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Abstract

The complete description of quark and antiquark spin polarization effects in

high energy spin polarized electron positron anmnihilation is to first order in
a5 contained in nine hadron tensors. The hadron tensors are interrelated in
such a way that only four of these tensors have to be calculated, the other five
are obtained by simple transformations. The general basic cross section for
description of longitudinal and transverse quark and antiquark polarization
and polarization correlations, is obtained. We find that the quark longitu-
dinal polarization and longitudinal polarization correlations are in general
considerable both for ¢qq and ¢gg final states, and that the effect of a negative
longitudinal electron beam polarization, which adds to the natural polariza-
tion, enhances the quark polarization effects. Transverse quark polarizations
are in general small for relativistic quarks, being proportional to ms/E. As for
longitudinal polarization enhancement may be obtained by the use of longitu-
dinal electron beam polarization. General analytic formulae for longitudinal
and transverse quark polarization effects are given, including initial electron
beam polarization. Spesific analytic and numerical results for bottom and top
quarks are presented.

PACS numbers: 13.65.+i, 13.87.-a, 13.88.+¢
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I. INTRODUCTION

Spin polarization effects in high energy quark-antiquark-gluon production in electron
positron annihilation seem to gain interest in current experiments. On the one hand it is
now possible to obtain substantial electron linear polarization at the SLAC Linear Collider
[1] which improves measurements of cross sections and asymmetries. On the other hand it
is to be expected that observations of final state quark, antiquark and gluon polarizations
may improve our understanding of the physical production process itself, as well as the
mechanism of jet production.

Previously the gluon linear and circular polarization have been calculated for polarized
electrons and positrons in the quark mass zero approximation [2], where it was shown that
gluon bremsstrahlung has a remarkably high degree of linear polarization.The degree of
polarization is strongly influenced by beam polarizations effects. It has been suggested [3]
that measurements of gluon polarization effects through gluon jet oblateness could constitute
sensitive tests on models of jet production.

The quark-antiquark polarization independent cross section including quark mass effects
has been studied by several groups [4,5] for unpolarized beam particles and [6] for polarized
electrons and/or positrons - and final correct results for cross sections and asymmetries have
been established.

Longitudinal polarization of quarks produced by unpolarized electrons and positrons
obtained from the cos 8 - even part of the cross section has been given by Korner et al [7]
and by Groote et al [8] who in particular discuss bottom and top quarks. In a different, recent
paper [9] the corresponding transverse quark polarization is discussed. Recently Groote et al
[10] have given results for the cos @ - odd parts of the cross section related to the longitudinal
quark polarization. In this work they discuss electron and positron polarizations.

The possibility of detection of polarization properties of the heavy quarks, ¢, b and t
have been studied recently [11]. In particular it has been shown that as a result of the rapid
top quark decay t — bW its polarization is little affected by hadronization. It is predicted
that the polarization of the top quark is to a high degree transported to the W boson whose
polarization can be studied from observations of its W — Iy decay mode. Through this
mechanism it might be possible to study the spin structure of the electroweak interaction
of the top quark. Such knowledge is not obtainable from charm or beauty quarks since the
strong hadronization effects effectively might depolarize the produced polarized quarks.

In the present paper we give a complete calculation of qq and ¢gg final state quark-
antiquark polarization effects. The calculation is presented in such a way that the structure
of the polarization dependent hadronic tensors, which is basically complicated, is made
apparent and my be checked in several ways througout the calculation. It is shown in
Chapter IT and IIT how the different hadron tensors are related, and that the nine hadronic
tensors are obtained by simple transformations from four tensors which need to be calculated.
The general basic formula for the complete fermion polarization dependent cross section
is given in Chapter IV. This includes electron and positron transverse and longitudinal
beam polarization effects and final state quark and antiquark longitudinal and transverse
polarizations effects.

In Chapter V we obtain the cross section for longitudinally polarized quarks and an-
tiquarks. The cross section contains quark and antiquark longitudinal polarizations and



polarization correlations. We have restricted our calculation to longitudinally polarized
electron and positron beams, since these are more interesting experimentally. The case of
transverse polarized beams my be obtained from the formulae in Chapter IV when neces-
sary. The explicite formulae for final state ¢¢ and ¢gg quark-antiquark polarization effects
are given in Chapter VI. We also give the ¢g cross section at the Zj-resonance to show
how the Z; polarization for a longitudinally polarized electron beam couples to the quark
and antiquark polarizations and polarization correlations. For ¢gg final states we define
polarization dependent form factors which are defined similarly to the form factors used
in previous papers [6]. The longitudinal quark polarization P and polarization correlation
C) are defined in Chapter VII. Spesific formulae for B and C) are given for ¢ and ¢gg
final states and numerical results are obtained for b and ¢ quarks. In Chapter VIII trans-
verse polarization of quarks is discussed and results for ¢¢ and ¢qg final states are given.
In particular we show that beam polarization may affect the magnitude of the transverse
quark polarization considerably. Spesifically we show that a longitudinal polarization of the
electron beam may under certain circumstances be transferred to a transverse polarization
of the final state quark. Specific formulae are given and numerical results are obtained.

II. THE QUARK AND ANTIQUARK POLARIZATIONS

The cross section for flavour f, differential in angles and scaled quark and antiquark
energies z and Z, respectively, is given by [12]

dsa}ﬁy
dQdxdzdz (271')2
+H ()P LYy HY 7, } (2.1)

where x is the azimuthal angle of the electron momentum p_ in the coordinate system with
the z-axis along the quark momentum q. L%, LY7 and L% are the lepton (e, e_) tensors

Rek

and HS H,{ZW and H éZ;w the corresponding hadron tensors for photon interaction,
interference of photon and Z; interaction, and Z; interaction, respectively. We include the
effects of electron and positron longitudinal and transverse polarization. The lepton tensors

are given by

S {1 H],,, +2Ref(s)L2 H!

¥y i yvuy YZpv

LM = SLE 4 eI + I,
1% = —(vF — a) 4" — (uf — aS) 4"

+uls’ +aly’, (2.2)
LY, = [(v +a?)= —2va£] LY

+ [(v + a?)t — 2vau] LY — (v? — a®)LY,

which include longitudinal polarization, Pﬁ, effects, = = 1 — P4|!P|_l and ¢ = Pl _ P,LI.
Transverse polarization effects are contained in L§” and L}”. The lepton tensors are [12]

LY = 4(pip” + PP} — ¢"'pp-),
LY = —4ie* aﬁpipe,



Lgu — 4(p+p_) (P.LuP.Lu + P.LuPJ.u) "I’ (P_LPJ__)Liw’
LYY = dicapys [PFophg™(PYpr — P )
~(p+, P & p-, PH)].

The hadronic tensors are

—f _
H*{'ww = Z Hl{‘YHV‘Y - (23) lQﬁH{;uw

colors,S,5 e

H’iZu.u = ZHf HUZ - (23)_1Qf [foiC;w - afHﬁuu ’ (24)
HZZ;w Z ZHuZ - 23)— [(’U? + af’)H‘j’luu - 2affo/fluu + 2afmeVuu]

In order to simplify the presentation we define the term

F‘;uu = Hép.u + HV;w (25)
We extend the hadron tensors to include quark and antiquark polarizations
H‘];uu = V/,w + HVu.u + HV;W + Hgi;/f7 (26)

and similarly for H ﬁuu and Hv,w The hadron tensors are obtained in Appendix A:

By, = ;T dMu 0T,
Hyl, = —7LTr 2 S M, 10T,
HES = "It g, BT

HYY, = ~3Tr 95 d M, 40T,

m I rat
H3! = TfTr BM, qM°, (2.7)
2
m - A X
Hijuf = _4};':[‘1- 75$M#0!$Mua
2
miH?,MZf = ——T—n—’:Tr M, M.,

miHyZ = f —LTr 5 $4M,

1
m?Hiiff = —1Tr $4M.. B0,

and the corresponding HV’W, H AW and ng ! tensors are obtained by the transformation
(g §,5 & S,p e v,ms — —my). Here S, and S, are the polarization four vectors for
the quark antiquark respectively, and the reduced matrix element M, is given by

1 1
M o — o + g - - —'_—’7 o9 2'8
# Tt 5o =3 Pl g (2.8)

4



as explained in Appendix A. The quantity
W, =1 _ % (2.9)
49 99

is convenient for simplification of the calculations and for the presentation of the results.
It satisfies W - ¢ = 0, thereby demonstrating explicitely the gauge invariance of the matrix
element, Eq. (2.8), M,,g* = 0.

The quark polarization four vector S = (So, S) is given in terms of the polarization of
the quark in its rest system ¢ by

s, = cIlal
my
S=¢h+ c”q@i. (2.10)
my

Here ¢* is the transverse and (!l = ¢ - ¢ is the longitudinal polarization, Fig. 1. The
covariant polarization satisfies

q-S =0, S = ¢t =1, (2.11)

for the unit polarization vector (.

III. THE HADRON TENSORS

The structure of the hadron tensors Eq. (2.7) is such that only four trace calculations are
necessary. The other hadron tensors are obtained by transformations indicated below. We

choose the four tensors ﬁgi;f , Hii’,f , H{j’ff and Hgi;,zf , which are explicitely given below.
The hadron tensors are

~ 1 —cz _ B
H?/’iu = _Eﬁ— 3;5;;)'(5,5 - Qaq), (31)
- 1 <. -
S.f _ SS,f _
HV;.W - —.T;f- Apv (S - q)? (32)
7SS ad 1 @ o\ G 1 5 o Q o
ol =m? w2558 + o (SWg" = SgW )58 — q—g(SWg — SgW*)S*~
1 - 1 -
———=859g°5? — ——=89¢°S"| tausi 3.3
(¢9)? (39)? ad (33)
with
tapsy = 9au9pv t Gov 98y — 9aBGuvs (3‘4)
1 5 = ~
Hy!, = —;;Hif’f(&s —q,9), (3.5)



1 ~czys. =
sf _ L1 7785 -
Hy,, = m (S = g), (3.6)
i, _ 1 - ~ _
HE = im? |W?s°8° + E(SWga — SgW*)58 + %(SWg" — SgW*)SP

1 - 1
(qg)2sggaSﬂ+ (qg)ZSgg"‘Sﬁ Eaupy- (3.7)

Note that except for the change of sign on the third and fifth term and the replacement of
taugy by the antisymmetric tensor te,,p,, Egs. (3.3) and (3.7) are identical.

1 s G . 29.9 -
HO’Zuf =3 SS;JZf(Sas —q,9) = _Wzg vt _#‘, 3.8
e my v ) " (9)(99) (38)
1
m§H$f;' =my [Wzs'“ A E(SWq" — gW§*)g°

1 gﬁ
+—(Sgq* — qgS* (Wﬁ—_—>]ea ’. 3.9
qg( 99" — qgS*®) 7 ub (3.9)

The hadron tensor Hﬁf'ff is very complicated when written out in full. By the use of Eq.
(B.3) in Appendix B we can write it in the form

. 1 1 _
mng‘Z;,Zf = —.[§W2S°’qﬂ + q—g {(qu'6 — ggW*)S> + (SWq> — SgW")qﬁ}} SV

X (eaﬂuee'yﬁue + taﬁﬂet"(&/e)

1 _
+—— [9,0"5°9" — 9,"(a9S’ — Sg¢®)g°| 5°¢°
(49)@0) l9.97S%9" — 9,7 (ag 99°)9°] 5°q

X (50131/560756 + taﬁUEta—yﬁs) + (q, S ¢> 67 S)' (3'10)

The f{'é;{u, Hj;tf,, and H{?’fuf tensors are obtained from corresponding S dependent tensors
by the transformation (¢ & ¢,S < S,y < v,m; — —m;). For completeness we give in
Appendix A the hadron tensors in terms of W, written out in full. The calculations are
checked by comparison with previously obtained results [12]:

0.f = _1_._ _ m2 @) anb
v (99)(29) KQq 139 )1 Q" tausy
_ (Q2 _ me,%) 9y + M3 (Q9) 9w — 9u9.) + (¢ & q)] ,
0.f _ __Z_ _ 2@ anfB .
HAH.V = (qg)(q_g) €uvap [(Qq mf qg ) q Q (q L= q)] s (311)
0,2f _ 1

Vupr —

)@ {(qé — m?%) 9w +9ugr + (g & Q)J :

In this way the calculation of Hgf;,f , ij,’,f , Hg’lf,, and Hﬁ;{,, are checked by comparison

with Eq. (3.11), by the use of the transformations indicated. Note also that the rather
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complicated tensor H{S;iyzf equals m fHVW for S = ¢ and S = §, which is a test on this

calculation.

Expressed in terms of the momenta and polarizations the S and S dependent tensors are

T7S.f — imf @ mZQg B -_ng_g_ . Ry
Hy,, (29)(@9) [S {(Qq fqg)(Q q) +(qq fqg)q ng}

+ngaq + Sg%Qaq—ﬁ] Eaupy (312)
i L [(qé mzqg) {S,5} (SQ—Sqq—g) {S,9}
Mo (29)(39) ’q o qg) 7
Sg /- _ _
+22 (2903, Qhye - Q{51 + (05 & .5)]. (319)

where {a,b},, = a®¥’t,.5, = a,b, + a,b, — abg,,.

5f _ _ 2Q9 —_m2Qg) _ (9_2_ 2 Qg )

fhad (qg)(qg) [(Qq 1 3g TOIT Mg | 15T 159 ) 159w
+§§'(q—g{Qaq}#U - Qg{q—a q—}lJV) + SQ{‘LQ}IW - qg{s7 Q}ul’] ) (314)

.2
s8¢ _ 'y a
Hal =~ ao)a9) [{ (qq ™2 a9 )S * 5%
+'§—3' (qgQa - nga)} Sﬂeauﬁu - (q7 S& q, S)] 3 (315)
2182f _ Mt | are 0B _gzBy i gad[oe 299 0 _ A8
"V = ) [q (5907 = 545°) + 5 {(qq i qg) @-9

+ (qci - m?%) ¢’ — q9Q” + Qgq¢’ }] Eanbvs (3.16)

_ = 1 m.2 1 7] m2
2HSS;’Zf:_{[_ 99 +_( + f)]saﬁ_*__[(_ﬂ_i__f) 8
TV (¢9)(q9) ' 2 \(g9)* "~ (q9)? T\ w)f

S S— o pele} _
(¢ [(3-2)-s (55}
9 Q9 499 99 499

x (":aﬁuceﬂyﬁuE + taﬁuctqauc)

1 —
o= |9u4"S%9 ~ §° = Sqq)g°| 5°
) [ 205’9 — 9,7 (a9 aq’)g ]
X (Eaﬁucgg—yse + taﬁucta’yéc) + (q7 S ;:: (L S) (317)

IV. THE POLARIZATION DEPENDENT CROSS SECTION

The cross section for arbritrary (longitudinal and transversal) quark polarization and
quark-antiquark polarization correlations may be written down using Eq. (2.1) with the
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hadron tensors Egs. (3.12)-(3.17) and the lepton tensors Eqgs. (2.2) and (2.3), where longi-
tudinal as well as transverse electron and positron polarizations are included. In this way a
complete description of all fermion polarizations effects to first order in the strong coupling
constant a; may be obtained.

The complete polarization dependent cross section Eq. (2.1), may be written in the form

d5o-;1“79 _ _1_ o? as [h(l)(s £ E)Luu (Ho,f +HSS,f) + h(z)(s ¢ E)L‘w (Ho’f n Hss‘f)
dQdxdzdz ~— 4(2m)22s L'/ V7 ! Vi Vv F 86, 2 Ay Apw

+mh (s, & Z)LE (o] + HUpH) + b0, 6, 2) 18 (B, + HE)

Vuv Vouv
R (s, & )L (HY, + Hyl,) + m3h(s,6, D) 18 (B, + HEY)

uy Vuv

+h7(s, 6 2V I8 (B, + ) + h0(s, 6,214 (HYL, + HESY)

Vv

+hP (s, 6, D) L8" (Hys! + H3R ) + 10s, 6, )18 (S, + HSL)

ny Apv

+h§ (s, 6, D)Ly (HSS, + HEY)), (4.1)

where we have added a factor 1/4 to account for the spesification of quark and antiquark
polarization states. In Eq. (4.1) the coupling functions for longitudinally polarized electron

and positron beam particles. h(fi)(s,f,E) are given below in Egs. (5.6) and (5.7) while the
coupling functions ~()(s) related to transversal beam polarization are given by [6,13]

B = Q3 — 2QyRef(s)ovy + |f()(v* — a?)(v} + a2),
A = —2QImf(s)avy, 42
B = =1 (s)*(v? = a?)a?,

and the new functions

hs.m) = —2QsRef(s)vay — 2|f(.<s)l2(v2 — a2)vfaf,
K¢ = —2QRe f(s)av;. (4.3)

The contribution of the cross section Eq. (4.1) is facilitated by the observation that L*,
L3” and L}” are even in pv while L}” is odd. Correspondingly for the hadron tensors H{}',{,,,

H{?i;f , Hi;fu and Hi;f; are even in pv while Hf;;{,, Hif;,f , Hs"{u and H‘S,';fu are odd.

V. THE CROSS SECTION FOR LONGITUDINALLY POLARIZED QUARKS
AND ANTIQUARKS

In this Chapter we shall discuss longitudinally polarized quarks and antiquarks. We shall
restrict ourselves to longitudinally polarized beam electrons and positrons, since these are
more interesting experimentally. The case of transverse lepton polarization may be included
from Eq. (4.1) in the present formulation when needed.

Leaving out L3" and L§” terms, describing transverse beam polarization, we write the
cross section Eq. (4.1) in the convenient form, [12]

8



d® a}qg 1 o a, 1

Wdededs = 17 s I3 M &6 (Xo+ X5%) + (s, ,2) (Yo + ¥5°)
+h(5,£,5) (Zo + 25°) + B (5,6,5) (X5 + X§)

+hP(5,6,2) (Y5 +¥57) + h0(s,6,5) (25 + 25)] (5.1)
where
Xo + X55 = ( SS,f) g (pipf +p‘ip°l),
Yo+ Yo = (Hy! + HES) (p5r% —#lp%),
ZO+ZSS ( OZf+HSSZf) (P1P€+Pipg)a (5.2)
Xg = ( )a mf (P+P— —P+P )
= (H3),, (o562 +ip2),

Zf = (By SZf),,ﬁ m; (0l — pip?),

with the definitions for (Hp)as etc.

“( - 2)(1 - 2B, = (H) ™ty
“(1- 21~ ), = (H)” e,
(- 2)(1 - D) HY, = (HY) ieass, (53)
=) - D H, = (B3 s

for the symmetric and antisymmetric tensors, and
LEy = ZL{" + €LY
LYy = —(vE — a€)L}" — (v€ — a=)LY", (5.4)
L55 = [(v* + a®)= — 2val] LY + [(v* + a®)¢ — 2vaZ] LYY,

withE=1- P”P|| and ¢ = P! — P , and Li” and L4” given in Eq. (2.3). We have further
used the multlphcatlon rules [14],

tuauﬂt#‘yus =2 (ga“’gﬁa + gaagﬁ’y) )
EuaVﬁe‘wys = =2 (got’ygﬁ‘S - gasgﬁ‘y) ’ (5.5)
The coupling functions hffl), h§,2) and h;s) are given previously [12]
h{(s,6,E) = Q%= — 2Q Ref(s)(vE — af)vy
FHFE)PI(0? + a2)E - 2vag](v? + a2),
R (s,€,E) = 2Q; Ref(s)(v€ — aZ)ay
=2|f(s)]*[(v® + @*)¢ — 2vaE]vyay, (5.6)
h(s,6,E) = 20f(s)1’[(v* + o*)= — 2vaé]al,
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with
. 1 8
 4sin? 20w s — MZ + iM It

f(s)
The new coupling functions related to the single polarizations S or S are

B (5,6,2) = Q% — 2QRef(s)(v€ — aZ)vy

(S [(v* + a®)¢ — 2vaZ](v} + a?),
AP (s,€,2) = 2QRef(s)(vE — at)a;

=2/ f(s)*[(v* + a®)= ~ 2vat]vyay, (5.7)
RO (s,6,2) = 21 £(s)P[(v? + a®)é — 204=]al.

e = 1)/ 8) (¢ = 2) (= 9 p — (5) /= .
Note that h{)(¢,2) = a{)(Z,¢), K(,Z) = AD(Z,¢) and AO(E,T) = h)(Z,€), which
reflect the transformation properties of H{),'I’:U to Hé’,{u, Hg’,fu to H‘Ag’“fu and H?,’fuf to H{?’fuf It
should be noted that the coupling functions are the same for interactions with no polarization
dependence (e.g. Hy') as for interactions with S, S dependence (e.g. HY™N).

The Xo, Yo and Z, functions are given previously [12]

=2

=2
X, = ( — ﬁ_l‘ﬁl_) [g;2(1 + B2 cos? §) + T_n‘f,] + 4 [a:j(l + cos?8,) — 8xg] +(z & 7,0 & 0),

21—z 16
—2 -
Y0=2{<m——%f-l$g )mﬂzcos0—(az®i,0¢>9)}, (5.8)
-z

z0=-T1{a(1- o) e - n 4 o )

The polarization functions are

=2
Yg = (Il {x:f: (1 —z,— my ?E) (cos @ — B,z cos 8)

21
mi oz
+[($_Tf1—g:c) (23:__"73‘)_77‘-?(1—3?)] cos f
_g (1— g—?a’l—x) (zﬁzcoso+(2—$)ﬂzcos§)}, (5.9)

YOS__:CII{;ci (z+:f—— —Tﬁ__} m(g )) (ﬂz—ﬂicosécosﬁ) —2(1 — 2)zp;

m2 oz _
+z ( N & _9$> [rcgﬂx + cos 8(z B, cos 8 + Z3; cos 0)]

— -2 —
+— (1 — T4 — myz : ;c) [xy + Bz cos 8(z B, cos 8 + ZB; cos 5)]

10



+$2; (:c ";f il )[1 x—ﬁ ﬂgcos25)]}, (5.10)

-z
_ +z z me:
ZS Il 1— £2_ (-’E _ g )_ f g
fC {[ Ty + 2( z) = -2 212 cos §
l—2z, lrz+k T4 2)]1:5 -
+[ - +2( = l—iﬁz zﬂfcos0 , (5.11)

while the polarization correlation functions are given by

—- ——-2 T — —
_i’g" (;z:— %f_—‘}) (1 —z - %gsin20)} +(z 2,8 & Bz,0 & 0), (5.12)
=2
SS_ ol@i gz (15, — 4 T g — B,
Yy” = ("¢ {:cz (1 T _$> (,Bzcosﬂ ﬂxcosﬂ)

1
+z (1 — T, — %x 1- x) [rg cos 0 + Bz(z P, cos § + T3z cos 5)]

+sz (:1: _ Tzin_g—;) 31— z) — %zg] coso} (2 ST, Pe S 0o ), (5.13)
755 = m2(Igl { [ (1 — 24— %f_—gm) cos + é(—lf:—)xﬂzzﬁx(cos 6 — cos d cos 6)

—% ( zf; + T8z cos 19) (zB; cos @ + z 3z cos 0_)] cos §

+i [2 + (2. cos 8 + 585 cos O] cost?} + (27, o Bs 0 0). (5.14)
Here cosd is given by

2? B2z B2sin® 9 = 4(1 — z)(1 — z)(1 — x,) — mszs,
2f:%0z cosV = zZ + 2(1 — x — Z) + M4 (5.15)

VI. QUARK-ANTIQUARK LINEAR POLARIZATION EFFECTS IN ¢§ AND qqg
FINAL STATES

It is of considerable use for the understanding of the polarization effects to write down
the cross section for ete™ — ¢q for longitudinally polarized electrons, positrons and quarks
and antiquarks. From the same procedure as above, replacing M, by ~v,, one readily finds

207 o2 ) _ _ 2 2 SN . 2
de = T(—i—s—ﬂ{h(f )(s,f,:) [(1 — e (1 + cos?6) + my(l + ey sin 0]
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+2h7)(s,€, E)(1 - ¢I¢1)B cos b — —mzihﬁs)(s,é,z) [(1 = ¢1¢M)(1 + cos? 6)
+(1 + ¢ sin? 6] + 2087 (s, €, Z) (¢! — ¢ cos 6 + AE)(s,£,2)B(¢) - E1)(1 + cos? 6)
—k (s, &, E)m3(¢! ~ M) cos 0}, (6.1)
with 8 = /1 -2 and where the lepton longitudinal polarizations are contained in the
coupling functions A()(s,¢,Z)) Egs. (5.6) and (5.7).

It may be instructive to write down the gg-cross section at the Z, resonance, which shows
more clearly the correlations of electron and quark-antiquark polarizations:

e (2E =M 2
FeE = My) _3 () 1 (v + e~ 20ap) 5
x {0} + ) [(1 = ¢EN(1 + cos? 8) + 721 + (1) sin? ]
—4Pzvpap(1 — (1B cos
—mjaj |(1 = ¢(I1TN(1 + cos? 6) + (1 + (¢l sin? 6]
+2 Pz, (Uf + a?—)(C” — 5”)0080 - 2vfafﬂ(g“” — C_”)(l + cos? §)
—ZPZOTn'?a?({” — M cos 0} . (6.2)

We have here for simplicity and also because it is experimentally relevant, considered po-
larized electrons only, with polarization P_, while P, = 0. The polarization of the created
and decaying Zp-boson is [12]

—2va + (vi+ e} P
Pzy = —— .
v? +a? — 2valP_

(6.3)

The cross section for ete™ — ¢gg is obtained from Eq. (5.1), written out in the notation of
ref. [12] with F;(z,Z) the polarization independent form factors, F{(z,z) and .7'-((:6 z) the
polarization dependent form factors and .7-'“(1' Z) the polarization correlation form factors.
Integration over x gives

d‘%}qy o? o 1

dQdzdz 87 s (1—z)(l -z

){m<@ﬂﬂ@muww®+ﬂﬁﬂ

+m7}-h§.1)_(s, £,5) [fz(z, z) cos? 0 + %.7:5(:1:, az)] +2h(s,€,2) Fa(z, 7) cos 6
+2h§,7)(3,§,5) [C”Tf(w z)— C-”}—Z(w 5:)] cos @

+40(5,6,2) [¢! (F (2, 2)(L + cos*0) + FS(z,7) sin? 0)

~{1 (F(a, j)( + cos? 0) + F¥(z, 7) sin’ 0]

+h(s,6,5) 2 L0175 2,3) = 01 (2,2)] cos

— ¢ (R(s 5 =) [F¥(2, 2)(1 + cos? 8) + Fi(a, 7)|

—%h(f”-(s, 62) [75(z,3) cos? 0 + F§ (2, 7)| + 285, €, 5)FE (=, 2) cos 0) } , (6.4)
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where h?)- = h}l) - h(fs) and h(fi) = h(fi)(s,f,E).
The form factors are given by the polarization independent functions [12]

o2
-\ _ _T_fwg 292 A YT B
Fi(z,z) = (1 5 T ) B; + ( 5 l—i)x B:(1 5 Sin 9),

Faz,z) = ;cz — gfr:zﬂg sin® ¥,

s
Fi(z,z) = (:1; - %1 igm) 0, — (x — -ni o ) Zfz cos ¥, (6.5)

N Fn‘? Ty |\ = _m-?‘
f4(m,z)—2(1_71—:—i—) 7% 32 sin? 19+mf{ (1 —=z4) + (1—2(1—,7:)(1—:5))]’

Fs(z,z) = £°B2sin* ¥ — 2(z? + 4z, — 4) — 2m

(1 x)(l -z)’

and the functions related to polarizations are

28. 2 I—2)(l—2

+m_—2-§ {2(1 —2)+ (:c +E+ -i—}z-mg) %’g—icosﬂ} , (6.6)
File3) = Fled) - 1750 0) + o (a- 2 ) -9 -9

—m—z (% + xﬂ::) (6.7)

s (6:8)

=232 o302 == _
fé(x,i):m—ﬂi—ﬁsj—ﬂ{l—%(2+mgi_;)}. (6.9)

Fi(z,%) = 2282sin 9 — 4(1 — z,) +

The .7:'5(.7,, z) functions are obtained by interchanging quark and antiquark quantities. For
the case that we can compare with similar expressions in the works of Grooth et al, we
agree with reference [8] on our form factor % (z, Z) and with reference [10] on Ff(z, Z) and

Fi(z, 7).

The polarization correlation functions are

_ 2 —-n,—i2 T
]:-ICC(:L',:E) = l:—.’l:.’i‘ (1 — Ty — mf Lo _1;:;91 ;f;)) cos 9 + xgzmg (33 - 7](1—_2'5)

(
+_j_(1_g;g_m_?‘$+m)( + zf;cosd) + (z & 7, ﬂxﬁﬂz)]

Bz 2
3., .16 m} T z?
—g sin ﬂ——ﬂ-x—[ __2_(1+;+$(1—f)) ) (6.10)



3Y .. |
+ 5) sin’ 9, (6.11)

z
—% (1 —xg—ﬁ> (zcosﬂ—x)+m7§zg (f—cosﬂ— %2)
~glo8e 28c0s9) (12, 5L a8 -0 - T (L~ 2
_<m_%i_ga__:) <z——m§1“‘_9$) (lx_ﬂj cos ¥ — 1;:’), (6.12)
Fi(z,3) = [a:a': (1 —z, - "f i x‘)”(gl - 5)) (cosd + B.;)
+-[§_; (1 — - —’ﬁ;f”’) (2485 — 2z — 2B, cos )
‘”g:(l - )1 - 2) (= - T;l_) (a6 2,5, 50
)
F(2,7) = —a? cos 9 - ; .2, sin’ 0. (6.14)

We give in Figs. 2, 3 and 4 the form factors as functions of z for z = % for bottom and top
quarks.

VII. LONGITUDINAL QUARK POLARIZATION AND POLARIZATION
CORRELATIONS

From the cross sections, Egs. (6.1), (6.2) and (6.4), we obtain the longitudinal polariza-
tion of the emitted quark in the final states qg or ¢gg,

B do (¢l = 1) — do (¢ = —1)
T do((l=1) + do(¢l = -1)°
We define the longitudinal polarization correlation as a measure of how often quarks and
antiquarks are emitted with the same helicities, (Il = 41, compared to opposite helicities,

ClIgh = —

(7.1)

B do(¢ICH = 1) — do (¢l = -1)

W o (N0 =1) + do (¢TI = —1)°

Note that in the first case we sum over the states (!l = I'= ¢l = +1 while in the second case the
sum is taken over the states (Il = —¢ll = +1

(7.2)
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For the presentation of the results it is convenient to consider polarization effects odd and
even in cos § separately. This separates the forward-backward antisymmetric cross section
from the symmetric cross section. We use the forward and backward cross sections o and
op, respectively, and define the forward-minus-backward polarization

or((ll = 1) = op(¢l = =1) = [o8(¢l = 1) — o5(¢N = —1)]
o((T=1) = o(¢T=—-1) '

For the qq final states we find from Eq. (6.1) the longitudinal quark polarization, when
the antiquark polarization is not recorded

Pre = (7.3)

(th:’)(s) - h(fg)(S)mﬁ)cosa i hS‘S)(S)ﬂ(l + cos?0)

|(|ﬁ( )= ) 20 + 72 sin2 0) — A9 ()2 A2 ) (7.4)
7 (8)(1 + cos? 8 + % sin” 0) — by (s)m% + 2k (s)B cos b
For the integrated cross section the polarization is
9q QhS‘S)(s)ﬂ
(YY) o 32 ) (7.5)
which becomes for energies at the Zy-resonance, from Eq. (6.2)
g 2vsasf
Pl'l“l(QE =Mz)=— (7.6)

v} (1 + TZL) + a?ﬂz

which is independent of the beam polarization. All quarks which may be produced at this
energy, 1.e. all except the top quark, have sizeable longitudinal polarizations, -93 % for d, s
and b quarks and -60 % for u and ¢ quarks at the Z, resonance. We give in Figs. 5, 6 and
7 the angular distribution of the longitudinal polarization, Eq. (7.4), for the b quark at the
Z, resonance and for the top quark at the energies F = 250 GeV and E = 500 GeV. We
also include here the effects of electron beam polarization.

The forward-minus-backward polarization defined in Eq. (7.3) is

_ 3 _
Pl = - (7.7)
II.FB — — ,
T 40P o) @+ ) — I (s)
which at the Z; resonance becomes
B 3 '02 + a2ﬂ2
FeaB = 5) = Sy 1S 9

1 (1 + T;L) + a2

Here the polarization is proportional to the Zy-polarization and therefore depends strongly
on the beam polarizations. For no beam polarization the forward-minus-backward polariza-
tions of all quarks u, d, s, ¢ and b are moderate, while for a beam polarization of ~ 60 %
the quark polarizations are of the same order of magnitude as Pl‘lﬁ, Eq. (7.6).
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For the integrated cross section the longitudinal polarization correlation defined in Eq.
(7.2) is
hy(s)(2 — %) — 3m2hl(s)

1 — —
h(f Y(s)(2 + m3) — 2m 2h(s)(s)

(7.9)

For the qgg final states we find from Eq. (6.4) the longitudinal quark polarization corre-
sponding to Eq. (7.4) for ¢q states
=2
Pio(g) = {[%‘[’@)ff (z,7) + h(fg)(s)—?fé (z, :z)] cos 8 + A (s) [Ff(z,2)(1 + cos? 8)

+F(2,7) sin 0]} {h(l) [fl (z,Z)(1 + cos® ) +.7:4(CIJ,§7)]

-1
+7fh5,1)_(s) [.7-'2(3:, z)cos’ 0 + 5.7-"5(37, i')] + 2h(f2)(s)f3(x, ) cos 0} . (7.10)
Note that the longitudinal polarization is sizable for large regions of angles #, as shown in
Fig. 5 for b quarks and Figs. 6 and 7 for top quarks, and that the electron beam polarization
1s to a substantial degree transferred to the quark. Our results have overlapping features
with results of references [8] and [10] which represent ¢g final states including order a; ra-
diative corrections, initiated by unpolarized beams.

The polarization for the #-integrated cross section becomes

1P (s) [2F5 (2, 2) + Fi(z,7)]

Pi%(z, %) = — .
") RO(s) [2i(, 2) + 3Fu(z, 2)] + TLAD(s) [Fale, 2) + 2Fs(2, )

(7.11)

We give in Fig. 8 Pﬁqg (z,%) for z = z, for b quark at the resonance and for top quark for
energies £ = 250 GeV and F = 500 GeV.

The forward-minus-backward polarization defined in Eq. (7.3) becomes for ¢gg final
states

26 () F (2, 2) + b () B FS (2, )
KD(s) [2F1(2, ) + $Fa(z, 7)) + E}h(fn—(s) [Fa(=,7) + 2Fs(z, )]

3
'lliffB(x I) = 1 . (7.12)

Inspection of Eq. (5.2) for hf;)(s) and h(fg)(s) shows that the polarization is proportional
to Pz, at the Zop-resonance as for the case of ¢7 final states. F7p(z,Z) is given in Fig.
9 for b and top quarks. It should be noted that while le (z,Z) is sizable for unpolarized

beams, the forward-minus-backward polarization PIl %5(z, 1) is dependent on a high beam
polarization to be of any importance.

The linear polarization correlation is for ¢gg final states for the #-integrated cross section
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=2

_-hﬁcl)(S) [2}’1«_(_7;’ j-) + %ffc_(z, i)] S h_(fl)_(s) [fzcc_(m, :_L‘) + %fég(z, i)]
)

e

a
B3 (s) [2F1(2,2) + 3Fa(=, 3)] + SRS (s) [Fal2, 7) + 2 F5(z, 7))
(7.13)
We give Cﬁ@(m, z) in Fig. 10 for b and top quarks.

VIII. TRANSVERSE QUARK POLARIZATION

We obtain in this Chapter the cross sections for transverse quark and antiquark po-
larization in ¢g and ggg final states. We do not discuss here the transverse polarization
correlations. We note that the transverse polarization terms in the cross section are pro-
portional to the reduced mass 7y and are therefore small for light quarks in contrast to the
longitudinal polarization dependent terms discussed above. The only exception is the trans-
verse polarization correlation term described by h(fs)(s)ngg in Eq. (5.1). This can be seen
most easily from the relevant hadron tensors Egs. (3.12), (3.14) and (3.16) for terms linear
in S and Eq. (3.17) for SS correlation. From Eq. (2.10) the transverse quark polarization
four vector is given by

St =(0,¢h). (8.1)
For the qg production process only one scalar product {*p_ = —{*p, contains {*, therefore
the (maximum) transverse polarization lies in the production (p--q) plane. The polarization

perpendicular to the production plane vanishes. The cross section for quark polarization is
easily obtained, corresponding to Eq. (6.1).

doff 3wy .o 2g 22 @) ¢ = (5)(s ¢ Zyrp?
o= E—s—ﬂ {hf (5,6, Z)(1 + cos“ 8 + ™} sin” 0) + 2h; (szé,:)ﬂcosﬂ — hy'(s, €, Z)my
+7¢ P (20 (5,6,5) + h(s,€,E)Beos 0 — A (s, £, )]}, (8:2)
where 1tp_ = (L sinf cos p, with the azimut angle ¢, measured in the positive sense from

the (p--q) plane, Fig. 1. At the Zy-resonance the cross section becomes

d2 99 2
Uf (2E = Mz) = 3 (-—a——-—-) —}-—(’U2 + (12 - QUG.P._),B

dQ 16 \45in? 26y / T2
X {(vf, +a%)(1 + cos® @ + m} sin® 0) — 4Pz, vsa;f cos § — 2m}al
+2m (P [onv;f — vsasf cos 0]} . (8.3)
For the ggg production cross section the transverse polarization is contained in the scalar
products {tp_ and {tgq = —(tg, and the transverse polarization does not any more in

general lie in the (p_-q) plane. The cross section corresponding to Eq. (6.4) is found to be
given by ‘

5 _adg 2
daj oa® o 1

dQdxdedz ~ 4(27) s (1 —z)(1 -
+5L (¢ b= (A (5,6, 2)fx + B (5,6, D) fy + 4 (5,6, f2)
+¢4q (A(5,6,2)9x + hP (s, €, Z)gy + 1Y (5,€,2)92)] } (8.4)

5 {r(s,6,2) X0 + B (5,6, 2)Yo0 + B (s,€,2) 2
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where the f and g form factors, related to transverse polarizations, are functions of z and
z, and of the angles 6, ¢ and y. It should be noted that the magnitude and direction of
the transverse polarization depends on the azimuth angle y between the production (g-g-g)
plane and (p_)*, with g along the z-axis,

Crpo = Clsinﬂcos(x—w), (8.5)

where ¢ now is measured in the positive sense from the (g-g-g) plane.

We demonstrate this effect in Eq. (8.4), where we did not integrate the cross section
over azimuth angle x - as was done for the longitudinal polarization cross section.

The scalar product ¢1g is

¢tq = —(¢tsind cos P (8.6)
The f and g form factors are given by

2

fx =8(x+i—1)—2m"}(1_z)gl_j),
fr =228, ( — T_’%}laj—gm> cos@ — 2z3; (m +z-1- %ﬁlxji) cos 0,
72
fz=—2[:v+i-—xg(2—i)]+-m-}(1_x)fl_i), (8.7)
gx = 423,305 cos + Qa‘czﬂgf :; cos 5,
gy = fiﬂ; (E; —z+ (1 — )22 cos® 9_) — 283,%*B2 cos  cos b,
9z = zB:ZPz(Z — 4) cos § — 22?32 cos 4.
The transverse polarization is given by
, = dolp) —do(pc+m) (8.8)
do(p¢) + do(p¢ + )
For the ¢ final state we find from eq. (8.2)
P7 =7 cos g, sin 0h(1) 2hff7)(sz__: ff(fsj(s)ﬂ co(s;)ﬂ —f(f)(s) @ . (8.9)
5 (8)(1 + cos? @ + % sin® 0) — A% (s)m?% + 2h%"(s)B cos 0
The corresponding formula at the Zp-resonance is from Eq. (8.3)
PI(2E = My)
= 2 cos @ sin 6 Payv; — vsasf cost (8.10)

(v} + a})(1 + cos? 6 + 7% sin® 0) — 2m%a? — 4Pz,vsasB cos§’

which shows that electron beam polarization Eq. (6.3) and Fig. 1 in ref. [6], may affect the
transverse polarization considerably. In fact for the integrated cross section the polarization
is proportional to Pz,
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_ 3 m
PY(2E = Mz) = Py, - Tg‘f e (8.11)
+
2 v

which gives for a b quark P%? = 0.040P,.

Note that at § = w/2 the Z, longitudinal polarization is to a larger degree transferred
to the quark as a transverse polarization in the (g-p_) plane (from Eq. (8.10)):
my

a2 ?
1+ m% + ém

PU(2E = Mz) = 2Pg, (8.12)

which gives for a b quark P{? = 0.068Pz,. This gives a —4.9 % transverse polarization of a b
quark for an electron beam polarization of —63 %. With no beam polarization the b quark
transverse polarization is as low as —1.1 %. Large effects of electron beam polarization are
demonstrated in Figs. 11 and 12 for b and top quarks for ¢q final states.

The transverse quark polarization for ¢gg final states is from Eq. (8.4) given by

Pi(z,5) = 2L {sin0 cos(x — o)) fx + K(s) fy + h(5)f2]

—sin 9 cos cpc[h5,7)(8)gx + hsts)(s)g}’ + thg)(S)gz]}

-1

< {R9(s) X0 + KD (s)Ys + BD(5) 20} . (8.13)

We give in Figs. 11 and 12 P{%¥(z,Z) for b and top quarks for ¢¢ = 0, transverse polar-
ization in the production plane, and for ¢ = 7/2, transverse polarization perpendicular to
- the production plane. It should be noted that also for qgg final states the electron beam
polarization has a dramatic effect on the quark polarization, in particular in the vicinity
of 6 = n/2. This may be understood as a transfer of longitudinal electron polarization to
transverse polarization of the quark, when the quark is emitted close to perpendicular to
the electron beam direction. It should be noted that this gives a check on the sign of the
quark polarization: the negative natural and electron beam polarizations give a final state
negative quark polarization. To the extent that our findings can be compared with the re-
sults of reference [9], we are in general agreement with their results except that they define
their transverse quark polarization with opposite sign. It should however be noted that our
results are differential in Z and also x as mentioned above, and that we include the effect of
electron beam polarization.
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APPENDIX A

It is convenient for the calculation to rewrite the Z-coupling matrix element

_ +4+m
Uy %q—wf‘/u(w - af’Ys)

Edmfy{

—Yu(vs — as7s)
in the form ;Mo (vy — af7ys)e®v; with

YoV Yufra fa o

M, o = Yo + - — Woz = - _.

g T 299 2gg a9 g

By removal of the explicit appearence of the mass, M,, has become an odd function in

7, which appears to simplify trace calculations. When we apply the projection operators

11+ 8)(d+my) and 4(1 +75 8)(§ — my) for quarks and antiquarks respectively, we find
for the ZZ hadron tensor H} Z7Zuvs EQ. (2.4), which is summed over gluon polarizations,

S5l = =T (1 %8+ 1) Moo — ag26) (1 +35 B)(d = 1) (v + a2 T

(A1)

= -in {(U§ + af) [dMua M, + mpys SMua dM, — my dM,0vs § M,
—m} $Mua B M| — 200y [vs qMua A, + my FM o M2
—mys {Muo§ M — miys EMua M| — (0} — a3) [m3 M0 T,
+m s § fMua My —m iMooy BAM,+ 8 dM.o 34 M)} (A2)

From this equation follow the hadron tensors listed in Eq. (2.7) by comparison with Egs.
(2.4) and (2.5).

TIr 1 o —, g o
ml, = [EWZ‘I 3’ + (gW - 1) qz -W q"+(q®q)] toubu
T75.f . 2 qa =0 1 o ay =8 q—W a off o of
Hyy, =imy |(W*5%¢" + — (SWg* — SgW*) §° + —g°S* — W*°S
q9 dg
S9 o.p

1
oo
g°q +_gSlsa s
(g9)? ag ad

B = l W25=5P 4 —;(SWg — SgWw*) 58

89 ua .
_(qg)gg Sﬁ + (qa S&e q, S)] tauﬁua
P! oo oo _
HA;w == |:§W2q o + (qW - l)gqg -W qﬂ - (q = Q) Eaufrs
1 qW
Hyl, = —my [WZSafiﬁ + p” (SWg™ — SgW*) ¢ — q—q—é—g"‘sﬁ + Wes#
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N 1
_(qg)zg qﬁ - _qigg Sﬂ] tauﬁua (A3)

1 5, 1 !
H3SS = im? [§W2Sasf’ t o (SWg™ — Sgw=) §#

S _ .
(qgg)Zg S (qa S & q, S)] €apfry
1 9.9y _
m2HYZ — [ W+ S~ + (g & ]
F7Ve 2" 9 T (q9)(q9) (49

1
m?.H{g'uZuf =1imy [W25°‘ h_ E(qua - qWSa)gﬁ
1 g
(qu - 495°) (Wﬁ—%)] Eaup)
a9
mt HSSZ = [ W25 + —{(quﬁ—qgwﬁ)sw (SWg" ~ SgW")q"}] 5T
(Eaﬂuée'y&/ +t°‘ﬁl‘5t’75")
b [g,q"S%" — 9,(495° — Sgq°)¢°] 5°¢°
(¢9)(q9) [90"5°0" ~ 9, (ag o0"] 574

X (Eozﬁuseo-.yse + taﬁusta-y§€>
+(¢,5 4, 5).

APPENDIX B
It is sometimes useful to note the relation [14]

VuVoVa = 1Y5€uap’ + tuvas?, (B.1)

with €,,q5 the completely antisymmetric tensor with €¢123 = 1 and

tyap = 9u9ap — Gua9vp + JusGva-

With the help of relation (B.1) one can write down in closed form the trace of any number
of 4’s, the well known traces

Tr Y VYoV = 4tuua07

Tr V5V Vv VaYe = 4i€uuaa, (B2)

and the not so well known traces

Tr Yy Yo YoV Yo = 4 (Eﬂl’ﬂﬂsw'yo‘ﬁ + tuvast e ﬁ) )

Tr Y57u Vo Ya Yo In Yo = 4 (Euuaﬁtwwaﬁ - twaﬁewqa ﬁ) . (B'3)
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The similarity between €,,q05 and t,,44 is shown in the relations

€pavpE, aaﬁ = -2 (guwgua - gp.aguw) 3
tuauﬁtw aaﬁ = 2 (g,u.wgucr + g/.w'guw) 9 (B4)
and
tul’aﬁtw'yaﬁ = guutw—yaa - guatw—yau + guatw-yau,
tuuaﬁewwaﬁ = Juv€wyoa — Juauvyov + Jva€uwyopuy (B5)
and
euuaﬂew—yaﬁ = guwtua'ya' - g;l.'ytuawo' + guatuaw’y - guatuw—ya- (BG)
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FIGURE CAPTIONS

FIG. 1. Production of ¢gg final states (and ¢g final states for g = 0). The production
(g--g) plane is in the x-z plane, and the electron momentum p- and linear polarization
P.; is described by the polar angle 6 and the azimuth angle y. The unit longitudinal quark
polarization vector ¢!l and transverse polarization vector ¢! give the directions of the re-
spective quark polarizations.

FIG. 2. The form factors Fi(z, Z) for the b quark for z = Z at the Z, resonance, 2F = 91.2
GeV. The numbers attached to the curves refer to 1-5: Fi1, Fa, F3, Fy and (1/4)Fs; 6,78

and 9: Ff, 5, (1/4)F5 and F¢; 10-14: .’ng, (1/4).7:5"7, Fi, ffc— and .7:5(5, respectively.
FIG. 3. Same as Fig. 2 for the top quark for the energy 2E = 500 GeV.
FIG. 4. Same as Fig. 2 for the top quark for the energy 2E = 1000 GeV.

FIG. 5. Longitudinal polarization of the b quark at the Z; resonance as a function of
cos § for ¢qg final states. Curves 1, 3 and 4 are for z = Z = 1, 0.60 and 0.51 respectively, for
an unpolarized electron beam, while curves 1*, 2*, 3* and 4* are for z = & = 1, 0.75, 0.60
and 0.51 respectively, for a longitudinally polarized electron beam, Pell = —0.63. The curves
for z = =1 give at the same time the quark polarizations for qq final states.

FIG. 6. Same as Fig. 5 for the top quark for the energy 2F = 500 GeV. Here the curves
1-4 correspond to z = & = 1, 0.90, 0.80 and 0.76 respectively, for no beam polarization,
while the curves marked with asterisks are for a beam polarization, PJ', = —0.63.

FIG. 7. Same as Fig. 5 for the top quark for the energy 2E = 1000 GeV. Here the curves
1-4 correspond to z = 7 = 1, 0.85, 0.70 and 0.57 respectively, for no beam polarization,
while the curves marked with asterisks are for a beam polarization, PJ} = —0.63.

FIG. 8. Longitudinal quark polarization for the cross section integrated over # as a
function of z for £ = z. Curve 1 is for the b quark at the Z; resonance irrespective of
the polarization of the electron-positron beams. Curves 2-4 are for the top quark for the
energy 2F = 500 GeV. Curves 2, 3 and 4 are for an unpolarized beam, for P!', = —0.63 and

for PJ} = —1.00, respectively. Curves 5-7 are for the top quark for the energy 2F = 1000

GeV. Curves 5, 6 and 7 are for an unpolarized beam, for Pe”, = —0.63 and for Pe“l = —-1.00,
respectively.

FIG. 9. The forward-minus-backward polarization as a function of z for z = #. Curves
1-3 are for the b quark at the Z; resonance. Curves 1, 2 and 3 are for an unpolarized
electron-positron beam, for PJ; = —0.63 and for Pﬂ = —1.00, respectively. Curves 4-6 are
for the top c}uark for the energy 2E = 500 GeV. Curves 4, 5 and 6 are for an unpolarized
beam, for Pc!, = —0.63 and for Pe“, = —1.00, respectively. Curves 7-9 are for the top quark for
the energy 2E = 1000 GeV. Curves 7, 8 and 9 are for an unpolarized beam, for P(!', = —0.63

and for Pﬂ = —1.00, respectively.
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FIG. 10. The longitudinal polarization correlation as a function of z for z = #. Curve 1
is for the b quark at the Zy resonance irrespective of the polarization of the electron-positron
beams. Curves 2 and 3 are for the top quark for the energy 2E = 500 GeV, for unpolarized
beams and for Pﬂ = —1.00, respectively. Curves 4 and 5 are the same as 2 and 3 for the
energy 2F = 1000 GeV.

FIG. 11A. Transverse polarization in the production plane (¢, = 0) for the b quark at
the Zo resonance for ¢gg final states. Curves 1-4 are for z = z = 1, 0.90, 0.60 and 0.51
respectively, and x = 0 for unpolarized electron-positron beams, while the corresponding
curves marked with asterisks are for Plll = —0.63. The curves 5 and 6 are for z = z = 0.90
and z = Z = 0.51 for x = 7/2 for unpolarized beams, while the corresponding curves marked
with asterisks are for P”, = —0.63. The curves for ¢ = 7 = 1 give at the same time the

quark polarization for ¢g final states.

FIG. 11B. Transverse polarization perpendicular to the production plane (pe = 7/2)
for the b quark at the Z; resonance for ¢gg final states for x = 7/2. Curves 1-3 are for
z = % = 0.90, 0.70, and 0.51 respectively, for unpolarized electron-positron beams, while
the corresponding curves marked with asterisks are for Pl} = —0.63.

FIG. 12A. Same as Fig. 11A for the top quark for 2E = 500 GeV. Curves 1-4 are for
r =2 =1, 095 0.85 and 0.76 respectively, and ¢, = x = 0 for no beam polarization.
Curves 5 and 6 are for z = Z = 0.95 and ¢ = £ = 0.76 for ¢, = 0, x = 7/2 for no beam
polarization. The corresponding curves marked with asterisks give the transverse quark
polarization for P,H = —0.63.

FIG. 12B. Same as Fig. 11B for the top quark for 2F = 500 GeV. Curves 1-3 are for
z =7 = 0.95, 0.85 and 0.76 respectively, and ¢ = x = 7/2 for no beam polarization.
The corresponding curves marked with asterisks give the transverse quark polarization for

Pl =—0.63.
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