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1 Introduction

The calculation of production and decay processes for heavy quarkonium states has recently been
put on a solid formal basis by the work of Bodwin, Braaten and Lepage [1] (BBL). According to
their results, production and decay rates can be calculated within perturbative QCD as the sum
of products of short-distance coefficients times long-distance matrix elements. The short-distance
coefficients are the square of transition matrix elements for production or decay of heavy-quark
pairs in definite states of colour, spin and angular momentum. The long-distance ones are obtained
from the matrix elements of quark-antiquark operators with the same quantum numbers as those of
the short-distance state; these are evaluated between the vacuum and an arbitrary state containing
the physical quarkonium meson we are interested in, squared and summed over all possible final
states accompanying the quarkonium. These long-distance matrix elements can in principle be
calculated on the lattice, and hierarchies among them can be obtained by applying the velocity
scaling rules of NRQCD [2, 3]. Several applications of this formalism have been obtained, and are
nicely reviewed in ref. [4, 5].

One of the most important consequences of this factorization property of quarkonium produc-
tion is the prediction that the value of the non-perturbative parameters does not depend on the
details of the hard process, so that parameters extracted from a given experiment can be used
in different ones. For simplicity, we will refer to this concept as “universality”. Several studies
of experimental data coming from different kind of reactions have been performed to assess the
validity of universality. For example calculations of inclusive quarkonia production in e+e− anni-
hilation [6], fixed target experiments [7], γp collisions [8, 9] and B decays [10] have been carried
out within this framework. The overall agreement of theory and data is satisfactory, but there
are clear indications that large uncertainties are present. The most obvious one is the discrep-
ancy [8] between HERA data [11] and the large amount of inelastic J/ψ photoproduction predicted
by applying the colour-octet matrix elements extracted [12, 13, 14] from the Tevatron large-pT
data [15, 16].

In view of this discrepancy, it becomes important to assess to which extent is universality
applicable. Several potential sources of universality violation are indeed present, both at the
perturbative and non-perturbative level. On one hand there are potentially large corrections to
the factorization theorem itself. In the case of charmonium production, for example, the mass
of the heavy quark is small enough that non-universal power-suppressed corrections can be large.
Furthermore, some higher-order corrections in the velocity expansion are strongly enhanced at
the edge of phase-space [17]. For example, the alternative choices of using as a mass parameter
for the matrix elements and for the phase-space boundary the mass of a given quarkonium state
or twice the heavy-quark mass 2m, give rise to a large uncertainty in the production rate near
threshold. These effects, which are present both in the total cross-section and in the production
at large-pT via gluon fragmentation, violate universality. This is because the threshold behaviour
depends on the nature of the hard process under consideration.

Another source of bias in the use of universality comes from purely perturbative corrections.
Most of the current predictions for quarkonium production are based on the use of leading-
order (LO) matrix elements. Possible perturbative K-factors are therefore absorbed into the
non-perturbative matrix elements extracted from the comparison of data with theory. Since the
size of the perturbative corrections varies from one process to the other, an artificial violation of
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universality is introduced. Examples of the size of these corrections are given by the large impact
of kT -kick effects and initial-state multiple-gluon emission in open-charm [18] and charmonium
production [19, 20].

In ref. [21] we focused on the evaluation of the O(α3
s) corrections to quarkonium total hadro-

production cross-sections. As pointed out in ref. [22], the impact of NLO corrections can be
significant and a general study of their effects is necessary. In this paper we concentrate on the
calculation of the O(α2

sαem) corrections to total photoproduction cross-sections. To carry out our
calculations, we need a framework for calculating NLO inclusive production cross-sections. As well
known, the most convenient method for regulating both UV and IR divergences in perturbative
calculations beyond leading order in αs is dimensional regularization. On the other hand most
calculations of production cross-sections and decay rates for heavy quarkonia have been performed
using the covariant projection method [23], which involves the projection of the QQ pair onto states
with definite total angular momentum J , and which is specific to four dimensions.

In ref. [21] we presented a generalization of the method of covariant projection to D = 4− 2ε
dimensions. In that paper our formalism was shown to provide equal results to calculations
performed within the “threshold expansion” technique, introduced in [24, 25]. In this work we
apply the covariant-projection technique to the calculation of the O(α2

sαem) total cross-sections for

the photoproduction of several QQ states of phenomenological relevance: 1S0
[8]

, 3S1
[8]

and 3PJ
[8]

,
where the right upper index labels the colour configuration of the QQ pair.

The paper is structured as follows. In Section 2 we briefly review our formalism. A more
complete discussion can be found in ref. [21]. Section 3 gives a brief general description of the
NLO calculation. In particular, we describe the the behaviour of the soft limit of the NLO real
corrections and the technique used to identify the residues of the IR and collinear singularities and
to allow their cancellation without the need for a complete D-dimensional calculation of the real-
emission matrix elements. Section 4 presents the various components (real and virtual corrections)
of the NLO calculation of the production processes. Section 5 presents a numerical study of the
results, with a discussion of the individual components of the cross-sections, of the K factors,
and of the scale dependence. A discussion of the high-energy behaviour of the production rates
at NLO and of the uncertainties of the predictions in this regime is included. The last section
contains our conclusions, as well as a discussion of the relevance of our calculation for the study
of photoproduction at pT > 0 and z < 1.

Appendix A collects symbols and notations. A summary of all results is provided in Ap-
pendix B, where the parton-level photoproduction cross-sections are presented in their final form,
after the cancellation of all singularities.

2 Introduction to the formalism

The starting point of the calculation of the production cross-sections is given by the standard
formula [1]:

dσ(H +X) =
∑
n

dσ̂(QQ[n] +X)〈OH(n)〉 (1)
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The quantity 〈OH(n)〉 is proportional to the inclusive transition probability of the perturbative
quark-pair state QQ[n], with quantum numbers labelled by n, into the quarkonium state H.
dσ̂(QQ[n] + X) is the short-distance cross-section for the production of the perturbative state
QQ[n]. It can be calculated in perturbative QCD either using threshold-mathing techniques [1, 24],
or using projection techniques [23]. These projection techniques have been recently extended
for use in D-dimensions [21], to deal with the presence of infrared (IR) and ultraviolet (UV)
divergences. They will be briefly reviewed here.

The spin projectors, with non-relativistic normalization for the spinors, for outgoing heavy
quarks momenta Q = P/2 + q and Q = P/2− q, are given by [23]:

Π0 =
1

√
8m3

(
P/

2
− q/−m

)
γ5

(
P/

2
+ q/+m

)
, (2)

Πα
1 =

1
√

8m3

(
P/

2
− q/−m

)
γα
(
P/

2
+ q/+m

)
, (3)

for spin zero and spin one states respectively. In these relations, P is the momentum of the
quarkonium state, 2q is the relative momentum between the QQ pair, and m ≡ M/2 is the
mass of the heavy quark Q. The justification for use of these projectors in D dimensions, and
a discussion of how to deal with the presence of the γ5 matrix, can be found in ref. [21]. Here
we limit ourselves to pointing out that the D-dimensional character of space-time is implicit in
eqs. (2,3), and appears explicitly when performing the sums over polarizations, as shown later.

The colour singlet or octet state content of a given state will be projected out by contracting
the amplitudes with the following operators :

C1 =
δij√
Nc

for the singlet (4)

C8 =
√

2T cij for the octet (5)

The projection on a state with orbital angular momentum L is obtained by differentiating L
times the spin- and colour-projected amplitude with respect to the momentum q of the heavy
quark in the QQ rest frame, and then setting q to zero. We shall only deal with either L = 0 or
L = 1 states, for which the amplitudes take the form:

AS=0,L=0 = Tr [CΠ0A]|q=0 Spin singlet S states (6)

AS=1,L=0 = Tr [CΠα
1 A]|q=0 εα Spin triplet S states (7)

AS=0,L=1 =
d

dqβ
Tr [CΠ0A]|q=0 εβ Spin singlet P states (8)

AS=1,L=1 =
d

dqβ
Tr [CΠα

1A]|q=0 Eαβ Spin triplet P states (9)

A being the standard QCD amplitude for production (or decay) of the heavy quark and antiquark
Q and Q, amputated of the heavy quark spinors.

The amplitudes AS,L will then have to be squared, summed over the final degrees of freedom
and averaged over the initial ones.
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The selection of the appropriate total angular momentum quantum number is done by per-
forming the proper polarization sum. We define:

Παβ ≡ −gαβ +
PαPβ

M2
. (10)

The sum over polarizations for a 3S1 state, which is still a vector even in D = 4− 2ε dimensions,
is then given by: ∑

Jz

εαε
∗
α′ = Παα′ (11)

In the case of 3PJ states, the three multiplets corresponding to J = 0, 1 and 2 correspond to a
scalar, an antisymmetric tensor and a symmetric traceless tensor, respectively. We shall denote
their polarization tensors by E (J)

αβ . The sum over polarizations is then given by:

E (0)
αβ E

(0)∗
α′β′ =

1

D − 1
ΠαβΠα′β′ (12)

∑
Jz

E (1)
αβ E

(1)∗
α′β′ =

1

2
[Παα′Πββ′ −Παβ′Πα′β] (13)

∑
Jz

E (2)
αβ E

(2)∗
α′β′ =

1

2
[Παα′Πββ′ + Παβ′Πα′β]−

1

D − 1
ΠαβΠα′β′ (14)

for the 3P0, 3P1 and 3P2 states respectively. Total contraction of the polarization tensors gives the
number of polarization degrees of freedom in D dimensions. Therefore

NJ =
∑
Jz

εαε
∗
α = Παα = D − 1 = 3− 2ε (15)

for the 3S1 state and
NJ =

∑
Jz

E (J)
αβ E

(J)∗
αβ (16)

for the 3PJ states, with

N0 = 1, N1 =
(D − 1)(D − 2)

2
= (3− 2ε)(1− ε), N2 =

(D + 1)(D − 2)

2
= (5− 2ε)(1− ε) . (17)

The application of this set of rules produces the short-distance cross section coefficients σ̂ for

the ij → 2S+1LJ
[1,8]

processes:

dσ̂(ij → 2S+1LJ
[1,8]

) =
1

2s

∑
|AS,L|

2 dΦ , (18)

s being the partonic centre of mass energy squared. To find the physical cross-sections for the
observable quarkonium state H these short distance coefficients must be properly related to the
NRQCD production matrix elements 〈OH[1,8](

2S+1LJ)〉. The cross-sections then read

σ(ij → 2S+1LJ
[1,8]
→ H) = σ̂(ij → 2S+1LJ

[1,8]
)
〈OH[1,8](

2S+1LJ)〉

NcolNpol

, (19)
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where Ncol and Npol refer to the number of colours and polarization states of the QQ[2S+1LJ ]
pair produced. They are given by 1 for singlet states or Nc

2 − 1 for octet states, and by the
D-dimensional NJ ’s defined above. Dividing by these colour and polarization degrees of freedom
in the cross-sections is necessary as we had summed over them in the evaluation of the short
distance coefficient σ̂. As discussed at length in ref. [21], our conventions for the normalization
of the non-perturbative matrix elements differ slightly from the conventional ones introduced by
BBL [1]:

〈O1〉 =
〈O1〉BBL

2Nc

, (20)

〈O8〉 = 〈O8〉
BBL. (21)

3 Soft factorization and the calculation of higher-order

corrections

In this section we discuss the rôle played by the universal IR behaviour of gluon-emission ampli-
tudes in the calculation of higher-order corrections to total production cross-sections. A consistent
calculation of higher-order corrections entails the evaluation of the real and virtual emission di-
agrams, carried out in D dimensions. The UV divergences present in the virtual diagrams are
removed by the standard renormalization. The IR divergences appearing after the integration
over the phase space of the emitted parton are cancelled by similar divergences present in the
virtual corrections. Collinear divergences, finally, are either cancelled by similar divergences in
the virtual corrections or by factorization into the NLO parton densities. The evaluation of the
real emission matrix elements in D dimensions is usually particularly complex. In this paper we
follow an approach already employed in [26], whereby the structure of soft and collinear singular-
ities in D dimensions is extracted by using universal factorization properties of the amplitudes.
Thanks to these factorization properties, that will be discussed in detail in the following section,
the residues of IR and collinear poles in D dimensions can be obtained without an explicit calcu-
lation of the full D-dimensional real matrix elements. They only require, in general, knowledge
of the D-dimensional Born-level amplitudes, a much simpler task. The isolation of these residues
allows to carry out the complete cancellations of the relative poles in D dimensions, leaving resid-
ual finite expressions which can then be evaluated exactly directly in D = 4 dimensions. The
four-dimensional real matrix elements that we will need can be found in the literature [8].

3.1 Soft factorization in ggγ amplitudes

At the Born level, the relevant diagrams are shown in fig. 1. The production amplitude (before
projection on a specific quarkonium state) can be written as follows:

ABorn = T aij D12 , (22)

where D12 ≡ D1 + D2 and the terms D1, D2 correspond to the diagrams appearing in fig. 1 with
the colour coefficients removed. Using this notation, the amplitude for emission of a soft gluon
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Figure 1: Diagrams for the gγ Born amplitudes.

with momentum k and colour label c can be written as follows [27]:

Asoft = g(T cT a)ij

[
Qεc
Qk
−
aεc
ak

]
D12 + g(T aT c)ij

[
aεc
ak
−
Qεc

Qk

]
D12+ (23)

where Q and Q are the momenta of the heavy quarks, and a indicates the momentum and colour
label of the initial state gluon. Born-level colour-singlet amplitudes vanish, so we will concentrate
on colour-octet states. Using the projectors defined in the previous section, we can write:

A
[8]
soft = g

√
2D12

{
Tr(T bT cT a)

[
Qεc
Qk
−
aεc
ak

]
+ Tr(T bT aT c)

[
aεc
ak
−
Qεc

Qk

]}

= g

√
2

4
D12

{
dbca

[
Qεc
Qk
−
Qεc

Qk

]
+ if bca

[
Qεc
Qk

+
Qεc

Qk
− 2

aεc
ak

]}
, (24)

where b is the colour label of the colour-octet QQ state.

In the case of S-wave production we can set Q = Q = P/2, and we get(
A

[8]
soft

)
q=0

=
igf bca
√

2

[
Pεc
Pk
−
aεc
ak

]
D12 . (25)

In the case of 3P -waves we also need the derivative of the decay amplitude with respect to the
relative momentum of the quark and antiquark. In the soft-gluon limit, we obtain:dA[8]

soft

dqα


q=0

= g

√
2

2

{
if bca

[
Pεc
Pk
−
aεc
ak

]
dD12

dqα
+ dbca

[
εαc
Pk
−

kα

(Pk)2
(Pεc)

]
D12

}
(26)

Choosing a transverse gauge where εc · P = 0, from eq. (9) and the previous two expressions it is
straightforward to write

A3PJ = Eαβ
igf bca
√

2

[
Pεc

Pk
−
aεc

ak

]
d

dqβ
Tr [CΠα

1ABorn]|q=0 +
gdbca
√

2Pk
Eαβε

α
c Tr [CΠα

1ABorn]|q=0 . (27)
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The soft amplitude factorizes if the last term vanishes. This last term can be seen to be propor-
tional to the amplitude for the production of a 3S1 state, with an effective polarization εeff given
in terms of the polarizations of the soft gluon and of the 3PJ state as follows:

εJeff,β = εαc E
J
αβ(P ) . (28)

If the average on the soft gluon D − 1 spatial directions is taken, i.e.

∫
dΩD−1

k

ΩD−1

∑
pol

εαc ε
β∗
c =

D − 2

D − 1
Παβ(P ) , (29)

one can easily compute the sum over effective polarizations

∫
dΩD−1

k

ΩD−1

∑
εc

εJeff,αε
J∗
eff,β = −NJ

D − 2

D − 1
Παβ(P ) , (30)

where NJ is the number of degrees of freedom of the 3PJ state in D dimensions. This shows that
the last term in eq. (27), once squared and averaged on the directions of the outgoing gluon, is
proportional to the amplitude of a 3S1 state coupled to two gluons , which vanishes by C-parity.
As a result we obtain the factorized expression:

∑
col,pol

|A[8]
soft|

2 = CAg
2

[
2aP

(ak)(Pk)
−

M2

(Pk)2

] ∑
col,pol

|A[8]
Born|

2 (31)

The amplitudes for γq → Qq are IR finite, and there is no need to study their soft behaviour for
our applications.

3.2 Kinematics and factorization of soft and collinear singularities

The kinematics of the process k + p1 → P + p2, where P is the momentum of the heavy quark
pair, k the momentum of the photon and pi are the momenta of the massless partons, can be
described in terms of the standard Mandelstam variables s, t and u:

s = (k + p1)2 , (32)

t = (p1 − p2)2 ≡ −
s

2
(1− x)(1− y) , (33)

u = (k − p2)2 ≡ −
s

2
(1− x)(1 + y) . (34)

Here we introduced the Lorentz-invariant dimensionless variables x = M2/s and y (−1 < y < 1),
defined by the above equations. In the center-of-mass frame of the partonic collisions, the variable
y becomes the cosine of the scattering angle θ. In terms of x and y the total partonic cross-section
can be written in D dimensions as follows:

σ =
1

2s

∫
dΦ(2)(x, y)M(x, y) , (35)
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Figure 2: Diagrams for the real corrections to the gγ channels. Permutations of outgoing
gluons and/or reversal of fermion lines are always implied.

where M =
∑
|A|2 is the spin- and colour-averaged matrix element squared in D dimensions and

dΦ(2)(x, y) is the D-dimensional two-body phase space:

dΦ(2)(x, y) =
4ε

K

(
4π

s

)ε
Γ(1 + ε)

1

16π
(1− x)1−2ε (1− y2)−ε dy , (36)

with

K = Γ(1 + ε) Γ(1− ε) = 1 + ε2
π2

6
+O(ε3) . (37)

The soft and collinear singularities are associated to the vanishing of t or u, which appear at most
as single poles in the expression ofM. One can therefore introduce the finite, rescaled amplitude
squared M:

M =
1

ut
M =

4

s2(1− x)2(1− y2)
M . (38)

In terms of M, the partonic cross-sections read as follows:

σ(x) =
4C

s2
(1− x)−1−2ε

∫ 1

−1
dy (1− y2)−1−εM(x, y) dy , (39)

C =
4ε

K

(
4π

s

)ε
Γ(1 + ε)

1

32πs
. (40)

Soft and collinear singularities are now all contained in the universal poles which develop as x→ 1
and y2 → 1. The residues of these poles can be derived without an explicit calculation of the
matrix elements, as they only depend on the universal structure of collinear and soft singularities.
We will carry out an explicit evaluation of these residues in the next section.

4 Results

4.1 gγ → gO[8] processes

We start by considering the soft limit, x → 1. The following distributional identity holds for
small ε:

(1− x)−1−2ε = −
β−4ε

2ε
δ(1− x) +

(
1

1− x

)
ρ

− 2ε

(
log(1− x)

1− x

)
ρ

+ O(ε2) (41)
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where ρ = M2/Sγh, h being the initial state target hadron, and β =
√

1− ρ. The ρ-distributions
are defined by: ∫ 1

ρ
dx [d(x)]ρ t(x) =

∫ 1

ρ
dx d(x) [t(x)− t(1)] . (42)

We can therefore write, with obvious notation,

σ(x) = σx=1 + σx 6=1 . (43)

The first term on the right-hand side is given by the following expression:

σx=1 = −
4C

M4

τ−4ε

2ε
δ(1− x)

∫ 1

−1
dy (1− y2)−1−εM(x = 1, y) . (44)

The x→ 1 limit of M can be easily derived from eq. (31):

M(x, y)
x→1
−→ s g2CA (1− y)2MBorn , (45)

where MBorn is the D-dimensional Born amplitude squared for the γg → O[8] process, which
is independent of y. The integration over y of eq. (44) is elementary, and leads to the following
result:

σx=1 =

(
4πµ2

s

)ε
Γ(1 + ε) τ−4ε

2ε2
H CA

αs
π
σBorn , (46)

where αs is related to the D-dimensional bare coupling α(b)
s and to the renormalization scale µ by

αsµ
2ε = α(b)

s = g2/4π. H is defined by

H =
Γ(2− ε)

Γ(1 + ε)Γ(2− 2ε)
= 1 + ε+ 2ε2 −

π2

3
ε2 +O(ε3) , (47)

and σBorn is the D-dimensional Born cross-section:

σBorn = π/M4MBornδ(1− x) ≡ σ0δ(1− x) . (48)

The collinear singularities remaining in σx 6=1 can be factored out by using the following distribu-
tional identity:

(1− y2)−1−ε = − [δ(1− y) + δ(1 + y)]
4−ε

2ε
+

1

2

[(
1

1− y

)
+

+

(
1

1 + y

)
+

]
+O(ε) , (49)

where the distributions on the right-hand side are defined by:

∫ 1

−1
dy

(
1

1± y

)
+

t(y) =
∫ 1

−1
dy

1

1± y
[t(y)− t(∓1)] . (50)

The contribution σx 6=1 can then be split into two terms:

σx 6=1 = σy=1 + σfinite . (51)
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The term σfinite has no residual divergences, and is given by the following expression:

σfinite =
2C

s2

(
1

1− x

)
ρ

∫ 1

−1
dy

[(
1

1− y

)
+

+

(
1

1 + y

)]
M(x, y) . (52)

We removed the + from the 1/(1+y)+ distribution because no collinear singularity can arise from
the emission of the gluon collinear to the photon, andM(x,−1) = 0. σfinite explicitly depends on
the nature of the quarkonium state produced. For processes whose Born contribution vanishes,
this is the only non zero term. σy=1 is given by:

σy=1 = −
4C

s2

4−ε

2ε

[(
1

1− x

)
+
− 2ε

(
log(1− x)

1− x

)
+

]
M(x, y = 1) . (53)

The limit for y → 1 of M(x, y) is universal, thanks to the factorization of collinear singularities:

M(x, y)
y→1
−→ 8π sα(b)

s Pgg(x)
1− x

x
MBorn . (54)

Using this relation we get:

σy=1 = −
1

ε̄

(
µ2

s

)ε
αs
2π

Pgg(x) (1− x)xσ0

[(
1

1− x

)
+
− 2ε

(
log(1− x)

1− x

)
+

]
, (55)

with

Pgg(x) = 2CA

[
x

1− x
+

1− x

x
+ x(1− x)

]
. (56)

and
1

ε̄
=

1

ε
− γE + log(4π) , (57)

The collinear poles take the form dictated by the factorization theorem. According to this the
partonic cross-section can be written as:

dσγj(pγ, ph) =
∑
l

dσ̂γl(pγ , xph)Γlj(x)dx , (58)

Γij(x) = δijδ(1− x) −
1

ε̄

αs

2π

(
µ2

µ2
F

)ε
Pij(x) + Kij(x) , (59)

where dσ̂ is free of collinear singularities as ε → 0. Here we allowed the factorization scale µF

to differ from the renormalization scale µ. The functions Pij(x) are the D = 4 Altarelli-Parisi
splitting kernels, collected in Appendix A, and the factors Kij are arbitrary functions, defining
the factorization scheme. In this paper we adopt the MS factorization, in which Kij(x) = 0 for
all i, j. For the definition of Kij(x) in the DIS scheme, see for example ref. [28].

Expanding eq. (58) order-by-order in αs, we extract the counter-term σ
(c)
y=1, defined by:

σ
(c)
y=1 =

1

ε̄

αs
2π

(
µ2

µ2
F

)ε
Pgg(x )xσ0 , (60)
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Figure 3: Diagrams for the γq channels. Reversal of fermion lines is always implied.

with

Pgg(x) = 2CA

[
x

(1− x)ρ
+

1− x

x
+ x(1− x)

]
+ (b0 + 4CA log β) δ(1− x) . (61)

Putting all pieces together, we come to the final result for the real-emission cross-section:

σH [gγ →Q[8]g](x) =
αs

2π
σH0 [gγ →Q[8]]

×

{
fε(s)

[
CA

(
1

ε2
+

17

6ε
+ 2−

π2

3
− 4 log τ + 8 log2 τ

)
−

2

3ε
nfTF

]
δ(1− x)+

+

xPgg(x) log
s

µ2
F

+ 2x(1− x)Pgg(x)

(
log(1− x)

1− x

)
ρ

+
(

1

1− x

)
ρ
fγg[Q

[8]](x)


[Q[8] = 1S

[8]
0 , 3P

[8]
0 , 3P

[8]
2 ] , (62)

where fε(s) is defined in Appendix A and σH0 [γg →Q[8]] is the D-dimensional, Born-level partonic
cross-section for the production of the quarkonium state H via the Q[8] intermediate state, after
removal of the δ(1−x) term (see eq. (48)). The finite functions fγg(x), obtained from the explicit
evaluation of eq. (52), are collected in Appendix B.

4.2 qγ → qQ[8] processes

The Born-level processes qγ → Q[8] identically vanish. As a result IR divergences at O(α2
sαem)

and virtual corrections are not present. The only possible singularities appearing at this order
come from the emission of the final-state quark collinear to the initial-state one or to the photon..
The behaviour of the amplitude (fig. 3(a)) for Q[8] = 1S

[8]
0 ,

3P
[8]
0 , 3P

[8]
2 in the y → 1 collinear limit

is again controlled by the Altarelli-Parisi splitting functions:

M(x, y)
y→1
−→ 8π sα(b)

s Pgq(x)
1− x

x
MBorn . (63)

11



In analogy to the γg case, one introduces the following counter-term in the MS scheme:

σ
(c)
y=1 =

1

ε̄

αs
2π

(
µ2

µ2
F

)ε
Pgq(x )xσ0 , (64)

where Pgq(x )is defined in Appendix A.

Following a procedure analogous to the one detailed in the case of γg production, we find the
following result:

σH [γ q →Q[8] q](x) =
αs
π
σH0 [γg →Q[8]]×{[
x

2
Pgq(x) log

s(1− x)2

µ2
F

+ CF
x2

2

]
+ fγq[Q

[8]](x)

}
,

[Q[8] = 1S
[8]
0 ,

3P
[8]
0 , 3P

[8]
2 ] , (65)

where the functions fγq(x) are collected in Appendix B, together with the result for 3P1 production,
for which no collinear singularity is present to start with.

For 3S
[8]
1 production only the diagram in fig. 3(b) gives a non vanishing contribution. In the

y → 1 collinear limit we have:

M(x, y)
y→1
−→ 8π sα(b)

eme
2
QPqγ(x)

1− x

x
MBorn . (66)

where MBorn is the Born amplitude for the process qq → 3S
[8]
1 and Pqγ(x) is the Altarelli-Parisi

photon-splitting function in D dimensions. Introducing the following counter-term in the MS
scheme:

σ
(c)
y=1 =

1

ε̄

αeme
2
Q

2π

(
µ2

µγ2

)ε
Pqγ(x )xσ0 , (67)

where Pqγ(x) is defined in Appendix A, we can write the following partonic cross-section:

σH [ γ q → 3S
[8]
1 q](x) =

αeme
2
Q

π
σH0 [qq → 3S

[8]
1 ]

×

{[
x

2
Pqγ(x) log

s(1− x)2

µ2
γ

+DFx
2(1− x)

]
+ fγq[

3S
[8]
1 ](x)

}
(68)

Having absorbed the collinear γ → q divergence in the photon structure function, the total cross-
section will now include a piece proportional to the resolved component of the photon (see, e.g. ,
ref. [29, 18]):

dσγ h(p1, ph) =
∑
i

dσ̂γi(xS, µF, µγ)Fi h(x, µF)dx

+
∑
k,l

dσ̂kl(x1pγ, x2ph, µF)Fkγ(x1, µγ)Flh(x2, µF)dx1dx2 , (69)

where Fkγ(x, µγ) is the density of the parton k in the photon, and Fkh(x, µF) is the density of the

parton k in the hadron h. The full O(α3
s) expression for the parton-parton 3S

[8]
1 cross-sections to

be used in the resolved-photon contribution to the above equation can be found in [21].

12



Figure 4: Feynman diagrams contributing to the one-loop corrections to the processes

gγ → QQ[3P
[8]
0 ], gγ → QQ[3P

[8]
2 ] and gγ → QQ[1S

[8]
0 ].
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Diag. Dk f
(8)
k

a π2

2v
+ 1
ε − 2 + 2 log 2 CF −

1
2
CA

b − 1
2εUV

− 1 + 3 log 2 CF

c − 1
2εUV

− 1
ε − 2− 3 log 2 CF

d1
1

2εUV
− log 2 + π2

8
CF

d2
1

2εUV
− log 2 + π2

8
CF −

1
2
CA

e + 3
2εUV

− 1
2ε2 − 1

2ε + 2− log 2 + π2

12
1
2
CA

f − 1
2ε2 − 1

2ε − 1 + 2 log 2 + 5
24
π2 1

2
CA

i 5
12εUV

− 5
12ε CA

j
(
− 1

3εUV
+ 1

3ε

)
nf TF

Table 1: “Diagrammatic” partial virtual QCD corrections to the processes gγ → [1S
[8]
0 ]

(diagram multiplicities are included)

Diag. Dk f
(8)
k

a π2

2v
+ 1
ε −

4
9

+ 32
9

log 2 + π2

12
CF −

1
2
CA

b − 1
2εUV

− 13
9

+ 5
9

log 2 CF

c − 1
2εUV

− 1
ε − 2− 3 log 2 CF

d1
1

2εUV
+ 7

9
− 5

9
log 2 + π2

12
CF

d2
1

2εUV
+ 7

9
− 5

9
log 2 + π2

12
CF −

1
2
CA

e 3
2εUV

− 1
3ε2 − 10

9ε + 11
6
− 1

3
log 2 + π2

18
1
2
CA

f − 2
3ε2 + 1

9ε −
1
2

+ 10
3

log 2 + 5
18
π2 1

2
CA

i 5
12εUV

− 5
12ε CA

j
(
− 1

3εUV
+ 1

3ε

)
nf TF

Table 2: “Diagrammatic” partial virtual QCD corrections to the processes gγ → [3P
[8]
0 ]

(diagram multiplicities are included).
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Diag. Dk f
(8)
k

a π2

2v
+ 1
ε −

5
3

+ 7
3

log 2 + π2

8
CF −

1
2
CA

b − 1
2εUV

− 1
6

+ 11
6

log 2 CF

c − 1
2εUV

− 1
ε − 2− 3 log 2 CF

d1
1

2εUV
− 1

12
− 7

12
log 2− π2

16
CF

d2
1

2εUV
− 1

12
− 7

12
log 2− π2

16
CF −

1
2
CA

e 3
2εUV

− 3
16ε2 − 17

32ε + 59
192

+ π2

32
1
2
CA

f − 13
16ε2 − 15

32ε −
107
192

+ 11
4

log 2 + 67
96
π2 1

2
CA

i 5
12εUV

− 5
12ε CA

j
(
− 1

3εUV
+ 1

3ε

)
nf TF

Table 3: “Diagrammatic” partial virtual QCD corrections to the processes gγ → [3P
[8]
2 ]

(diagram multiplicities are included).

4.3 Virtual corrections

We present in this section the results of the calculation of the 1-loop diagrams necessary for
the evaluation of the virtual corrections to the production matrix elements. These results can
be obtained in a straightforward way from the calculation of the virtual corrections to 1-loop
hadroproduction, presented in ref. [21]. We shall therefore limit ourselves to presenting the final
answers. The relevant Feynman diagrams are shown in figures 4, and the results are given
diagram by diagram in tables 1, 2, 3. In these tables we report the contribution of each diagram
k, indicating separately the colour factors fk. The expressions Dk appearing in the tables are
defined by the following equation:

σHV [ij →Q] =
αsµ

2ε

π
σH0 [ij →Q] fε(s)

∑
k

Dkfk δ(1− x). (70)

where the sum extends over the set of diagrams and fε(s) is defined in Appendix A.

The singularity structure of the virtual corrections is dictated by the renormalization properties
of the theory, by the universal form of the Coulomb limit, and by requirement that soft and
collinear singularities cancel against the real corrections evaluated above. The form of the virtual
corrections to the cross-section is therefore the following:

σ(V ) = σ0
αs
2π
fε(s)×

{
b0

εUV
+ (CF −

1
2
CA)

π2

v
− CA

(
1

ε2IR
+

17

6εIR

)
+

2

3εIR
nfTF + 2D

[8]
O

}
, (71)

where we explicitly labelled the ε’s to indicate their origin, and where all of the state dependence
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is included in the finite factor DQ. The quark-antiquark relative velocity 2v and b0 are defined in
Appendix A. nf is the number of flavours lighter than the heavy, bound one.

Summing the contribution of all diagrams, we obtain the following results for the colour-octet
coefficients D

[8]
Q :

D
[8]
1S0

= CF

(
−5 +

π2

4

)
+ CA

(
3

2
+
π2

12

)
(72)

D
[8]
3P0

= CF

(
−

7

3
+
π2

4

)
+ CA

(
1

2
+
π2

12

)
(73)

D
[8]
3P2

= −4CF + CA

(
3

4
+

log 2

2
+
π2

3

)
. (74)

The final results for the finite sums of real plus virtual corrections are collected in Appendix B.

5 Phenomenology

In this section we study some of the properties of the higher-order corrections calculated in this
paper, and their effect on typical Born-level predictions. A more thorough phenomenological study
including a comparison to currently available data and fits to the non-perturbative parameters
will be presented elsewhere.

To start with, we show in fig. 5 the comparison between Born and NLO total photoproduc-
tion cross-sections as a function of the photon beam energy, in the energy range of fixed-target
experiments. Here and in the following, we concentrate on the colour-octet contributions of 1S0,
3P0 and 3P2 states, which are by far the dominant processes. We fix mc = 1.5 GeV and we take,
for the sake of definiteness [8], 〈0|Oψ8 (1S0)|0〉 = 0.01 GeV−3 and 〈0|Oψ8 (3P0)|0〉/m2

c = 0.01 GeV−5,
with 〈0|Oψ8 (3PJ)|0〉 = (2J + 1)〈0|Oψ8 (3P0)|0〉.

The scale dependence of the results is displayed by the curves relative to the scale choices
µR = µF = aM , with a = 1/2, 1 and 2. We chose the MRSA set of parton densities [30], including
the low-Q2 corrections [31] necessary to evaluate consistently the cross-sections when using the
smaller choice of scales, µF = M/2. These low-Q2 corrections are essential to properly estimate
the true scale-dependence of the calculation. Similar curves for the energy range typical of the

HERA collider (given as a function of
√
Sγp, the γp CM energy), are shown in fig. 6. Notice the

significant improvement in the scale dependence when the NLO corrections are included. This
improvement is less remarkable at low energies. The reason for this is that the qγ → qQ is
particularly important at low energies. This process first appears at O(α2

sαem), and is therefore
calculated at LO only. Its contribution becomes less important at high energies, where the gluon-
initiated process dominates, and the O(α2

sαem) calculations are therefore genuinely NLO. As a
result of this, the K-factor (defined as the ratio of the O(α2

sαem)/Born results) is larger at low
energy (exceeding a factor of 2) than at high energies.

The relative importance of the gluon and quark processes is displayed in figs. 7 and 8, for
the fixed-target and collider-energy ranges, respectively. Notice that the contribution of the qγ
channel is always negative. This is the result of the subtraction of the mass singularities present
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Figure 5: Born and NLO total photoproduction cross-sections as a function of the
photon beam energy.

Figure 6: Born and NLO total photoproduction cross-sections as a function of the γp
CM energy.
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Figure 7: Separate contributions from Born, O(α2
sαem) γg and O(α2

sαem) γq processes
to total photoproduction cross-sections as a function of the photon beam energy.

in the qγ → qQ channel when the final-state quark is emitted collinear to the beam. The collinear
singularities are absorbed in the gluon parton density at NLO, as explained in the previous sections.
The net result of this subtraction, in the MS scheme, is a negative contribution of the factorized
qγ process.

An important element in previous Born-level extractions [8, 9] of the non-perturbative colour-
octet parameters from the fit to fixed-target and HERA data is the set of relations:

σψ[3P
[8]
0 ] = 3

m2
c〈0|O

ψ
8 (3P0)|0〉

〈0|Oψ8 (1S0)|0〉
σψ[1S

[8]
0 ] , σψ[3P

[8]
2 ] = 4

m2
c〈0|O

ψ
8 (3P0)|0〉

〈0|Oψ8 (1S0)|0〉
σψ[1S

[8]
0 ] . (75)

In these relations we assumed, as usual, 〈0|Oψ8 (3PJ)|0〉 = (2J + 1)〈0|Oψ8 (3P0)|0〉. As a result of
these relations, one could use the following identity:

σ(ψ) = Θ σ̂[1S
[8]
0 ] , with Θ = 〈0|Oψ8 (1S0)|0〉+ 7

〈0|Oψ8 (3P0)|0〉

m2
c

. (76)

The validity of these Born-level relations when the NLO corrections are included is studied in figs 9
and 10, which show the ratios of 3P

[8]
J and 1S

[8]
0 production at NLO. As the figures indicate, the

relation in eq. (76) holds at NLO to within 10%. Notice that the individual relative contributions

of the 3P
[8]
0 and 3P

[8]
2 states can however change by up to 30% with respect to the Born-level

prediction σ[3P
[8]
0 ]/σ[3P

[8]
2 ] = 4/3.

18



Figure 8: Separate contributions from Born, O(α2
sαem) γg and O(α2

sαem) γq processes
to total photoproduction cross-sections as a function of the γp CM energy.

5.1 High-energy behaviour

While the current experiments only allow to study ψ photoproduction up to CM energies of the
order of few hundred GeV, it is interesting to consider the behaviour of the total cross-sections in
the asymptotic regime. In this regime, interesting phenomena are expected to take place, because
of the potentially large small-x effects associated to the presence of diagrams with t-channel gluon
exchange. Because of these contributions, the total partonic cross-sections tend to a constant limit
when x→ 0. It is easy to see, in fact, that:

σH [γ i→Qi]
x→0
→ −

(
αs

π

)
Zi ZQ σ

H
0 [γg →Q] , (i = q, g) , (77)

where
Zq = CF , Zg = CA , (78)

and

Z1S
[8]
0

= 1− log(
M2

µF
2
) , (79)

Z3P
[8]
0

=
43

27
− log(

M2

µF
2
) , (80)

Z3P
[8]
0

=
53

36
− log(

M2

µF
2
) . (81)
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Figure 9: Ratios of the 3P
[8]
J to 1S

[8]
0 production rates at NLO, normalized to a common

choice of non-perturbative matrix elements, as a function of the photon beam energy. The

Born-level predictions for these ratios are equal to 3 and 4 for the ratios of 3P
[8]
0 /1S

[8]
0

and 3P
[8]
2 /1S

[8]
0 , respectively.
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Figure 10: Same as fig. 9, as a function of the γp CM energy.

Notice that in the x→ 0 limit the ratio between the quark and gluon channels is equal to CF/CA,
as expected. The factors for the γq channel are the same as those for the gq channel [21]. The
factors for the gammag channel are half those for the gg channel [21]. This is as expected, since
in this last case the soft t-channel gluon can be radiated from either of the two initial state gluons.
These results are trivial but useful cross-checks of our calculations.

Notice also that the small-x partonic cross-sections tend to a negative value, unless the factor-
ization scale is chosen to be very small. The large contribution coming from the small-x region,
and the large scale-dependence of the asymptotic x→ 0 limit, suggest that the NLO calculations
should display a large dependence on the scale and on the shape of gluon densities at sufficiently
high CM energies. A similar behaviour has already been observed in the NLO hadroproduction
case [22].

To study this issue in more detail, we assume the gluon density to take, at a given scale µF,
the form:

G(x) =
1

x1+δ
, 0 < δ < 1 . (82)

The softer the gluon density (δ → 0), the more important the small-x contributions will be. In
the extreme case of δ = 0, it is easy to find the following result for the NLO/LO K-factors of the
total production cross setions, exact up to order ρ = M2/Sγp:

K[Q] = 1 +
αs
π

[
1

2
Atot[Q] + CAkQ −

11

6
CA log(

M2

µF
2
)− CAZQ log(

1

ρ
)

]
(83)

where the coefficients Atot[Q] are collected in Appendix B, the ZQ’s are given in eqs. (79)–(81)
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Figure 11: High-energy behaviour of the K factor for the γg process, using a gluon
density G(x) = 1/x, as a function of the γp CM energy.

and

k1S
[8]
0

=
25

3
−

13

24
π2 (84)

k3P
[8]
0

=
43

3
−

467

432
π2 (85)

k3P
[8]
2

=
595

48
−

1067

1152
π2 (86)

As anticipated, large negative logarithmic terms arise. The scale dependence of the coefficient
of the log ρ terms cannot be used to change the overall sign, since it is formally compensated by
the scale dependence of the gluon density, which in the δ = 0 case is given by:

dG(ρ)

d logµ2
F

=
αs

2π

∫ 1

ρ

dz

z
Pgg(z) G(ρ/z, µF) ∼

CAαs

π
G(ρ) log

1

ρ
. (87)

The behaviour of these functions is shown in fig. 11. The K-factor becomes negative already for

relatively small values of
√
Sγp, making the NLO estimates unreliable.

This result is not inconsistent with the nice behaviour of the cross-sections at
√
Sγp ∼ 100 GeV

seen in fig. 6, since in that figure the results were obtained using the more realistic set of parton
densities MRSA. Typical values of δ at µF = 3 GeV for the current fits of the gluon densities [30, 32]
are around δ = 0.3 (see fig. 12). The stability of the predictions in fact improves for δ > 0,
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Figure 12: Small-x behaviour of the gluon density at µF = 3 GeV, for the MRSA [30]
and CTEQ4M [32] fits. Arbitrary normalization.

when the contribution of the small-x regime is suppressed. One can easily verify in fact that for
δ log(1/ρ)� 1 the asymptotic behaviour of the K-factor is given by:

K[Q]
ρ→0
→ 1 +

αs
π

1

δ
(ZQ +O(δ, ρ)) , (88)

Depending on the value of δ, the NLO correction can still be large and negative. Figure 13 shows
the high-energy behaviour of the K-factor for the values δ = 0.2 and δ = 0.4 4. As predicted by
eq. (88), the K-factor tends to a constant.

6 Conclusions

We presented in this paper the first calculation of O(α2
sαem) corrections to the total quarkonium

photoproduction cross-sections. The calculations have been performed in the framework of the
NRQCD approach to quarkonium production. As in the Born-level case, the production is domi-
nated by colour-octet QQ states. The contribution to the cross-sections from the NLO corrections
is large at typical fixed-target energies (up to a factor of 2 increase over the Born results), and
decreases at energies typical of the HERA collider. In this energy range the NLO corrections
significantly improve the stability of the calculated rates under variations of the renormalization

4We chose not to use directly current fits of the gluon densities, since in any case these are not reliable in the
range x < 10−5 (

√
Sγp >∼ 1 TeV).
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Figure 13: High-energy behaviour of the K factor for the γg process, using a gluon
density G(x) = 1/x1+δ , as a function of the γp CM energy and for different values of δ.

and factorization scales. For energies above few hundred GeV in the γp CM frame, large and
negative small-x contributions dominate the production rate, and make the NLO evaluation of
the total cross-sections strongly dependend on the scale and shape of the gluon density, calling
for the resummation of small-x effects.

The calculations presented in this paper do not directly improve our knowledge of the quarko-
nium photoproduction at pT > 0, since production at pT > 0 is a process of O(α2

sαem) at the Born
level. Nevertheless they provide a fundamental element in the determination of the range of pT
and z = pψ ·PN/pγ ·PN where the Born calculations can be reliably used. In fact the large negative
contributions arising in the pT = 0 and z = 1 regions from the virtual corrections evaluated in
this paper affect, via perturbative Sudakov effects, the estimate of the production rates near the
end-points of the elastic region. The implications of these effects in the comparison of the z and pT
distributions measured at HERA with the predictions of QCD will be examined in a forthcoming
publication.

Acknowledgments. We thank M. Cacciari for providing us with the expression of the real-
emission matrix elements [8] which were used in this work. One of us (A.P.) thanks the CERN
Theory Division for hospitality while part of this work was being done.
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A Symbols and notations

This Appendix collects the meaning of various symbols which are used throughout the paper.

Kinematical factors:

M = 2m , v =

√
1−

M2

s
, ρ =

M2

Sγp
, β = (1− ρ)

1
2 , (89)

where s is the partonic center of mass energy squared and Sγp is the γ-hadron one. v is the velocity
of the bound (anti)quark in the quarkonium rest frame, 2v being then the relative velocity of the
quark and the antiquark. We also define:

fε(Q
2) =

(
4πµ2

Q2

)ε
Γ(1 + ε) = 1 + ε

(
−γE + log(4π) + log

µ2

Q2

)
+O(ε2) , (90)

and we denote a perturbative QQ state with generic spin and angular momentum quantum num-
bers and in a colour-singlet or colour-octet state by the symbol

Q[1,8] ≡ QQ[2S+1LJ
[1,8]

] . (91)

Altarelli-Parisi splitting functions. Several functions related to the AP splitting kernels enter in
our calculations. We collect here our definitions:

Pqγ(x) = DF

[
x2 + (1− x)2 − 2ε x(1− x)

]
(92)

Pqγ(x) = DF

[
x2 + (1− x)2

]
(93)

Pgq(x) = CF

[
1 + (1− x)2

x
− ε x

]
(94)

Pgq(x) = CF

[
1 + (1− x)2

x

]
(95)

Pgg(x) = 2CA

[
x

1− x
+

1− x

x
+ x(1− x)

]
(96)

P gg(x) = 2CA

[
x

(1− x)ρ
+

1− x

x
+ x(1− x)

]
(97)

Pgg(x) = P gg(x) + (b0 + 4CA log β) δ(1− x) (98)

where

b0 =
11

6
CA −

2

3
TFnf (99)

with nf the number of flavours lighter than the bound one. The Pij are the D-dimensional splitting
functions which appear in the factorization of collinear singularities from real emission,while the
functions Pij are the four-dimensional AP kernels, which enter in the MS collinear counter-terms.
The ρ-distributions are defined by:∫ 1

ρ
dx [d(x)]ρ t(x) =

∫ 1

ρ
dx d(x) [t(x)− t(1)] . (100)
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Colour Algebra

[T a, T b] = ifabcT c (101)

{T a, T b} = dabcT c +
δab

Nc

(102)

Tr(T aT b) = TF δ
ab TF = 1

2∑
a(T

aT a)ij = CF δij CF = N2
c−1

2Nc
= 4

3∑
bc f

abcf ebc = CAδ
ae CA = Nc = 3∑

abc d
abc(T aT bT c)ij = C2(F )δij C2(F ) = (N2

c−4)(N2
c−1)

4N2
c

= 10
9

(103)

DF =
∑
i

δii = Nc = 3 (104)

DA =
∑
a

δaa = N2
c − 1 = 8 (105)

The following formulas were found to be useful:

∑
a

T aijT
a
kl =

1

2

(
δilδjk −

1

Nc

δijδkl

)
(106)

Tr(T aT bT c) =
1

4
(dabc + ifabc) (107)

Tr(T a{T b, T c}) =
1

2
dabc (108)

CFDF = TFDA (109)

Notice that, according to the discussion in ref. [21], our conventions differ slightly from those
introduced in ref. [1] (and labelled here as BBL):

〈O1〉 =
〈O1〉BBL

2Nc

, (110)

〈O8〉 = 〈O8〉
BBL. (111)

A.1 O(αsαem) cross-sections

The D-dimensional cross-sections read

σ(ij → 2S+1LJ
[1,8]
→ H) = σ̂(ij → 2S+1LJ

[1,8]
)
〈OH[1,8](

2S+1LJ)〉

NcolNpol

, (112)

the short distance coefficients σ̂ having been calculated according to the rules of Section 2. Ncol

and Npol refer to the number of colours and polarization states of the QQ[2S+1L
[1,8]
J ] pair produced.
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They are given by 1 for singlet states or DA = N2
c − 1 for octet states, and by the D-dimensional

NJ ’s defined in Section 2. Recall that the matrix elements appearing in the equations above are
meant to be the bare D-dimensional ones. Making use of their correct mass-dimension, 3 − 2ε
and 5− 2ε for S and P wave states respectively, gives the right dimensionality to D-dimensional
cross-sections, i.e. 2−D = −2 + 2ε.

We shall use the short-hand notation

σH(ij →Q[1,8]) ≡ σ(ij →Q[1,8] → H) (113)

to indicate the production process of the physical quarkonium state H via the intermediate QQ

state Q[1,8] = QQ[2S+1LJ
[1,8]

].

The D-dimensional Born cross-sections read:

σHBorn(gγ → 1S0
[8]

) =
2αsαeme

2
Q µ4επ3

m5

1− 2ε

1− ε
δ(1− x)

〈OH8 (1S0)〉

DA

(114)

σHBorn(qq → 3S1
[8]

) =
DA

DF
2

α2
sµ

4επ3

2m5
(1− ε)δ(1− x)

〈OH8 (3S1)〉

DA(3− 2ε)
(115)

σHBorn(gγ → 3P0
[8]

) =
18αsαeme

2
Q µ4επ3

m7

1

(1− ε)(3− 2ε)
δ(1− x)

〈OH8 (3P0)〉

DA

(116)

σHBorn(gγ → 3P1
[8]

) = 0 (117)

σHBorn(gγ → 3P2
[8]

) =
4αsαeme

2
Q µ4επ3

m7

6− 13ε+ 4ε2

(1− ε)(3− 2ε)
δ(1− x)

〈OH8 (3P2)〉

DA(1− ε)(5− 2ε)
(118)

B Summary of O(α2
sαem) Results

We define:
σH0 (γj →Q)δ(1− x) ≡ σHBorn(γj →Q) (119)

The O(α2
sαem) cross-sections are given as a function of the variable x = M2/s.

The γg → Q[8]X channels

σH [γ g → 3S
[8]
1 g] =

α2
sαeme

2
Q π2

(2m)5 fγg[
3S

[8]
1 ](x)〈OH8 (3S1)〉 (120)

fγg[
3S

[8]
1 ](x) =

80x2

9(−1 + x)2(1 + x)3

[
2 + x+ 2x2 − 4x4 − x5

+(10x2 + 4x3 + 2x4) log x
]

(121)

σH [γ g → 3P
[8]
1 g] =

α2
sαeme

2
Q π2

(2m)7 fγg[
3P

[8]
1 ](x)〈OH8 (3P1)〉 (122)

fγg[
3P

[8]
1 ](x) =

32

3(−1 + x)4(1 + x)5

[
5− 4x− 71x2 + 26x3 − 67x4 + 75x5
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+247x6 − 23x7 − 82x8 − 71x9 − 32x10 − 3x11 + (−18x2 − 6x3

−270x4 + 138x5 − 6x6 + 186x7 + 186x8 + 66x9 + 12x10) log x
]

(123)

σH [γ g →Q[8] g] = σH0 [γg → Q[8]]
(
δ(1− x) +

αs
2π

{
Atot[Q

[8]] δ(1− x)

+

xP gg(x) log
4m2

xµ2
F

+ 2x(1− x)Pgg(x)

(
log(1− x)

1− x

)
ρ

+

+
(

1

1− x

)
ρ
fγg[Q

[8]](x)

]})
,

[Q[8] = 1S
[8]
0 ,

3P
[8]
0 , 3P

[8]
2 ], (124)

where:

Atot[
1S

[8]
0 ] = CF

(
−10 +

π2

2

)
+ CA

(
5−

π2

6

)

−4CA log β + 8CA log2 β + 2 b0 log
µ

µF
+ 8CA log β log

2m

µF
(125)

Atot[
3P

[8]
0 ] = CF

(
−

14

3
+
π2

2

)
+ CA

(
3−

π2

6

)

−4CA log β + 8CA log2 β + 2 b0 log
µ

µF
+ 8CA log β log

2m

µF
(126)

Atot[
3P

[8]
2 ] = −8CF + CA

(
7

2
+
π2

3
+ log 2

)

−4CA log β + 8CA log2 β + 2 b0 log
µ

µF
+ 8CA log β log

2m

µF
(127)

fγg[
1S

[8]
0 ](x) =

2CA
(1− x)(1 + x)3

[
−1− x2 − 2x3 + 2x5 + x6 + x8

+(1− 4x2 − 2x4 − 4x6 + x8) log x
]

(128)

fγg[
3P

[8]
0 ](x) =

2CA
27(1− x)3(1 + x)5

[
−43 + 14x+ 193x2 − 82x3 − 457x4 + 342x5

+124x6 − 302x7 + 113x8 + 28x9 + 43x10 + 27x12 + (27− 90x2 + 42x3

+135x4 + 78x5 − 750x6 + 270x7 − 117x8 − 6x9 − 192x10 + 27x12) log x
]

(129)

fγg[
3P

[8]
2 ](x) =

CA

18(1− x)3(1 + x)5

[
−53 + 16x+ 119x2 − 86x3 − 521x4 + 621x5 − 55x6

−97x7 + 394x8 − 445x9 + 80x10 − 9x11 + 36x12 + (36− 126x2 + 66x3 − 378x4

+210x5 − 798x6 + 1242x7 − 810x8 + 402x9 − 168x10 + 36x12) log x
]

(130)
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The γq(q̄)→Q[8]X channels

σH [γ q → 3S
[8]
1 q] =

αeme
2
Q

π
σH0 [qq → 3S

[8]
1 ]

×

{[
x

2
Pqγ(x) log

4m2(1− x)2

xµ2
F

+DFx
2(1− x)

]
+ fγq[

3S
[8]
1 ](x)

}
(131)

σH [γ q → 3P
[8]
1 q] =

π2α2
sαeme

2
Q

(2m)7 fγq[
3P

[8]
1 ](x)〈OH8 (3P1)〉 (132)

σH [γ q →Q[8] q] =
αs
π
σH0 [γg → Q[8]]×{[
x

2
Pgq(x) log

4m2(1− x)2

xµ2
F

+ CF
x2

2

]
+ fγq[Q

[8]](x)

}
, (133)

[Q[8] = 1S
[8]
0 , 3P

[8]
0 , 3P

[8]
2 ]

where

fγq[
3S

[8]
1 ](x) = −

DF

4
x(−1 + x)(1 + 3x) (134)

fγq[
3P

[8]
1 ](x) =

1

DF

128

3

[
1

3
(−1 + x)(−5 + 4x+ 4x2)− x2 log x

]
(135)

fγq[
1S

[8]
0 ](x) = CF (−1 + x)(1− log x) (136)

fγq[
3P

[8]
0 ](x) =

CF
9

[
1

3
(−1 + x)(43− 14x+ 4x2) + (9− 9x+ 4x2) log x

]
(137)

fγq[
3P

[8]
2 ](x) =

CF
12

[
1

3
(−1 + x)(53− 16x+ 20x2) + (12− 12x+ 5x2) log x

]
(138)
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