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SMALL RING LATTICE PROBLEMS
E.J.N. Wilson
CERN, Geneva, Switzerland

ABSTRACT

This is a review of the special problems in particle dynamics lattice
design, and magnet construction and mcasurement which should be consid-
ercd in the design of small synchrotrons and storage rings. The CERN Anti-
proton Accumulator is used as an illustration.

1. INTRODUCTION

This report sets out the practical problems which face the designer of a small storage ring : the
CERN Antiproton Accumulator. The designers of other small rings for clectrons and high intensity
proton synchrotrons will encounter similar problems. Their solutions may differ according to the appli-
cation but the cxamplic will be instructive

Synchrotrons built for the highest encrgy clectrons and protons are built of hundreds and cven
thousands of small aperturc magnets several meters in length. There arc usually several hundred regu-
lar periods and enough space in the six or cight insertions to string together a scrics of purpose built
scctions for injection, ejection, dispersion correction and low beta matching. In a small ring the num-
ber of magnets and periods is severely restricted and one must often exercise considerable ingenuity to
arrive at a design which satisfics all the requirements necessary to arrive at the desired performance.

The ends of the long high - energy - machine magnets constitute onty a small fraction of the inte-
grated ficld seen by a circulating beam and the fact that the ficlds in the ends are three - dimensional
can usually be ignored. Indeed many of the computer programs developed Tor the design of large rings
contain approximations which trcat the magncets as pure, two - dimensional ficlds and ignore the small
curvature of the central trajectory through the end ficld. Such approximations must be reviewed criti-
cally by the designer of a small ring where the magnet aperture can become comparable to the length
and where much of the magnet’s effect comes from a fringe ficld in which the particle is deflected with
a radius of curvature comparable 10 the magnet’s length.

In this report we first discuss how onc may satisfy a number of design constraints in a small ring
like the Antiproton Accumulator, how measurcment and correction of the end ficld can be combined
with Q mecasurements on the finished machine to correct effects introduced by short magnets of large
aperture, and finally we consider a class of end cffects which are not normally included in cven the
most rigorous lattice programs.
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2. THE EXAMPLE - AN ANTIPROTON ACCUMULATOR

In the photograph taken though a “fish - eyc” lens, we sce the large bending dipoles and focusing
quadrupoles of the Antiproton Accumulator which has a mean radius of 25 m. The objects to be scen
in Figurc I, wrapped in shiny aluminium bake - out jackets and installed in between some of the mag-
nets arc pick - ups and kickers which are mainly used for stochastic cooling and do not concern us for
the purposes of this talk.

Figure I: A Fish - eyc view of the Antiproton Accumulator

In the bottom right hand corner of the plan view shown in Figure 2, we scc the target where
antiprotons are produced and a short transport linc which brings them to a point, at 12 o’clock on the
"dial” of the ring, where they arc bent by a septum magnct to join the circulating beam. A little fur-
ther around, at about 2 o’clock on the dial, is a kicker magnct which inflects them onto the injection
orbit. At 10 oclock is an ejection kicker which uses the same septum to extract thc beam which has
becn accumulated and stored.

One of the constraints on the design is that these kickers should be located at a particular hori-
zontal betatron phase advance from the septum. This should be rather close to an odd multiple of 90
degrees. We shall sce that such injection and cjection details often have quite strong influence on the
fattice design and should not be left until after the major paramcters have been frozen.

One of the problems which ariscs naturally when the ring is small is that there is not enough room
for all the componcnts and this lcads to a great shortage of space between the magnets. In Figure 3 we
sec a typical gap between quadrupole and bending magnet. We must be carclul to ensure that their
fields do not interfere or, il they do, that we know from measurements with thc ncighbouring magnet
in placc, how the effective length of the magnet and quadrupole are affected by the other’s presence.
We can scc in Figure 4 some carly measurements of quadrupole gradicnt along a linc parallel to the
axis which were made in the 1950's [1], that a stecl plate acting as a mirror to simulate the presence of
another magnet has a significant effect on the effective fength and central ficld gradient.
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Figure 4. End ficld shape for a quadrupole with a stecl mirror plate

In arriving at a suitable lattice design for this ring we first chose the encrgy to be 3.5 GeV since
this is the energy at which the antiprotons are most abundant and we tried to make the radius 25m, so
that its circumference is exactly one quarter of that of the PS. The bunches of protons which producc
the antiprotons originatc in the PS and it is this machine which will later have to re - accelerate the

antiprotons.

It is natural to first try to design around a FODO pattern of quadrupole lenses since this is the
simplest from many points of view. Of course, designers of clectron rings for synchrotron radiation
usually choose another kind of lattice, but the problems we shall discuss tend to be common to any lat-

tice configuration.

This particular ring has a specific requircment imposed by the cooling system which demands that
the spread of revolution frequencics, which stems from the momentum spread and which is determined
by

1 1 df
p=t Loz m

is within rather closc limits. This fixes y,. Other machine designers will encounter different constraints
on this parameter. In high intensity boosters it is often thought a good idea not to include y, in the

energy range of the synchrotron. In clectron rings, although onc is far above transition, the momentum
compaction which is linked to the encrgy damping time places a similar constraint on the designer.

The second term in the expression for cta is cqual to the momentum compaction function divided
by bending radius. Itis determined by the change in circumference with momentum about the equilib-
rium momentum and is just the average value of the dispersion function D(s) around the ring:

d B 1 _ [—%lds ()
y R 2rRJ p(s)
tr

We shall sce that this paramecter is controlled by the choice of Q value and indeed, for a proton
machine transition, is roughly cqual to Q. The Q value is in turn closcly ticd to onc quarter of the
number of FODO periods since one tries to choose a hetatron phase advance of 90 degree or perhaps
60 degrees but rarcly outside this range. Since the desired y, for the AA was 2.4, the Q was chosen (o

be 2.3 and therefore the number of periods had to be approximately 10,
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If the number of periods is too large the space will be chopped up into too many small picces;
there will be too many components and too many wasteful ends to them. Furthermore, the AA ring
has a natural symmetry of four and we are left with only &, 12 and 16 as possible numbers of periods.
When we come to examine the relative merits of the few remaining options we find that N = 8 would
suggest a smaller Q value and hence beta, which is roughly R/Q, becomes uncomfortably large. When
we considered the acceptance necessary to collect cnough antiprotons the apertures of the magnets are
large even with N = 12. The larger beta of N=8 would make matters worse. On the other hand 16
periods would result in too many small components.

Once the period number is fixed, the position of all the quadrupoles is determined and the Q val-
ue is fixed within narrow limits. The length of the quadrupoles is also determined by the peak field
onc may allow on their pole picces which must inscribe an cllipse or rectangle sufficient to accommo-
datc the beam. The lattice functions and the required emittance and momentum spread ( 100 pi mm.
mrad and 4+ 3% in the casc of the AA ) arc now pretty well defined and it is merely a matter of jug-
gling to make the exact numbers from a lattice program consistent.

We still have to decide on the layout of bending magnets within the ring and the positions of
injection, cjection and (in our example) the cooling systems. The kickers must be 90 degrees (or some
odd multiple of this) from the septum and this determines which of the half periods they lie in. The
AA ring has a rather special requirement that there will be two “beams” circulating which differ only in
momentum as shown in Figure 5, one is the “stack” were antiprotons are accumulated and the other
the injected beam which must be physically separated from the stack at the injection kicker. This
magnct, which cncloscs only the injected beam has a movable ferrite shuiter which closes the magnet

_aperture on the stack side to prevent the stack from being disturbed by the firing of the kicker. The
two beams must be separated by cnough spacc for this shutter.

BEAM DIMENSIONS ap/p (%)
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Figure 5: Beam dimensions for one quadrant of the AA.
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Figure 6: Beta functions and dispersion for onc quadrant of the AA.

Elscwhere both beams must pass through a narrow cooling pick - up at 12 and 6 o'clock and
there must be a steep rise in the dispersion function between the septum and kicker as can be scen in

Figure 6.

This rapid change in dispersion is achicved by choosing to make the lattice symmetric about a D
quadrupole at 6 o'clock. We also make use of the horizontal defocusing propertics of the end ficld of a
dipole whosc faces are titted horizontally to make an angle with the beam. Both these features help to
raise the dispersion as fast as possibie immediately after the first dipole encountered by the incoming
beam and then causc it Lo roll over into a high sustained value in the rest of the superperiod [2]. The
result is to be scen in Figure 6. T explain this rather peculiar feature only to complcte the AA story.
Other machincs will no doubt have their own special reasons for choosing a particular symmetry or a

particular kind of dipole end design.

Once the lattice designer has reached this advanced stage in fixing the design it is high time that
he checks with the designers of all the other components of the ring that there is enough room for them
to be installed. Some of these will be best placed where the dispersion is zero. In an clectron ring this
is true of RF cavitics and in our example it is the betatron cooling kickers that have this preference.
There may be other components, momentum cooling pick - ups in the AA but momentum scrapers in
synchrotrons, which need to be where the dispersion is greatest. Al these must have enough free
length for their function and still leave room for diagnostic pick - ups.
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3.  MAGNET DESIGN, MEASUREMENT AND CORRECTION

The magnets of small rings tend 1o be short when measured in numbers of gaps or aperture radii.
The end ficlds of such magnets must be carcfully considered because no longer will the shape of the
poles in the body of the magnet alone fix the field purity. This is particularly so in the case of the AA
magnets which arc not only short but have huge apertures in order to accept cnough beam Figure 7.
Each of the dipoles of a small ring with only a few periods will bend through an appreciable fraction-of
a circle. In the casc of the AA the average entry angle is more than 20 degrees.

Figure 7: One lamination of an AA dipolec magnet

We must decide whether we should make the magnet curved so that the end faces arc normal o
the entering and cxiting beam or whether the magnets will be just simply stacked from parallel lamina-
tions so that their ends are parallel and present, in this case, an angle of 20 degrees to the beam. The
focusing propertics of the two kinds of magnet arc quite different. The transport matrices in the hori-
zontal and vertical plancs for a magnet which is curved to ensure that the beam enters and leaves nor-
mally are given by :

cos psind p(1 — cosh)

sinf .
M, =| - > cos sin0 (3)
0 0 |
I p@ 0
M,={01 0 4)
00 1

We can sce that the (2,1) clement of the horizontal matrix, which cxpresses the focusing power, is
finite. In contrast, in the vertical planc there is no focusing action. On the other hand you can change
this by tilting the end faces by angle ¢ as shown in Figurc 8. To first approximation, the effect of this
tilt may be expressed by thin - lens matrices at cach end :

1 00
tane
M, =
p
0 01

10 (5)
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Figure 8: Geometry of a bending magnet which is not a scctor.
1 10
1 b
=| ~(————tang) 00
M, p ( 6pcos € ) (6)
0 01

For the special case of the parallel ended magnet 2= 0/2 the (2,1) clements become Ltan0/2) ¢
r

you multiply the matrices together you will find that the focusing power in the horizontal planc is can-
celled by these thin lenses and instead, the magnet focuses vertically. Either way onc cannot avoid
~ considerable beating of the beta function in onc or the other of the transverse phasc plancs. Wc sce
from Figure 6 that we chosc to let this happen in the vertical planc of the AA, where apertures were
not so huge, rather than adopt complicated special quadrupole arrangements (o match it out.

The optical propertics are becoming quite precise at this stage and onc should recalculate Figure 5
to check aperture dimensions and design the vacuum chamber. We can sce that some of the magnets
have to house a beam 60 cm wide. This is a very cxtreme casc which illustrates admirably some of the
effects which onc must be aware of in small ring cven if, when calculated for smaller apertures, they
prove not to be as important as in the AA.

4. MULTIPOLES IN THE MAGNET DESIGN

One of the difficultics we encounter in an analysis of beam dynamics for such a machine is that
there are non - lincar terms in the focusing which have to be corrected. These are important for they
modify the chromaticity or introduce a variation with momentum in the dispersion of the machine.
One must compensate the chromaticity vather precisely in a storage ring and this may be donc in a
large ring with scts of sextupole magnets. In a small ring there is often too little space for special cor-
rection magnets but multipole correction fickds may be incorporated in the magnet design. This may
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Figure 9: Multipole corrections applied to onc quadrant of the AA

cither be done by shaping the pole picces or by shimming their ends with lumps of steel bofted onto the
pole picces. For example we may design the main quadrupoles with poles having a sextupole asymme-
try which causes a variation of gradient so that it is no longer the same over the whole width but has a
slope so that it is stronger on the outside of the machine and therefore compensaltes the variation of Q
with momentum : the chromaticity. The corrections labelled SF1 in the plan of onc quadrant of the
AA, Figure 9 arc of this type. The left right symmetry of the quadrupole is broken to do this. At the
same (ime any curvature in the variation of Q as a function of momentum may bc corrected.

We can see in Figurc 10 how the integrated gradient of the quadrupole, designed with a magnet
ficld mesh program, has a lincar variation_with horizontal displacement plus a quadratic term to
maltch the chromatic curvature. The lincar term is sextupolar and the curvature is octupolar ( labelied
OF, and OD in Figurc 9 ). The same Figure shows correction SF2 and SD which are sextupole terms
applicd by end shims to the dipoles.

In the AA we designed all these corrections in at the beginning but also provided the means Lo
make adjustments to the radial ficld variation afterwards with packs of washers mounted on studs pro-
truding from the pole ends. In Figure 11 we sce a wide quadrupole magnet being measured and the
studs with their washers are clearly seen. The long coil integrates the gradient along a paraxial line. By
controlling the number of washers on each stud we can shape the integral of the gradient as a function
of horizontal position without using any power or taking up any of the circumference.

In order to calibrate the effect of washers in the 16 different stud positions scen in Figure 12 a
pack of six washers was placed on cach stud in turn and the change in integrated gradient compared
with an unshimmed magnet measurement [3].
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Figure 11: Mecasurements being madce on an AA wide quadrupole
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Figure 12: Stud positions and correcting winding on an AA widc quadrupole
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The results of this calibration are shown Figure 13 where cach curve shows the change in gradicnt
due to one pack of six on each of the washer positions. A program was written to combine combina-
tions of washers 1o produce any desired change in field gradient.

It proved perfectly practical to shim ficld shapes empirically on the basis of Q mecasurements with
these washers but the process took several hours. To modify ficld shapes on - line and with the beam
circulating we installed single - turn correction windings which can be seen in Figure 12 mounted on
the pole. Their cffect was also calibrated by ficld mcasurcment on 2 prototype and the results for a
range of currents can be scen in Figure 14. Of course such correction windings lead to power supply
complications in a pulsed machine

Now we come to consider how successful all this shimming was in correcting the Q variation with
momentum. We sce in Figure 15 the residual variation in Q when the AA was first switched on (4]
Although every care had been taken there is still a Q variation in the horizontal planc which is larger
than the space between the onc - third and onc - quarter integer resonances.

Adjustments to the end shims were calculated and applicd to reduce this by almost an order of
magnitude ( Figure 16) and when the same points are plotted on a Q,, Q, diagram (Figure 17) we find

that all sum resonances up to 11th order arc avoided. The correction was applicd in two iterations.
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Figure 13: The cffect of a six - pack of washers Figure 14. Effcct of current in the correction

on cach stud position winding of an AA quadrupole
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S. TWO -DIMENSIONAL FIELD INTEGRALS

And now we should turn to some of the theory behind the description of magnets and how this
must be modified when the magnets arc only a few gap dimensions long. If a magnet’s ends are identi-
cal, the ficld in the plane of symmetry mid way between the ends will be “two dimensional”. Symmetry

dictates that there can be no axial component, B . Laplace’s equation for the scalar magnetic poten-

tial, :

(724)(x.y,z) n (724)(xy,z) + 02(1)(3(,},’,2) -0 7
2 2 2 ,
x dy dz
reduces to just the outer two terms [5]. The two - dimensional equation has the very attractive prop-
crty that the solution is a harmonic serics

$ = r'sin(nf) . ®)

Each term in this scries corresponds to a magnet with a different number of poles. The index n of
the n’th term is just half thc number of poles. pure multipole would have which produced the n’th
term in the serics. It is also associated with the order of the non - lincar resonance which this multi-
pole can produce. For example if n is 2 we obtain the ficld produced by a quadrupole. The potential
must reverse as we describe a circle of constant radius to have two positive and two ncgative excursions
corresponding to the four poles. Of course, in this case, the motion is lincar and any resonant condi-
tion has order 2.

This is a uscful simplification when we consider the dynamics of a beam passing through a long
magnet where most of the ficld has this two - dimensional property. We can even prescerve this simpli-
fication when we include the end fields of a short magnet provided the deflection in the magnet is
small, as is the casc in high energy synchrotrons with large radius. We can then approximatce the parti-
cies cquilibrium orbit to a straight line paraxial to the centre line of the magnel. The integral of the
potential along such a linc, in other words, the average potential, has the same two - dimensional prop-
crtics. This may be proved by integrating the three terms of Laplace equation along such a line. The
middle term becomes:

i Vo
IKIENEI Y :[04>(;yasz)] ©

2
My .
; oy Ya

Clearly if y, is taken arbitrarily far away from the ends the cxpression will be zero at cach limit.

Each of the other two terms becomes a simple average of the transverse second derivatives of potential.
For example:

Yo Yo

. 2 2 2
J P xz,y,Z) dy = ﬁ? L J‘ Plxpo)dv | = _‘);?2; )
5 0z 0z 2-‘)() y dz

[ o

and the two - dimensional Laplace Equation as well as its trigonometrical solutions apply exactly to the
averages of the potential along paraxial lines. The average transverse ficlds scen by the particles arc
just the derivatives of the average potential and arc the familiar trigonometric scrics with n being half
the number of poles in the multipole associated with cach term.

It is of course the vector potential, A, which is more commonly used in the study of beam dvnam-

ics since it describes the effect of magnetic ficld in the Hamiltonian of the motion. In the two - dimen-
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sional casc A_and A, are zero and the axial component obeys Laplace’s cquation in two - dimensions

producing a harmonic scrics solution for the fickd expansion.

The two - dimensional solution of 4 may also be expressed in Cartesian coordinates as a polyno-

mial:
o,
4= ZA"fn (%,2) (11
!
where :
_f;1(.x,z) = (x +iz)" . (12)
For a quadrupole this is:
£(x,2) = (" = )+ i2x2) (13)
We can derive the transverse ficld components:
A S (n 1)
B = —;3—:— =) ndx (14)

1
when z= 0 . And we can deduce that the imaginary terms in the polynomial correspond to the skew
orientation of multipoles while the real term in our example could represent a normal lattice
quadrupole. A real cubic term would be a sextupole with a vertical plane of symmetry while the imagi-
nary cubic terms stem from a skew sextupole, onc that is, which has been rotated about its axis by 1/12

of a revolution.

We find, therefore that there is a simple association between the terms in the Cartesian expansion
and the order of multipole, just as there was in the polar case. We can cven go further to associate cach

term with a term in the Tavlor expansion of the field about the axis of the magnet:

o0 (n 1)
W ] dB z n=1
B.= Z—-—( " (15)

n=Ht gt D
l .

and thus a quadrupole produces a gradient, a sextupole a second derivative and higher multipoles
produce successively higher derivatives.

All of this applies cqually to particles whose path may be approximated by paraxial rays and to
measurements made with long paraxial scarch coils which extend clear of the magnetic ficld at cach
end. One can often identily the multipole content of the magnct stmply by inspecting the transverse
dependence of the field measured by such a coil. A quadratic variation indicales a sextupole and a
cubic points to an octupole error term.

Just to complete this two - dimensional treatment. which 1 repeat is an approximation valid only

for paraxial trajectorics, et us recall the simple Hamiltonian:

2 2
T

=X | = ()4 I¢
(A, (e

The vector potential term can, in the paraxial approximation . be written:

=
A\:ZA "/;'(x,z) (17
1
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and we can conveniently associate each multipole with a term in the Hamiltonian. So for our example
of a quadrupole we obtain for the motion in the x direction:

H=-x_IX (1%)

where k is the normalized gradient B'/(Bp). Application of Hamilton’s equations leads rapidly to the
familiar Hilt's equation of motion. This is using a sledgchammer to crack a nut but when we come o
introduce higher order terms which are non - lincar the power of the Hamiltonian produces an overall
simplification.

6. CURVILINEAR COORDINATES

The above treatment is all well and good for large synchrotrons but breaks down scriously if the
dipoles of the ring bend particles significantly from a paraxial path. This is much more likely to be the
casc in a small ring with a few focusing periods. In such a case we may consider a model which 1 will
refer to as the “sliced loaf” model in which the end field is broken up into elementary slices cach of
which may be represented as onc of the multipole shaped ficlds of the two - dimensional model. We
would expect such a model to be capable of telling wvse, for instance, how bad the effect of correcting an
crror in the ficld duc to the pole profile by putting shims on the end of the magnet. The two ficlds
would not quite compensate for a particle that moved its position with respect to the magnet axis as it
entered the fringe ficld.

To make this model work we must be very carcful with the curvature of the trajectory. Bengtsson
[6] has recently made an clegant analysis of this using the metric tensor which defines the relation
between differential changes in the curvilinear system to the rectilincar Cartesian system:

1o 0 0

0 -1 0 0 (19)
g =
n 0 0 —(1+hx) 0

00 0 ~1

where h is the curvature 1/p. Using the four - vector coordinates of special relativity he arrives at a dif-
ferential equation of motion:

7" " v A v
dx'  prd dd e e (20)

—=-— vxB 1)
dr mn

and we can sce that the middle extra term contains all the information on the transformation to curvi-
lincar coordinates. He derives explicit equations of motion from this cxpressed in terms of the two -
dimensional harmonic ficld cocfficients. Later he derives a Hamiltonian in terms of the normalized
quadrupole and sextupole strengths, k and m, and including the effect of dispersion, D, on a particle

with a momentum defect § = dp/p
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2

H = (0> —k — 5[(m + 20K)D + h" — k]}x

i
2
i %{k + 8[(m + hk)D — ke + ' D'}’
1 e ,
— —(m + 2hk)x" + 5 (m + hk)xz (22)
6 2
+‘—(l + 5/D);2+_I_(| + ShD)?
7 o, T 5 ShD)p,

+6hD’'xp + —:lzh’zsz + l?hxpi + %hxpj

Inspecting this Hamiltonian we first should note the appearance of the focusing strength, k, alone
in the first two lines. This is just like the simple two - dimensional Hamiltonian [rom which onc may

derive lincar betatron motion. We can sce that the focusing will be modificd by the first term R, This
term will be familiar to those who remember combined function machines. The square brackets in the
first (wo lines contain terms which affect the off - momentum behaviour. The simple focusing terms Kk
and /i* appear again here to cxpress chromaticity. The scxtupole strength, m , also appears as a coefTi-
cient of 8D and this must describe the effect of sextupoles in modifying the chromaticity. Terms which
contain the product, hk, must be peculiar to combined function lattices where curvature and focusing
occur in the same element but we should not ignore the product &0’ in the sccond term which tells us
that the shape of the curved orbit can maodify vertical chromaticity.

Turning to the third line we have two terms which, in a separated function lattice in which hk =
0 just describe the effect of sextupoles on the betatron motion. These terms occur in our simple two -
dimensional description. One can derive the strength of non - lincar resonances from these terms. The
fourth and fifth lincs contain momentum dependent terms in which the curvature, h, is present and the
last three terms which modify the betatron motion for on momentum particles where there is finite cur-
vature and, presumably can contribute to non - linear resonance width.

If we follow the analysis of the “sliced bread” model of Bengtsson and which is also embodied in
computer programs likc ORBIT [71, MAD [R]. we go a long way towards an cxact description of the
end ficld of magnets. The lattice functions, dispersion and chromaticity will turn out close 1o recality.
However there remains onc more cffect which is less well known and which to the best of the author’s
knowledge is correctly embodied in only onc computer program MIRKO [9]. We shall call it Electron
Microscope Distortion since it is well known in that ficld.

7. EXCURSIONS WITHIN THE END FIELD

Suppose we return to the model of paraxial trajectories and ignore curvature for the moment. We
have shown that the integrated ficld is two - dimensional but we know that locally this is not the case.
The paraxial particle may see, say, a left hand deflecting field from the three dimensional nature of the
ficld as it enters the end ficld region but our paraxial theorem tells us this is exactly cancelled by an
cqual and opposite right hand deficction somewhere else in the end ficld. Now supposc the particle is
following a line which is not paraxial becausce the beta function is varying in the end ficld or perhaps it
is an off - momentum particle whose displacement follows the dispersion function and is not thercfore
paraxial. The two perturbations will now be different because the paraxial theorem relies on the parti-
cle staying the same distance from the axis through the end ficld and this is no longer the case. In order




- 152 -

to understand such effects we must have a model for the end ficld which expresses how the multipole
cocfficients vary as a function of distance along the beam axis. There is a complete polynomial expres-
sion for the three - dimensional end ficld to be found in a text by Glaser on electron optics [10] and we
reproduce this polynomial for the scalar potential as he wrote it.

9u(x,y,2) =@, — Gx - Hy — (@}, — A)x* + Qxy - {(®", + A) y?
+3(GG + Gl)x3 - Hlxzy - Glxy2 +3GH + Hl)y3
+ (5O - A+ A)x - (50 -4Q)xy (23)
+ (3505 - 6A )x?y? - (5Q +4Q )xy’

+(HoW+ LA+ A)y*.

The coefficients G, H, Q refer to vertical and horizontal dipole and quadrupole ficlds respectively.
Other cocefficients contain the axial derivatives of these quantities. We can still identify most of the
multipole cocfficients although in Glaser’s notation we must remember that x and v are transverse and
z is axial.

Table 1

Terms in Glaser's expansion according to multipole symmetry

| NAME | Pm | B, | B, | dB,/dx | dB,/dy |
SOLENOID o014 o™y 4316 [0y x+x) A6 | -6 xy/8 -0xys8
(I¥) 4

+¢ r'/64
| H BENDING -Hy H 0 0 0 |
V BENDING -Gx 0 G 0 0 |
QUADRUPOLE Qxy -Qx -Qy -Q -Q I
SKEW QUADRUPOLE| A(x* - y*) 4 Ay /2 -ax/2 0 0
SEXTUPOLE H(y -3<%y)3 H(x*-y?") 2Hxy 2Hx 2H x
SKEW SEXTUPOLE | G (x’ - 3xy?) /3 2Gxy G(y* - x) 2Gy 2Gy
OCTUPOLE At -6x'yt+y |4aBx°-y)) 48 B3xy’ - x) 244 xy 244 xy
 SKEW OCTUPOLE | 4Q(xy’ - x'y) 4Qx’ - 3xy? 1 4QBx%y - ) 12Qx* -y} 12Q,(x* - vy
END QUADRATIC | G'x’-H'y) H'yY2 | -GxY2 0 0
| END CUBIC |Gy +ay)12 | Q(+3xyHn2 | QBxly+y’yi2 | Qi +y?y 4 QE+y?) 4

In Table | we can sce the same terms sorted according to the familiar multipoles and shown in
the various columns are the expression for the ficlds and their gradients. Near the bottom of the table
are two lines which we name “end quadratic” and “end cubic” which do not fit into our multipole
desceription. The “end cubic” looks at first sight like an octupole but when its ficld gradient or focusing
effect is plotted as a function of the transverse ( x, v) in Figure 1& we see it is like a hammock while
anoctupole Figure 19 is a saddle shape. Anyone who has fried to sleep in a saddie or ride in a ham-
maock will avow to the different topology of these functions.

If we loak carefully at the symmetry of the end ficld cubic we find that while it has the symmetry
of a quadrupole in 0 its radial dependence is that of an octupole. Tt is a characteristic of the end ficld
of a quadrupole and proportional to the slope of the main gradient term, Q. Such terms must be

included explicitly in any simulation of the cnd ficld shape atthough their cffect in one planc can be
thought of as a simple multipole,
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Figure 18: End quadratic potential.

Figure 19: Octupole potential.
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Because Q' reverses sign as we pass through the fringe field the paraxial integral of these terms is

zcro but they have an effect which is proportional to the slope of the betatron function, «, and, in thc
casc of an off - momentum particle, to the slopc of the dispersion function [11].

At the time that the AA ring was designed (his cffect had not been discovered and it is still not
incorporated in the standard lattice programs. When it was simulated with the MIRKO program, it
cxactly matched the curvature in Q versus momentum (Figure 15) before empirical shim correction was
applied. Simulation has also shown that it can drive fourth order resonances. Clearly both of these

cffects become significant only in small rings of short magnets where the emittances and momentum
sprcad are large.

8. CONCLUSIONS

In this review of the special featurcs of small rings we have re - examined some of the approxima-
tions which are normally built into the analysis and the computer programs which describe transverse
motion in today’s large synchrotrons. The accelerator designer should be particularly carcful of these
approximations when the ring he is designing has magnets which bend through an angle of a few
degrees or when the magnet length, measured in number of gap widths, is small.

The practical problem of having so many cends of quadrupoles, dipoles and other cquipment in a
small ring yet finding enough room for the components themselves is always severe but can be made
less difficult if corrections are built into the magnet design and tuned by modifications to the ends of
poles. One may even save the space for closed orbit dipoles by installing remotely controlled jacks to
support the quadrupoles. This solution proved perfectly successful in the design of the AA and later
the Antiproton Collector ring.

Finally, although there has been no time in this review to apply these lessons to small electron
ring, many of the considerations are equally valid [13]. However the reader can readily appreciate that
some of the correction methods may not be possible in a fast cycling electron ring and the acceptances
may not be large cnough for the finer points of the end ficld shape to be an important consideration.

Nevertheless, the scenario for the design of the AA is a good vantage point to scan the horizon of pos-
sible pitfalls.

* * *
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