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Infrared singularities in the null-plane bound-state equation when going to 111 dimensions

A. Bassetto*
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

and INFN, Sezione di Padova, Padua, Italy
~Received 7 May 1997; published 2 February 1998!

In this paper we first consider the null-plane bound-state equation for aqq̄ pair in 113 dimensions and in
the lowest-order Tamm-Dancoff approximation. The light-cone gauge is chosen with a causal prescription for
the gauge pole in the propagator. Then we show that this equation, when dimensionally reduced to 111
dimensions, becomes ’t Hooft’s bound-state equation, which is characterized by anx1- instantaneous interac-
tion. The deep reasons for this coincidence are carefully discussed.@S0556-2821~98!02206-1#

PACS number~s!: 11.10.St, 11.10.Kk, 12.38.Bx
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I. INTRODUCTION

One of the challenging problems confronting gauge th
ries is the transition from theories defined in the usua
13 dimensions to (111)-dimensional theories. In turn (1
11)-dimensional theories are interesting as sometimes
are solvable, or, at least, they provide useful insights i
non-perturbative phenomena.

A central role is played by the choice of the light-co
gauge, owing to its natural partonic interpretation. On
other hand this gauge, at least in perturbative treatme
exhibits more severe infrared~IR! singularities.

Yang-Mills theories in the light-cone gauge were fir
quantized on a null plane~light-front quantization@1#!. In
this procedure the gauge pole in the polarization tensor
curring in the free propagator is treated according to
Cauchy principal value~CPV! prescription, which has the
merit of being ‘‘real,’’ namely not to contribute to the propa
gator absorptive part. However, in so doing, a conflict
induced with the usual ‘‘Feynman’’ pole, which, on physic
grounds, in 113 dimensions must be prescribed in a cau
way. This conflict can for instance be seen as the occurre
of extra unwanted terms when perturbative integrals unde
a Wick rotation@2#.

To remedy this situation, a causal prescripti
@Mandelstam-Leibbrandt~ML !# was proposed in Refs.@3,4#
for the gauge pole; this prescription was in turn derived
equal-time canonical quantization in Ref.@5# and shown to
be mandatory in 113 dimensions for a consistent renorma
ization @2#.

When x1-ordered perturbation theory is used, more
vere IR singularities occur, which often have been regu
ized by means of artificial cutoffs. On the other hand, the M
prescription cannot be easily implemented. This difficulty
carefully explained in Ref.@6# in which the bound-state
equation for aqq̄ pair is considered in the lowest-orde
Tamm-Dancoff approximation@7#. The relevance of using a
causal prescription for the gauge pole is fully recognized
a concrete solution for implementing the ML prescription
proposed.

*On leave of absence from Dipartimento di Fisica ‘‘G. Galilei
Via Marzolo 8, 35131 Padua, Italy.
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The situation drastically changes in 111 dimensions.
Here ultraviolet ~UV! singularities no longer occur, an
hence there is no need of renormalization. Both equal-t
and null-plane quantization seema priori viable @8#. The
latter indeed no longer conflicts with causality as no vec
degrees of freedom propagate, the gauge field only provid
an ‘‘instantaneous’’ potential between fermions: canoni
quantization suggests the CPV prescription on~both! Feyn-
man and gauge poles.1

A celebrated example of this theory in the large-N ap-
proximation is ’t Hooft’s bound-state equation@9#. From it a
beautiful physical picture emerges with meson bound sta
lying on rising Regge trajectories. The counterpart of t
equation in equal-time quantization was proposed by
@10#, a quite difficult two-variable integral equation, whos
~approximate! solution for particular values of external pa
rameters has been obtained only very recently@11#. The re-
sulting physical picture is quite different from ’t Hooft’s; in
particular no rising Regge trajectories are found.

On the other hand, if the 111 theory is to be considere
as the limit of a theory in higher dimensions, then the equ
time formulation~with related causal prescription! seems un-
avoidable. This is also the conclusion one reaches when
sidering a perturbative Wilson loop calculation atO(g4)
@12#: Feynman and light-cone gauges provide the same
sult, even in the limitd→2, only when canonically quantize
at equal time. This result in turn is quite different from th
one derived using the instantaneous potential coming fr
null-plane quantization.

Two different theories thus seem to exist in 111 dimen-
sions, one being the limit of theories in higher dimensio
the other being simpler and endowed with nice physical c
sequences. We would like to stress that the difference is
in technical details: the two formulations have a differe
content of degrees of freedom@2#.

Still, we show that the bound-state equation, in t
lowest-order Tamm-Dancoff approximation and with
causal prescription on the gauge pole, when dimension

1Of course ‘‘Feynman’’ and gauge pole have to be treated coh
ently; we remind the reader that the produ
(1/@q1#CPV)(1/@q1#ML) does not define a distribution.
3609 © 1998 The American Physical Society
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3610 57A. BASSETTO
reduced to 111 dimensions, coincides with ’t Hooft’s equa
tion, in spite of the fact that the interaction is here describ
by anx1 instantaneous potential. As a consequence, in
particular instance, the prescription on the poles turns ou
be irrelevant. This phenomenon is rooted in the cancella
of IR singularities between ‘‘real’’ and ‘‘virtual’’ contribu-
tions @13#.

The above considerations motivate the present work.
start from the concrete lowest-order Tamm-Dancoff appro
mation of Ref.@6# in 113 dimensions~Sec. II! and then, in
Sec. III, dimensionally reduce it to the (111)-dimensional
case. Starting from the ‘‘causal’’ formulation of the boun
state equation, we show that it eventually coincides with
one in which the interaction is mediated by a
x1-instantaneous potential, namely with ’t Hooft’s equatio
in spite of the seemingly different physical inputs. The re
son for this coincidence as well as further considerations
given in Sec. IV.

II. BETHE-SALPETER EQUATION IN 1 13 DIMENSIONS

In this section we recall concepts and results develope
Ref. @6#, which the reader is invited to consult. We follo
the notation used there.

The integral equation for a bound state in theqq̄ channel
is considered in the null-plane formulationx1[(x0

1x3)/&, playing the role of time. The idea behind th
framework is that partons cannot pop up spontaneously f
the vacuum, when the theory is quantized in a ‘‘physica
gauge; one usually chooses the light-cone gaugeA2[(A0
2A3)/&50. Then a truncation on the number of parto
allowed in the wave function~Tamm-Dancoff approximation
@7#! becomes viable.

For a deeper insight as well as for physical motivatio
the reader should consult the abundant literature on the
ject ~see references in@6#!.

In light-front calculations, singularities occur in the I
region of p1, which require a suitable prescription to b
handled. The situation becomes worse in the gaugeA250,
d
is
to
n

e
i-

e

,
-
re

in

m
’

,
b-

as gauge-dependent singularities conspire with the prev
‘‘Feynman’’ ones and must be treated together in a con
tent way.

We consider a meson with momentum

Pm5S P1,
P21M2

2P1 ,PD , ~1!

which is composed of a quark and an antiquark. The me
state vector is normalized by

^P1,PuP̂1,P̂&5~2p!32P1d~P12 P̂1!d~P2P̂!. ~2!

Next we consider the Bethe-Salpeter wave function for
meson atP50:

F~p!ab5E d4xeipx^0uca~x!c̄b~0!uP1,0&, ~3!

whereca is the quark field. From Eq.~3! one can project the
null-plane wave functionc @6#

c~x,p;s1 ,s2!5
1

2P1 E dp2

2p
ū~xP1,p;s1!g1F~p!

3g1v„~12x!P1,2p;s2…, ~4!

wherex5p1/P1, normalized as

15~2p!23E
0

1 dx

2x~12x!
E dp(

ss8
uc~x,p;s,s8!u2. ~5!

The spinorsu andv are normalized to

ūa~p1,p;s!g1ua~p1,p;s8!5 v̄a~p1,p;s!g1va~p1,p;s8!

52p1dss8 . ~6!

If we denote byS(p)5@2 i (p•g2m)#21 the free fermion
propagator and byS(p) the fermion self-energy, the Bethe
Salpeter equation takes the form
e shall
ced by
F~p!ab5S~p!aa8S~p2P!b8bE d4k

~2p!4 T~p,k!a8a9b8b9F~k!a9b91S~p!aa8@2 iS~p!a8a9#F~p!a9b

1F~p!ab9@2 iS~p2P!b9b8#S~p2P!b8b2S~p!aa8@2 iS~p!a8a9#F~p!a9b9@2 iS~p2P!b9b8#S~p2P!b8b ,

~7!

where summation over repeated indices is understood.
In the first term,T(p,k) represents the Bethe-Salpeter kernel, consisting of all two-particle irreducible diagrams. W

consider for it the first perturbative approximation, namely one-gluon exchange. Similarly the self-energy will be repla
its one-loop approximationS1 . Renormalization in the modified minimal subtraction (MS) scheme is understood.

A. ‘‘Real’’ diagram contribution

Let us begin by considering the first term in Eq.~7!, in the approximation we have just mentioned:

F~p!1GE5 iCFg2S~p!E d4k

~2p!4 gaF~k!gb

Nab~k2p!

@~k2p!•n#@~k2p!21 i e#
S~p2P!, ~8!

CF being the Casimir constant of the fundamental representation and
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Nab~q!52q•ngab1qanb1qbna

the numerator of the gluon propagator. The gauge fixing null vectornm5(0,1,0,0),n•A50, appears also in the denominat
and gives rise to the mentioned gauge dependent singularity at (k2p)•n50.

A simple algebra now gives

c1GE~x,p;s1 ,s2!52 iCFg2
x~12x!P1

p

ū~xP1,p;s1!

p22m21 i e E dp2E d4k

~2p!4 gaF~k!gb

3
Nab~k2p!

@~k2p!•n#@~k2p!21 i e#

v„~12x!P1,2p;s2…

~P2p!22m21 i e
. ~9!

In Ref. @6# it is carefully explained how the Tamm-Dancoff approximation allows the above quantityc1GE to be expressed
in terms of the null-plane wave functionc. We are not going to repeat the argument and simply quote the result:

c1GE~x,p;s1 ,s2!52E d2k

~2p!3 E dyE dk2

2p E dp2

2p
F~x,y,k22p2,k,p!$@k22v~y,k2!1 i e sgn~y!#21

2@k22E1v~12y,k2!2 i e sgn~12y!#21%$@p22v~x,p2!1 i e sgn~x!#212@p22E1v~12x,p2!

2 i e sgn~12x!#21%@P1~y2x!#21@2P1~y2x!~k22p2!2~k2p!21 i e#21, ~10!

wherey5 k1/P1, v(y,k2)5 (k21m2)/2yP1, E5 M2/2P1 andF is a shorthand notation for the quantity

F~x,y,k22p2,k,p!52
CFg2

4P1y~12y! (
s18s28

c~y,k;s18 ,s28!ū~xP1,p;s1!gau~yP1,k;s18!

3
Nab~k2p!

E2v~12x,p2!2v~x,p2!1 i e
v̄„~12y!P1,2k;s28…gbv„~12x!P1,2p;s2…. ~11!

Null-plane perturbation theory is recovered by performing the integrations overk2 andp2. The functionF depends on them
linearly; therefore these integrations would be simple were the gauge singularityP1(y2x)50 in the denominator prescribe
in such a way as not to involve minus components. Then contour integrations would lead to the result@6#

c1GE~x,p;s1 ,s2!5u~12x!u~x!E d2k

~2p!3 H E
x

1

dy@P1~y2x!#21
F„x,y,E2v~12y,k2!2v~x,p2!,k,p…

2~y2x!P1@E2v~12y,k2!2v~x,p2!#2~k2p!21 i e

1E
0

x

dy@P1~y2x!#21
F„x,y,2E1v~y,k2!1v~12x,p2!,k,p…

2~x2y!P1@E2v~y,k2!2v~12x,p2!#2~k2p!21 i eJ , ~12!

where the support of the functionc has been explicitly exhibited.
Unfortunately the above expression is meaningless as there are manifest singularities at the extrema of integration

words the gauge singularity calls for a prescription before integrating over the minus components.
In Refs.@3#, @4# and @5#, arguments are presented in favor of thecausalprescription~ML !

1

@q1#ML
[

1

q11 i e sgn~q2!
5

q2

q1q21 i e
, ~13!

which would not conflict with the~causal! ‘‘Feynman’’ poles, allowing for a Wick’s rotation without extra contributions. Th
would not be the case for the CPV prescription, suggested in@1#.

A problem then arises in Eq.~10!, as the integrations over the minus components can no longer be done in a straightfo
way.

The solution proposed in Ref.@6# is to perform a subtraction, using the identity~see also Ref.@14#!

E
2`

1`

dy
1

@P1~y2x!#ML

1

2~y2x!P1@k22p2#2~k2p!21 i e
50. ~14!

We stress that this identity holds only if the ML prescription is chosen.
By this subtraction the gauge pole is ‘‘sterilized’’; the integrations over the minus components can be performe

leading to the result
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c1GE~x,p;s1 ,s2!5u~12x!u~x!E d2k

~2p!3 H E
x

`

dy@P1~y2x!#21

3S F„x,y,E2v~12y,k2!2v~x,p2!,k,p…u~12y!

2~y2x!P1@E2v~12y,k2!2v~x,p2!#2~k2p!21 i e

2
F„x,x,E2v(12x,k2)2v(x,p2),k,p)

2(y2x)P1[E2v(12x,k2)2v~x,p2)] 2(k2p)21 i e D
1E

2`

x

dy@P1~y2x!#21S F„x,y,2E1v~y,k2!1v~12x,p2!,k,p…u~y!

2~x2y!P1@E2v~y,k2!2v~12x,p2!#2~k2p!21 i e

2
F„x,x,2E1v~x,k2!1v~12x,p2!,k,p…

2~x2y!P1@E2v~x,k2!2v~12x,p2!#2~k2p!21 i e D J . ~15!

No end-point singularities are left after this procedure.

B. Self-energy contributions

Now we turn our attention to the other three terms in Eq.~7! involving the self-energy in which we will retain, coherent
with the approximation done on the ‘‘exchange’’ graph, only the one-loop contribution. One can have a self-energy in
on the quark line, on the antiquark line, or on both.

The terms involving the quark and the antiquark self-energy are, respectively,

FSE1~p!52 iS~p!S1~p!F~p!

and

FSE2~p!52 iF~p!S1~p2P!S~p2P!.

HereS1 is the one-loop self-energy, renormalized in theMS scheme. The corresponding contributions to the null-plane w
function are

cSE1~x,p;s1 ,s2!5E xdp2

2p

ū~xP1,p;s1!S1~p!F~p!g1v„~12x!P1,2p;s2…

p22m21 i e
~16!

and

cSE2~x,p;s1 ,s2!52E ~12x!dp2

2p

ū~xP1,p;s1!g1F~p!S1~p2P!v„~12x!P1,2p;s2…

~p2P!22m21 i e
, ~17!

respectively.
In Ref. @6# it is carefully explained how the contribution from the self-energy insertion on both quark and antiquark

can be split into two pieces, one that will cancel part ofFSE1 and another that will cancel part ofFSE2 . These cancellations
are part of the Tamm-Dancoff approximation we are considering. We are thereby left with the following two self-e
contributions:

cSE1~x,p;s1 ,s2!5
1

2xP1 (
s18

c~x,p;s18 ,s2!
ū~xP1,p;s1!S1„xP1,E2v~12x,p2!,p…u~xP1,p;s18…

E2v~12x,p2!2v~x,p2!1 i e
~18!

and

cSE2~x,2p;s1 ,s2!52
1

2~12x!P1 (
s28

c~x,2p;s1 ,s28!

3
v̄„~12x!P1,2p;s28…S1„2~12x!P1,2E1v~x,p2!,p…v„~12x!P1,2p;s2…

E2v~12x,p2!2v~x,p2!1 i e
. ~19!
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The unrenormalized quark self-energy in the one-loop
proximation is given by

S1
«~p!5g2CFm2«E d422«k

~2p!422« ga

3S~k!gb

Nab~q!

@q•n#ML~q21 i e!
, ~20!

whereka is the quark momentum andqa5pa2ka the gluon
momentum. We use dimensional regularization, the coup
constantg is dimensionless andm is the running mass scale
n
er
av

s

ion
-

g

This equation can be rewritten as

2 iS1
«~p!5g2CFm2«E d222«k

~2p!222« @A1Bmgm1Cmgm#,

~21!

whereBm is the only term that receives a contribution fro
the gauge pole. The quantitiesA, Bm andCm are given by

A5E dk1dk2

~2p!2

22m~12«!

~p2k!21 i e

1

k22m21 i e
, ~22!
of the

ssible IR

thereby
Bm5E dk1dk2

~2p!2

1

@p12k1#ML

1

2~p12k1!~p22k2!2~p2k!21 i e

Bm~k1,k2,k;p1,p2,p!

2k1k22k22m21 i e
, ~23!

with

B150,

B254k1~p22k2!22k•~p2k!,

Bj52k1~pj2kj !22~p12k1!kj

and

Cm5E dk1dk2

~2p!2

2km~12«!

~p2k!21 i e

1

k22m21 i e
. ~24!

The gauge singularity in Eq.~23!, being prescribed according to the ML prescription, does not spoil the convergence
integrals. In other words no singularity of an IR type occurs, thanks to the prescription, while UV singularities in Eq.~21! are
cured by dimensional regularization. In passing we stress that this procedure has the merit of clearly disentangling po
and UV singularities.

Now the gauge pole can be ‘‘sterilized’’ by a suitable subtraction, in the same way as we did for the exchange term,
allowing us to perform the integration overk2; we obtain

Bm5
2 i

4pp1 E
2`

1 dx

12x
H u~x!BmS xp1,

k21m2

2xp1 ,k;p1,p2,pD
2x~12x!p1p22~12x!~k21m2!2x~p2k!21 i e

2

BmS p1,
k21m2

2p1 ,k;p1,p2,pD
2~12x!p1p22~12x!~k21m2!2~p2k!21 i e

J . ~25!
tle-

ed
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We notice that the potential singularity atx51 is cancelled
by the subtraction. We also notice that the two subtractio
the one in the exchange term and the one in the self-en
expressions, although dictated by a similar philosophy, h
nothing to do with each other.

The null-plane wave functionc is eventually obtained a

c~x,p;s1 ,s2!5c1GE~x,p;s1 ,s2!1cSE1~x,p;s1 ,s2!

1cSE2~x,p;s1 ,s2!. ~26!

At this point we have recalled from Ref.@6# all the con-
cepts we need to develop our argument in the next sect
s,
gy
e

.

III. BETHE-SALPETER EQUATION IN 1 11 DIMENSIONS

When going to 111 dimensions, UV singularities will no
longer show up; in turn the IR behavior is worsened. Sub
ties occur in this dimensional reduction.

We start from unrenormalized, dimensionally regulariz
quantities. First, in 111 dimensions, the coupling consta
acquires the dimension of a mass; this is automatically p
vided by the factorm2«. But, in this case, the meaning o
such a mass completely changes: it is no longer a runn
mass scale, but rather it tunes the dimensionful coupl
which is a free parameter characterizing the theory.

Second, the quantitiesA andCm in Eqs.~22!, ~24! vanish,
in strictly 111 dimensions, as a consequence of the Di
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algebra. However, if the calculation is performed in 422«
dimensions and the loop integration over transverse
menta is carried on, the«21, zero, coming from the polar
ization factor, is fully compensated by a pole, leading ev
tually in the limit «→1 to the non-vanishing expressions

2 iSA52
iCFg2

2p

m

p22m21 i e
~27!

and

2 iSC52
iCFg2

2p

pmgm

p22m21 i e
, ~28!

where we have again denoted byg the coupling constant o
the theory, which differs from the coupling constant of t
previous section by the factorm.

We stress that the above quantities are sensitive to
way in which the transition to 111 dimensions is per-
formed. This anomaly-type phenomenon is reminiscent o
analogous effect we found in perturbative Wilson loop c
culations@12# and is worthy of further study; it points to
wards a discontinuity of the theory in the limit«→1 @8#.

The termsBm, which are the ones affected by the gau
pole, are instead insensitive to the way in which the red
tion is performed: the same result is indeed obtained
ignoring transverse degrees of freedom or taking the li
«→1 at the very end of the calculation.

There is then the problem of formulating the gluon e
change contribution in 422« dimensions. To this purpos
o-

-

he

n
-

-
st
it

-

one should consider unrenormalized quantities, which
expected to produce singularities of a UV nature just as po
at some integer values of dimensions. Unfortunately, in or
to decide whether the limit«→1 is smooth, one should solv
the integral equation for a generic value of« or, at least, to
have a control on its behavior with respect to transverse
mentum.

We leave to a future investigation the interesting probl
of studying the limit«→1. In the sequel we adopt the att
tude of working directly in 111 dimensions, ‘‘freezing’’ the
transverse degrees of freedom. We drop everywhere
transverse-momentum dependence in Eq.~10!. This proce-
dure turns the simple pole atP1(y2x)50 into a double
pole. Integration over this double pole is perfectly pr
scribed, though; thanks to the ML recipe, both singularit
lie on the same side of the integration contour. In oth
words no pinch occurs when dropping transverse mome
Nevertheless a double pole would requiretwo subtractions to
be sterilized. We would like to stress again that this ‘‘ster
ization’’ is not required to give the integrals meaning~they
are indeed already perfectly defined!, but motivated by the
desire to perform first the integration over minus compone
in order to recover the null-plane perturbative formulation

We might operate subtractions also in this case, repea
the treatment of the previous section; however, as it w
become apparent that subtractions are not needed in 111
dimensions, we shall recover null-plane perturbation the
by following a slightly different procedure.

In 111 dimensions, Eq.~10! becomes
c1GE~x!52E dy

2p E dk2

2p E dp2

2p
F~x,y,k22p2!$@k22v~y!1 i e sgn~y!#212@k22E1v~12y!

2 i e sgn~12y!#21%$@p22v~x!1 i e sgn~x!#212@p22E1v~12x!2 i e sgn~12x!#21%

3
1

@P1~y2x!#ML
@2P1~y2x!~k22p2!1 i e#21, ~29!

with

F~x,y,k22p2!52
CFg2

4P1y~12y!
c~y!ū~xP1!g1u~yP1!

2~k22p2!

E2v~12x!2v~x!1 i e
v̄„~12y!P1

…g1v„~12x!P1
….

~30!

Taking the detailed expressions of the light-cone spinors into account@15#, Eq. ~30! can be written as

F~x,y,k22p2!522CFg2P1c~y!
Ax~12x!

Ay~12y!

~k22p2!

E2v~12x!2v~x!1 i e
. ~31!

Equation~29! in turn becomes

c1GE~x!5
CFg2P1

E2v~12x!2v~x!1 i e E dy

2p E dk2

2p E dp2

2p
c~y!

Ax~12x!

Ay~12y!
$@k22v~y!1 i e sgn~y!#21

2@k22E1v~12y!2 i e sgn~12y!#21%$@p22v~x!1 i e sgn~x!#21

2@p22E1v~12x!2 i e sgn~12x!#21%@P1~y2x!#ML
22 . ~32!
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We have now reached a complete symmetry between gauge and ‘‘Feynman’’ pole. This pole should be prescribed
in equal-time quantization; this is certainly mandatory when propagating transverse degrees of freedom are prese
higher dimensions. Its causal prescription forces the gauge pole to be causal too, for consistency. On the other hand,
option follows from equal-time quantization@12#.

Let us now go back to Eq.~13! and consider the identity

1

@q1#ML
[

1

q11 i e sgn~q2!
5

1

@q1#CPV
2 ip sgn~q2!d~q1!, ~33!

which, after differentiation with respect toq1, becomes

1

@q1#ML
2 5

1

@q1#CPV
2 1 ip sgn~q2!d8~q1!. ~34!

At this point it is convenient to change the normalization of the functionc, by defining

c~x!5f~x!Ax~12x!.

Introducing Eq.~34! in Eq. ~32!, we obtain

f1GE~x!5f1GE
CPV~x!1f1GE

~s! , ~35!

with

f1GE
CPV~x!5

CFg2P1

E2v~12x!2v~x!1 i e E dy

2p E dk2

2p E dp2

2p
f~y!$@k22v~y!1 i e sgn~y!#212@k22E1v~12y!

2 i e sgn~12y!#21%$@p22v~x!1 i e sgn~x!#212@p22E1v~12x!2 i e sgn~12x!#21%@P1~y2x!#CPV
22

~36!

and

f1GE
~s! ~x!5

ipCFg2P1

E2v~12x!2v~x!1 i e E dy

2p E dk2

2p E dp2

2p
f~y!$@k22v~y!1 i e sgn~y!#212@k22E1v~12y!

2 i e sgn~12y!#21%$@p22v~x!1 i e sgn~x!#212@p22E1v~12x!2 i e sgn~12x!#21%

3sgn~k22p2!d8„P1~y2x!…. ~37!

In Eq. ~36! the integrations over the minus components of the momenta can be easily performed, leading to the exp

f1GE
CPV~x!52

CFg2

P1@E2v~12x!2v~x!1 i e#
E

0

1 dy

2p
f~y!@~y2x!#CPV

22 . ~38!

In turn, Eq.~37! becomes

f1GE
~s! ~x!52

ipCFg2

E2v~12x!2v~x!1 i e E dy

2p E dk2

2p E dp2

2p
d~y2x!sgn~k22p2!$@p22v~x!1 i e sgn~x!#212@p22E

1v~12x!2 i e sgn~12x!#21%„f8~y!$@k22v~y!1 i e sgn~y!#212@k22E1v~12y!2 i e sgn~12y!#21%

1f~y!
d

dy
$@k22v~y!1 i e sgn~y!#212@k22E1v~12y!2 i e sgn~12y!#21%…. ~39!

Now integrations over the minus components can be done; the first term vanishes for symmetry reasons; the second
some algebra, taking the expression forv into account, becomes
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f1GE
~s! ~x!5

g2m2CFf~x!

4p~P1!2

3
1

@E2v~x!2v~12x!1 i e#2 @x221~12x!22#.

~40!

Then we repeat the treatment in the expressions conc
ing the self-energy contributions. Let us therefore go back
Eq. ~23!, which, in 111 dimensions, becomes

B25E 2k1dk1dk2

~2p!2

1

@p12k1#ML
2

1

2k1k22m21 i e

5
ip2

p~p22m21 i e!
. ~41!

Using the identity~34!, we obtain the splitting

B25
i

2pp1 1
im2

p~2xP1!2

1

E2v~x!2v~12x!1 i e
~42!

and, correspondingly,

fSE1~x!5fSE1
CPV~x!1fSE1

~s! ~x! ~43!

with

fSE1
CPV~x!52

g2CF

2pxP1 f~x!
1

E2v~12x!2v~x!1 i e
~44!

and

fSE1
~s! ~x!52

g2m2CF

p~2xP1!2 f~x!
1

@E2v~12x!2v~x!1 i e#2 .

~45!

Similarly, for the second self-energy contribution we get

fSE2~x!5fSE2
CPV~x!1fSE2

~s! ~x!, ~46!

with

fSE2
CPV~x!52

g2CF

2p~12x!P1 f~x!
1

E2v~12x!2v~x!1 i e
~47!

and
rn-
o

fSE2
~s! ~x!52

g2m2CF

p@2~12x!P1#2

3f~x!
1

@E2v~12x!2v~x!1 i e#2 . ~48!

Summing everything together, we find that allf (s)’s can-
cel and we are left with

f~x!52
CFg2

2pP1@E2v~12x!2v~x!1 i e#

3F f~x!

x~12x!
1E

0

1

dyf~y!@~y2x!#CPV
22 G . ~49!

The ML and CPV prescriptions are completely equivalent
this case.

We remark that Eq.~49! is nothing but ’t Hooft’s equation
@9#, in spite of the seemingly different physical inputs.

IV. FINAL REMARKS

We started by considering a ‘‘causal’’ formulation of th
bound-state integral equation in the lowest-order Tam
Dancoff approximation, in particular by considering on
one-loop contributions to the self-energy, and then, afte
suitable dimensional reduction, we ended up with ’t Hoof
equation in which all planar diagrams are summed~large-N
approximation! with an ‘‘instantaneous’’ potential betwee
quarks. How did it happen?

The reason why ‘‘causal’’ and ‘‘instantaneous’’ intera
tions lead to the same answer in this case has already
anticipated; it is rooted in the cancellations occurring in
11 dimensions thanks to one-loop unitarity. Those canc
lations had already been noticed@16#, although in a different
context and with a different technique.

In turn the reason why the Tamm-Dancoff approximati
reproduces ’t Hooft’s full planar summation is due to t
dynamical circumstance that in ’t Hooft’s formulation th
exact solution for the self-energy coincides with itsO(g2)
expression.

This fact also explains why we did not recover Wu
equation, when considering the ‘‘causal’’ formulation. As
matter of fact, in Wu’s treatment the exact solution for t
self-energy exhibits a quite involved analytical structure;
particular, it does not generally match, in the relevant W
identity, the expression used for the vertex in the bound-s
equation.

Since at largeN the same set of diagrams, the planar on
are summed in both formulations, we envisage a poten
conflict, beyond the one-loop approximation, between
planarity and ‘‘causal’’ formulation in 111 dimensions.
This crucial issue in our opinion deserves further study.

In dimensions higher than 2, causality looks mandat
and only one formulation~the ‘‘causal’’ one! can reasonably
survive.
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