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1 Introduction and motivation

Among the two-dimensional theories endowed with conformal invariance, those which, in
addition, possess a current algebra symmetry are specially important [1]. In this lecture, we
shall report on some results we have recently obtained for Conformal Fields Theories (CFT’s)
which enjoy an osp(1|2) affine superalgebra. As a motivation for the study of this particular
case, let us mention that the osp(1|2) super Lie algebra has an ubiquitous presence in many
problems in which the N = 1 superconformal symmetry is involved. Indeed, the minimal
N = 1 superconformal models can be obtained by means of Hamiltonian reduction of a
system with osp(1|2) current algebra and this symmetry appears in the light-cone approach
to two-dimensional supergravity [2, 3]. It is also interesting to mention in this respect
that the topological osp(1|2)/osp(1|2) coset theories can be used to describe the non-critical
Ramond-Neveu-Schwarz superstrings [4, 5]. As a final motivation let us point out that, as
will be shown below, a lot of non-trivial results can be found for the osp(1|2) CFT’s. These
results can be simply stated and compared with those corresponding to CFT’s based on the
su(2) affine Lie algebra.

The organization of this lecture is the following. In section 2 we recall the basic facts of
the osp(1|2) representation theory. Its similarity with ordinary angular momentum theory
will become evident and will constitute a guiding principle for what follows. The osp(1|2)
current algebra is introduced in section 3 and the corresponding character formulas are
analyzed in section 4. In section 5 we study a representation of the affine osp(1|2) symmetry
in terms of free fields. This representation can be used to give integral expressions for the
conformal blocks, from which the structure constants and the fusion rules of the model can
be extracted. Finally, in section 6 some conclusions are drawn and a series of final remarks
are made.

2 osp(1|2) Representation Theory

The osp(1|2) superalgebra is a graded extension of the sl(2) Lie algebra [6]. It is generated
by three bosonic generators (T3 and T± ) and by two fermionic operators (F±). The bosonic
generators close an sl(2) algebra. The full set of (anti)commutators that define the osp(1|2)
superalgebra is:

[T3 , T±] = ±T± [T+ , T−] = 2T3

[T3 , F±] = ±
1

2
F± {F± , F±} = ±2T± (2.1)

{F+ , F−} = 2T3 [T± , F±] = 0

[T± , F∓] = −F± .

It can be easily checked from (2.1) that the operator:

C2 = T 2
3 +

1

2
[T−T+ + T+T− ] +

1

4
[F−F+ − F+F− ] , (2.2)
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commutes with all the generators of the osp(1|2) algebra. C2 is the so-called quadratic
Casimir operator. Using the algebra defining relations (eq. (2.1)) one can reexpress C2 as:

C2 = T 2
3 +

1

2
T3 + T−T+ +

1

2
F−F+ . (2.3)

Following the standard methods of angular momentum theory, one can find matrix repre-
sentations of the algebra (2.1). The finite dimensional irreducible representations Rj of the
osp(1|2) theory are labeled by an integer or half-integer number j, which we shall refer to
as the isospin of the representation. The highest weight vector of the representation Rj will
be denoted by |j, j >. It satisfies the conditions:

T+ |j, j >= F+ |j, j >= 0 . (2.4)

From the vector |j, j >, one can easily obtain other vectors of Rj by acting with the lowering
operators T− and F−. We shall denote by |j,m > to a general basis state for the represen-
tation Rj , m being the T3 eigenvalue. The quadratic Casimir operator C2 acts on the states
|j,m > as a multiple of the identity operator. The precise action of C2 on the states of Rj

can be determined by computing C2 |j, j > from the highest weight conditions (2.4). The
result is:

C2 |j,m >= j ( j +
1

2
) |j,m > . (2.5)

It is not difficult to obtain the matrix elements of the generators of osp(1|2) in the represen-
tation Rj . For the bosonic generators one has:

T3 |j,m >= m|j,m >

T± |j,m >=
√

[j ∓m] [j ±m+ 1] |j,m± 1 > , (2.6)

where [x] represents the integer part of the number x (2x ∈ ZZ ). The action of the operators
F± on the states |j,m > is the following:

F± |j,m >=


−
√
j ∓m |j,m± 1

2
> if j −m ∈ ZZ

∓
√
j ±m+ 1

2
|j,m± 1

2
> if j −m ∈ ZZ + 1

2
.

(2.7)

Notice that the operators T± (F±) change the T3 eigenvalue in ±1 (±1/2). In addition, the
fermionic operators change the statistics of the states. It is clear from (2.6) and (2.7) that,
when 2j ∈ ZZ , the representation Rj is 4j+1-dimensional and spanned by the states |j,m >

with m = −j,−j + 1
2
, · · · , j − 1

2
, j. In order to characterize completely the representation

one must give the statistics of its highest weight state. The Grassmann parity of |j, j > will
be denoted by p(j) (p(j) = 0, 1). We will say that the representation Rj is even(odd) when
|j, j > is bosonic(fermionic), i.e. when p(j) = 0(p(j) = 1). It is clear that the Grassmann
parity of the state |j,m > is p(j) + 2(j −m) mod (2).
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For Lie superalgebras, one can define a generalized adjoint operation, denoted by ‡, such
that, for any operator A and any two states α and β, one has:

< A‡α|β >= (−1)p(A)p(α) < α|Aβ > . (2.8)

We shall call A‡ the superadjoint of A. In eq. (2.8), p(A) and p(α) denote respectively the
Grassmann parities of the operator A and the state α. One can verify that the superadjoint
of the product of two operators is given by the formula:

(AB)‡ = (−1)p(A)p(B) B‡A‡ . (2.9)

It is easy to prove that the compatibility of the property (2.9) and the relations (2.1) requires
that T ‡± = T∓ and T ‡3 = T3. In the case of the fermionic generators we have, however, some
freedom. Actually, if η is a number that can take the values ±1, the rule which makes the
superadjoint F ‡± consistent with the (anti)commutators (2.1) is:

F ‡+ = η F− F ‡− = −η F+ . (2.10)

It is important to point out that, in any case, ( (F± )‡ )‡ = −F±. The value of η is related
to the norm of the states and the parity p(j) of the representation. To illustrate this point
let us suppose that < j,m|j,m >= ε(ε′) if j = m is integer(half-integer), where ε and ε′ can
take the value +1 or −1. Putting in eq. (2.8) α = |j, j >, β = |j, j − 1

2
> and A = F+,

one gets:
η = (−1)p(j) εε ′ . (2.11)

Once we conventionally fix η to a given value, the signs ε and ε′ of the norms of the states
are related to the highest weight parity p(j) by means of eq. (2.11). For simplicity, we shall
choose η = 1, which implies that εε ′ = (−1)p(j). For even representations, p(j) = 0 and the
norms ε and ε ′ can be taken to be +1, whereas for odd representations, ε and ε ′ must have
opposite sign. We shall choose ε = −ε ′ = +1 for odd representations and, therefore, the
norms of the states will be given by the expression:

< j,m|j,m >= (−)2p(j)(j−m) . (2.12)

When two representations of isospins j1 and j2 are coupled, one can decompose the
corresponding tensor product in the following way:

Rj1 ⊗Rj2 =
j1+j2⊕

j3=|j1−j2|

2(j3−j1−j2)∈ZZ

Rj3 , (2.13)

which means that one gets representations of isospins |j1 − j2| , |j1 − j2| +
1
2
, · · · , j1 + j2 −

1
2
, j1 + j2. The parity of the representation Rj3 in the right-hand side of eq. (2.13) is given

by:
p(j3) = p(j1) + p(j2) + 2(j1 + j2 − j3) mod (2) . (2.14)

3



Notice that eq. (2.14) implies that odd representations appear when even representations

are coupled. In fact, if we denote by [j] and [̃j] to the even and odd representations of isospin
j, eqs. (2.13) and (2.14) imply, in particular, that:

[ 1
2
] ⊗ [ 1

2
] = [0] + [̃ 1

2
] + [1]

[1] ⊗ [1] = [0] + [̃ 1
2
] + [1] + [̃ 3

2
] + [2] . (2.15)

The presence of odd representations in the right-hand side of eq. (2.15) means that one
cannot avoid having negative norm states and, therefore, a theory enjoying this symmetry
cannot be unitary.

3 osp(1|2) Current Algebra

In order to construct a Conformal Field Theory endowed with the osp(1|2) symmetry, one
must first extend the finite algebra of section 2 to the affine, infinite dimensional, osp(1|2)
Lie superalgebra. As it is well-known, this can be achieved by replacing the generators of
section 2 by currents depending on a holomorphic variable z:

T± =⇒ J±(z) =
+∞∑

n=−∞

J±n z
−n−1

T3 =⇒ J0(z) =
+∞∑

n=−∞

J0
n z
−n−1 (3.1)

F± =⇒ j±(z) =
+∞∑

n=−∞

j±n z
−n−1 .

In eq. (3.1), we have displayed the mode expansions of the different currents. Notice that the
modes n of the fermionic currents run over the integers, which implies that we are considering
the Ramond sector of the osp(1|2) affine superalgebra. The non-vanishing (anti)commutators
of the currents Jan and jαn are:

[ J0
n , J

±
m ] = ±J±n+m [ J0

n , J
0
m ] =

k

2
n δn+m

[ J+
n , J

−
m ] = knδn+m + 2J0

n+m

[ J0
n , j

±
m ] = ±

1

2
j±m+n [ J±n , j

±
m ] = 0 (3.2)

[ J±n , j
∓
m ] = −j±n+m { j±n , j

±
m } = ±2J±n+m

{ j+
n , j

−
m } = 2knδn+m + 2J0

n+m .

In what follows, the algebra defined in (3.2) will be simply denoted by A. By inspecting eq.
(3.2), one can verify that the zero modes Ja0 and jα0 of the currents close the algebra (2.1). In
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eq. (3.2), k is a central element (the level of the osp(1|2) current algebra) which commutes
with all the other generators. By means of the Sugawara prescription, one can construct
an energy-momentum tensor T (z) for the osp(1|2) currents. The expression of T (z) is the
following:

T (z) =
1

2k + 3
: [ 2 (J0(z))2 + J+(z) J−(z) + J−(z) J+(z) −

−
1

2
j+(z) j−(z) +

1

2
j−(z) j+(z) ] : , (3.3)

where the double dot : denotes normal ordering. The modes Ln of the energy-momentum
tensor are defined as:

T (z) =
+∞∑

n=−∞

Ln z
−n−2 . (3.4)

A calculation performed with the standard techniques of CFT allows to prove that the
commutators of the Ln’s with the currents are:

[Ln , J
a
m ] = −mJan+m [Ln , j

α
m ] = −mjαn+m . (3.5)

Similarly, one can verify that the modes of the energy-momentum tensor satisfy the Virasoro
algebra:

[Ln, Lm ] = (n−m)Ln+m +
c

12
(m3 − m) δn+m,0 , (3.6)

where the central charge c is related to the level k by means of the expression:

c =
2k

2k + 3
. (3.7)

In the algebra (3.2), we can introduce the so-called principal gradation, which is defined
as:

d( Jan ) = 2n + a d( jαn ) = 2n +
α

2
d( k ) = 0 . (3.8)

With respect to d, the algebra A splits as:

A = A− ⊕ A0 ⊕ A+ , (3.9)

whereA−, A0 andA+ are the subspaces ofA spanned by the elements that have, respectively,
d < 0, d = 0 and d > 0. These elements are easy to identify from eq. (3.8) and so, for
example, A0 is generated by J0

0 and k, whereas A+ is the subspace spanned by J−n (n ≥ 1),
J0
n (n ≥ 1), J+

n (n ≥ 0), j−n (n ≥ 1) and j+
n (n ≥ 0).

The Verma modules associated to A are constructed by acting with elements of the
universal enveloping algebra of A− (denoted by U(A− )) on a highest weight vector | j, k >.
The latter is annihilated by the elements of A+, i.e.:

Jan | j, k >= jαn | j, k >= 0 , ∀ ( Jan , j
α
n ) ∈ A+ . (3.10)
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On the contrary, J0
0 and L0 act diagonally on | j, k >:

J0
0 | j, k >= j | j, k > L0 | j, k >= hj | j, k > . (3.11)

From the Sugawara expression for L0 (see eqs. (3.3) and (3.4) ), one can easily get the L0

eigenvalue corresponding to | j, k >, namely:

hj =
j ( 2j + 1 )

2k + 3
. (3.12)

As in the case of the finite algebra, in order to characterize completely the highest weight
vector | j, k >, we must specify its Grassmann parity, which we shall also denote by p(j). The
Verma module whose highest weight vector is | j, k > will be denoted by V (j,k). Any element
in V (j,k) is of the form u−| j, k >, where u− ∈ A−. Notice that, according to the Poincaré-
Birkhoff-Witt theorem, U(A− ) is generated by monomials and thus we can consider a basis
of V (j,k) constituted by vectors of the form:

| {ma
i } ; j > =

+∞∏
i=0

(
j−−i

)2m−i
+∞∏
i=1

(
J0
−i

)m0
i

+∞∏
i=1

(
j+
−i

)2m+
i | j, k > . (3.13)

In eq. (3.13), the numbers m±i are integers or half-integers whereas the m0
i ’s are always

integers (ma
i ≥ 0).

For some values of the isospin j the Verma module V (j,k) is reducible, i.e. it contains
singular vectors. These are vectors of V (j,k) which are descendants and are annihilated by
A+. For a given value of the level k, the singular vectors appear in those modules with
highest weight vectors whose isospins belong to a discrete set labelled by two integers r and
s. These isospins are of the form [7]:

4jr,s + 1 = r − s ( 2k + 3 ) , (3.14)

where r+s is odd and, either r > 0 and s ≥ 0 or r < 0 and s < 0. The J0
0 and L0 eigenvalues

of these vectors are respectively jr,s −
r
2

and hjr,s + rs
2

.

4 osp(1|2) character formulae

Let us now study the characters of the osp(1|2) CFT. For an irreducible Verma module
V (j,k), whose highest weight vector has isospin j, the characters λj(a, τ) are defined as:

λj(a, τ) = Trj [ qL0−
c
24 wJ

0
0 ] , (4.1)

where the trace is taken over the module V (j,k) and q and w are two variables related to the
modular parameter τ and to the Cartan coordinate a by means of the expressions:

q = e2πiτ w = e2πia . (4.2)

The trace in eq. (4.1) can be evaluated by studying the action of the operator qL0−
c
24 wJ

0
0 on

the states | {ma
i } ; j > defined in eq. (3.13). Since L0 and J0

0 act diagonally on these states,

6



the trace (4.1) can be easily calculated. After some simple manipulations [7, 8], one obtains
the following expression for λj(a, τ):

λj(a, τ) =
q

2(j+ 1
4 )2

2k+ 3 wj+
1
4

Π(a, τ)
, (4.3)

where the function Π(a, τ), appearing in the denominator, is the following infinite product:

Π(a, τ) ≡ q
1
24 w

1
4

+∞∏
n=1

(1− qn) (1−w
1
2 qn) (1−w−

1
2 qn−1) (1−wq2n−1) (1−w−1q2n−1) . (4.4)

By means of the Watson quintuple product identity:

+∞∏
n=1

(1− qn) (1− wqn) (1− w−1qn−1) (1− w2q2n−1) (1− w−2q2n−1) =

=
+∞∑

m=−∞

(w3m − w−3m−1) q
3m2+m

2 , (4.5)

one can write Π(a, τ) in the form:

Π(a, τ) = Θ1,3 (
a

2
,
τ

2
) − Θ−1,3 (

a

2
,
τ

2
) , (4.6)

where Θr,s are the classical theta functions, defined as:

Θr,s (a, τ) =
∑
m∈ZZ

qs(m+ r
2s

)2

ws(m+ r
2s

) . (4.7)

For some particular values of the level k there exists a class of representations which are
completely degenerate [7, 8]. These representations occur for values of k which are rational
numbers of the form:

2k + 3 =
p

p′
, (4.8)

where p and p′ are coprime positive integers such that p + p′ is even and p and (p + p′)/2
are relatively prime. The so-called admissible representations correspond to isospins of the
form:

4jr,s + 1 = r − s
p

p ′
, (4.9)

with r and s taking values in the grid 1 ≤ r ≤ p − 1, 0 ≤ s ≤ p′ − 1 and r + s ∈ 2ZZ + 1.
When the isospin is of the form (4.9), the corresponding Verma module will have a null
vector, since eq. (4.9) corresponds to eq. (3.14) with r > 0 and s ≥ 0. Moreover, when
eqs. (4.8) and (4.9) are satisfied, one has that jr,s = jr−p,s−p′ and, therefore, when r and s

belong to the grid defined above, the isospin (4.9) has also the form (3.14) for the integers
r−p < 0 and s−p′ < 0. Therefore, when the isospin jr,s belongs to the admissible set (4.9),
the module V jr,s,k possesses a second singular vector. These two null vectors generate the
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maximum proper submodule of V jr,s,k, which can be generated by means of the embedding
diagram:

B(0) −→ B(1) −→ B(1) −→ A(2) −→ · · ·
A(0) ↗

↘ ↗↘ ↗↘ ↗↘ ↗↘ · · ·
B(−1) −→ A(−1) −→ B(−2) −→ A(−2) −→ · · ·

where A(l) and B(l) are given by:

A(l) ≡ jr−2lp , s =
r − 1

4
−

s

4

p

p ′
− l

p

2

B(l) ≡ j−r−2lp , s =
r − 1

4
−

s

4

p

p ′
− l

p

2
−
r

2
. (4.10)

Each node in the above diagram represents a Verma module with A(l) or B(l) as the isospin
of its highest weight state. An arrow connecting two spaces E → F means that the module
F is contained in the module E. The character of the irreducible module with isospin j = jr,s
is constructed as an alternating sum of the form:

χjr,s(a, τ) =
l=+∞∑
l=−∞

λA(l)(a, τ) −
l=+∞∑
l=−∞

λB(l)(a, τ) . (4.11)

Using eqs. (4.3) and (4.10) in the right-hand side of eq. (4.11), it is straightforward to
prove that χjr,s(a, τ) can be written as a quotient of differences of theta functions. Actually,
defining the constants b± and e as:

b± = ±p ′r − p s e = p p ′ , (4.12)

the characters χjr,s(a, τ) can be put in the form:

χjr,s(a, τ) =
Θb+,e(

a
2p ′
, τ

2
) − Θb−,e(

a
2p ′
, τ

2
)

Π(a, τ)
. (4.13)

It is interesting to study the behaviour of the characters (4.13) when a→ 0 [9]. First of
all, it is easy to prove that the denominator Π(a, τ) vanishes linearly when a→ 0. Actually,
one can check that:

Π(a, τ) = iπaq
1
24

∑
m∈ZZ

(6m+ 1) q
3m2+m

2 + o(a2) . (4.14)

In general, the numerator of the right-hand side of eq. (4.13) does not vanish when a = 0.
Therefore χjr,s(a, τ) will, in general, develop a single pole in a in the a → 0 limit. By
studying the residue of the osp(1|2) characters in this singularity we are going to discover a
remarkable connection with the minimal supersymmetric models. Let us, first of all, rewrite
the infinite sum appearing in the right-hand side of eq. (4.14) as an infinite product. An
identity due to Gordon [10] states that:

q
1
24

∑
m∈ZZ

(6m+ 1) q
3m2+m

2 = 2

[
η(τ)

]4
θ2(0, τ)

, (4.15)
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where η(τ) is the Dedekind η-function, which can be represented as:

η(τ) = q
1
24

∞∏
n=1

(1 − qn) . (4.16)

and θ2(0, τ) is a Jacobi theta function, whose infinite product representation can be obtained
from (4.16) and from the following relation with η(τ):

θ2(0, τ)

η(τ)
= 2 q

1
12

∞∏
n=1

( 1 + qn )2 . (4.17)

It is easy to verify that the numerator of the osp(1|2) characters does not vanish when s 6= 0
(see eq. (4.13)). Therefore, it makes sense to consider the residue of χjr,s(a, τ) at the point
a = 0. Let us define for s 6= 0 the following quantity:

χ̂r,s(τ) ≡
[ 2η(τ)

θ2(0, τ)

] 1
2
[
η(τ)

]2
lima→0

{
iπz χjr,s(a, τ)

}
. (4.18)

Using the Gordon identity (4.15), one can demonstrate that χ̂r,s(τ) is given by:

χ̂r,s(τ) =
[ θ2(0, τ)

2η(τ)

] 1
2 Θb+,e( 0, τ

2
) − Θb−,e( 0, τ

2
)

η(τ)
. (4.19)

It is interesting to point out that, for 1 ≤ r ≤ p− 1 , 1 ≤ s ≤ p ′ − 1 and r + s ∈ 2ZZ + 1,
the functions of τ appearing in the right-hand side of eq. (4.19) are precisely the characters

of the minimal supersymmetric models, with central charge c = 3
2

(1 − 2(p−p ′)2

pp ′
), in the

Ramond sector. This is precisely the result we were looking for.

5 Free field representation

The osp(1|2) current algebra can be realized [2, 11] in terms of free fields. The field content
of this representation consists of an scalar field φ, a pair of two conjugate bosonic field (w, χ)
and two fermionic fields (ψ, ψ̄) whose non-vanishing operator expansions (OPE’s) are:

w(z1)χ(z2) = ψ(z1) ψ̄(z2) =
1

z1 − z2
φ(z1)φ(z2) = −log (z1 − z2) . (5.1)

In terms of these fields the expression of the currents is:

J+ = w

J− = −wχ2 + i
√

2k + 3 χ∂φ − χψψ̄ + k∂χ + (k + 1)ψ∂ψ

J0 = −wχ +
i

2

√
2k + 3 ∂φ −

1

2
ψψ̄ (5.2)

j+ = ψ̄ + wψ

j− = −χ(ψ̄ + wψ) + i
√

2k + 3 ψ∂φ + (2k + 1)∂ψ .
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Substituting eq. (5.2) in the Sugawara expression of T (eq. (3.3)), one gets:

T = w∂χ − ψ̄∂ψ −
1

2
(∂φ)2 +

i

2
α0 ∂

2φ , (5.3)

where the background charge of the φ field is given by:

α0 = −
1

√
2k + 3

. (5.4)

Let us now construct the primary fields of the model [11]. The primary field associated
to the state |j,m > of the representation Rj of the finite algebra (2.1) will be denoted by
Φj
m. In what follows, we shall restrict ourselves to the case in which the level k is a positive

integer. Notice that this corresponds to taking p′ = 1 in eq. (4.8). Therefore, the isospins
corresponding to the admissible representations are given by eq. (4.9) with s = 0. As r in
eq. (4.9) must be odd, the highest value it can take is 2k + 1 and, thus, we conclude that
the admissible representations have integer or half-integer isospins j that satisfy j ≤ k/2. It
will be understood from now on that this constraint is satisfied by all primary fields Φj

m we
shall be dealing with.

Let us consider, first of all, a highest weight field Φj
j . The highest weight condition implies

that the OPE’s of Φj
j with the raising currents j+ and J+ must vanish. By inspecting the

realization of these currents in eq. (5.2), one immediately reaches the conclusion that in the
expression of Φj

j only the fields w and φ can appear. We therefore shall adopt the following

ansatz for Φj
j :

Φj
j = wA eiB α0 φ , (5.5)

where A and B are constants to be determined. There are, actually, two conditions that A
and B must satisfy. The first one comes from the fact that Φj

j should have a J0 charge equal
to j and takes the form:

A−
B

2
= j . (5.6)

Moreover, the L0 eigenvalue of Φj
j must be the conformal weight hj (see eq. (3.12)). This

requirement imposes the following condition for A and B:

A +
B(B + 1)

2(2k + 3)
= hj . (5.7)

Eliminating A of eqs. (5.6) and (5.7), one gets a quadratic equation for B which has two
solutions. One of these solutions is A = 0, B = −2j, which corresponds to:

Φj
j = e−2ij α0 φ . (5.8)

By acting on the field (5.8) with the lowering operators j− and J−, one can obtain the other
members Φj

m of the field multiplet. The result is:

Φj
m =


χj−m e−2ijα0 φ if j −m ∈ ZZ

χj−m−
1
2 ψ e−2ijα0 φ if j −m ∈ ZZ + 1

2
.

(5.9)
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The second solution of eqs. (5.6) and (5.7) is A = 2j − k − 1 and B = 2j − 2(k + 1). This
solution corresponds to a second conjugate representation of the highest weight field:

Φ̃j
j = w2j+s e2i(j+s)α0 φ , (5.10)

where s = −k − 1. By successive application of the currents j− and J−, one can generate
other components of the conjugate multiplet of primary fields. In general, the expressions of
the Φ̃j

m are increasingly complicated as m is decreased. To illustrate this point let us write
down the expression of the conjugate field for m = j − 1

2
:

Φ̃j
j−1/2 =

1

2j
[ (2j + s) ψ̄ w2j+s−1 − sw2j+s ψ ] e2i(j+s)α0φ . (5.11)

Taking j = 0 in eq. (5.10), we get a conjugate representation of the unit operator:

Ĩ = Φ̃0
0 = ws e2isα0φ . (5.12)

The expression (5.12) of the conjugate identity fixes the charge asymmetry of the Fock space
metric of our free field realization. Indeed, the condition that the expectation value of Ĩ be
non-vanishing imposes a series of selection rules that the non-zero correlators of the theory
must satisfy. Let us imagine that we are computing the expectation value <

∏
i Oi >,

where Oi are general operators of the form Oi = wni χmi eiαiφ . Calling N(w) =
∑
i ni and

N(χ) =
∑
i mi, one gets the following conditions:

N(w) − N(χ) = s∑
i

αi = 2α0s . (5.13)

According to the standard method of the Coulomb gas representations, the conformal
blocks of the theory can be obtained as expectation values of products of the fields, both in
the representation (5.9) and in its conjugate. The fulfillment of the selection rules (5.13) is,
in general, achieved by the insertion of a power of the screening charge operator Q which,
in our case, is given by:

Q =
∮
dz ( ψ̄(z) − w(z)ψ(z) ) eiα0φ(z) . (5.14)

Let us illustrate how our formalism works for the two-point function. It can be easily
seen that the conditions (5.13) can be satisfied by considering the expectation value of the
product of a field (5.9) and its conjugate, without the insertion of the screening charge Q.
For example, in the case of the highest weight primary vectors, the expectation value to be
computed is:

< Φj
−j(z1) Φ̃j

j(z2) >=< [χ(z1)]2j e−2ijα0φ(z1) [w(z2)]2j+s e2i(j+s)α0φ(z2) > , (5.15)

and one can prove by inspection that eq. (5.13) is satisfied. Moreover, by applying Wick’s
theorem, one can write:

< Φj
−j(z1) Φ̃j

j(z2) >=
C

(z1 − z2)2hj
, (5.16)

11



Figure 1: Contours of integration needed to represent Ip(z).

where hj is given in eq. (3.12) and C is a constant proportional to the expectation value of
Ĩ.

The four-point conformal blocks of the model can be represented as correlators of the form
< Φj1

m1
(z1) Φj2

m2
(z2) Φj3

m3
(z3) Φ̃j4

m4
(z4)Qn >. The number n of screening charges can be easily

determined from the second condition (5.13). Indeed, one can immediately demonstrate that
only when n = 2 ( j1 + j2 + j3 − j4 ) this correlator is non-vanishing. In order to study
the analytical structure of these blocks we shall concentrate our efforts in the analysis of the
quantity:

I(z) ≡< Φj1
−j1(0) Φj2

j2(z) Φj2
−j2(1) Φ̃j1

j1(∞)Q4j2 > . (5.17)

We shall assume that the four representations involved in eq. (5.17) are even. From the
expressions of the primary fields and the screening charge, one can obtain the explicit form
of I(z):

I(z) =
n∏
i=1

∮
Ci

dτi λ(z, {τi}) η({τi}) , (5.18)

where n = 4j2, λ(z, {τi}) is the part of the correlator that corresponds to the field φ, namely:

λ(z, {τi}) =< e−2ij1α0 φ(0) e−2ij2α0 φ(z) e−2ij2α0 φ(1) e2i(s+j1)α0 φ(∞) ×

×eiα0 φ(τ1) · · · eiα0 φ(τn) > , (5.19)

and the function η({τi}) contains the contribution of the fields w, χ, ψ and ψ̄. It is not
difficult to prove that the non-vanishing contributions to η({τi}) are of the form:

η({τi}) = (−1)2j2 < (χ(0))2j1 (χ(1))2j2 (w(∞))2j1+s w(τ1) · · · w(τ2j2) > ×

× < ψ(τ1) · · ·ψ(τ2j2) ψ̄(τ2j2+1) · · · ψ̄(τ4j2) > + permutations.

(5.20)

Up to now we have not specified the contours of integration appearing in eq. (5.18). We
shall use the canonical set of contours that give rise to the s-channel conformal blocks (see
figure 1). We shall take the first n− p+ 1 integrals along a path lying on the real axis and
joining the points τ = 1 and τ =∞. The remaining p− 1 integrals will be taken along the
segment (0, z). Relabeling appropriately the integration variables, the pth conformal block

12



can be written as:

Ip(z) =
∫ ∞

1
du1 · · ·

∫ un−p

1
dun−p+1

∫ z

0
dv1 · · ·

∫ vp−2

0
dvp−1 λp(z, {ui}, {vi}) ηp({ui}, {vi}).

(5.21)

In eq. (5.21), the quantities λp(z, {ui}, {vi}) and ηp({ui}, {vi}) are, respectively, the functions
λ(z, {τi}) and η({τi}) after the relabelling of variables introduced above. By applying Wick’s
theorem to the vacuum expectation value (5.19), one can readily prove that λp(z, {ui}, {vi})
is given by:

λp(z, {ui}, {vi}) = z8j1j2ρ (1− z)8j22ρ
n−p+1∏
i=1

uai (ui − z)
b (ui − 1)b

∏
i<j

(ui − uj)
2ρ ×

×
p−1∏
i=1

vai (z − vi)
b (1− vi)

b
∏
i<j

(vi − vj)
2ρ

n−p+1∏
i=1

p−1∏
j=1

(ui − vj)
2ρ,

(5.22)

where ρ = α2
0/2, a = −2j1α

2
0 and b = −2j2α

2
0. It is not difficult to obtain the non-analytical

behaviour of the blocks around the point z = 0. This behaviour is of the form:

Ip(z) ∼ Np z
γp , (5.23)

where Np and γp are constants. The latter can be written as a difference of conformal weights
of the form:

γp = hj3 − hj1 − hj2 . (5.24)

The isospin j3 has the interpretation of the isospin of the s-channel intermediate state. Its
expression as a function of p is:

j3 = j1 + j2 +
1 − p

2
. (5.25)

Notice that as p = 1, · · · , 4j2 + 1 the values taken by j3 are j1 − j2, j1 − j2 + 1
2
, · · · , j1 + j2,

in agreement with the Clebsch-Gordan decomposition (2.13).
The physical correlation functions, which we shall denote by G(z , z̄), can be obtained

by combining holomorphic and antiholomorphic blocks in a monodromy invariant way:

G(z , z̄) =
∑
p

Xp | Ip(z) |
2 . (5.26)

The coefficients Xp have been computed in ref. [12]. The leading z → 0 behaviour of G(z , z̄)
can be obtained by combining eqs. (5.23) and (5.26):

G( z , z̄ ) ∼
∑
p

[ Sp

|z|2 (hj1 +hj2−hj3 )
+ O(z)

]
, (5.27)

where the constants Sp are given by:

Sp = Xp (Np)
2 . (5.28)
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The quantities Sp are related to the structure constants of the operator product algebra of
the model. These constants, which we shall denote by Dj3,m3

j1,m1;j2,m2
, appear in the leading

terms of the OPE’s of the primary fields, namely:

Φj1
m1

(z1, z̄1) Φj2
m2

(z2, z̄2) =
∑
j3,m3

Dj3,m3
j1,m1;j2,m2

[ Φj3
m3

(z2, z̄2)

|z1 − z2|2(hj1 +hj2 −hj3 )
+ O(z1 − z2)

]
. (5.29)

The two-point functions of the theory are normalized as:

< Φj1
m1

(z1, z̄1) Φj2
m2

(z2, z̄2) >= (−1)σ(j1,m1) δj1,j2 δm1,−m2

|z1 − z2|4hj1
, (5.30)

where σ(j,m) is 0(1) if the state |j,m > has positive(negative) norm. Therefore, the structure
constants must satisfy the constraint:

D0,0
j1,m1;j1,−m1

= (−1)σ(j1,m1) . (5.31)

In order to relate the quantities Sp of eq. (5.28) to the structure constants (5.31), let us use
the OPE’s (5.29) in the correlator G( z , z̄ ). The result one gets is:

G( z , z̄ ) ∼
∑
j3,m3

(−1)σ(j3,m3)
[ [Dj3,m3

j1,j1;j2,−j2 ]2

|z|2 (hj1+hj2−hj3 )
+ O(z)

]
, (5.32)

from which one we have the identification:

(−1)σ(j3,m3) [Dj3,m3
j1,j1;j2,−j2 ]2 ∼ Sp . (5.33)

Using (5.33) it is possible to obtain the structure constants from our free field formalism
[11]. Let us introduce the functions λ(j) and P(j). The former is defined as:

λ(j) ≡
Γ( j

2
+ jρ − [ j

2
])

Γ( j
2
− jρ − [ j

2
])
, (5.34)

while P(j) is given by:

P(j) ≡
j∏
i=1

λ(i) =
j∏
i=1

Γ( i
2

+ iρ − [ i
2
])

Γ( i
2
− iρ − [ i

2
])
. (5.35)

Let us also introduce the Clebsch-Gordan coefficients corresponding to the tensor product
decomposition (2.13):

| j3,m3 >=
∑

m1,m2

Cj3,m3
j1,m1;j2,m2

|j1,m1 > ⊗ |j2,m2 > . (5.36)

In terms of the quantities defined above, the structure constants can be written as [11]:[
Dj3,m3
j1,m1;j2,m2

]2
=
[
Cj3,m3
j1,m1;j2,m2

]4
λ(1) P2(2j1 + 2j2 + 2j3 + 1) ×

×
3∏
i=1

λ(4ji + 1)P2(2j1 + 2j2 + 2j3 − 4ji)

P2(4ji + 1)
. (5.37)
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By studying the conditions under which the right-hand side of eq. (5.37) is non-vanishing
we can obtain the fusion rules of the model. First of all, it is easy to verify that those fields
with isospin j ≤ k/2 close under multiplication. Actually, a detailed study of eq. (5.37)
(see ref. [11]) leads to the fusion rule:

[j1] × [j2] =

min ( j1+j2 , k+ 1
2
−j1−j2 )∑

j3=|j1−j2|

2(j3−j1−j2)∈ZZ

[j3] , (5.38)

which can be compared with the composition law of the finite algebra (eq. (2.13)).

6 Conclusions and final remarks

In previous sections we have reviewed a series of results which have been recently obtained
for the CFT based on the osp(1|2) affine Lie superalgebra. The global picture emerging
from these results is that the osp(1|2) current algebra is a perfectly solvable rational CFT.
In order to complete this picture it would be desirable to study some other aspects of the
theory. Let us mention some of them. First of all, one should explore the possibility of
building a CFT for the admissible representations, with fractional levels and isospins given
by eq. (4.9). The fusion rules for these representations have been determined in ref. [9] from
the null vector decoupling conditions.

Coming back to the case in which the isospin is integer or half-integer and the level k
is a non-negative integer, it is interesting to study the crossing symmetry of the conformal
blocks of the theory. One can employ [13] with this purpose the free field representation
of section 5. The behaviour of the correlator of the theory under exchange symmetry, i.e.
under the braiding and fusion operations, should be determined by a quantum deformation
of the universal enveloping algebra of osp(1|2). Moreover, this behaviour could be used to
define invariants for three-manifolds. The corresponding Chern-Simons theory, whose states
are in one-to-one correspondence with the conformal blocks of the two-dimensional model,
allows to define knot invariants. We have recently found [13] the relation of these invariants
with the su(2) knot polynomials. Let us finally mention that, with these results at hand, one
could also study the integrable deformation of the osp(1|2) CFT with the hope of finding
new solvable massive field theories in two dimensions.
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