual
images. Panel (b) shows the small-amplitude variations of
the angle of rotation of the PSF measured on the compos-
ite images.

coeÆcient is small (j�j < 0:15), the correction is thus not
appropriate and not applied.

6.4. Residual systematic e�ects

The seeing correction is empirical, and can be sen-
sitive to bad seeing determination due to inhomogeneous
seeing across the image or a (slightly) elongated PSF. Part
of these problems is certainly due to the atmospheric dis-
persion, as mentioned by Tomaney & Crotts (1996). This
phenomenon correlates with air mass, and a�ects stars
with di�erent colour di�erently. This is a serious problem
for pixel monitoring as we do not know the colours of un-
resolved stars. Figure 22 (a) displays the air mass towards
the LMC as a function of time for the images studied (be-
fore the averaging procedure), and shows, besides a quite
large dispersion of air mass during the night, a slow in-
crease with time. All the measurements have an air mass
larger than 1:3, and half of them have an air mass larger
than 1:6, producing non negligible atmospheric prism ef-
fects because of the large passband of the �lters. According
to Filippenko (1982), photons at the extreme wavelengths
of our �lters would spread over 0:73 to 2:75 arc-seconds
in blue depending on the air mass, and over 0:34 to 1:17
arc-second in red.

While the PSF can be well approximated by a Gaus-
sian (residuals ' 3%), a more careful study shows that
the PSF is elongated with h�b=�ai ' 0:7, where �b and
�a are the dispersions along the minor and major axis of

the ellipse. However the fact that the PSF is elongated
does not a�ect the eÆcacy of the seeing correction: on
the one hand, for the central part of the stars, a similar
seeing fraction enters the super-pixel for a given seeing
value; whereas on the other hand, for pixels dominated
by the tails of neighbouring stars, the correlation of the
ux with seeing will be slightly di�erent, but the princi-
ple remains the same. As the PSF function rotates up to
20Æ during the period of observation (see Fig. 22 (b)), this
could a�ect the super-pixels whose content is dominated
by the tail of one star and could produce spurious vari-
ations correlated with the angle of rotation. Fortunately,
this rotation is small and we estimate that even in this
unfavourable case it cannot produce uctuations of the
super-pixel ux larger than 3%, which can be disturbing
when close to bright stars. We expect this will produce the
kind of trends that can be observed in the bottom right
panel of Fig. 17 and 19. However this cannot mimic any

microlensing-like variation.

We reach a level of stability close to photon noise,
and this stability can be expressed in terms of detectable
changes in magnitude: taking into account a typical see-
ing fraction f = 0:8 for a super-pixel, and assuming a
total background characterised by a surface magnitude
�B ' 20 in blue and �R ' 19 in red, stellar variability
will be detected 5 � above the noise if the star magnitude
gets brighter than 20 in blue and 19 in red at maximum.
With the Pixel Method, our ability to detect a luminosity
variation is not hindered by star crowding as we do not
require to resolve the star, whereas for star monitoring,
the sample of monitored stars is far from complete down
to magnitude 20. Although the dispersion measured along
the light curves gives a good estimate of the overall sta-
bility, we can re�ne it further and provide an error bar for
each super-pixel ux.

7. Error estimates for super-pixel uxes

As explained in previous sections, it is not straightforward
to trace the errors a�ecting pixel uxes through the vari-
ous corrections. Errors are estimated here in a global way
for each pixel ux, \global" meaning that we do not sepa-
rate the various sources of noise. The images used for the
averaging procedure provide a �rst estimate of these er-
rors. The dispersion of the ux measurements performed
over each night allows the computation of an error associ-
ated with the averaged pixel ux. We discuss how this es-
timate deviates from Gaussian behaviour, and which cor-
rection can be applied. Gaussian behaviour is of course an
ideal case, but it provides a good reference for the di�erent
estimates discussed here.

Error estimates on elementary pixel. When we perform
for each night n the averaging of pixel uxes, we also mea-
sure a standard deviation for each pixel ��pn . Assuming
this dispersion is a good estimate of the error associated
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(a)

(b)

Fig. 23. Distributions of �p2: on both panels, the dashed
line represents the ideal distribution discussed in the text.
Panel (a) (solid line) displays the �p2 distribution with
error estimates based on the dispersion of pixel ux mea-
surements over each night. In panel (b), the histogram
(solid line) is computed with errors calculated for each
pixel ux as the maximum between the photon noise and
the errors used in panel (a).

to each ux measurement �pn;j, and that the errors a�ect-
ing each measurement are independent, we can deduce an
error �pn on �pn as:

�pn
2 =

1

Np
n

��pn
2 (10)

This estimation, however, is uncertain: the number of im-
ages per night can be quite small, and Eq. 10 assumes
identical weight for all images of the same night.

In order to assess our error estimates, we compute the
distribution of the �p2 values associated with each pixel p
light curve.

�p2 =
X
n

(�pn � h�pi)2

�pn
2

(11)

Figure 23(a) displays two �2 distributions: the ideal case
(dashed line) assumes Gaussian noise and the number of
degree of freedom (hereafter NDOF) of the data1; the solid
line uses actual data with errors computed with Eq. (10):

1 Since only one image is available for 3 of the nights, the cor-
responding points do not have any error bars at this stage, but
will have one in the next one. This explains why the ideal Gaus-
sian distribution of Fig. 23(a) (dashed line) is slightly shifted
towards the left with respect to those in Fig. 23(b) and Fig.
24(b).

(a)

(b)

Fig. 24. Corrected error bars: the upper panel (a) displays
a zn distribution for a given image n whose errors were
over-estimated (histogram). The full line corresponds to
the �tted Gaussian distribution, and the dashed line to
the normalised Gaussian distribution. The lower panel (b)
shows the �2 distribution calculated with the corrected
errors (solid line).

the histogram peaks roughly to the correct NDOF, but
exhibits a heavy tail corresponding to non-Gaussian and
under-estimated errors.

Due to statistical uncertainties on the calculation of
the errors �pn, it happens that some of them are esti-
mated to be smaller than the corresponding photon noise,
in which case the photon noise is adopted as the error.
The corresponding �2 distribution displayed (solid line)
in Fig. 23(b) has a smaller non-Gaussian tail, but peaks
at a smaller NDOF: not surprisingly the errors are now
over-estimated.

Correction. The correction described here is intended
to account for night to night variations, or important sys-
tematic e�ects altering some images. Although the main
variations in the observing conditions have been elimi-
nated by the procedures described above, each night is
di�erent and for instance the seeing distribution over one
night can di�er from the global one. Hence, we weight each
error with a coeÆcient depending on the composite image.
The principle is to consider the distribution for each night
n of the variable zpn given by

zpn =
�pn � h�pin

�pn
; (12)

and to re-normalise it in order to approach a normal Gaus-
sian distribution as well as possible. h�pin is the mean
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pixel p ux value computed over the whole light curve.
The standard deviation �0n of each of these zpn distribu-
tions is estimated for each average image n on a central
patch2 of 100�100 pixels. A zpn distribution is plotted for
each image and is �tted with a Gaussian distribution. This
�t is quite good for most of the images and the dispersion
of the Gaussian distribution is our estimate of �0n. Figure
24(a) shows an example of the �0n estimation. The solid
line shows a Gaussian �t to the data. The width is not
equal to 1 as it should be, but rather to 0:77, the value of
�0n for this image. For comparison, we show a Gaussian of
width 1, with the same normalisation (dashed line).

In the following, the corrected errors

�pnjcorrected = �0n�
p
n; (13)

are associated with each pixel ux. �pn is di�erent for each
measurement whereas �0n is a constant for each image n.
The resulting �2 histogram is displayed in Fig. 24(b) (full
line). The �2 distribution peaks at a higher value of �2

than before correction (Fig. 23(b)), which however is still
slightly smaller than the NDOF.

From pixel errors to super-pixel errors. We have seen
in Sect. 5 that the use of super-pixel light curves allows us
to reduce signi�cantly the ux dispersion along the light
curves. The most natural approximation for the computa-
tion of super-pixel errors is to assume those on elementary
pixels to be independent:

�spn =

sX
p

�pn
2
: (14)

However, errors on neighbouring pixels are not indepen-
dent, because of the geometrical alignment procedure and
of the seeing correction. To take this into account, we cor-
rect the error on super-pixels in the same way as above.
The factors �0njsp thus obtained are 20% higher than for
elementary pixels.

We have now super-pixel light curves with an error es-
timate for each ux. Figure 25 displays an example of a
typical stable light curve in blue (upper panel) and in red
(lower panel), whereas Fig. 26 is an example of a variable
light curve. The error bars obtained as a combination of
expected photon noise and experimental data are compat-
ible with the dispersion observed on the super-pixel light
curves, and allow us to give a di�erent weight to each
measurement according to its quality.

8. Conclusion

The treatment described here has produced 2:1 � 106

super-pixel light curves corrected for observational vari-
ations, with an error bar for each point. They are charac-
terised by an average stability close to twice the photon
2 The values of this dispersion �

0

n
uctuate around 4% from

patch to patch.

Blue

Red

Fig. 25. Example of a stable super-pixel light curve.

Fig. 26. Example of a variable super-pixel light curve in
blue (top). The star is unresolved at minimum (bottom
left panel) and would even be diÆcult to detect with clas-
sical procedures at maximum (bottom right panel).

noise: dispersions of 1.8% of the ux in blue and 1.3% in
red are measured over a 120 days time period. To reduce
the e�ects of the dispersion due to the observational con-
ditions, averaging the images of each night turns out to
be a crucial step. The uctuations due to seeing varia-
tions have been corrected for. We associate an error bar
with each measurement, and these careful estimates to-
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gether with the study of possible systematics are used in
the companion papers for the detection of intrinsic lumi-
nosity variations.

This study is the starting point for the comprehensive
microlensing search described in Paper II. The error esti-
mates enter the de�nition of the selection criteria and con-
stitute an important ingredient for microlensing Monte-
Carlo simulations required to quantify the eÆciency of the
pixel microlensing method. The study of the background
of variable stars will be addressed in Paper III.
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