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Infrared singularities in the null-plane bound-state equation when going to %1 dimensions
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In this paper we first consider the null-plane bound-state equationcim_naaair in 1+ 3 dimensions and in
the lowest-order Tamm-Dancoff approximation. The light-cone gauge is chosen with a causal prescription for
the gauge pole in the propagator. Then we show that this equation, when dimensionally reducedl to 1
dimensions, becomes 't Hooft’s bound-state equation, which is characterizedxdy arstantaneous interac-
tion. The deep reasons for this coincidence are carefully discus3@856-282(198)02206-1

PACS numbgs): 11.10.St, 11.10.Kk, 12.38.Bx

I. INTRODUCTION The situation drastically changes in+1l dimensions.
Here ultraviolet (UV) singularities no longer occur, and
One of the challenging problems confronting gauge theohence there is no need of renormalization. Both equal-time
ries is the transition from theories defined in the usual land null-plane quantization sees priori viable [8]. The
+3 dimensions to (% 1)-dimensional theories. In turn (1 |atter indeed no longer conflicts with causality as no vector
+1)-dimensional theories are interesting as sometimes _theé{egrees of freedom propagate, the gauge field only providing
are solvable, or, at least, they provide useful insights intQ,“jnstantaneous” potential between fermions: canonical

non-perturbative phenomena. o L
Apcentral role Iias played by the choice of the light-cone quantization suggests the CPV prescription(bath) Feyn-
man and gauge polés.

gauge, owing to its natural partonic interpretation. On the . _
other hand this gauge, at least in perturbative treatments, A_cele_zbra_tefi exam’ple of this theory n the 'a’@e‘?‘p‘
exhibits more severe infraredR) singularities. proximation is 't Hooft's bound-state equati¢®]. From it a

Yang-Mills theories in the light-cone gauge were first bgautiful physical picture emerges with meson bound states
quantized on a null plandight-front quantization[1]). In lying on rising Regge trajectc_)r|e§. The counterpart of this
this procedure the gauge pole in the polarization tensor oc€duation in equal-time quantization was proposed by Wu
curring in the free propagator is treated according to thd10], a quite difficult two-variable integral equation, whose
Cauchy principal valu¢CPV) prescription, which has the (approximatg solution for particular values of external pa-
merit of being “real,” namely not to contribute to the propa- rameters has been obtained only very recefitli). The re-
gator absorptive part. However, in so doing, a conflict issulting physical picture is quite different from 't Hooft's; in
induced with the usual “Feynman” pole, which, on physical particular no rising Regge trajectories are found.
grounds, in 3 dimensions must be prescribed in a causal On the other hand, if the1 theory is to be considered
way. This conflict can for instance be seen as the occurrend@s the limit of a theory in higher dimensions, then the equal-
of extra unwanted terms when perturbative integrals undergime formulation(with related causal prescriptipseems un-

a Wick rotation[2]. avoidable. This is also the conclusion one reaches when con-

To remedy this situation, a causal prescriptionsidering a perturbative Wilson loop calculation &g
[Mandelstam-LeibbrandiML)] was proposed in Ref$3,4]  [12]: Feynman and light-cone gauges provide the same re-
for the gauge pole; this prescription was in turn derived bysult, even in the limid— 2, only when canonically quantized
equal-time canonical quantization in R€&] and shown to ~ at equal time. This result in turn is quite different from the
be mandatory in 3 dimensions for a consistent renormal- one derived using the instantaneous potential coming from
ization[2]. null-plane quantization.

When x*-ordered perturbation theory is used, more se- Two different theories thus seem to exist ir- 1 dimen-
vere IR singularities occur, which often have been regularsions, one being the limit of theories in higher dimensions,
ized by means of artificial cutoffs. On the other hand, the MLthe other being simpler and endowed with nice physical con-
prescription cannot be easily implemented. This difficulty issequences. We would like to stress that the difference is not
carefully explained in Ref[6] in which the bound-state in technical details: the two formulations have a different

equation for aqq pair is considered in the lowest-order content of degrees of freedofg],

Tamm-Dancoff approximatiof7]. The relevance of using a _ Still, we show that the bound-state equation, in the

causal prescription for the gauge pole is fully recognized andPWest-order Tamm-Dancoff approximation and with a
a concrete solution for implementing the ML prescription is€@usal prescription on the gauge pole, when dimensionally

proposed.
10f course “Feynman” and gauge pole have to be treated coher-
*On leave of absence from Dipartimento di Fisica “G. Galilei,” ently; we remind the reader that the product
Via Marzolo 8, 35131 Padua, Italy. (L19%]cpy) (119t ML) does not define a distribution.
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reduced to 1 dimensions, coincides with 't Hooft's equa- as gauge-dependent singularities conspire with the previous
tion, in spite of the fact that the interaction is here described’Feynman” ones and must be treated together in a consis-
by anx™ instantaneous potential. As a consequence, in thitent way.
particular instance, the prescription on the poles turns out to We consider a meson with momentum
be irrelevant. This phenomenon is rooted in the cancellation ) )
of IR singularities between “real” and “virtual” contribu- P"z(P* P*+M ) 1)
tions[13]. 2Pt )

The above considerations motivate the present work. We ]
start from the concrete lowest-order Tamm-Dancoff approxiWhich is composed of_a quark and an antiquark. The meson
mation of Ref[6] in 1+ 3 dimensiongSec. 1) and then, in  State vector is normalized by
Sec. lll, dimensionally reduce it to the {11)-dimensional b oA B S LAl N
case. Starting from the “causal” formulation of the bound- (PT,PIPT,P)=(2m)"2P" 8(P" —=P")3(P=P). (2
state equation, we show that it eventually coincides with th
one in which the interaction is mediated by
x*-instantaneous potential, namely with 't Hooft's equation,
in spite of the seemingly different physical inputs. The rea- _ _
son for this coincidence as well as further considerations are D(p)yp= f d*xe'P(0] ¢, (x) 5(0)[P™,0), 3
given in Sec. IV.

Next we consider the Bethe-Salpeter wave function for the
meson atP=0:

wherey, is the quark field. From Ed3) one can project the
Il. BETHE-SALPETER EQUATION IN 1 +3 DIMENSIONS null-plane wave function) [6]

In this section we recall concepts and results developed in 1 dp™ —
Ref. [6], which the reader is invited to consult. We follow H(X,P;S1,S2) = opT J o u(xP*,p;sy)y" ®(p)
the notation used there.

The integral equation for a bound state in thg channel Xy o (1-x)P",—p;sy), 4
is considered in the null-plane formulationx™ = (x° . ,
+x%)/v2, playing the role of time. The idea behind this wherex=p~/P™, normalized as
framework is that partons cannot pop up spontaneously from 1 dx
the vacuum, when the theory is quantized in a “physical” 1:(27)*3f —_— f dp>, |¢(x,p;s,s")|2 (5)
gauge; one usually chooses the light-cone gafige=(A, 0 2x(1-Xx) ss/
—A3)/v2=0. Then a truncation on the number of partons
allowed in the wave functiotTamm-Dancoff approximation
[7]) becomes viable. bt bV Tt et b o

For a deeper insight as well as for physical motivations, Ua(P™,P:8) Y Ua(P.PiST) Z04(pT.PiS) Y v a(pT,P3S")
the reader should consult the abundant literature on the sub- =2p*bsq . (6)
ject (see references if6]).

In light-front calculations, singularities occur in the IR If we denote byS(p)=[—i(p-y—m)] ! the free fermion
region of p*, which require a suitable prescription to be propagator and b (p) the fermion self-energy, the Bethe-
handled. The situation becomes worse in the galige-0,  Salpeter equation takes the form

The spinorsu andv are normalized to

d*k
CD(p)aB:S(p)aa’S(p_ P)B'ﬁf (zT)élT(p!k)a’a"ﬁ’ﬁ”q)(k)a”ﬁ”+S(p)aa'[_iz(p)a’a”]q)(p)a”ﬁ

+¢)(p)aﬁ"[_i2(p_ P) s JS(P—P) g = S(P) aar[ — iz(p)a’a”]q)(p)a”ﬁ”[_ i2(p— P)grp 1S(P—P)grgs
()
where summation over repeated indices is understood.
In the first term,T(p,k) represents the Bethe-Salpeter kernel, consisting of all two-particle irreducible diagrams. We shall

consider for it the first perturbative approximation, namely one-gluon exchange. Similarly the self-energy will be replaced by
its one-loop approximatiol ;. Renormalization in the modified minimal subtractidng) scheme is understood.

A. “Real” diagram contribution
Let us begin by considering the first term in E@), in the approximation we have just mentioned:
N“#(k—p)
)-nll(k—p)*+ie]

. ) d*k
®(p)1ce=iCrg S(P)J W?’a@(k)}’ﬁ [(k—p S(p—P), 8)

Cr being the Casimir constant of the fundamental representation and
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N*#(q)=—q-ng*’*+q*nf+qgfn*

the numerator of the gluon propagator. The gauge fixing null vetter(0,1,0,0),n-A=0, appears also in the denominator
and gives rise to the mentioned gauge dependent singularitgp)- n=0.
A simple algebra now gives

_ L X(1=x)PT u(xPT,p;sy) [ d%
P16e(X,P;S1,S2) = —ICEg o p’—m’tie dp (ZT)zthq)(k)Yﬁ

N*#(k—p) v(1=-X)P",—p;sy)
><[(k— p)-n][(k—p)’+ie] (P—p)?—m°+ie °

9

In Ref.[6] it is carefully explained how the Tamm-Dancoff approximation allows the above quantity to be expressed
in terms of the null-plane wave functiopn We are not going to repeat the argument and simply quote the result:

d2k dk~ [ dp- o i . 3
heexmiss=— | sy [ dy[ So | G FOxuyk = kpIK ol e sgriy)]

ar
—[k™ =&+ w(l-y,k?)—iesgnl-y)] Hp —w(x,p?)+ie sgrx)] *=[p~ —E+w(1—x,p?)
—iesgn1-x)] B[P (y—x)] 2P (y—x)(k —p ) —(k—p)?+ie] %, (10)

wherey=k*/P", w(y,k?) = (k?*+m?)/2yP*, &= M?/2P" andF is a shorthand notation for the quantity

Crg? _
F(x,y,k —p ., k,p)=——=7—— K;sT,S))U(XP*,p;s;y) v ,u(yP* k;s;
(xy:k™ =P~ kP)= = z57y =y E Y(y.KisT S U(XPT,pisy) y,U(YP™ kis))
N“¥(k—p)

v((1—-y)P*,—k;s)ygu((1=X)P*,—p;sy). (12)

X e w(l—xp?) —wxpd) tie

Null-plane perturbation theory is recovered by performing the integrationskovandp ™. The functionF depends on them
linearly; therefore these integrations would be simple were the gauge sing@arity—x) =0 in the denominator prescribed
in such a way as not to involve minus components. Then contour integrations would lead to thEglesult

d2k 1 F(Xa 15_ (1_ ,k2)_ (X, 2),k, )
wleE(x,p;sl,sz)=0(1—X)0(X)f (ZT):“HX dy[P+(y—X)]‘12(y_X)P+[g_w(ai_y'li/z)_w((;,pz?]_(kp_p)zﬁ6

x _ F(X,y,— &+ w(y,k?) + w(1-x,p%),k,p)
P T ety P

(12

where the support of the function has been explicitly exhibited.

Unfortunately the above expression is meaningless as there are manifest singularities at the extrema of integration. In other
words the gauge singularity calls for a prescription before integrating over the minus components.

In Refs.[3], [4] and[5], arguments are presented in favor of tausalprescription(ML)

1 B 1 B q-
[a*lu. a'+iesgng ) q'q +ie’

(13

which would not conflict with thécausal “Feynman” poles, allowing for a Wick’s rotation without extra contributions. This
would not be the case for the CPV prescription, suggestéd]in

A problem then arises in EQL0), as the integrations over the minus components can no longer be done in a straightforward
way.

The solution proposed in R€f6] is to perform a subtraction, using the identisee also Ref.14])

+oo 1 1
f_w B P (=30 T 2(y—P [k —p - (k—pP+ie > 4

We stress that this identity holds only if the ML prescription is chosen.
By this subtraction the gauge pole is “sterilized”; the integrations over the minus components can be performed, now
leading to the result
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fjdy[PWy—x)]‘l

d?k
P1ce(X,P;S1,S82)=6(1—X) H(X)f W

( FX,y,E—o(1-y,k?)—o(x,p?),k,p)o(1-y)
X 2y =P [E— w(1-y, k) —w(x.pD)]— (k—p)2+ie
F(x,x,E— w(1—x,k?) — w(x,p?),k,p)

T 2(y—X)PT[E— w(1-Xx,k?) —w(x,pd)] — (k—p)’+ie

x ~ F(X,y,— &+ w(y,k?)+ o(1-x,p%),k,p)o(y)
*f_wdy[my‘x” 2y P e w(y K —w(d X Pl (k—p)Ziie

F(x,x,— &+ w(x,k?) + w(1—X,p?),k,p) ) 15

T 2(x—y)PT[E— w(X,KD) —w(1—x,p?)]— (k—p)’+ie

No end-point singularities are left after this procedure.

B. Self-energy contributions

Now we turn our attention to the other three terms in &.involving the self-energy in which we will retain, coherently
with the approximation done on the “exchange” graph, only the one-loop contribution. One can have a self-energy insertion
on the quark line, on the antiquark line, or on both.

The terms involving the quark and the antiquark self-energy are, respectively,

Dgg(p)=—iS(p)21(p)P(p)
and
Pse(p)=—i®(p)21(p—P)S(p—P).

Here, is the one-loop self-energy, renormalized in M8 scheme. The corresponding contributions to the null-plane wave
function are

xdp~ u(xP*,p;s)31(P)P(p)y v (1—X)P*,—p;s,)

lr//SEl(va;SLSZ):f oy p?—mZtie (16)
and
(1=x)dp~ u(xP*,p;s) y @ (p)1(p—P)v((1=X)P",—p;sy)
e!fsgz(x,p;sl,sz)=—f o e =, (17
respectively.

In Ref. [6] it is carefully explained how the contribution from the self-energy insertion on both quark and antiquark lines
can be split into two pieces, one that will cancel partlofg; and another that will cancel part dfs,. These cancellations
are part of the Tamm-Dancoff approximation we are considering. We are thereby left with the following two self-energy
contributions:

1 U(xP*,p;s1) 31 (xPH,E— w(1—x,p?),pu(xP*,p;s})
Use(X,p;81,82) = %XP™ 2 P(X,p;81,S7) 15—1w(1—x pz(;)_ w(xp)tie . (18)
sl 1 1
and
l !
YseX,—P;S1,S2) = — 20—x)P" E P(X,—P;S1,S,)
Sy
v(1=-X)PT,—p;s)1(— (1-X)PF, = E+ w(x,p?),pv(1—X)PT,—p;Ss,)
X . (29

E—w(1-x,p%) —o(x,p?) +ie
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The unrenormalized quark self-energy in the one-loop ap- This equation can be rewritten as
proximation is given by
2£k

d2-

d4-20k —iES(p)=gZCFM28f ———— [A+BHy,+Cty,]

Es — 2C Zsf _ u 1 (27T)2 2e n wds
1(P)=g°Cru —(277)4 2e Y (21)

N*A(q)
XS (@ o)

(200  whereB* is the only term that receives a contribution from
the gauge pole. The quantitids B# andC* are given by

wherek® is the quark momentum argf' = p“—k* the gluon o
momentum. We use dimensional regularization, the coupling _J dk'dk™ —2m(1—¢) 1

constant is dimensionless ang is the running mass scale. B (2m)? (p—k)?+ie kK>—m’+ie’ (22)
_f dk*dk™ 1 1 B*(k* k™, k;p*,p~,p) -
(2m)2 [p =K JuL 2(p =K )(p —K )—(p—K)2+ie 2kTk —K2—m?+ie ’ 23
with
B*=0,
B~ =4k™(p~ —k")—2k-(p—k),
B=2k*(p'=kh)—2(p*—k*)K
and
dktdk™ 2k*(1—¢) 1
:f 2 I S . (24)
(2m)° (p—k)*+iek:—m+ie

The gauge singularity in Eq23), being prescribed according to the ML prescription, does not spoil the convergence of the
integrals. In other words no singularity of an IR type occurs, thanks to the prescription, while UV singularitied 21)Eare
cured by dimensional regularization. In passing we stress that this procedure has the merit of clearly disentangling possible IR
and UV singularities.

Now the gauge pole can be “sterilized” by a suitable subtraction, in the same way as we did for the exchange term, thereby
allowing us to perform the integration ovkr ; we obtain

3 xp* k2+m? A
I J,l dx 0(x)B*| xp »oxpt KPP P
CAmpt ). 1-x [ 2x(1—-x)pTpT —(1—x)(k*+m?) —x(p—k)?+ie
k2+m?
BM(ern + yk;p+!p1p>
- 2P 25)
2(1-x)p p —(1—x)(kK>+m?)— (p—Kk)*+ie (
|
We notice that the potential singularity @& 1 is cancelled ll. BETHE-SALPETER EQUATION IN'1 +1 DIMENSIONS

by the subtraction. We also notice that the two subtractions
the one in the exchange term and the one in the self—enerq
expressions, although dictated by a similar philosophy, hav
nothing to do with each other.

The null-plane wave functiogy is eventually obtained as

' When going to 1 dimensions, UV singularities will no
Xnger show up; in turn the IR behavior is worsened. Subtle-
fies occur in this dimensional reduction.

We start from unrenormalized, dimensionally regularized
guantities. First, in 1 dimensions, the coupling constant
acquires the dimension of a mass; this is automatically pro-
(X, P;S1,S2) = 16e(X,P;S1,S2) + e (X, P;S1,S2) vided by the factorw?. But, in this case, the meaning of

) such a mass completely changes: it is no longer a running
T ihse(X,PiS1,Sp). (26) mass scale, but rather it tunes the dimensionful coupling,
which is a free parameter characterizing the theory.

At this point we have recalled from R€f6] all the con- Second, the quantities andC* in Egs.(22), (24) vanish,
cepts we need to develop our argument in the next sectionin strictly 1+1 dimensions, as a consequence of the Dirac
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algebra. However, if the calculation is performed in 2¢ one should consider unrenormalized quantities, which are
dimensions and the loop integration over transverse moexpected to produce singularities of a UV nature just as poles
menta is carried on, the—1, zero, coming from the polar- at some integer values of dimensions. Unfortunately, in order
ization factor, is fully compensated by a pole, leading evento decide whether the limit— 1 is smooth, one should solve
tually in the limite—1 to the non-vanishing expressions the integral equation for a generic valuesobr, at least, to

iCog? m have a control on its behavior with respect to transverse mo-
—iSa=— F9 ——— (27) ~ mentum. _ o _ _
2w p*-mitie We leave to a future investigation the interesting problem
of studying the limite —1. In the sequel we adopt the atti-
and H H H H H [ H ”
tude of working directly in % 1 dimensions, “freezing” the
_ iCrg? Py, transverse degrees of freedom. We drop everywhere the
—iXc=— 27 p—mitie’ (28)  transverse-momentum dependence in @4). This proce-

dure turns the simple pole &*(y—x)=0 into a double

where we have again denoted gythe coupling constant of pole. Integration over this double pole is perfectly pre-
the theory, which differs from the coupling constant of thescribed, though; thanks to the ML recipe, both singularities
previous section by the factar. lie on the same side of the integration contour. In other

We stress that the above quantities are sensitive to th@ords no pinch occurs when dropping transverse momenta.
way in which the transition to +1 dimensions is per- Nevertheless a double pole would requim® subtractions to
formed. This anomaly-type phenomenon is reminiscent of albe sterilized. We would like to stress again that this “steril-
analogous effect we found in perturbative Wilson loop cal-ization” is not required to give the integrals meaniftey
culations[12] and is worthy of further study; it points to- are indeed already perfectly definetut motivated by the
wards a discontinuity of the theory in the limit—1 [8]. desire to perform first the integration over minus components

The termsB#, which are the ones affected by the gaugein order to recover the null-plane perturbative formulation.
pole, are instead insensitive to the way in which the reduc- We might operate subtractions also in this case, repeating
tion is performed: the same result is indeed obtained justhe treatment of the previous section; however, as it will
ignoring transverse degrees of freedom or taking the limibecome apparent that subtractions are not neededtifh 1
e—1 at the very end of the calculation. dimensions, we shall recover null-plane perturbation theory

There is then the problem of formulating the gluon ex-by following a slightly different procedure.
change contribution in 4 2¢ dimensions. To this purpose In 1+1 dimensions, Eq(10) becomes

Y1600 =~ f f f—F(xyk‘—p MK — w(y) +ie sgrty)] L[k — &+ o(1-y)

—iesgn1-y)] "HIp —w(x)+ie sgnx)] *—[p~ —E+w(l—x)—ie sgnl-x)]~1}

oy - A= yai1-1
X[P+(y_x)]ML[2P (y X)(k p )+|6] ) (29)
with
_ Crg? N . 2(k"=p7) 4 .
F(Xy,k™=p7)=— md/(y)u(xP )y u(yP ) oo o(l—X)—w(x) Fie v(1-y)PH)y o((1-x)PY).
(30)
Taking the detailed expressions of the light-cone spinors into ac¢®&htEq. (30) can be written as
VX(1- km—p~
Fxy K —p) = ~2CegP* ily) a0 (K P 3D

mg—w(l—x)—w(x)—i-ie'

Equation(29) in turn becomes

Crg X(1— _ . _
et it | 2 | 3w | et T (K o) e say)

—[k —&+w(l-y)—iesgnl—y)] Hp —w(x)+ie sgnx)]~*
—[p~—E+w(l-x)—iesgnl—x)] B[P (y—x)]u?. (32
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We have now reached a complete symmetry between gauge and “Feynman” pole. This pole should be prescribed causally
in equal-time quantization; this is certainly mandatory when propagating transverse degrees of freedom are present, i.e. in
higher dimensions. Its causal prescription forces the gauge pole to be causal too, for consistency. On the other hand, the causa
option follows from equal-time quantizatidd2].

Let us now go back to Eq13) and consider the identity

1 1
= - — = _| S - 5 +’ 33
[q"Iue q"+iesgng™) [q"]lcpy ™ sgnq-)o(qr) (33
which, after differentiation with respect ", becomes
! ! i -\ Sr (Tt
+imsgra ) s'(a*). 34

[qu]%/u_ - [qu]éPV
At this point it is convenient to change the normalization of the functlpiby defining

$(X) = (X) VX(1=X).

Introducing Eq.(34) in Eq. (32), we obtain

b16e(X)= PTER(X) + i 2E, (35)

with

BBt g O [ [ [ O ity i sary] T e a1y

—iesgnl-y)] "HIp —w(x)+iesgnx)] *—[p~ —E+w(l-x)—ie sgl-x)] JP*(y=x)]chy
(36)

and

i'ﬂ'CngP+ B
g_w(l_x)_w(x)ﬂff f f —¢(y){[k —o(y)+iesgry)] ' =[k”—E+w(l-y)

P Re(X) =
—iesgr1-y)] H[p™ —w(x)+ie sgnx)] t—[p~—E+w(l-x)—ie sgrl-x)]"}}
xsgnk —p )8 (P (y—x)). (37)

In Eq. (36) the integrations over the minus components of the momenta can be easily performed, leading to the expression

CPV, CFg

¢lGE(X):_P+[(€_w(1 X) w(X +|€]f ¢(y)[(y X)]CPV (38)

In turn, Eq.(37) becomes

i7mC
¢&2E(X)=—g_w(l WX Fgw(x)-l—lef f f —5(y X)sgrtk™—p ){[p~ —w(x)+ie sgnx)] " —[p~—€
+w(1—X)—iesgr(l—X)]‘l}(¢’(y){[k‘—w(y)+iesgr(y)]‘l—[k‘—5+w(1—y)—iesgr(l—y)]‘l}
+¢(y) {[k —o(y)+iesgny)] ' —[k —E+w(l-y)—iesgnl-y)] }. (39

Now integrations over the minus components can be done; the first term vanishes for symmetry reasons; the second one, after
some algebra, taking the expression éimto account, becomes
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9°m°Cr ¢h(x) g°m2Ce
(s) _ (9) vy —
b1ce(X) W Pse(X) W
1
-2 _ -2
X e —wd—x) Fiepll  TA=077 XX e T = +ie
(40) Summing everything together, we find that &f®’s can-

cel and we are left with

Then we repeat the treatment in the expressions concern-

ing the self-energy contributions. Let us therefore go back to

Eq. (23), which, in 14-1 dimensions, becomes

_f 2k dkTdk™ 1 1
(2m?  [p*—kTI4 2kTk —mP+ie
_ ip_
m(pP-mitie)’ (41)
Using the identity(34), we obtain the splitting
B i im? 1
T2apT A (2XPT)2 E—w(X)—w(1l—xX) Fie
(42)
and, correspondingly,
Pse(X) = psgr (X) + PS5 (%) (43
with
2
CPV/u\ _ 9°Ce
s 0= 2Pt ) eI — w0 T e
(44)
and
g’m2Ce 1
(s) - _
5= T oxp 2 P - eI —w(x) +iel2"
(45)

Similarly, for the second self-energy contribution we get

bse2(X)= PSR (X) + PS(x), (46)
with
2
C _ g CF
200~ = 2107 ?X) F a0 a0 Tie
(47)
and

Crg?

0= = P = w(1—X) —w(x) Fie]

X) 1 B
X X(q;(—_xﬁfodw(y)[(y—xnc%v- (49

The ML and CPV prescriptions are completely equivalent in
this case.

We remark that Eqi49) is nothing but 't Hooft's equation
[9], in spite of the seemingly different physical inputs.

IV. FINAL REMARKS

We started by considering a “causal” formulation of the
bound-state integral equation in the lowest-order Tamm-
Dancoff approximation, in particular by considering only
one-loop contributions to the self-energy, and then, after a
suitable dimensional reduction, we ended up with 't Hooft's
equation in which all planar diagrams are sumniledgeN
approximation with an “instantaneous” potential between
quarks. How did it happen?

The reason why “causal” and “instantaneous” interac-
tions lead to the same answer in this case has already been
anticipated; it is rooted in the cancellations occurring in 1
+1 dimensions thanks to one-loop unitarity. Those cancel-
lations had already been noticglb], although in a different
context and with a different technique.

In turn the reason why the Tamm-Dancoff approximation
reproduces 't Hooft's full planar summation is due to the
dynamical circumstance that in 't Hooft's formulation the
exact solution for the self-energy coincides with @%g?)
expression.

This fact also explains why we did not recover Wu's
equation, when considering the “causal” formulation. As a
matter of fact, in Wu’s treatment the exact solution for the
self-energy exhibits a quite involved analytical structure; in
particular, it does not generally match, in the relevant Ward
identity, the expression used for the vertex in the bound-state
equation.

Since at largdN the same set of diagrams, the planar ones,
are summed in both formulations, we envisage a potential
conflict, beyond the one-loop approximation, between the
planarity and “causal”’ formulation in +1 dimensions.
This crucial issue in our opinion deserves further study.

In dimensions higher than 2, causality looks mandatory
and only one formulatioiithe “causal” ong can reasonably
survive.
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