
ar
X

iv
:h

ep
-p

h/
97

06
33

9v
1 

 1
2 

Ju
n 

19
97

CERN-TH/97–114

NON-FACTORIZABLE CORRECTIONS TO W-PAIR PRODUCTION

W. Beenakker∗) , A.P. Chapovsky†)

Instituut–Lorentz, University of Leiden, The Netherlands

and

F.A. Berends

Theory Division, CERN, CH–1211 Geneva 23, Swizerland

and

Instituut–Lorentz, University of Leiden, The Netherlands

ABSTRACT

In this paper we study the non-factorizable QED corrections to W -pair-mediated (charged-
current) four-fermion production in electron–positron collisions. A brief account of the ob-
tained analytical results is given. They turn out to be different from the ones published in the
literature. For the first time numerical results are presented, in particular the effects on the W
line-shape. These effects are of the order of a per cent. Applying the same methods to ZZ-
or ZH-mediated four-fermion production, the non-factorizable O(α) corrections to the Z or H
line-shape vanish.
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1 Introduction

With the start of LEP2, quantitative knowledge of the radiative corrections to the four-fermion
production process e+e− → 4f is needed [1]. The full calculation of all these corrections
will be extremely involved and at present one relies on approximations [1], such as leading-
log initial-state radiation and running couplings [2]. Another approach is to exploit the fact
that in particular the corrections associated with the production of an intermediate W -boson
pair are important. This (charged-current) production mechanism dominates at LEP2 energies
and determines the LEP2 sensitivity to the mass of the W boson and to the non-Abelian
triple gauge-boson interactions. As such, one could approximate the complete set of radiative
corrections by considering only the leading terms in an expansion around the W poles. The
double-pole residues thus obtained could be viewed as a gauge-invariant definition of corrections
to “W -pair production”. The sub-leading terms in this expansion are generically suppressed
by powers of ΓW /MW , with MW and ΓW denoting the mass and width of the W boson. The
quality of this double-pole approximation degrades in the vicinity of the W -pair production
threshold, but a few ΓW above threshold it is already quite reliable [3]. It is conceivable that in
the near future a combination of the above-mentioned approximations will result in sufficiently
accurate theoretical predictions for four-fermion production processes.

In the double-pole approximation the complete set of first-order radiative corrections to
the charged-current four-fermion processes can be divided into so-called factorizable and non-
factorizable corrections [1, 3], i.e. corrections that manifestly contain two resonant W propaga-
tors and those that do not. In view of gauge-invariance requirements, some care has to be taken
with the precise definition of this split-up (see Sect. 2.3). In the factorizable corrections one can
distinguish between corrections to W -pair production and W decay. In this letter we address
the question of the size of the usually neglected non-factorizable corrections. From the com-
plete set of electroweak Feynman diagrams that contribute to the full O(α) correction, we will
therefore only consider the non-factorizable ones, both for virtual corrections and real-photon
bremsstrahlung. To be more precise, since we are only interested in the double-pole terms we
are led to consider only non-factorizable QED diagrams in the soft-photon limit. Subsequently,
the photon is treated inclusively, without imposing any limits on the photon phase space [4].

This is the same approach as adopted by the authors of Ref. [5], who were the first to
calculate non-factorizable W -pair corrections. For the present calculations, we have used two
different methods. One is an extension of the treatment in [5], the other is a modification of
the standard methods, which involves a combination of the decomposition of multipoint scalar
functions and the Feynman-parameter technique. The results obtained with our two methods
are in complete mutual agreement. However, in contrast to [5] a clear separation between virtual
and real photonic corrections has been made in both methods, which is essential to establish
the cancellations of infrared and collinear divergences. This treatment reveals a significant
difference between our results and those obtained by the authors of [5]. Our final results do not
contain any logarithmic terms involving the final-state fermion masses, whereas in the results
of [5] explicit logarithms of fermion-mass ratios occur (see discussion in Sect. 4.1 of Ref. [5]).
This difference can be traced back to the fact that although the fermion masses can formally
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Figure 1: Virtual diagrams contributing to the manifestly non-factorizable W -pair corrections.
The scalar functions corresponding to these diagrams are denoted by D0123, D0124, and E01234.

be neglected in the absence of collinear divergences, they have to be introduced in intermediate
results in order to regularize those divergences before dropping out from the final results.

In the next section we briefly focus on the analytical results as obtained with the modified
standard technique. A detailed account of our study and a discussion of both calculational
methods will be published elsewhere. In the last section we present numerical implications
of the non-factorizable corrections. Our calculations confirm that non-factorizable corrections
vanish in the special case of initial–final state interference, thereby making non-factorizable
radiative corrections independent from the W production angle, and in all cases when the
integrations over both invariant masses of the virtual W bosons are performed [4]. The practical
consequence of the latter is that pure angular distributions are unaffected by non-factorizable
O(α) corrections. So, the studies of non-Abelian triple gauge-boson couplings at LEP2 [6]
are not affected by these corrections. The completely new aspect that we have addressed in
our analysis is the effect of non-factorizable corrections on invariant-mass distributions (W
line-shapes). These distributions play a crucial role in extracting the W -boson mass from
the data through direct reconstruction of the Breit–Wigner resonances. The non-factorizable
corrections to the line-shapes turn out to be the same for quark and lepton final states, provided
the integrations over the decay angles have been performed.

2 Non-factorizable corrections: analytical results

In this section we present the results calculated in the modified standard technique. Details of
the calculation and the alternative treatment, which is an extension of the method of [5], will
be published elsewhere.
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2.1 Virtual corrections for purely leptonic final states

As a first step we consider the manifestly non-factorizable corrections to the simplest class of
charged-current four-fermion processes, involving a purely leptonic final state:

e+(q1)e
−(q2) → W+(p1) + W−(p2) → νℓ(k

′
1)ℓ

+(k1) + ℓ′ −(k2)ν̄ℓ′(k
′
2). (1)

All external fermions are taken to be massless whenever possible. The relevant contributions
consist of the final–final and intermediate–final state photonic interactions displayed in Fig. 1.
In principle also manifestly non-factorizable vertex corrections exist, which arise when the pho-
ton in Fig. 1 does not originate from a W -boson line but from the γWW/ZWW vertex (hidden
in the central blob). Those contributions can be shown to vanish, using power-counting argu-
ments [1]. Also the manifestly non-factorizable initial–final state interference effects disappear
in our approach. This happens upon adding virtual and real corrections.

The double-pole contribution of the virtual corrections to the differential cross-section can
be written in the form

dσvirt = 32πα Re
[

i(p2 · k1)D1D0123 + i(p1 · k2)D2D0124 + i(k1 · k2)D1D2E01234

]

dσBorn, (2)

where D1,2 = p2
1,2 −M2

W + iMW ΓW are the inverse (Breit–Wigner) W -boson propagators. The
functions D0123, D0124, and E01234 are the scalar integrals corresponding to the diagrams shown
in Fig. 1, with the integration measure defined as d4k/(2π)4. The propagators occurring in
these integrals are labelled according to: 0 = photon, 1 = W+, 2 = W−, 3 = ℓ+, and 4 =
ℓ−. Note that the factorization property exhibited in Eq. (2) is a direct consequence of the
soft-photon approximation, which is inherent in our approach.

To write down the analytical results we need to introduce some kinematic invariants:

m2
1,2 = k2

1,2, s = (p1 + p2)
2, s122′ = (k1 + k2 + k′

2)
2, s12 = (k1 + k2)

2, (3)

and some short-hand notations:

y0 =
D1

D2
, ζ = 1 − s122′

M2
W

− i0, xs =
β − 1

β + 1
+ i0, β =

√

1 − 4M2
W /s . (4)

Here ±i0 denotes an infinitesimal imaginary part, the sign of which is determined by causality.

The scalar four-point function D0123 is infrared-finite, owing to the finite decay width of the
W boson. In the soft-photon limit it takes the form

D0123 =
i

16π2M2
W

1

[D2 − ζD1]

{

2Li2

(

1

y0

;
1

ζ

)

− Li2

(

xs;
1

y0

)

− Li2

(

1

xs

;
1

y0

)

+ Li2

(

xs; ζ
)

+ Li2

(

1

xs

; ζ
)

+
[

ln
(

M2
W

m2
1

)

+2 ln(ζ)
][

ln(y0)+ln(ζ)
]

}

. (5)

The function Li2(x; y) is the continued dilogarithm

Li2(x; y) = Li2(1 − xy) + ln(1 − xy) [ln(xy) − ln(x) − ln(y)], (6)
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with Li2(x) the usual dilogarithm and x, y lying on the first Riemann sheet. The answer for
the second four-point function, D0124, can be written in a similar way.

The five-point scalar function, E01234, can be evaluated by means of a decomposition into a
sum of four-point functions [7]. In the double-pole approximation this decomposition reads

w2 E01234 = 2∆4 D1234 + (w · v1) D0234 + (w · v2) D0134 + (w · v3) D0124 + (w · v4) D0123, (7)

with

v1µ = − εµαβγ pα
2kβ

1 kγ
2 , v2µ = + εαµβγ pα

1kβ
1 kγ

2 , v3µ = − εαβµγ pα
1pβ

2k
γ
2 ,

v4µ = + εαβγµ pα
1 pβ

2k
γ
1 , wµ = D1v

µ
1 + D2v

µ
2 , ∆4 = [ εαβγδ pα

1 pβ
2k

γ
1k

δ
2 ]2, (8)

using the convention ε0123 = −ε0123 = 1. The labelling of the scalar functions (Dijkl) is defined
below Eq. (2). Note that the scalar four-point function D1234 is purely a consequence of the
decomposition (7). It does not involve the exchange of a photon and is therefore not affected
by the soft-photon approximation. Since we are only interested in the double-pole residue,
it should be calculated for on-shell W bosons. For the analytical expression, which is too
involved to be presented here, we refer to the literature [8]. The other new scalar four-point
functions, D0134 and D0234, are infrared-divergent and should be calculated in the soft-photon
approximation. Using a regulator mass λ for the photon we can write

D0234 = − i

16π2s12

1

D2

[

Li2

(

1 +
ζM2

W

s12

)

− 2 ln
(

MW λ

−D2

)

ln
(

m1m2

−s12 − i0

)

+
π2

3
+ ln2

(

MW

m2

)

+ ln2
(

m1

ζMW

)

]

, (9)

with a similar expression for D0134.

2.2 Real-photon radiation for purely leptonic final states

Only interferences of the real-photon diagrams can give contributions to the manifestly non-
factorizable corrections. The relevant interferences can be read off from Fig. 1 by taking the
exchanged photon to be on-shell. The infrared divergences contained in the virtual corrections
will cancel against those present in the corresponding bremsstrahlung interferences.

It should be noted that it is more complicated to obtain the five-point radiative interference
correction. This is because the decomposition that we used in the case of the virtual five-
point function cannot be carried over to the real-photon case. However, it is still possible to
derive another decomposition using similar, but less straightforward arguments. Denoting the
radiative analogues of the virtual scalar functions by a superscript ‘R’, we find

w′2 ER
01234 = (w′ · v′

1) DR
0234 + (w′ · v′

2) DR
0134 + (w′ · v′

3) DR
0124

+ (w′ · v′
4) DR

0123 + 2i∆4 DR
1234. (10)

4



The four-vectors w′ and v′
i are defined as before, but for real-photon emission. This is equivalent

to the following substitutions: p1 → −p1, k1 → −k1 and D2 → D∗
2. The radiation function

DR
1234 is an artefact of the decomposition (10) and does not involve the exchange of a photon.

It can be obtained from D1234 by the substitutions p1 → −p1 and k1 → −k1, resulting in the
relation Im DR

1234 = Im D1234.

As will be explained in detail elsewhere, the radiative interferences can in fact be obtained
from the virtual corrections by only considering the contribution from the photon pole to the
complex k0 integration and by making certain substitutions. The photon-pole part Dγ

ijkl of

the scalar four-point function Dijkl is obtained by subtracting the particle-pole part Dpart
ijkl from

Dijkl:
Dγ

ijkl = Dijkl − Dpart
ijkl . (11)

The particle-pole parts are found to be

Dpart
0123 =

1

8πM2
W

1

D2 − ζD1

[

ln(1 − y0xs) − ln(1 − xs/ζ)

]

, (12)

Dpart
0234 =

1

8πs12

1

D2

[

ln
(

D2

iM2
W

)

− ln(−ζ) − ln
(

λ

m1

)

]

, (13)

with similar expressions for Dpart
0124 and Dpart

0134, respectively. The radiative interferences can be
obtained from Eq. (2) by adding a minus sign, by inserting the decomposition given in Eq. (7),
and by substituting

– in the D0123, D0134 terms: D0123, D0134 → Dγ
0123, D

γ
0134 followed by D1 → −D∗

1,

– in the D0124, D0234 terms: D0124, D0234 → Dγ
0124, D

γ
0234 followed by D2 → −D∗

2,

– in the D1234 terms: D1234 → DR
1234 followed by D2 → −D∗

2.

2.3 Gauge-invariant definition of non-factorizable corrections

The set of manifestly non-factorizable QED diagrams displayed in Fig. 1 is not gauge invariant.
In order to achieve a gauge-invariant definition of the non-factorizable corrections, all (soft)
photonic interactions between the positively (e+, W+, ℓ+) and negatively (e−, W−, ℓ′ −) charged
particles should be taken into account. Looking at Fig. 1, this is equivalent to the set of all up–
down QED interferences. In the soft-photon, double-pole approximation only the “Coulomb”
interaction between the off-shell W bosons survives as an extra contribution to the differential
cross-section:

dσC
virt(p1|p2) = 32παRe

[

i(p1 · p2)C012

]

dσBorn. (14)

The scalar three-point function C012 is defined according to the notation of Sect. 2.1. In our
approximation it is artificially ultraviolet-divergent. Introducing an upper bound Λ for the
energy of the photon, this scalar function reads

C012 =
i

16π2sβ

{

Li2

(

y0;
1

xs

)

+ Li2

(

1

y0
;

1

xs

)

− 2 Li2

(

1 − 1

xs

)

+
1

2
ln2(y0)
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+ ln(xs)

[

ln
( −iD1

2MWΛ

)

+ ln
( −iD2

2MWΛ

)

]

− 2iπ ln
(

1 + xs

2

)

}

. (15)

The corresponding radiative interference can again be related to the virtual correction (14) by
adding a minus sign and by substituting C012 → Cγ

012 followed by D1 → −D∗
1. The photon-pole

part Cγ
012 = C012 − Cpart

012 can be derived from Eq. (15) and

Cpart
012 =

1

8πsβ

{

ln(1 − xs) + ln(1 + xs) − ln(1 − y0xs) − ln
(−iD2

MW Λ

)

}

. (16)

If the virtual and real corrections are added, the dependence on the cut-off parameter Λ van-
ishes. When we mention non-factorizable corrections in the following, we implicitly refer to the
gauge-invariant sum of the manifestly non-factorizable corrections and the above-mentioned
“Coulomb” contribution.

2.4 Semi-leptonic and purely hadronic final states

For the purely hadronic final states there are many more diagrams, as the photon can interact
with all four final-state fermions. In order to make efficient use of the results presented in
the previous subsections, we first introduce some short-hand notations based on the results
for the purely leptonic (LL) final states. These short-hand notations involve the summation of
virtual and real corrections to the differential cross-section. For instance, the virtual corrections
originating from the first diagram of Fig. 1 can be combined with the corresponding real-
photon correction into the contribution dσ

(4)
LL(k1; k

′
1|p2). In a similar way virtual and real five-

point corrections can be combined into dσ
(5)
LL(k1; k

′
1|k2; k

′
2). The gauge-restoring “Coulomb”

contribution will be indicated by dσC(p1|p2). In terms of this notation the non-factorizable
differential cross-section for purely leptonic final states becomes

dσLL(k1; k
′
1|k2; k

′
2) = dσ

(4)
LL(k1; k

′
1|p2) + dσ

(4)
LL(k2; k

′
2|p1) + dσ

(5)
LL(k1; k

′
1|k2; k

′
2) + dσC(p1|p2). (17)

Analogously the non-factorizable differential cross-section for a purely hadronic final state (HH)
can be written in the following way

dσHH(k1; k
′
1|k2; k

′
2) = 3 × 3

[

1

3
dσ

(4)
LL(k1; k

′
1|p2) +

2

3
dσ

(4)
LL(k′

1; k1|p2) +
1

3
dσ

(4)
LL(k2; k

′
2|p1)

+
2

3
dσ

(4)
LL(k′

2; k2|p1) +
1

3
· 1

3
dσ

(5)
LL(k1; k

′
1|k2; k

′
2) +

2

3
· 1

3
dσ

(5)
LL(k′

1; k1|k2; k
′
2)

+
1

3
· 2

3
dσ

(5)
LL(k1; k

′
1|k′

2; k2) +
2

3
· 2

3
dσ

(5)
LL(k′

1; k1|k′
2; k2) + dσC(p1|p2)

]

. (18)

In order to keep the notation as uniform as possible, the momenta of the final-state quarks
are defined along the lines of the purely leptonic case with ki (k′

i) corresponding to down (up)
type quarks. If one would like to take into account quark-mixing effects, it suffices to add the
appropriate squared quark-mixing matrix elements (|Vij|2) to the overall factor. Note that top
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quarks do not contribute to the double-pole residues, since the on-shell decay W → tb is not
allowed. Therefore the approximation of massless final-state fermions is still justified.

For a semi-leptonic final state (say HL), when the W+ decays hadronically and the W−

leptonically, one can write

dσHL(k1; k
′
1|k2; k

′
2) = 3

[

1

3
dσ

(4)
LL(k1; k

′
1|p2) +

2

3
dσ

(4)
LL(k′

1; k1|p2) + dσ
(4)
LL(k2; k

′
2|p1)

+
1

3
dσ

(5)
LL(k1; k

′
1|k2; k

′
2) +

2

3
dσ

(5)
LL(k′

1; k1|k2; k
′
2) + dσC(p1|p2)

]

. (19)

Upon integration over the decay angles, the functions dσ
(5)
LL and dσ

(4)
LL become symmetric

under ki ↔ k′
i. As a result, the expressions (18) and (19) take on the form of (17) multiplied

by the colour factors 9 and 3, respectively. These are precisely the colour factors that also
arise in the Born cross-section. Therefore, after integration over the decay angles, the relative
non-factorizable correction is the same for all final states. This universality property holds for
all situations that exhibit the ki ↔ k′

i symmetry.

3 Numerical results

In this section some numerical results will be presented. The quantity of interest is the relative
non-factorizable correction δnf , defined as

dσ

dξ
=

dσBorn

dξ
[1 + δnf (ξ)], (20)

where ξ represents some set of variables. Here we consider consecutively the distributions

dσ/[dM1dM2d cos θ1], dσ/[dM1dM2], dσ/dM1 and dσ/dMav, with Mi =
√

p2
i , Mav = 1

2
(M1 +

M2) and θ1 is the decay angle between ~k1 and ~p1 in the lab system. The results are shown in
Fig. 2 for the angular distribution, and in Table 1 and Fig. 3 for the invariant-mass distributions.
The pure invariant-mass distributions play an important role in the extraction of the W -boson
mass from the data through direct reconstruction of the Breit–Wigner resonances. In this
context especially the position of the maximum of these Breit–Wigner curves is of importance.

All results in this section are presented for the following set of input parameters:

MW = 80.22 GeV, ΓW = 2.08 GeV, MZ = 91.187 GeV, ΓZ = 2.49 GeV,

α = 1/137.0359895, sin2 θW = 0.226074.

From Fig. 2 it is clear that corrections of a few per cent could arise for angular distributions.
They should, however, vanish after integration over M1 and M2, as was mentioned before. The
non-factorizable corrections δnf (M1, M2) to the double invariant-mass distribution are presented
in Table 1. From those results one can expect that δnf will be less steep for the M1 distribution

7



δnf

cos θ1-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

M1,M2

78,78
78,82
81,82
82,78

Figure 2: The relative non-factorizable correction δnf(M1, M2, cos θ1) to the decay angular
distribution dσ/[dM1dM2d cos θ1] for fixed values of the invariant masses M1,2 [in GeV]. Centre-
of-mass energy:

√
s = 184 GeV.

than for the Mav distribution. This is confirmed by Fig. 3. The corrections shown in Fig. 3 lead
to a shift in the position of the maximum of the Breit–Wigner curves of the order of 1–2 MeV.
These results have been obtained for the centre-of-mass energy

√
s = 184 GeV. On the interval

170–190 GeV the largest corrections are observed for 170 GeV, where the corrections are about
a factor of two larger than those at 184 GeV. At 190 GeV the corrections are slightly smaller
than those at 184 GeV.

∆1
∆2

−1 −1/2 −1/4 0 1/4 1/2 1

−1 +0.84 +0.65 +0.51 +0.37 +0.21 +0.06 −0.17
−1/2 +0.65 +0.52 +0.39 +0.24 +0.07 −0.07 −0.26
−1/4 +0.51 +0.39 +0.28 +0.13 −0.02 −0.15 −0.31

0 +0.37 +0.24 +0.13 +0.00 −0.13 −0.24 −0.37
1/4 +0.21 +0.07 −0.02 −0.13 −0.24 −0.32 −0.43
1/2 +0.06 −0.07 −0.15 −0.24 −0.32 −0.39 −0.47
1 −0.17 −0.26 −0.31 −0.37 −0.43 −0.47 −0.53

Table 1: The relative non-factorizable correction δnf (M1, M2) [in %] to the double invariant-
mass distribution dσ/[dM1dM2] for some particular values of M1,2. The invariant masses M1,2

are specified in terms of their distance from MW in units of ΓW , i.e. ∆1,2 = [M1,2 − MW ]/ΓW .
Centre-of-mass energy:

√
s = 184 GeV.
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MW
↓

δnf

M [GeV]70 72 74 76 78 80 82 84 86 88 90
-0.007

-0.005

-0.003

-0.001

0.001

0.003

0.005

0.007

(M1+M2)/2
M1

Figure 3: The relative non-factorizable correction δnf(M) to the single invariant-mass distri-
butions dσ/dM . Shown are the corrections to the distributions with respect to M1 and Mav.
Centre-of-mass energy:

√
s = 184 GeV.

4 Conclusions

In this letter some analytical and numerical results are presented for non-factorizable corrections
to W -pair-mediated four-fermion production. In principle these corrections could be relevant
for tests of triple gauge-boson couplings and for the determination of the W -boson mass. For the
latter the corrections are of O(α) and change the W line-shape by about 1%. For the former
they vanish at the O(α) level. In view of the present experimental accuracy, the common
practice of neglecting non-factorizable corrections is justified.

One may wonder how non-factorizable corrections affect Z-pair-mediated and ZH-mediated
four-fermion final states. In those cases, only five-point functions contribute, of which there
are four contributions, as in Eq. (18). However, in contrast to Eq. (18), the charge factors are
pair-wise opposite, such that integration over the decay angles leads to a vanishing result. Thus
O(α) non-factorizable corrections to invariant-mass distributions in Z-pair-mediated or ZH-
mediated four-fermion processes vanish.

Acknowledgements: The authors are grateful to Dr. G.J. van Oldenborgh for useful
discussions and for making some of his programs available to us.
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