
ADVANCED USE OF WOLRD-WIDE WEB
IN THE ONLINE SYSTEM OF DELPHI a

M. DöNSZELMANN, D. CARVALHOb

CERN European Laboratory for Particle Physics
CH 1211 Geneva 23, Switzerland

L.M. MUNDIM

LAFEX, R. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

S. DU

LAL, Université de Paris-Sud (Paris XI), Paris (Orsay), France

K. RODDEN

University of Strathclyde, Glasgow G1 1XH, Scotland, U.K.

F. TENNEBØ

Molde College, 6400 Molde, Norway

The World-Wide Web technology is used by the DELPHI experiment at CERN to provide easy
access to information of the ‘On-line System’. WWW technology on both client and server side is
used in five different projects. The World-Wide Web has its advantages concerning the network
technology, the practical user interface and its scalability. It however also demands a stateless
protocol and format negotiation.

1 Introduction

The use of World-Wide Web1 can be extended beyond the distribution of static docu-
ments. The following sections explain why we interface, where we interface and what the
constraints are to interface to the Web. Static documents are normally made available on
the Web by an general http server. There is however information that you might like to put
on the web for which you first have to build an interface (either on the server side or on the
client side). Interfacing to the Web2 is necessary in the following cases:

• The information is available in a different information system than WWW (Databases).

• The information dynamically changes over time (Monitoring Systems).

a. Available via WWW from http://www.cern.ch/~home/duns/papers/chep95_rio/html2/chep95.html
b. Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21995-970 Rio de Janeiro, Brazil

• The information is readable via WWW but in an unsuitable format (Databases).

• The information has to be tightly coupled to an existing application (Help Systems).

• The browser is not capable of understanding the communication protocol or format of
the information (Browser Extensions).

The following sections describe both applications on the Server side and on the Client
side, with examples of the use of WWW in the field of High Energy Physics
Experiments3.

2 Server Applications

Two common ways of interfacing to servers are currently available. The first one uses the
Common Gateway Interface specification4, which makes it possible to install portable
scripts and programs onto a default http server. The second way to interface is to “directly
-couple” your program with a standard http daemon. You basically replace two routines
(HTRetrieve: which normally retrieves a file, and HTServerInit: which initializes contact
with your information system) in the daemon by your own. Directly coupled gateways
have the advantage of a once only initialization.

Four examples of server interfaces are shown. The first one relates to DELPHI5 in
general and describes a server to distribute event data using the CGI interface. The second
and third distribute on-line status information and are directly coupled. The third example
is an attempt for a semi-interactive event display, which also uses CGI.

2.1 Example 1: The DELPHI Event Server (DES)

The specific request of one determined event has been always very important in any
experiment for sub-detector studies, code development and graphic visualization of tagged
events. In order to fulfill this task an event server (DELEVSRV) was developed on
CERNVM (IBM mainframe). However, the workstations proliferation and the CERNVM
deactivation imposed the need of a new event server (DES), running via World-Wide Web.

The DES offers to the physicists options to find the tape where the event is, to pick up
a copy of it (raw data) and to re-process it by a specific Delphi’s reconstruction package
(DELANA)6 version and/or options.

The DES is composed of two CGIs and one HTML document; one of the CGIs if for
submitting a request, called from now on Submit part, and the other to query its status, the
Query part.

Both CGIs are composed of a URL analyzer, its main part, that evaluates the HTTP
request and send it to corresponding modules (see figure 1). Besides the URL analyzer, the
Submit CGI is made up of three modules related to the options: Delana, List and Pick and
the Query one is composed by the modules Get_Status, Discard_File and Send_File.

The List module communicates with the FATMEN7 database and send back to the
user the tape identification in which the event can be found. The Delana and Pick modules,
in a first step, prepare a form4 and send it back to the browser. In a second step, this form
is submitted with the characteristic information to feed the requested module. The same

CGI re-process this form, checks on the DES database to see if this request has not been
already submitted and send it to the spool to be processed by a scheduler8.

The Query part also works in two steps: first it gets into the Get_Status module, which
communicates with the DES database and generates a new HTML document containing
the status of all active requests sent by the user. If there is no finished request, this docu-
ment contains just a message telling the job’s position in the queue. On the contrary, if
there are finished jobs, this document will contain another form (using GET method), that
allows the user to fetch the output and/or the log file to the local machine (done by the
Send_File module) or discard it (Discard_File module). The Send_File module communi-
cates with the DES database after sending the file to update the request status for future
garbage collection. The Discard_File module will perform its action by deleting the files
related to the present request, updating the DES database and calling the Get_Status mod-
ule in order to send an updated HTML document to the user. The process then repeats
until the last file is sent.

2.2 Example 2: HIPE WWW Gateway

The next two examples relate to the Data Acquisition9 and Slow Controls10 of the On-line
System. In the On-line System computers run monitoring processes to check the flow and
control of the data acquisition system, the slow control values and settings and the perfor-
mance of the triggering system. Each of these processes set a state as the result of their
inspections made. These states are monitored and controlled by state-management pro-

Figure 1: Dataflow of the DELPHI Event Server (DES)

URL

Delana

Pick

List

Delana
Form

Pick
Form

HTTP
Response

HTTP
Response

HTTP
Response

URL
Submit

Request
HTTP

Req. Processor HTTP
Response(Delana or Pick)Analyzer Analyzer

Scheduler

DataBase

Initial

Request
HTTP

STEP 1 STEP 2

URL
Analyzer

Initial

Request
HTTP Get

Status

DataBase
HTTP

Response

HTTP
Response

Submit

Request
HTTP URL

Analyzer

Send
File

DataBase

Discard
File

File

Get
Status

STEP 2STEP 1

QUERY module

SUBMIT module

cesses. The DELPHI on-line system relies heavily on network communications to interact
between the state-managers, the monitoring processes and the DELPHI User Interface11.

One way of communicating is via memory. HIPE (Human Interface for the Elemen-
tary Process)12 uses shared memory to read values from slow controls (high voltage)
channels. It is menu driven and displays channels, groups of channels and groups of
groups in textual menus on a vt200 terminal. The HIPE WWW gateway13 was designed to
give people network access to the slow controls channels of DELPHI via the Web. It uses
the core part of HIPE, but instead of producing textual menus it generates HTML. Figure
2 shows some of the Outer Detector high voltage channel readings.

Figure 2 also shows the dataflow for the HIPE WWW gateway. The Elementary Process
reads the hardware and stores the information in shared memory. It is an autonomous pro-
cess which is always running in the background. The HIPE WWW gateway, when started,
associates with the shared memory and waits for a request from the browser. When this
request comes in, a URL analyzer looks what the user wants. Requests look like:

• http://machinename.cern.ch/HIP/OD/function/hic_display/hv_channels/1/100

where OD equals Outer Detector, hic_display is the function to execute, hv_channels is
the group of channels to show and 1 and 100 are the parameters to provide to hic_display.

Figure 2: Dataflow of the HIPE WWW Gateway and its appearance on the Web

HTTP
Request

HIPE

HTML

Front-End
HTTP-
Server

Menu System
URL Resolver

Back-End

Hardware
Elementary

Process

Browser /
Client

The URL analyzer now calls the hic_display function which forces HIPE to read the chan-
nels from shared memory and compose a display.

The functions which used to provide a display were replaced by function that com-
pose HTML, in the form of unnumbered lists instead of menus. The output, which is thus
created, is a passive HTML file. HIPE WWW is aware of what functions to execute when
you select an item. The URL resolver basically re-composes URLs from these functions
and inserts them into the output. The end result is an HTML document showing current
slow controls channels, where each channel points to a function to explore that channel
even further. The whole setup turns out to be faster than the old HIPE vt200 interface.

2.3 Example 3: DIM WWW Gateway

The DELPHI On-line System uses the DIM14 system (Distributed Information Manage-
ment) for its internal network communications. This system uses a publish-and-subscribe
mechanism in a client-server model. Monitoring processes publish information by name
onto the network. Other applications, like user interfaces, subscribe to this information,
and once subscribed are kept up-to-date by the monitoring jobs. The DIM system uses a
central nameserver to tell clients where certain information (services) may be found. The
system can be used for internal DELPHI running only, because both the central
nameserver and the continuous connections do not scale.

To ensure that people at their home institutes have access to the DIM services a DIM
WWW gateway13 was created. The gateway works by doing on-the-fly conversions of so
called DIM files. These files are basically HTML files, but contain extra DIM tags. When
retrieved these tags are replaced by information (values) from the DIM system.

Figure 3 shows the On-line System Status of DELPHI. Information like trigger rates,
state of the data acquisition and slow controls is shown in a table marked up in HTML3.

Figure 3: Dataflow of the DIM WWW Gateway and its appearance on the Web

Converter
DIM-Gateway HTML

DIM
Files

On-line
System

text/x-dim text/html

Figure 3 also shows the dataflow for this gateway. When the user retrieves a DIM file the
gateway searches for a converter from text/x-dim (the MIME15 type associated with DIM
files) to text/html (the MIME type associated with HTML files). The converter in its turn
looks for <DIM SRC=”service”> tags. If found, it subscribes itself to the service and
replaces the tag with the values it receives. It then releases the service again. All DIM tags
are thus replaced by values and strings, resulting in a valid HTML document. This docu-
ment may then be displayed by the user. If the user reloads the file, the same conversion
takes place again, updating all values with more current ones.

The gateway provides only a one level interface, which certifies the statelessness.
Conversions of DIM files tend to be slow, since the gateway needs to subscribe and release
services all the time. By caching the actual service (the information is kept up-to-date by
DIM) the performance is greatly improved.

2.4 Example 4: EDWIN Gateway

High Energy Physics experiments are probably easiest explained by visualizing collisions.
Specialized programs, like event displays or viewers, must be used in order to see these
events from different angles and with different zoom factors. These programs are nor-
mally quite complex and difficult to use. To make event viewing available to the general
public, especially for educational purposes, DELPHI undertook the effort to provide their
event display via the Web.

EDWIN (Event Display WWW INterface) was designed to provide a generic way of
interfacing event displays to the Web. The user uses HTML forms to request a certain
event and view (angle, zoom factor). The server provides a view in the form of a bitmap.
The user may now iterate by resubmitting the form with different values, until he is satis-
fied with the result. This setup works but is very slow. Figure 4 shows an example of an
event viewed via the Web.

Figure 4: Dataflow of EDWIN and its appearance on the Web

Browser/
Client

Browser/
Client

Browse/
Client

HTTP
Server

HTTP

CGI
Script

DBASE
(state)

Event
Display

TCP/IP

Event
Display

Event
Display

E
vent D

atabase

Config-
file

Figure 4 also shows the dataflow of EDWIN. When the user requests the first view of an
event, the server allocates an event display to him and sends back an ID number in the
next form. It stores this ID and the association to the event display in a state database.
When the user requests the next view, the server looks in the database for the ID and thus
knows to which event display the request has to go. Ordinary event displays are used,
which redirect their (XWindows) output to a virtual X server. The EDWIN package,
which is linked into the event display, grabs the window, converts it into GIF and sends it
to the client. Internal communications between the http server and the event displays is
done with the XTCP package16, which provides a TCP/IP communication channel to an X
client.

The interface is made stateless by sending back and forth ID numbers between the
server and client. The gateway however does not scale because the number of event dis-
plays that can be started is limited. There is also no way to know when an ID number can
be thrown away or reused. The performance turned out to be very cumbersome. Conver-
sions and manipulation of graphics plus the transfer across the network make things very
slow. Future applications of this type should probably transfer data once, after which the
user may interact with the browser/viewer.

3 Client Applications

Adding applications to the client side is possible by installing viewers or using a protocol
called Common Client Interfacea (CCI)17,18. Viewer extend the browsers capability of
recognizing document formats. It uses a one way connection (e.g. the browser instruct the
viewer what to display). CCI enables a two way connection. Since the connection lasts a
state-full protocol may be used here.

CCI communication may be used in two directions, see figure 5. The browser can
instruct an application (viewer) what to show, but the application may also tell the browser
what to do. The latter was used by DELPHI, as also shown in figure 5, to implement a
context sensitive help system. The figure shows a histogram presenter (much like PAW)19

which starts Mosaic and retrieves specific help pages, when asked for.
The communication may be truly interactive. One could think of an application where

the browser trains a user about a certain program. While the user is going through the tuto-
rial on the Web, the program follows and demonstrates how things will really look. If at a
certain moment the user decides to try something in the program, the browser may follow
what he does and point out what to do next.

In future clients may probably be dynamically extended with some functionality. In
this case the user will not only transfer the information, but also the interface to this infor-
mation. EDWIN could be set up like that. One would transfer all information of an event,
including the code to view an event from different angles. Currently HotJava20 from Sun
MicroSystemsb is the only browser which supports this type of extensions. They use a
generic programming language called Java21.

a. Although CGI is supported by many server, CCI is only supported by XMosaic.
b. HotJava is currently only available for Solaris, Windows NT and Windows 95. A port for Macintosh 7.5 is
underway.

4 Conclusions

The World-Wide Web can be used for more than just distributing static documents. Access
to synthesized and dynamic information is currently possible by creating interfaces to the
Web on the server side. A standard (CGI) has been written to do so. Interfaces which are
created this way have to conform to the http protocol. Its stateless character has proven to
be sometimes hard, but not impossible, to cope with. The performance of some server side
interfaces is also an issue.

Due to the fact that client side interfacing and client extensions are still in develop-
ment, not many applications have been created in that area. Context-Help systems are pos-
sible by using the upcoming CCI standard. Extensible browsers (HotJava) will present a
whole new view on the Web. The provider will in future not only publish information but
also publish an interface or interpreter for that information. It will provide better interac-
tivity for web users.

References

1. T.J.Berners-Lee, R.Cailliau, J.F.Groff, and B.Pollermann,“World-Wide Web: The
Information Universe”, Electronic Networking: Research, Applications and Policy,
2(1), pp. 52-58 (1992).

2. M.Dönszelmann,“Interfacing to the Web”, to be published in the proceedings of the
CERN School of Computing, 20 Aug - 2 Sept, Arles, France (1995).

3. M.Dönszelmann,“World-Wide Web and High Energy Physics Experiments, A Status
Report”, Mod. Phys. C - Physics and Computers 5(5), pp. 755-908 (1994).

Figure 5: Connected applications and the DELPHI help on histogram system

Server
Gateway

Browser /
Client

Simulation
Application

Header

Any
Format

Info-
System

Application

Viewer
CCI

CCI

CCI

CCI runs over TCP/IP

4. NCSA Team, “CGI, Common Gateway Interface (specification)”, http://hoo-
hoo.ncsa.uiuc.edu/cgi/overview.html, (1994).

5. P.Aarnio et al., “The Delphi Detector at LEP”, DELPHI Collaboration, Nucl. Instr.
and Methods in Physics Research A 303, pp. 233-276 (1991).

6. Delphi Collaboration, “Delphi Data Analysis Program (DELANA) - User’s Guide”,
Internal Delphi Note, 89-44 PROG 137, CERN, Geneva, Switzerland (1989).

7. CERN, “FATMEN” , CN/AS Division, CERN Program Library Long Write-up
Q123, Geneva, Switzerland (1993).

8. A.S.Tannenbaum,“Operating Systems: Design and Implementation”, Prentice-Hall
International Editions (1987).

9. T.Adye et al., “Architecture and Performance of the DELPHI Data Acquisition and
Control System”, Proceedings of the International Conference on Computing in
High Energy Physics 91, pp. 619-626, Tsukuba, Japan (1991).

10. T.Adye et al., “The Design and Operation of the Slow Controls for the DELPHI
Experiment at LEP”, Nucl. Instr. and Methods in Physics Research A 349, pp. 160-
182 (1994).

11. M.Dönszelmann, C.Gaspar and J.A.Valls,“A Configurable Motif Interface for the
DELPHI experiment at LEP”, Proceedings of the International Motif User Confer-
ence 92, pp. 156-162, Washington D.C., U.S.A. (1992).

12. M.Dönszelmann,“DELPHI HIPE system user’s manual v2.30”, Internal DELPHI
Note, 92-26 DAS 124 Rev, CERN, Geneva, Switzerland (1992).

13.M.Dönszelmann and K.Rodden, “Gateways for World-Wide Web in the ‘Online’
Data Acquisition System of the DELPHI Experiment at CERN”, Advance Proceed-
ings of the Second International WWW Conference 94 “Mosaic and the Web”, pp.
985-992, Chicago, U.S.A, October 17-20 (1994).

14. C.Gaspar and M.Dönszelmann,“DIM - A Distributed Information Management Sys-
tem for the DELPHI Experiment at CERN”, Proceedings of the 8th Conference on
Real-Time Applications in Nuclear, Particle and Plasma Physics, Vancouver, Can-
ada, June 8-11 (1993).

15. MIME, “Multipurpose Internet Mail Extensions”, RFC1341 (1992).
16. M.Dönszelmann,“XTCP, Communication Channel Interface for a Generic Server

or X Client”, Internal DELPHI Note, 95-17 DAS 161, CERN, Geneva, Switzerland
(1995).

17. NCSA Team,“CCI, Common Client Interface (specification)”, http://www.nc
sa.uiuc.edu/SDG/Software/Mosaic/CCI/ccispec.html, (1994).

18. M.Dönszelmann,“RMI, Remote Mosaic Interface (for VMS)”, Internal DELPHI
Note, 95-19 DAS 162, CERN, Geneva, Switzerland (1995).

19. V.Chorowicz,“The real-time Data Monitoring in DELPHI”, Internal DELPHI Note,
95-31 DAS 163, CERN, Geneva, Switzerland (1995).

20.SUN Microsystems,“The HotJava Browser: A White Paper”, http://java.sun/com/
documentation.html, (1994).

21.J.Gosling and H.McGilton,“The Java Language Environment: A White Paper”,
http://java.sun.com/documentation.html, (1995).

