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Abstract

Deep inelastic electron-photon scattering is studied using e+e� data collected by the
OPAL detector at centre-of-mass energies

p
see � MZ

0. The photon structure function
F


2 (x;Q

2) is explored in aQ2 range of 1.1 to 6.6 GeV2 at lower x values than ever before.
To probe this kinematic region events are selected with a beam electron scattered
into one of the OPAL luminosity calorimeters at scattering angles between 27 and
55 mrad. A measurement is presented of the photon structure function F


2 (x;Q

2) at
hQ2i = 1.86 GeV2 and 3.76 GeV2 in �ve logarithmic x bins from 0.0025 to 0.2.
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The hadronic structure function F

2 of the photon has been measured in deep in-

elastic electron-photon scattering at various e+e� experiments ( [2,4,3,1] and references
therein). In the previous OPAL analysis [1] F 

2 (x;Q
2) was measured using tagged elec-

trons with a range of scattering angles from 60 mrad up to 500 mrad to the initial beam
direction. This letter describes an analysis of data collected in 1993 and 1994 at e+e�

center-of-mass energies between 89.2 GeV and 93.2 GeV, using the OPAL silicon tung-
sten (SW) luminometer as the electron tagger with a clear angular acceptance from
27 mrad to 55 mrad. This corresponds to a lowest Q2 value of 1.14 GeV2 in the selected
sample, close to the lower limit at which perturbative QCD can be expected to work.
The energy of the LEP beams is higher than at any previous e+e� collider so lower
values of the scaling variable x can be reached at any given Q2. The results reported
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here go down to x = 0:0025. This kinematical region is of particular interest because
theoretical predictions di�er signi�cantly from each other [5{11] and because in this
region the proton structure function is observed to start to increase as x decreases [12].

In the singly-tagged regime, with one scattered electron tagged in the detector,
the two photon process can be regarded as the deep inelastic scattering of an e� with
four-momentum k on a quasi-real photon with four-momentum p. The ux of quasi-
real photons can be calculated using the Equivalent Photon Approximation [13]. The
cross-section for deep inelastic electron-photon scattering with a hadronic �nal state X
is expressed as [14],

d2�e!eX

dxdQ2
=

2��2

xQ4

��
1 + (1� y)2

�
F


2 (x;Q

2)� y2F

L (x;Q

2)
�
; (1)

where Q2 � �q2 is the negative four-momentum squared of the virtual photon and
� is the �ne structure constant. The usual dimensionless variables of deep inelastic
scattering, x and y, are de�ned as

x � Q2

2 p � q ; y � p � q
p � k : (2)

In the kinematic regime studied here (y2 � 1) the contribution of the term proportional
to the longitudinal structure function F


L (x;Q

2) is small and is therefore neglected.
The structure function formalism of deep inelastic scattering implies that the virtual
photon behaves as a pointlike probe. However, at very low Q2 it can also show a
hadronic structure. For this analysis, such a hadronic contribution is neglected.

The scattered electron is detected with the silicon tungsten calorimeters (SW) [15]
that are placed around the beam pipe at a distance of 2.4 m in z from the interaction
point on both sides of the OPAL detector, covering polar angles � from 25 to 59 mrad1.
They are cylindrical sampling calorimeters consisting of 19 layers of silicon detectors
interleaved with 18 layers of tungsten, equivalent to a total of 22 radiation lengths.
For electromagnetic showers an energy resolution of 24%=

p
E [GeV] and a resolution

in polar angle of 0.06 mrad is achieved. The hadronic �nal state X is measured with
SW, the forward detectors FD, the OPAL electromagnetic calorimeter and the OPAL
tracking system which consists of a silicon microvertex detector, a drift chamber vertex
detector, a jet chamber and z-chambers [16].

The measurement of F 
2 (x;Q

2) involves the determination of Q2 and x that can be
obtained from the four-vectors of the tagged electron and the hadronic �nal state:

Q2 � 2EbEtag (1� cos �tag) (neglecting the electron mass) (3)

x � Q2

Q2 +W 2
(for P 2 � �p2 � 0): (4)

1A right-handed coordinate system is used. The x-axis points towards the centre of the LEP ring,

the y-axis upwards and the z-axis in the direction of the electron beam. The polar angle � and the

azimuthal angle � are de�ned with respect to the z-axis and x-axis, respectively.
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Etag and �tag are the energy and polar angle of the observed electron, Eb is the beam
energy, and W the invariant mass of the hadronic �nal state. In addition to the tag
requirement, an antitag condition is applied to ensure that the virtuality of the quasi-
real photon P 2 is small and requirements are imposed on the hadronic �nal state to
reject residual background.

1. A tagged electron is required, identi�ed as a cluster in the silicon tungsten
calorimeter with energy 0:775Eb � Etag � 1:2Eb and a polar angle 27 � �tag �
55 mrad with respect to the beam axis, de�ning a lower limit of Q2

min= 1:14 GeV2

and an upper limit of Q2
max= 6:57 GeV2

(tag requirement).

2. The energy Eat of the most energetic cluster in the hemisphere opposite to the
one containing the tagged electron is restricted to Eat � 0:25Eb

(antitag requirement).

3. The visible invariant mass Wvis of the hadronic system is required to be in the
range 2:5GeV � Wvis � 40GeV. Wvis is de�ned by all tracks of charged parti-
cles and all calorimeter clusters which are not associated with tracks, including
clusters from FD and SW but excluding the tagged electron. The same quality
criteria are applied to all calorimeter clusters and charged tracks as in the previ-
ous analysis [1]. The masses of all particles in the hadronic system are assumed
to be equal to the pion mass.

4. Nch > 2, where Nch is the number of charged particle tracks originating from the
hadronic �nal state.

5. The transverse momentum component pbalt of the event parallel to the tag plane
has to be lower than 3 GeV. The tag plane is de�ned by the momentum vectors of
the incoming beam electron and the tagged electron. The transverse momentum
of the event is the vector sum of the momenta perpendicular to the beam axis of
all measured particles, including the tagged electron.

6. The transverse momentum component of the hadronic system perpendicular to
the tag plane poutt has to be lower than 3 GeV.

These requirements select 7112 events, corresponding to an integrated luminosity of
70:8� 0:2 pb�1, with hQ2i= 2:8 GeV2. Using sets of independent triggers, the trigger
e�ciency was evaluated to be (98�2)%.

The dominant background comes from two-photon events with a lepton pair in the
�nal state. These events are simulated with the Vermaseren Monte Carlo generator [17].
Background from other sources such as other QED processes with four fermions in
the �nal state or the process Z0 ! hadrons is found to be below 0:5%. The total
estimated background contamination in the selected sample is (2:5 � 0:2)%. Deep
inelastic electron-photon scattering is simulated with the generators HERWIG 5.18d

5



[18], PYTHIA 5.722 [19] and F2GEN [20]. F2GEN includes two �nal state models,
\pointlike" and \peripheral", to describe the hard and soft limit of the process (see
Ref. [1] for details). All Monte Carlo events are passed through a detailed detector
simulations program [21] and the same reconstruction and analysis chain as the real
data events.

In Ref. [1] several distributions of measured �nal state hadronic quantities were
studied in the Q2 range 4:6GeV2 < Q2 < 30GeV2, and signi�cant di�erences were
observed, both between data and the Monte Carlo models, and between the di�erent
Monte Carlo models. These distributions have been re-examined in the di�erent kine-
matic range of this analysis and a similar pattern of disagreements is seen, especially
in the energy ow distributions (Figure 1), and in the summed transverse energy per-
pendicular to the tag plane. These di�erences are found to be most prominent for
xvis < 0:05, and small at higher xvis. (The peripheral �nal state model of F2GEN has a
similar behaviour to PYTHIA and is not shown.) Such uncertainties in the modelling
of the hadronic �nal state give rise to uncertainties in the unfolded F 

2 (x;Q
2) [1]. They

are included in the systematic error using the same set of Monte Carlo models as in
Ref. [1], except for the F2GEN models. For F2GEN, a weighted mixture of the two
�nal state models available in the generator is used throughout the analysis. This mix-
ture has been optimised to improve the �nal state description by a �t to the hadronic
energy ow of the data in the lowest x bin. To account for the uncertainty of this
`ad hoc' procedure a variation of the �t by � three times its error is included in the
evaluation of the systematic error.

The program RUN by Blobel [22] is used to unfold the structure function F

2 from

the measured xvis distribution. To resolve very low x values the unfolding is performed
on a logarithmic x scale.

The ability of the unfolding to recover the underlying structure function F

2 of the

data is tested by unfolding the known structure function of Monte Carlo samples, the
\mock data", instead of measured data. These mock data samples are then unfolded
with other Monte Carlo sample. The unfolded F 

2 functions are compared to the origi-
nal structure functions used in the generation of the mock data sample. Figure 2(a) and
(b) show unfoldings of a mock data sample generated with the HERWIG generator and
the GRV-LO [5] parton density functions using unfolding Monte Carlo samples from
di�erent generators and di�erent input structure functions. The samples are divided
into two Q2 bins with (a) Q2 < 2:5 GeV2 and (b) Q2 > 2:5 GeV2, respectively. The er-
ror bars include statistical errors only. The solid line is the GRV-LO structure function
for the average Q2 of the mock data sample. Figure 2(c) and (d) show similar plots
for a mock data sample generated with HERWIG and the DG [6] structure function.
Here, the solid line is the DG structure function.

The deviations observed represent the systematic impact on the unfolded result of
di�erent parton density functions and modelling of the hadronic �nal state. The DG
structure function is used as a test for an F 

2 function that vanishes for x! 0. The DG
parton density functions have been evolved by their authors from Q2

0 = 4:0 GeV2 [6]
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and are not supposed to be valid at lower Q2, but they are suitable for this purely
technical purpose. Figure 2(a) and (c) demonstrate that despite the systematic errors
originating from di�erent Monte Carlo models a structure function falling for x ! 0
could be measured and distinguished from the GRV-LO prediction in the lower Q2

bin. In the higher Q2 bin the systematic errors are larger: The spread of the unfolding
results shown in Figure 2(d) does not allow the exclusion of the F 

2 function described
by GRV-LO.

To determine the central values of the measured F

2 a \reference" unfolding is de-

�ned. It is based on a HERWIG sample generated using the GRV-LO parametrisation,
chosen for consistency with previous OPAL results [1]. The event selection as de-
scribed above is applied. The data are divided into two Q2 bins with Q2 < 2:5 GeV2

and Q2 > 2:5 GeV2 which are unfolded separately. The two bins contain approximately
equal numbers of events. The x binning is chosen to keep correlations low between the
unfolded F


2 values in the di�erent x bins.

The Monte Carlo generators HERWIG and F2GEN predict mean values of hP 2i =
0:03�0:08GeV2 for the virtuality of the quasi-real photon, depending on the model and
the structure function used. Several theoretical predictions exist for how F


2 should

behave as a function of P 2 [24, 23, 25]. An estimate for the e�ect of the non-zero
virtuality P 2 yields an increase of F 

2 by roughly 10%, based on the P 2 dependent
structure function parameterisation of Schuler and Sj�ostrand [23] and the reference
Monte Carlo sample. As the distribution of P 2 in the data and the correct theoretical
prescription are not known, no correction is applied to the results.

Q2 hQ2i x range x (centre of F

2 =�

[GeV2] [GeV2] �log10(x) x log10(x) bin)

1:1� 2:5 1.86 2.6 { 2.2 0.0025 { 0.0063 0.004 0:27 � 0:03 +0:05
� 0:07

2.2 { 1.7 0.0063 { 0.020 0.011 0:22 � 0:02 +0:02
� 0:05

1.7 { 1.4 0.020 { 0.040 0.028 0:20 � 0:02 +0:09
� 0:02

1.4 { 1.0 0.040 { 0.100 0.063 0:23 � 0:02 +0:03
� 0:05

2:5� 6:6 3.76 2.2 { 1.7 0.0063 { 0.020 0.011 0:35 � 0:03 +0:08
� 0:08

1.7 { 1.4 0.020 { 0.040 0.028 0:29 � 0:03 +0:06
� 0:06

1.4 { 1.0 0.040 { 0.100 0.063 0:32 � 0:02 +0:07
� 0:05

1.0 { 0.7 0.100 { 0.200 0.141 0:32 � 0:03 +0:08
� 0:04

Table 1: Results for F 
2 as a function of x in bins of Q2. The �rst errors is statistical

and the second systematic. The systematic errors do not contain the systematic e�ect
caused by P 2 being di�erent from zero.

The unfolded F

2 =� for the data is listed in Table 1, and shown in Figure 3. The

value of F 
2 =� is given at the centre of each bin in log10(x). The error bars show
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both the statistical error alone and the quadratic sum of statistical and systematic
errors. Figure 3 also shows the F


2 =� calculated from the GRV-LO and the SaS-

1D [7] leading order parton density parametrisations and the higher order GRV-HO
[5] parametrisation, evaluated at the corresponding hQ2i values. The parton density
parametrisations given in Ref. [8{11] are not shown because they are not supposed to
be valid at these Q2 values, similarly to the DG parametrisation. In addition results
from PLUTO [2] and TPC/2 [4] for similar Q2 values are shown for comparison.

The central values and statistical errors of the F 
2 measurements are determined us-

ing the reference unfolding. The statistical errors include, in addition to the statistical
error of the measured data, also the error due to the limited number of Monte Carlo
events (1.6 times the number of data events) which is estimated to be 1=

p
1:6 times the

statistical error of the measured data. The estimation of the systematic errors includes
the following four components:

� The selection requirements are varied in order to change the signal and back-
ground event composition and to take into account possible uncertainties in the
simulation of variables which are used for the event selection. The size of the vari-
ations reects the resolution of the measured variable and ful�ls the requirement
that the mean hQ2i of the sample is not shifted signi�cantly by the variation.

� An altered set of quality criteria for calorimeter clusters and tracks is used to
determine systematic errors resulting from imperfections in the simulation of the
detector acceptance and calibration for tracks and calorimeter clusters.

� The unfolding is performed using the HERWIG generator and the standard selec-
tion, but replacing the GRV-LO parton density functions with SaS-1D in order
to study the uncertainty due to the structure functions assumed in the Monte
Carlo samples.

� The unfolding is performed with the standard selection requirements using
PYTHIA and F2GEN in order to study the e�ect due to a di�erent modelling of
the hadronic �nal state in the di�erent Monte Carlo programs.

For each of the four systematic studies, the maximum deviations (above and below)
of the various unfolding results from the result of the reference unfolding are taken as
systematic errors. The total systematic error assigned to the results in Table 1 is the
quadratic sum of these four contributions.

In summary, OPAL data recorded in 1993 and 1994 have been used to measure the
photon structure function F


2 (x;Q

2) at low x using events with an electron tagged in
the silicon tungsten calorimeters. F


2 (x;Q

2) has been unfolded as a function of x in
two bins of Q2, with hQ2i = 1:86 and 3:76GeV2. The unfolding has been performed
on a logarithmic x scale to resolve the lowest accessible x values. The data have been
unfolded down to a minimum x of 0.0025, lower than measured previously [2, 4, 3, 1].
This is the region where the proton structure function as measured at HERA starts to
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rise [12]. The extracted F 
2 result is consistent with the other OPAL F


2 measurements

[1,26]. Within errors the results agree with the lowest value published by PLUTO [2].
Compared to the TPC/2 measurement [4] our results tend to be higher. Our result
is consistent with a at F 

2 (x) in both Q2 ranges within the errors though it does not
exclude a small rise with decreasing x. The unfolded result is consistent in shape with
the GRV-LO and SaS-1D parameterisations for the corresponding Q2 values. However,
the measured F


2 is higher than the GRV-LO and SaS-1D predictions. The GRV-HO

prediction follows the data more closely and is in good agreement in the lower Q2 bin.
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Figure 1: The hadronic energy ow per event as a function of pseudorapidity � for the
data and various Monte Carlo samples. In (a)-(f) the values of the bin limits in xvis
have been derived from the bin limits in xtrue of the three lowest x bins in Figure 3(a).
The bins in �tag correspond approximately to the Q2 bins of the unfolding. The errors
shown are statistical only. The vertical lines show the acceptance regions of the OPAL
detector components, CD = Central Detector, FR = Forward Region and BP = Beam
Pipe. (FR, BP not marked on the tag side).
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Figure 2: Unfolding tests: In (a) and (b) mock data samples of HERWIG events
with the GRV-LO parton density functions were unfolded using one of the four listed
unfolding Monte Carlo samples. The solid curves show the GRV-LO F


2 (x) for Q

2 =
1:86GeV2 and Q2 = 3:76GeV2. In (c) and (d) a similar exercise was performed
with mock data samples from HERWIG with the DG parton density functions. The
solid curves show the corresponding DG values for F 

2 (x) at Q2 = 1:86GeV2 and
Q2 = 3:76GeV2. The error bars are statistical only. The symbols are slightly shifted
in x to avoid overlap.
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Figure 3: The full circles show our result for F 
2 (x) at hQ2i = 1:86GeV2 (a) and

hQ2i = 3:76GeV2 (b). The total error and the statistical contribution are shown for
each point. The tick marks at the top of the �gure show the bin limits in x for both
Q2 ranges. These points are placed in the middle of the bin. The curves indicate the
GRV-HO (dotted), GRV-LO (solid), and SaS-1D (dashed) predictions for F 

2 at the
corresponding Q2. The open symbols show results from other experiments at similar
Q2, with the total errors indicated only. These points are placed at the centre of the
bins on a linear x scale.
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